EP1272371A1 - Einrichtung zur stromerzeugung und zum abschatten bei kraftfahrzeugen - Google Patents

Einrichtung zur stromerzeugung und zum abschatten bei kraftfahrzeugen

Info

Publication number
EP1272371A1
EP1272371A1 EP01995616A EP01995616A EP1272371A1 EP 1272371 A1 EP1272371 A1 EP 1272371A1 EP 01995616 A EP01995616 A EP 01995616A EP 01995616 A EP01995616 A EP 01995616A EP 1272371 A1 EP1272371 A1 EP 1272371A1
Authority
EP
European Patent Office
Prior art keywords
solar cells
layer
vehicle
thin
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01995616A
Other languages
English (en)
French (fr)
Inventor
Daniel Damson
Ekkehard Laqua
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1272371A1 publication Critical patent/EP1272371A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof

Definitions

  • the invention relates to a device for power generation and shading in motor vehicles, the genus defined in the preamble of claim 1.
  • the device according to the invention for power generation and for shading in motor vehicles has the advantage over the prior art that, on the one hand, essential parts of the motor vehicle are shaded by solar cells and this heats up less, and on the other hand, at the same time Electricity is generated, which is fed into the vehicle electrical system or the battery. This is possible in particular when the vehicle is at a standstill, so that on the one hand electricity is generated in sunshine or daylight and on the other hand the heating of the vehicle is reduced. This may also reduce the performance of the air conditioning system for cooling the vehicle.
  • solar cells are provided on suitable body parts of the vehicle as separate or integrated components and are connected to consumers or the battery of the vehicle for feeding in the electrical current generated.
  • solar cells that are mirrored on the back or provided with an internal reflection layer are provided as solar cells.
  • the solar cells which are mirrored on the back or provided with an internal reflection layer are designed as semiconductor, in particular silicon, semiconductor solar cells.
  • thermo-ionic cells are described. - Neither article describes nor suggests the use and / or application of such cells in connection with power generation and shading in motor vehicles.
  • the solar cells are built up on a carrier layer and that the carrier layer is firmly connected to a suitable body part, in particular the vehicle roof.
  • the carrier layer of the solar cells can be rigid or flexible.
  • thin-film solar cells are provided as solar cells, and these thin-film solar cells are integrally grown and manufactured on suitable carrier layers or directly on vehicle body parts, in particular on the vehicle roof.
  • the thin-film solar cell is constructed as a CIS solar cell, where CIS stands for the elements copper, indium and selenium from which the photovoltaically active absorber layer is constructed.
  • CIS stands for the elements copper, indium and selenium from which the photovoltaically active absorber layer is constructed.
  • the thin-film solar cells are provided with a protective layer that is optically matched to the painting of the vehicle. This means that the solar cells are integrated into the design of the vehicle in a visually appealing way.
  • transparent solar cells are provided as solar cells.
  • this third embodiment of the device according to the invention provides that the transparent solar cells are embedded in glass.
  • the transparent solar cells are provided on windows of the vehicle or are integrated between two panes of a window.
  • the transparent solar cells can be attached to side windows and / or rear windows and / or the upper region of the front pane, in particular on the inside thereof.
  • POWER solar cells so-called polycrystalline afer engineering result
  • transparent solar cells in which tiny holes are machined into the base material, in particular silicon, by mechanical processing, as a result of which the Get solar cell transparency.
  • FIG. 1 shows schematically in sectional view a first implementation of the invention with the aid of a mirrored solar cell, which is applied to a suitable body part of a motor vehicle, together with the schematic irradiation and
  • FIG. 3 schematically shows the structure of a CIS thin-film solar cell which can be used according to the invention in accordance with a second embodiment of the invention
  • FIG. 4 schematically shows the sequence of manufacturing a CIS thin-film solar cell according to FIG. 4,
  • FIG. 5 schematically shows the structure of a transparent solar cell, which is provided according to a third embodiment of the invention.
  • a first implementation of the invention is shown schematically in the sectional view.
  • a solar cell 1 mirrored on the rear is applied to a suitable body part 2 of a motor vehicle.
  • a suitable body part 2 of a motor vehicle below the body part 2, which can be, for example, the body panel of the roof of a motor vehicle, which is not shown in any more detail, an insulation and, if appropriate, interior trim layer 3 is provided towards the interior of the vehicle.
  • the solar cell 1 consists, seen in FIG. 1 from bottom to top, essentially of a carrier layer 11, a reflection layer 12 on the back of an active photovoltaic layer 13 and a protective layer 14 covering it upwards or outwards in the direction of the incident radiation.
  • the incident radiation, sunlight or daylight, is represented by the family of downward-pointing arrows 4 and that on the boundary between the photovoltaic layer 13 and the Reflection layer 12 reflected radiation is represented by the two arrows 5 bent upwards.
  • the total reflected radiation is represented by the five arrows 6, it is composed of the portion already mentioned, which is reflected at the boundary between the photovoltaic layer 13 and the reflection layer 12 and emerges from the photovoltaic layer 13, represented by the two arrows 5, and the portions , which are reflected on the one hand on the surface of the protective layer 14 and on the other hand on the boundary layer between the protective layer 14 and the photovoltaic layer 13.
  • the reflection layer 12 represents a rear-side mirroring of the photovoltaic layer 13. Radiant energy incident in this photovoltaic layer 13, which radiation energy does not convert there into electrical energy, i.e. Current that is converted is reflected according to the two arrows 5. As a result, the photovoltaic layer 13 and thus the entire solar cell 1 and the structure below it, such as in particular the carrier layer 11 and the body part 2, heat up less. In this way, the aim of the present invention, namely reduction of the heat input in vehicles by shading or reflection of unconverted solar radiation, is achieved in a sustainable manner with simultaneous improved power generation for the vehicle electrical system.
  • the preferred area for such solar cells, such as that shown in FIG. 1, is the vehicle roof.
  • Usual solar cells absorb light in a typical frequency range and convert it into electrical energy. A large proportion of the radiation heats up the solar cells and the carrier material. This leads to a deterioration in the efficiency of the solar cells and to a heating of the carrier material, for example the vehicle roof and thus the vehicle interior. This effect described above is achieved by the provision of prevented on the back mirrored solar cells 1.
  • a further part of the incident radiation is converted from thermal energy into electrical energy. The radiation component that cannot be converted into electrical energy is reflected on the reflection layer 12 and does not lead to any heating of the carrier layer 11 and the body part 2 underneath, for example the vehicle roof.
  • the support layer 11 of the solar cell 1 is firmly connected to the body part 2 underneath.
  • the carrier layer 11 can be rigid in itself or it can be flexible in order to adapt better to the shape of the body part 2, if necessary.
  • the firm connection between the carrier layer 11 and the body part 2 can e.g. done by gluing.
  • the reflection behavior of silicon semiconductor solar cells with the reflection R as a function of the wavelength ⁇ of the incident radiation schematically shows the reflection behavior of silicon semiconductor solar cells with the reflection R as a function of the wavelength ⁇ of the incident radiation.
  • the three different curves represent examples of different reflective silicon semiconductor solar cells.
  • the wavelength ⁇ is given in nm. Approximately below the wavelength of approx. 780 nm is the visible and above that the infrared range of the incident radiation. The spectral shown
  • Characteristic curves show that the reflection R is lower than in the infrared range, with the reflection being almost total and essentially constant from a wavelength of approximately 1200 nm.
  • the reflection R of such solar cells 1, as shown in FIG. 1 and shown in FIG. 2 by way of example in the reflection behavior, by means of a separate reflecting layer 12 attached to the rear between the photovoltaic layer 13 and the carrier layer 11 or a internal reflective layer can be realized within the active photovoltaic layer.
  • FIG. 3 shows an example of the structure of the CIS thin-film solar cell 30 on a suitable body part, which according to the second embodiment of the invention is also a body panel 32, such as that from the roof of a motor vehicle.
  • An approximately 0.5 ⁇ m thick molybdenum layer is applied as electrical contact to the body sheet 32 serving as the carrier layer.
  • An approximately 2 ⁇ m thick photovoltaically active absorber layer 31 which contains copper indium diselenide.
  • step 41 an approximately 0.5 ⁇ m thick molybdenum layer is deposited on a carrier substrate by cathode sputtering and functions as a so-called electrical back contact.
  • step 42 the back contact is structured by means of laser treatment.
  • step 43 the photovoltaically active absorber layer made of Cu (In, Ga) Se 2 is applied by simultaneous evaporation, in a thickness of approximately 2 ⁇ m.
  • step 44 an approximately 0.05 ⁇ m thick CdS intermediate layer is applied, for example in a chemical immersion bath.
  • step 45 the photovoltaically active absorber layer is structured mechanically.
  • step 46 an approximately 1 ⁇ m thick ZnO layer is deposited by cathode sputtering to form the so-called electrical front contact.
  • step 47 the front contact is structured mechanically.
  • step 48 the electrical end contacts are finally attached and the sealing is carried out.
  • the second implementation of the invention described on the basis of the CIS thin-film solar cells allows the integration of these solar cells on suitable body parts, such as, for example, the vehicle roof, both for shading the areas below and for simultaneously generating electricity.
  • suitable body parts such as, for example, the vehicle roof
  • the advantages of thin-film solar cells include the low cost of materials and the associated low costs, with the trend continuing to decline.
  • the manufacturing process can be easily automated.
  • the molybdenum layer provided for contacting is not applied to glass, but can be applied directly to a body part.
  • the solar cell is built up further on this layer. This enables a direct integration of the solar cell into, for example, the vehicle roof and a simple automation of the direct solar cell production.
  • thin-film solar cells produced in this way not limited to CIS thin-film solar cells, where CIS stands for the elements copper, indium and selenium, are protected against environmental influences by a protective lacquer layer that is optically matched to the vehicle body part. Since the thickness of the thin-film solar cells is only a few ⁇ m, simple integration into the design and painting of the vehicle is possible.
  • a third implementation of the basic solution according to the invention provides that transparent solar cells are used as solar cells.
  • the transparent solar cells can be embedded in glass.
  • the transparent solar cells are attached to side windows and / or to rear windows and / or in the upper region of the front window, in particular on the respective inner side thereof.
  • a transparent solar cell 50 is described with reference to FIG. 5.
  • a so-called POWER solar cell 50 where POWER stands for polycrystalline wafer engineering result, is advantageously provided.
  • tiny holes 51 are machined into the base material, in particular silicon, by mechanical processing, as a result of which the solar cell receives transparency.
  • the holes 51 arise at the intersection of the intersecting and partially penetrating approximately V-shaped grooves 52 and 53.
  • the grooves are produced by mechanical milling with a correspondingly shaped, rotating diamond roller set with diamonds, which in the direction of the grooves 52 and 53 is moved over the silicon semiconductor block 54 with an adapted feed.
  • the front contact 55 is produced and attached to the upper ridges of the webs between the grooves 52
  • the rear combs 56 are made in the lower ridges of the webs between the grooves 53.
  • Other necessary or expedient measures for producing such transparent solar cells 50 need not be discussed here with regard to the purpose and aim of the invention.
  • Such POWER solar cells are, for example, from sunways AG, Macairestr. 5 in D-78467 Konstanz and are described in more detail in a company brochure. As a module, they have an external dimension of 10 x 10 cm and a thickness of approximately 330 ⁇ m. The transparency is around 20%, but can be varied. These transparent solar cells are therefore suitable in the manner described above according to the invention as shading and electricity-generating solar cells on windows of motor vehicles as separate components with little application. The effect of tinted windows is visual.
  • the device according to the invention has the general advantage that, on the one hand, essential parts of the motor vehicle are shaded by solar cells and this heats up less, and on the other hand, electricity is generated at the same time, which is fed into the vehicle electrical system or the battery. This is possible in particular when the vehicle is at a standstill, so that on the one hand electricity is generated in sunshine or daylight and on the other hand the heating of the vehicle is reduced. This may also reduce the performance of the air conditioning system for cooling the vehicle.
  • three different implementation examples are described, each of which contain useful and advantageous further developments and refinements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung beschreibt eine Einrichtung zur Stromerzeugung und zum Abschatten bei Kraftfahrzeugen. Gemäss einer ersten Realisierung der Erfindung ist eine rückseitig verspiegelte Solarzelle (1) auf einem geeigneten Karosserieteil (2) eines Kraftfahrzeuges aufgebracht. Unterhalb des Karosserieteils, welches z.B. das Karosserieblech des Daches eines Fahrzeugs sein kann, ist zum Inneren hin eine Isolations- und Innenverkleidungsschicht (3) vorgesehen. Die Solarzelle besteht im wesentlichen aus einer Trägerschicht (11), einer Reflektionsschicht (12) auf der Rückseite einer aktiven Photovoltaikschicht (13) und einer diese nach oben bzw. Aussen hin in Richtung auf die einfallende Strahlung abdeckende Schutzschicht (14). Die einfallende Strahlung, Sonnen- bzw. Tageslicht, ist durch die Schar der Pfeile (4) dargestellt und die an der Grenze zwischen der Photovoltaikschicht und der Reflektionsschicht reflektierte Strahlung ist durch die beiden Pfeile (5) dargestellt. Die gesamte reflektierte Strahlung wird durch die fünf Pfeile (6) dargestellt und setzt sich zusammen aus dem an der Grenze zwischen der Photovoltaikschicht und der Reflektionsschicht reflektierten und aus der Photovoltaikschicht austretendem Anteil, und den Anteilen, die zum einen an der Oberfläche der Schutzschicht selbst und zum anderen an der Grenzschicht zwischen der Schutzschicht (14) und der Photovoltaikschicht (13) reflektiert werden. Entsprechend weiterer Realisierungen können auch Dünnschicht-Solarzellen oder transparente Solarzellen vorgesehen sein.

Description

ROBERT BOSCH GMBH, 70442 Stuttgart
Einrichtung zur Stromerzeugung und zum Abschatten bei Kraftfahrzeugen
Stand der Technik
Die Erfindung geht aus von einer Einrichtung zur Stromerzeugung und zum Abschatten bei Kraftfahrzeugen, der im Oberbegriff des Anspruchs 1 definierten Gattung.
Aus der DE 40 17 670 AI ist ein Verfahren zur direkten leistungsoptimalen Anpassung zwischen einem Solargenerator und dem Motor eines Serienfahrzeuglüfters bekannt, bei dem die Anpassung zwischen dem Solargenerator und dem Motor durch einen DC-DC- Abwärtswandler vollzogen wird. Dabei kann der Solargenerator in das Schiebedach eines Kraftfahrzeuges integriert sein. Eine generelle Einspeisung der über den Solargenerator erzeugten Strom in das Bordnetz und eine beabsichtigte Abschattung von wesentlichen Teilen des Kraftfahrzeuges ist bei diesem bekannten Stand der Technik weder beabsichtigt noch ausdrücklich vorgesehen. Vorteile der Erfindung
Die erfindungsgemäße Einrichtung zur Stromerzeugung und zum Abschatten bei Kraftfahrzeugen, mit den kennzeichnenden Merkmalen des Anspruchs 1 hat gegenüber dem Stand der Technik den Vorteil, dass zum einen wesentliche Teile des Kraftfahrzeuges durch Solarzellen abgeschattet werden und sich dieses dadurch weniger aufheizt, und dass zum anderen gleichzeitig Strom erzeugt wird, der in das Bordnetz bzw. die Batterie eingespeist wird. Dies ist insbesondere bei Stillstand des Fahrzeuges möglich, so dass bei Sonnenschein bzw. Tageslicht einerseits Strom erzeugt wird und andererseits die Aufheizung des Fahrzeuges vermindert wird. Damit kann gegebenenfalls auch die Leistung der Klimaanlage zum Kühlen des Fahrzeuges vermindert werden.
Gemäß der Erfindung wird dies prinzipiell dadurch erreicht, dass Solarzellen auf geeigneten Karosserieteilen des Fahrzeuges als separate oder integrierte Bauteile vorgesehen sind und zur Einspeisung des erzeugten elektrischen Stromes mit Verbrauchern bzw. der Batterie des Fahrzeuges verbunden sind.
Durch die in den jeweils abhängigen Ansprüchen niedergelegten Maßnahmen sind vorteilhafte Ausgestaltungen, Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Einrichtung möglich.
Entsprechend einer ersten vorteilhaften Ausgestaltung der erfindungsgemäßen Einrichtung sind als Solarzellen rückseitig verspiegelte oder mit einer internen Reflexionsschicht versehene Solarzellen vorgesehen. Gemäß einer vorteilhaften Weiterbildung dieser erfindungsgemäßen Einrichtung sind die rückseitig verspiegelten oder mit einer internen Reflektionsschicht versehenen Solarzellen als Halbleiter-, insbesondere Silizium- Halbleiter-Solarzellen ausgeführt .
Solche rückseitig verspiegelte oder mit einer internen
Reflexionsschicht versehene Solarzellen sind an sich bekannt und beispielsweise in der Raumfahrt verwendet. In einem Artikel „TPV CELLS WITH HIGH BSR" von P.A. lies und C.L. Chu, erschienen in The Second NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conference Proceedings 358, Woodberg, New York, 1996, Seite 361 - 371, sind verschiedene Versionen und Materialien beschrieben und dargelegt, dass mit derartigen Solarzellen höhere Wirkungsgrade erreichbar erscheinen. In einem weiteren Artikel „Optical Properties of Thin Semiconductor Devise Structures with Reflective Back-Surface Layers" von M.B. Clevenger, C.S. Murray, S.A. Ringel, R.N. Sacks, L. Qin, G.W. Charache und D.M. Depoy, erschienen in Thermophotovoltaic Generation of Electricity, Fourth NREL Conference, AIP Conference Proceedings 460, New York, 1999, Seite 327 - 334, sind Verbesserungen des Wirkungsgrads von thermovoItaischen Zellen beschrieben. - Beide Artikel beschreiben keine Verwendung und/oder Anwendung solcher Zellen im Zusammenhang mit Stromerzeugung und Abschattung bei Kraftfahrzeugen, noch legen sie eine solche nahe.
Eine vorteilhafte Weiterbildung der ersten Ausgestaltung der Erfindung sieht vor, dass die Solarzellen auf einer Trägerschicht aufgebaut sind und dass die Trägerschicht mit einem geeigneten Karosserieteil, insbesondere dem Fahrzeugdach, fest verbunden ist. Gemäß vorteilhafter Fortbildung kann die Trägerschicht der Solarzellen starr oder flexibel sein.
Entsprechend einer zweiten vorteilhaften Ausgestaltung der erfindungsgemäßen Einrichtung sind als Solarzellen Dünnschicht- Solarzellen vorgesehen und diese Dünnschicht-Solarzellen sind auf geeigneten Trägerschichten oder direkt auf Fahrzeugkarosserieteilen, insbesondere auf dem Fahrzeugdach, integrativ aufgewachsen und gefertigt.
Gemäß einer vorteilhaften Weiterbildung dieser zweiten Ausgestaltung der erfindungsgemäßen Einrichtung ist die Dünnschicht-Solarzelle als CIS-Solarzelle aufgebaut, wobei CIS für die Elemente Kupfer, Indium und Selen steht, aus denen die photovoltaisch aktive Absorberschicht aufgebaut ist. In entsprechend dem vorzugsweise vorgesehenen Einsatzgebiet der Erfindung ist in vorteilhafter Fortbildung vorgesehen, die Dünnschicht-Solarzellen mit einer auf die Lackierung des Fahrzeugs optisch abgestimmten Schutzschicht zu versehen. Damit sind die Solarzellen optisch ansprechend in das Design des Fahrzeugs integriert.
Entsprechend einer dritten vorteilhaften Ausgestaltung der erfindungsgemäßen Einrichtung sind als Solarzellen transparente Solarzellen vorgesehen.
Eine besonders zweckmäßige Weiterbildung dieser dritten Ausgestaltung der erfindungsgemäßen Einrichtung sieht vor, dass die transparenten Solarzellen in Glas eingebettet sind. Die transparenten Solarzellen sind in vorteilhafter Weiterbildung an Fenstern des Fahrzeugs vorgesehen oder zwischen zwei Scheiben eines Fensters in dieses integriert vorgesehen. Dabei können in zweckmäßiger Weiterbildung die transparenten Solarzellen an Seitenfenstern und/oder Rückfenstern und/oder dem oberen Bereich der Frontscheibe, insbesondere auf deren Innenseite, angebracht sein.
Gemäß vorteilhafter und zweckmäßiger Weiterbildung dieser dritten Ausgestaltung der erfindungsgemäßen Einrichtung sind als transparente Solarzellen sogenannte POWER-Solarzellen (POWER steht für Polycristalline afer Engineering Result) vorgesehen, bei denen durch einen mechanische Bearbeitung in das Basismaterial, insbesondere Silizium, winzige Löcher eingearbeitet sind, wodurch die Solarzellen Transparenz erhalten.
Zeichnung
Die Erfindung wird anhand der in der Zeichnung dargestellten Ausführungs- und Realisierungsbeispielen in der nachfolgenden Beschreibung näher erläutert, wobei in der Fig. 1 schematisch im Schnittbild eine erste Realisierung der Erfindung mit Hilfe einer rückseitig verspiegelten Solarzelle, die auf einem geeigneten Karosserieteil eines Kraftfahrzeuges aufgebracht ist, zusammen mit den schematisierten Einstrahlungs- und
ReflektionsVerhältnissen;
Fig. 2 schematisch das Reflektionsverhalten von Silizium- Halbleiter-Solarzellen in Abhängigkeit von der Wellenlänge λ der einfallenden Strahlung;
Fig. 3 schematisch den Aufbau einer CIS-Dünnschicht- Solarzelle, die entsprechend einer zweiten Ausgestaltung der Erfindung erfindungsgemäß verwendbar ist;
Fig. 4 schematisch den Ablauf der Herstellung einer CIS- Dünnschicht-Solarzelle gemäß Fig. 4, und
Fig. 5 schematisch den Aufbau einer transparenten Solarzelle, die gemäß einer dritten Ausgestaltung der Erfindung vorgesehen ist.
Beschreibung der Ausführungsbeispiele
In Fig. 1 ist schematisch im Schnittbild eine erste Realisierung der Erfindung dargestellt. Bei dieser Ausgestaltung der Erfindung ist eine rückseitig verspiegelte Solarzelle 1 auf einem geeigneten Karosserieteil 2 eines Kraftfahrzeuges aufgebracht. Unterhalb des Karosserieteils 2, welches zum Beispiel das Karosserieblech des Daches eines nicht weiter dargestellten Kraftfahrzeugs sein kann, ist zum Inneren des Fahrzeuges hin eine Isolations- und gegebenenfalls Innenverkleidungsschicht 3 vorgesehen. Die Solarzelle 1 besteht, in Fig. 1 von unten nach oben gesehen, im wesentlichen aus einer Trägerschicht 11, einer Reflektionsschicht 12 auf der Rückseite einer aktiven Photovoltaikschicht 13 und einer diese nach oben bzw. außen hin in Richtung auf die einfallende Strahlung abdeckende Schutzschicht 14. Die einfallende Strahlung, Sonnen- bzw. Tageslicht, ist durch die Schar der nach unten weisenden Pfeile 4 dargestellt und die an der Grenze zwischen der Photovoltaikschicht 13 und der Reflektionsschicht 12 reflektierte Strahlung ist durch die beiden nach oben gebogenen Pfeile 5 dargestellt. Die gesamte reflektierte Strahlung wird durch die fünf Pfeile 6 dargestellt, sie setzt sich zusammen aus dem bereits erwähnten an der Grenze zwischen der Photovoltaikschicht 13 und der Reflektionsschicht 12 reflektierten und aus der Photovoltaikschicht 13 austretendem Anteil, dargestellt durch die beiden Pfeile 5, und den Anteilen, die zum einen an der Oberfläche der Schutzschicht 14 selbst und zum anderen an der Grenzschicht zwischen der Schutzschicht 14 und der Photovoltaikschicht 13 reflektiert werden.
Die Reflektionsschicht 12 stellt eine rückseitige Verspiegelung der Photovoltaikschicht 13 dar. In diese Photovoltaikschicht 13 einfallende Strahlungsenergie, die dort nicht in elektrische Energie, d.h. Strom, umgewandelt wird, wird entsprechend den beiden Pfeilen 5 reflektiert. Dadurch erwärmt sich die Photovoltaikschicht 13 und somit die gesamte Solarzelle 1 und der darunter liegende Aufbau, wie insbesondere die Trägerschicht 11 und das Karosserieteil 2 weniger. Auf diese Weise wird das Ziel der vorliegenden Erfindung, nämlich Reduktion des Wärmeeintrags in Fahrzeuge durch Abschattung bzw. Reflektion nicht umgewandelter Sonneneinstrahlung, bei gleichzeitiger verbesserter Stromerzeugung für das Bordnetz nachhaltig erreicht. Bevorzugte Fläche für solche Solarzellen, wie die in Fig. 1 dargestellte ist das Fahrzeugdach.
Übliche Solarzellen absorbieren in einem typischen Frequenzbereich Licht und wandeln es in elektrische Energie um. Ein großer Anteil der Strahlung erwärmt die Solarzellen und das Trägermaterial. Dies führt zu einer Verschlechterung des Wirkungsgrads der Solarzellen und zu einer Erwärmung des Trägermaterials, z.B. des Fahrzeugdaches und damit dem Fahrzeuginnenraum. Dieser vorstehend beschriebene Effekt wird durch das erfindungsgemäße Vorsehen von rückseitig verspiegelten Solarzellen 1 verhindert. Neben der direkt in der Photovoltaikschicht 13 von Licht in Strom umgewandelten Strahlung wird dort ein weiterer Teil der einfallenden Strahlung von thermischer Energie in elektrische Energie gewandelt. Derjenige Strahlungsanteil, der nicht in elektrische Energie umgewandelt werden kann, wird an der Reflektionsschicht 12 reflektiert und führt zu keiner Erwärmung der Trägerschicht 11 und dem darunter liegenden Karosserieteil 2, beispielsweise dem Fahrzeugdach. Die führt zu einer Reduzierung des Wärmeeintrags ins Fahrzeug und der Wirkungsgrad der Solarzelle 1 fällt nicht ab, da sich diese weniger erwärmt. Durch den so reduzierten Wärmeeintrag ins Fahrzeug, stellt sich dort eine niedrigere Fahrzeuginnenraumtemperatur ein. Dies bedeutet eine Komfortsteigerung und gegebenenfalls eine Reduktion der notwendigen Kühlleistung der Klimaanlage und dem damit verbundenen Energieaufwand. Die gleichzeitig erzeugte elektrische Energie, auch bei Stillstand des Fahrzeuges, wird in das Bordnetz eingespeist. Die führt zu einer Reduktion des Kraftstoffaufwandes für den elektrischen Leistungsbedarf im Fahrzeug.
Die Solarzelle 1 ist mit ihrer Trägerschicht 11 fest mit dem darunter liegenden Karosserieteil 2 verbunden. Dabei kann die Trägerschicht 11 in sich starr sein oder sie kann flexibel sein, um sich gegebenenfalls an die Form des Karosserieteils 2 besser anzupassen. Die feste Verbindung zwischen Trägerschicht 11 und Karosserieteil 2 kann z.B. durch Kleben erfolgen.
In Fig. 2 ist schematisch das Reflektionsverhalten von Silizium- Halbleiter-Solarzellen mit der Reflektion R in Abhängigkeit von der Wellenlänge λ der einfallenden Strahlung dargestellt. Die drei verschiedenen Kurven stellen Beispiele von unterschiedlichen reflektierenden Silizium-Halbleiter-Solarzellen dar. Die Wellenlänge λ ist in nm angegeben. Etwa unterhalb der Wellenlänge von ca. 780 nm ist der sichtbare und darüber der infrarote Bereich der einfallenden Strahlung. Die dargestellten spektralen
Kennlinien zeigen, dass im sichtbaren Bereich die Reflektion R geringer als im infraroten Bereich ist, wobei ab einer Wellenlänge von ca. 1200 nm die Reflektion teilweise fast total und im wesentlichen konstant ist.
Es sei darauf hin gewiesen, dass die Reflektion R von derartigen Solarzellen 1, wie sie in Fig. 1 dargestellt und in Fig. 2 beispielhaft im Reflektionsverhalten gezeigt, durch eine rückwärtig angebrachte separate spiegelnde Schicht 12 zwischen der Photovoltaikschicht 13 und der Trägerschicht 11 oder eine interne reflektierende Schicht innerhalb der aktiven Photovoltaikschicht realisiert werden kann.
An Hand der in Fig. 3 schematisch dargestellten sogenannten CIS- Dünnschicht-Solarzelle 30 wird eine zweite Realisierung der erfindungsgemäßen Einrichtung erläutert, bei der generell als
Solarzellen Dünnschicht-Solarzellen 30 vorgesehen sind und diese Dünnschicht-Solarzellen 30 auf geeigneten Trägerschichten oder direkt auf Fahrzeugkarosserieteilen, insbesondere auf dem Fahrzeugdach, integrativ aufgewachsen und gefertigt sind. Fig. 3 zeigt im Schnittbild beispielhaft den Aufbau der CIS-Dünnschicht- Solarzelle 30 auf einem geeigneten Karosserieteil, das entsprechend der zweiten Ausgestaltung der Erfindung ebenfalls ein Karosserieblech 32, wie beispielsweise das vom Dach eines Kraftfahrzeuges sein kann. Auf dem als Trägerschicht dienenden Karosserieblech 32 ist eine etwa 0,5 um dicke Molybdänschicht als elektrische Kontaktierung aufgebracht. Darüber befindet sich eine etwa 2 μm dicke photovoltaisch aktive Absorberschicht 31, die Kupfer-Indium-Diselenid enthält. Über der aktiven Photovoltaikschicht 31 ist eine etwa 0,05 μm dicke CdS- Zwischenschicht 34 und darüber eine etwa 1 μm dicke ZnO-
Kontaktierungsschicht für die Frontkontaktierung vorgesehen. Diese Solarzelle 30 kann, in Fig. 3 nicht dargestellt, dann letztlich mit einer Schutzschicht versehen sein, die auf die Lackierung des Fahrzeuges optisch abgestimmt ist. Dass die abschattenden und elektrischen Eigenschaften des Dünnschicht-Solarzelle 30 dadurch nicht wesentlich beeinträchtigt werden, versteht sich von selbst. An Hand der Fig. 4 wird der Fertigungsablauf zur Herstellung von CIS-Dünnschicht-Solarzellen zum besseren Verständnis schematisch erläutert. Im Schritt 41 wird auf ein Trägersubstrat durch Kathodenzerstäubung die Abscheidung einer etwa 0,5 μm dicken Molybdänschicht vorgenommen, die als sogenannter elektrischer Rückkontakt fungiert. Im Schritt 42 wird mittels Laserbehandlung der Rückkontakt strukturiert. Im Schritt 43 wird durch Simultanverdampfung die photovoltaisch aktive Absorberschicht aus Cu(In,Ga)Se2 aufgebracht, und zwar in einer Stärke von etwa 2 μm. Im Schritt 44 wird eine etwa 0,05 μm dicke CdS-Zwischenschicht, beispielsweise im chemischen Tauchbad aufgebracht. Im Schritt 45 wird die photovoltaisch aktive Absorberschicht mechanisch strukturiert. Im Schritt 46 wird zur Bildung des sogenannten elektrischen Frontkontakts eine etwa 1 μm dicke ZnO-Schicht durch Kathodenzerstäubung abgeschieden. Im Schritt 47 wird der Frontkontakt mechanisch strukturiert. Im Schritt 48 werden schließlich die elektrischen Endkontakte angebracht und es wird die Versiegelung vorgenommen.
Die zweite, an Hand der CIS-Dünnschicht-Solarzellen beschriebene Realisierung der Erfindung gestattet die Integration dieser Solarzellen auf geeigneten Karosserieteilen, wie z.B. dem Fahrzeugdach, sowohl zum Abschatten der darunter liegenden Bereiche aus auch zur gleichzeitigen Stromgewinnung. Die Vorteile von Dünnschicht-Solarzellen liegen unter anderem im geringen Materialaufwand und den damit verbundenen geringen Kosten, mit weiterhin fallender Tendenz. Der Fertigungsprozess ist im Gegensatz zu herkömmlichen Silizium-Solarzellen gut automatisierbar. Bei der Erfindung wird die zur Kontaktierung vorgesehene Molybdänschicht nicht auf Glas, sondern kann direkt auf ein Karosserieteil aufgebracht werden. Auf dieser Schicht wird, wie beschrieben , die Solarzelle weiter aufgebaut. Dadurch wird eine unmittelbare Integration der Solarzelle in beispielsweise das Fahrzeugdach und eine einfache Automatisierung der direkten Solarzellenproduktion ermöglicht. Schließlich verden die so erzeugten Dünnschicht-Solarzellen, nicht beschränkt auf CIS-Dünnschicht-Solarzellen, wobei CIS für die Elemente Kupfer, Indium und Selen steht, durch eine optisch auf das Fahrzeugkarosserieteil abgestimmte Schutzlackschicht gegen Umwelteinflüsse geschützt. Da die Dicke der Dünnschicht- Solarzellen nur wenige μm beträgt ist eine einfache Integrierung in das Design und die Lackierung des Fahrzeugs möglich.
Eine dritte Realisierung der prinzipiellen erfindungsgemäßen Lösung sieht vor, dass als Solarzellen transparente Solarzellen Verwendung finden. Entsprechend einer vorteilhaften Ausgestaltung können die transparenten Solarzellen in Glas eingebettet sein. Weiterhin ist es möglich und sehr vorteilhaft, die transparenten Solarzellen an Fenstern des Fahrzeugs vorzusehen oder zwischen zwei Scheiben eines Fensters in dieses integriert zu verwenden. In weiterer zweckmäßiger Anwendung, die einer besonderen Abschattung des Fahrzeuginnenraums dient, sind die transparenten Solarzellen an Seitenfenstern und/oder an Rückfenstern und/oder in dem oberen Bereich der Frontscheibe, insbesondere auf deren jeweiliger Innenseite, angebracht.
An Hand der Fig. 5 wird ein Beispiel einer transparenten Solarzelle 50 beschrieben. So wird zur Realisierung der Erfindung vorteilhafterweise eine sogenannte POWER-Solarzelle 50, wobei POWER für Polycristalline Wafer Engineering Result steht, vorgesehen. Bei dieser POWER-Solarzelle 50 sind durch mechanische Bearbeitung in das Basismaterial, insbesondere Silizium, winzige Löcher 51 eingearbeitet, wodurch die Solarzelle Transparenz erhält. Die Löcher 51 entstehen an den Kreuzungspunkten der sich kreuzenden und tiefenmäßig teilweise durchdringenden etwa V— förmigen Rillen 52 und 53. Die Rillen werden durch mechanisches Fräsen mit einer entsprechend geformten, mit Diamanten besetzten schnell rotierenden Metallrolle erzeugt, die in Richtung der Rillen 52 bzw. 53 über den Siliziumhalbleiterblock 54 mit angepasstem Vorschub gefahren wird. An den oberen Kämmen der Stege zwischen den Rillen 52 wird der Frontkontakt 55 hergestellt und an den unteren Kämmen der Stege zwischen den Rillen 53 wird der Rückkontakt 56 gefertigt. Auf andere notwendige oder zweckmäßige Maßnahmen zur Herstellung solcher transparenten Solarzellen 50 braucht hier im Hinblick auf Zweck und Ziel der Erfindung nicht eingegangen zu werden.
Solche POWER-Solarzellen werden beispielsweise von der Firma sunways AG, Macairestr. 5 in D-78467 Konstanz hergestellt und sind in einem Firmenprospekt näher beschrieben. Sie haben als Modul eine äußere Abmessung von 10 x 10 cm und eine Dicke von etwa 330 μm. Die Transparenz liegt bei etwa 20%, kann aber variiert werden. Diese transparenten Solarzellen sind daher geeignet in der vorstehend beschriebenen Weise gemäß der Erfindung als abschattende und Strom erzeugende Solarzellen an Fenstern von Kraftfahrzeugen als separate Bauteile mit wenig Auftrag angebracht zu werden. Optisch ergibt sich dabei der Effekt von getönten Scheiben.
Die erfindungsgemäße Einrichtung hat den generellen Vorteil, dass zum einen wesentliche Teile des Kraftfahrzeuges durch Solarzellen abgeschattet werden und sich dieses dadurch weniger aufheizt, und dass zum anderen gleichzeitig Strom erzeugt wird, der in das Bordnetz bzw. die Batterie eingespeist wird. Dies ist insbesondere bei Stillstand des Fahrzeuges möglich, so dass bei Sonnenschein bzw. Tageslicht einerseits Strom erzeugt wird und andererseits die Aufheizung des Fahrzeuges vermindert wird. Damit kann gegebenenfalls auch die Leistung der Klimaanlage zum Kühlen des Fahrzeuges vermindert werden. Zum Erreichen dieser Vorteile sind drei verschiedene Realisierungsbeispiele beschrieben, die in sich selbst noch jeweils zweckmäßige und vorteilhafte Weiterbildungen und Ausgestaltungen beinhalten.

Claims

Ansprüche
1. Einrichtung zur Stromerzeugung und zum Abschatten bei Kraftfahrzeugen dadurch gekennzeichnet, dass Solarzellen (1, 30, 50) auf geeigneten Karosserieteilen (2, 32) des Fahrzeuges als separate oder integrierte Bauteile vorgesehen sind und zur Einspeisung des erzeugten elektrischen Stromes mit Verbrauchern bzw. der Batterie des Fahrzeuges verbunden sind.
Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Solarzellen rückseitig verspiegelte (12) oder mit einer internen Reflektionsschicht versehene Solarzellen (1) vorgesehen sind.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die rückseitig verspiegelten oder mit einer internen Reflektionsschicht versehenen Solarzellen (1) als Halbleiter-, insbesondere Silizium-Halbleiter-Solarzellen ausgeführt sind.
4. Einrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Solarzellen (1) auf einer Trägerschicht (11) aufgebaut sind und dass die Trägerschicht (11) mit einem geeigneten Karosserieteil, insbesondere dem Fahrzeugdach (2) , fest verbunden ist.
5. Einrichtung nach Anspruch 4 dadurch gekennzeichnet, dass die Trägerschicht (11) der Solarzellen (1) starr oder flexibel ist.
6. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Solarzellen Dünnschicht-Solarzellen (30) vorgesehen sind und dass diese Dünnschicht-Solarzellen (30) auf geeigneten Trägerschichten oder direkt auf Fahrzeugkarosserieteilen, insbesondere auf dem Fahrzeugdach (32) , integrativ aufgewachsen und gefertigt sind.
7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Dünnschicht-Solarzelle (30) als CIS-Solarzelle aufgebaut ist, wobei CIS für die Elemente Kupfer, Indium und Selen steht, aus denen die photovoltaisch aktive Absorberschicht (31) aufgebaut ist.
8. Einrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Dünnschicht-Solarzellen (30) mit einer auf die
Lackierung des Fahrzeugs optisch abgestimmten Schutzschicht versehen ist.
9. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Solarzellen transparente Solarzellen (50) vorgesehen sind.
10. Einrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die transparenten Solarzellen' (50) in Glas eingebettet sind.
11. Einrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die transparenten Solarzellen (50) an Fenstern des Fahrzeuges vorgesehen sind oder zwischen zwei Scheiben eines Fensters in dieses integriert vorgesehen ist.
12. Einrichtung nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, dass die transparenten Solarzellen (50) an Seitenfenstern und/oder Rückfenstern und/oder dem oberen Bereich der Frontscheibe, insbesondere auf deren Innenseite, angebracht sind.
13. Einrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass als transparente Solarzellen (50) sogenannte POWER-Solarzellen (POWER steht für Polycristalline afer Engineering Result) vorgesehen sind, bei denen durch mechanische Bearbeitung in das Basismaterial (54), insbesondere Silizium, winzige Löcher (51) eingearbeitet sind, wodurch die Solarzellen (50) Tranzparenz erhalten.
EP01995616A 2000-12-28 2001-12-15 Einrichtung zur stromerzeugung und zum abschatten bei kraftfahrzeugen Withdrawn EP1272371A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10065530 2000-12-28
DE10065530A DE10065530A1 (de) 2000-12-28 2000-12-28 Einrichtung zur Stromerzeugung und zum Abschatten bei Kraftfahrzeugen
PCT/DE2001/004753 WO2002053408A1 (de) 2000-12-28 2001-12-15 Einrichtung zur stromerzeugung und zum abschatten bei kraftfahrzeugen

Publications (1)

Publication Number Publication Date
EP1272371A1 true EP1272371A1 (de) 2003-01-08

Family

ID=7669315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01995616A Withdrawn EP1272371A1 (de) 2000-12-28 2001-12-15 Einrichtung zur stromerzeugung und zum abschatten bei kraftfahrzeugen

Country Status (5)

Country Link
US (1) US20030140961A1 (de)
EP (1) EP1272371A1 (de)
JP (1) JP2004516192A (de)
DE (1) DE10065530A1 (de)
WO (1) WO2002053408A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059608A1 (de) 2021-03-17 2022-09-21 Alfa Laval Corporate AB Fliehkraftabscheider und schutzelement

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2396118T3 (es) * 2002-02-01 2013-02-19 Saint-Gobain Glass France S.A. Capa barrera hecha de una resina curable que contiene un poliol polimérico
EP1529314A1 (de) * 2002-08-16 2005-05-11 DaimlerChrysler AG KAROSSERIETEIL EINES FAHRZEUGES MIT EINER DüNNSCHICHTSOLARZELLE UND SEIN ERSTELLUNGSVERFAHREN
US7578102B2 (en) * 2002-08-16 2009-08-25 Mark Banister Electric tile modules
US6928775B2 (en) * 2002-08-16 2005-08-16 Mark P. Banister Multi-use electric tile modules
DE10348118A1 (de) * 2003-09-23 2005-04-28 Daimler Chrysler Ag Karosserieteil mit organischer Solarzelle
US20060118162A1 (en) * 2004-12-06 2006-06-08 Florida Atlantic University Powering a vehicle and providing excess energy to an external device using photovoltaic cells
DE102005049081B3 (de) * 2005-10-13 2007-06-06 Webasto Ag Schichtanordnung zur Abdunklung einer transparenten Scheibe
DE102007052554A1 (de) * 2007-10-29 2009-05-07 Joachim Schurig Solardach-Konstruktion für Kraftfahrzeuge
CH705211B1 (fr) * 2007-12-18 2013-01-15 Hayek Engineering Ag Véhicule automobile électrique solaire.
CN101794831B (zh) * 2010-02-11 2012-07-18 天津大学 液浸平板光伏组件
DE102010033534B4 (de) * 2010-08-05 2018-11-08 Continental Automotive Gmbh Verfahren und Vorrichtung zum Bestimmen wenigstens eines Betriebsparameters eines thermoelektrischen Systems in einem Fahrzeug
CN102751344A (zh) * 2012-07-20 2012-10-24 合肥海润光伏科技有限公司 光伏反光薄膜
KR101509887B1 (ko) * 2013-06-04 2015-04-07 현대자동차주식회사 태양전지를 갖는 자동차 루프 패널
CN103681923B (zh) * 2013-12-26 2016-06-08 无锡市斯威克科技有限公司 斜射型反光焊带
US20160193906A1 (en) * 2015-01-05 2016-07-07 Anthony Swan The four side shades
US20190077254A1 (en) * 2017-09-12 2019-03-14 II Robert E. Stanley Renewable energy powering system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125036U (de) * 1979-02-26 1980-09-04
JPS5850782A (ja) * 1981-09-21 1983-03-25 Fuji Electric Corp Res & Dev Ltd 自動車用太陽電池
JPS5852884A (ja) * 1981-09-24 1983-03-29 Fuji Electric Corp Res & Dev Ltd 自動車用太陽電池
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
DE68911201T2 (de) * 1988-05-24 1994-06-16 Asahi Glass Co Ltd Methode für die Herstellung eines Solarzellenglassubstrates.
GB2253379B (en) * 1991-02-13 1995-04-26 Nelson James Kruschandl Comprehensive electric motor road vehicle system
GB2260220B (en) * 1991-09-10 1996-01-03 Sanyo Electric Co An amorphous silicon solar cell and method of the solar cell manufacture
US5228925A (en) * 1991-12-23 1993-07-20 United Solar Systems Corporation Photovoltaic window assembly
US5512107A (en) * 1992-03-19 1996-04-30 Siemens Solar Gmbh Environmentally stable thin-film solar module
ES2169078T3 (es) * 1993-07-29 2002-07-01 Gerhard Willeke Procedimiento para fabricacion de una celula solar, asi como la celula solar fabricada segun este procedimiento.
US5767663A (en) * 1996-06-20 1998-06-16 Lu; Min-Der Vehicular power producing system
DE19808599C1 (de) * 1998-02-28 1999-07-29 Bayerische Motoren Werke Ag Fahrzeugdach

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02053408A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059608A1 (de) 2021-03-17 2022-09-21 Alfa Laval Corporate AB Fliehkraftabscheider und schutzelement
WO2022194487A1 (en) 2021-03-17 2022-09-22 Alfa Laval Corporate Ab Centrifugal separator and protective member

Also Published As

Publication number Publication date
WO2002053408A1 (de) 2002-07-11
US20030140961A1 (en) 2003-07-31
DE10065530A1 (de) 2002-07-04
JP2004516192A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
WO2002053408A1 (de) Einrichtung zur stromerzeugung und zum abschatten bei kraftfahrzeugen
DE3650653T2 (de) Lichtdurchlässiger photovoltaischer Modul
DE3688772T2 (de) Optischer Filter für Stromerzeugung.
DE69824786T2 (de) Solarzellenmodul und Verfahren zu dessen Herstellung
DE3538986C3 (de) Verfahren zur Herstellung eines Solargenerators
WO1993019491A1 (de) Klimastabiles dünnschichtsolarmodul
DE69210350T2 (de) Sonnenzellenmodul mit verbesserten witterungsbeständigen Eigenschaften
WO2001039277A1 (de) Diodenstruktur, insbesondere für dünnfilmsolarzellen
WO2013182398A1 (de) Dachscheibe mit einem integrierten photovoltaik-modul
EP2855146A1 (de) Dachscheibe mit einem integrierten photovoltaik-modul
EP2758993B1 (de) Dünnschichtsolarmodul mit serienverschaltung und verfahren zur serienverschaltung von dünnschichtsolarzellen
DE4413215C2 (de) Solarmodul mit Dünnschichtaufbau und Verfahren zu seiner Herstellung
DE102009026149A1 (de) Verbundsystem für Photovoltaik-Module
DE10356690B4 (de) Flexibles Solarmodul zur Dachintegration mit kristallinen Siliziumzellen
WO2010023240A2 (de) Schichtsystem für solarabsorber
DE4337694A1 (de) Solarmodul mit verbesserter Lichtausnutzung
WO2013097964A1 (de) Solarzellenanordnung in tandem-konfiguration
WO2009074468A2 (de) Rückkontaktsolarzelle mit integrierter bypassdioden-funktion sowie herstellungsverfahren hierfür
EP2212917A2 (de) Fotovoltaik-modul mit wenigstens einer solarzelle
AT506839A1 (de) Sonnenkollektorsystem zur gleichzeitigen gewinnung elektrischer und thermischer energie aus sonnenstrahlung
WO2011110329A2 (de) Photovoltaisches element mit optisch funktionaler konversionsschicht zur verbesserung der umwandlung des einfallenden lichts sowie verfahren zu dessen herstellung
DE112012006439T5 (de) Solarzellenmodul und Verfahren zur Herstellung desselben
DE112013002119T5 (de) Verbesserte photovoltaische Module zur Verwendung in Fahrzeugdächern und/oder Verfahren zu ihrer Herstellung
EP0798786B1 (de) Solarzelle mit einer Chalkopyrit-Absorberschicht
DE102010017246A1 (de) Solarzellenmodul und Herstellungsverfahren hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030923

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAQUA, EKKEHARD

Inventor name: DAMSON, DANIEL

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040204