WO2013097964A1 - Solarzellenanordnung in tandem-konfiguration - Google Patents
Solarzellenanordnung in tandem-konfiguration Download PDFInfo
- Publication number
- WO2013097964A1 WO2013097964A1 PCT/EP2012/071559 EP2012071559W WO2013097964A1 WO 2013097964 A1 WO2013097964 A1 WO 2013097964A1 EP 2012071559 W EP2012071559 W EP 2012071559W WO 2013097964 A1 WO2013097964 A1 WO 2013097964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- submodule
- superstrate
- arrangement according
- solar cell
- Prior art date
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 37
- 229910021419 crystalline silicon Inorganic materials 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000010409 thin film Substances 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims description 8
- 239000006096 absorbing agent Substances 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000000149 argon plasma sintering Methods 0.000 claims description 3
- 230000003667 anti-reflective effect Effects 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000010276 construction Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229910021425 protocrystalline silicon Inorganic materials 0.000 description 1
- 235000011890 sandwich Nutrition 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/043—Mechanically stacked PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a solar cell arrangement according to claim 1 and
- Solar cells are known in a tandem configuration. These consist of two sub-cells, a so-called top cell, which is oriented in the direction of the incident sunlight, and a so-called bottom cell located behind it. The tandem cells are then connected in series on the module. In such a construction, the different
- tandem cells are carried out according to the known state of the art as so-called 2-terminal components, which then have to provide both in lighting to avoid limitation both the same power.
- the above solution has a number of serious disadvantages.
- the known from the prior art standard tandem configurations with internal transition are limited mainly by the necessary power matching in their efficiency and applicability.
- the structure based on thin silicon layers must be very different in its layer thicknesses in the case of the top cell from that of the bottom cell.
- the bottom cell must be made significantly thicker due to the lower absorption of the microcrystalline silicon material.
- the electricity matching is subject to seasonal and regional fluctuations and from the each given solar spectrum is dependent.
- the a-Si formed top cell is subject to light-induced degradation during the first 1000 hours of sunshine. Therefore, the layer thickness adjustments must also be adjusted to this degraded state.
- the efficiencies of such solar cells are in part lower than those expected for crystalline solar cell structures.
- a configuration is known from the prior art which consists of a decoupled a-Si top cell and a separate CIGS bottom cell.
- the decoupling is achieved by the design as a 4-terminal component.
- Both top and bottom cell are connected separately to their own modules by means of laser structuring in series.
- superstrate and substrate modules are understood in this description to mean a first submodule of a solar cell arrangement in tandem configuration. Accordingly, under a substrate module, a second
- Tandem technology is the avoidance of an internal transition and thus the elimination of a necessary matching of the generated photocurrent in top and bottom cell.
- the object of the invention is therefore to specify a solar cell configuration which makes use of the above-mentioned advantages of a 4-terminal component, while making use of the advantages of the crystalline technology for the execution of the bottom cell.
- This is achieved with a solar cell arrangement according to the features of claim 1 and a finishing method with the steps according to claim 7.
- the subclaims contain expedient and advantageous embodiments.
- an arrangement is provided for a solar cell with a superstrate module and a substrate module, in which the superstrate module is a thin-film module of a-Si cells and the substrate module is in the form of contacted crystalline crystalline films enclosed between transparent insulating layers Silicon elements is formed.
- crystalline silicon forms part of the substrate and thus one
- the a-Si cells of the superstrate have a reduced absorber thickness compared to known tandem configurations. This is accompanied by a lower material consumption, a better transmission and a significantly reduced light-induced degradation.
- the a-Si submodule is formed as a light scattering antireflection unit for the c-Si submodule.
- the anti-reflective element of the antireflection layer has a clouded by exposure to light transparent conductive oxide layer of a-Si sub-module used in an advantageous embodiment ⁇ .
- This layer is already present in a-Si thin-film cells of their structure anyway.
- the a-Si submodule acts as a blue filter for the c-Si submodule, as a result of which the c-Si submodule can have an increased doping of a p-emitter region in comparison to known configurations. This increased doping is otherwise problematic in crystalline cells, but can be used advantageously by the optical properties of a-Si.
- the c-Si submodule has a layer structure comprising an encapsulation film, contacted crystalline silicon elements, a further encapsulation film and a back glass or backsheet.
- a production method for a solar cell of a superstrate module and a substrate module includes the steps of providing a superstrate module with an amorphous silicon absorber layer, providing ⁇ a substrates module from a sand wich arrangement is Schlos ⁇ Senen contacted crystalline silicon wafers , Connecting the Superstrate and the Substrate Module. In this case, it is possible to resort to already existing production systems. There is no additional manufacturing effort.
- Fig. 1 is a known from the prior art configuration consisting of a decoupled a-Si and a CIGS
- Fig. 1 first shows a tandem configuration according to the state of the art.
- the known configuration comprises a superstrate a-Si module and decouples a substrate CIGS module.
- the contained semiconductor diodes are in the form of a layer structure of an absorber layer 4 including a p- and n-type contact layer.
- the semiconductor diodes are separated from one another by trench structures 5a and are connected in series via a contact arrangement 5, 6 consisting, for example, of TCO.
- the layers mentioned are applied on a front glass 7 or back glass 8 as a carrier material.
- the substrate module like the superstrate module, has a series connection of semiconductor diode cells.
- the layer structure essentially corresponds to the structure of the superstrate module. Instead of the a-Si layer, however, a CIGS layer 8 is used in the region of the substrate.
- a contact 10 which consists for example of molybdenum, and a rear carrier glass layer designated as back glass 11 are also provided in this region.
- Both the superstrate and the substrate module have electrode leads Contacts 12, via which the photovoltaically generated electrical voltages of the individual modules are tapped.
- lamination 13 of ethylene vinyl acetate (EVA) or polyvinyl butyral (PVB) is usually used.
- Fig. 2 shows an arrangement according to the invention.
- This consists of an a-Si submodule 1a arranged at the location of the superstrate and a c-Si submodule 2a arranged at the location of the substrate.
- the a-Si submodule 1a essentially shows the structure of a conventional a-Si superstrate comprising the a-Si cells 3 with an a-Si layer 4, a back-side contact in the form of a TCO layer 5, the front Contact technik 6 and the front glass 7.
- the a-Si cells are also here by trenches 5a separated from each other.
- the contacts and electrode leads 12 are arranged.
- the a-Si submodule is terminated by the lamination foil 13.
- the c-Si sub-module consists of an array of crystalline silicon elements or c-Si elements 14. These are enclosed between the lamination 13 and a back side lam in 15 and the behind it located back-glass or polymeric backsheet (Tedlar) 11 ,
- the lamination 13 forms a transparent front cover for the construction of the c-Si submodule, the rear sides lam in 15 a re-covering of the c-Si strings.
- the contact 16 extends in such a way that the c-Si strings are connected in series with one another.
- the voltage applied across the entire series connection photovoltaically generated voltage is tapped via contacts 18.
- the structure of the invention is compared to the known from the prior art example significantly more robust, especially against moisture.
- a low-voltage module is combined in the form of the c-Si submodule and a high-voltage module in the form of the a-Si submodule. This eliminates a series of manufacturing steps for the c-Si submodule, which shortens the process chain during their production. This can thus be cheaper to produce and use as known c-Si cells for the present hybrid application.
- the structure of the invention allows a higher p-type doping of the crystalline Si regions. There is no need to consider any higher absorption in the UV range, because the a-Si submodule can already be regarded as a sufficient blue filter.
- the absorber thickness of the a-Si cells can be significantly reduced. This requires a significantly reduced use of materials in their production, especially in view of the cleaning and coating gases used nitrogen trifluoride and silane.
- the reduced absorber thickness significantly reduces the light-induced degradation within the a-Si submodule.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Die Erfindung betrifft eine Solarzellenanordnung mit einem Superstrate-Modul (1) und einem Substrate-Modul (2) in Tandem-Konfiguration, wobei das Superstrate-Modul als Dünnschichtmodul in Form eines a-Si-Submoduls (1) aus a-Si-Zellen (3) und das Substrate-Modul in Form eines c-Si-Submoduls (2) aus mit zwischen transparenten isolierenden Schichten eingeschlossenen kontaktierten kristallinen Siliziumelementen (14) ausgebildet ist.
Description
Beschreibung
Die Erfindung betrifft eine Solarzellenanordnung nach Anspruch 1 und
Fertig ungs verfahren für eine derartige Anordnung nach Anspruch 7.
Stand der Technik
Bekannt sind Solarzellen in einer Tandemkonfiguration. Diese bestehen aus zwei Sub-Zellen, einer so genannten Top Zelle, die in Richtung des einfallenden Sonnenlichtes orientiert ist, und einer dahinter befindlichen so genannten Bottom-Zelle. Die Tandem Zellen sind dann ihrerseits in Serie auf dem Modul verschaltet. Bei einem derartigen Aufbau werden die unterschiedlichen
Absorptions- und Trans missionseigenschaften verschiedener Materialien ausgenutzt, um so durch eine geschickte Abstimmung zwischen Top- und Bottom- Zelle verschiedene Wellenlängenbe reiche des einfallenden Lichtes zur effektiven Energieerzeugung nutzen zu können.
Die Tandemzellen werden nach dem bekannten Stand der Technik als sogenannte 2-Terminal Bauelemente ausgeführt, die entsprechend dann in Beleuchtung zur Vermeidung von Limitierung beide den gleichen Strom liefern müssen. Die o. g. Lösung weist jedoch eine Reihe gravierender Nachteile auf. Die aus dem Stand der Technik bekannten Standard Tandem -Konfigurationen mit innerem Übergang sind vor allem durch das notwendige Strom-Matching in ihrer Effizienz und Anwendbarkeit begrenzt. Dadurch muss insbesondere der auf dünnen Siliziumschichten basierende Aufbau in seinen Schichtdicken im Falle der Top Zelle sehr verschieden von dem der Bottom-Zelle ausgebildet sein. Die Bottom-Zelle muss aufgrund der geringeren Absorption des mikrokristallinen Silizium-Materials deutlich dicker ausgeführt sein. Hinzu kommt, dass das Strom-Matching saisonalen und regionalen Schwankungen unterliegt und vom
jeweils gegebenen solaren Spektrum abhängig ist. Zusätzlich unterliegt die aus a-Si ausgebildete Top-Zelle einer lichtinduzierten Degradation während der ersten 1000 Sonnenstunden. Daher müssen die Schichtdickenanpassungen außerdem auf diesen degradierten Zustand hin angepasst werden. Die Wirkungsgrade derartiger Solarzellen liegen teilweise unter denen, die für kristal- line Solarzellenaufbauten zu erwarten sind.
Zur Vermeidung der genannten Nachteile ist aus dem Stand der Technik eine Konfiguration bekannt, die aus einer entkoppelten a-Si Top Zelle und einer separaten CIGS Bottom-Zelle besteht. Die Entkopplung wird durch die Ausfüh- rung als 4 Terminal Bauelement erreicht. Sowohl Top- als auch Bottom-Zelle werden separat zu eigenen Modulen mittels Laserstrukturierung seriell verschaltet. In diesem Zusammenhang spricht man dann von Superstrate- und Substratmodulen. Unter einem Superstrat-Modul wird in dieser Beschreibung ein erstes Submodul einer Solarzellenanordnung in Tandem -Konfiguration verstanden. Entsprechend wird unter einem Substratmodul ein zweites
Submodul einer Solarzellenanordnung in Tandem -Konfiguration verstanden. Vorteil eines solchen 4 Terminal Aufbaus im Vergleich zur Standard
Tandemtechnologie ist die Vermeidung eines inneren Übergangs und damit auch der Wegfall eines notwendigen Matchings des generierten Photostroms in Top- und Bottom-Zelle. Technische Restriktionen resultierend aus der
Bedingung des Strom Matchings wie z. Bsp. stark unterscheidliche Absorberdicken, Fehlanpassung auf Grund spektraler Verschiebungen etc. werden aufgehoben. Offenbarung der Erfindung
Gegenstand der Erfindung ist es daher, eine Solarzellenkonfiguration anzugeben, die die oben genannten Vorteile eines 4 Terminal Bauelementes nutzt und dabei aber die Vorteile der kristallinen Technologie für die Ausführung der Bottom-Zelle nutzt.
Dies wird mit einer Solarzellenanordnung nach den Merkmalen des Anspruchs 1 und einem Fertig ungs verfahren mit den Schritten gemäß Anspruch 7 gelöst. Die Unteransprüche enthalten zweckmäßige und vorteilhafte Ausführungsformen. Erfindungsgemäß ist eine Anordnung für eine Solarzelle mit einem Superstrate- Modul und einem Substrate-Modul vorgesehen, bei der das Superstrate-Modul als ein Dünnschichtmodul aus a-Si-Zellen und das Substrate-Modul in Form von mit zwischen transparenten isolierenden Schichten eingeschlossenen kontaktierten kristallinen Siliziumelementen ausgebildet ist.
Im Unterschied zum Stand der Technik, bei dem von Dünnschicht Solarzellen zum Erzeugen der Tandem -Konfiguration ausgegangen wird, kommt erfindungsgemäß kristallines Silizium als Teil des Substrates und damit eine
Kombination aus einem Dünnschicht und einem Dickschichtmodul bzw. einem Hochspannungsmodui und einem iederspannungsmodul zur Anwendung. Es zeigt sich, dass die dabei kombinierten Eigenschaften beider Module hinsichtlich des Wirkungsgrades, der Performance des gesamten Solarmoduls und Fertigung äußerst vorteilhaft gegenüber den bekannten Konfigurationen sind. Bei einer ersten Ausführungsform weisen die a-Si-Zellen des Superstrates eine im Vergleich zu bekannten Tandem- Konfigurationen reduzierte Absorberdicke auf. Damit geht ein geringerer Materialverbrauch, eine bessere Transmission und eine deutlich reduzierte lichtinduzierte Degradation einher. Bei einer zweiten Ausführungsform ist das a-Si-Submodul als eine lichtstreuende Antireflexionseinheit für das c-Si-Submodul ausgebildet. Dies bedingt einen kompletten Wegfall der sonst üblichen Antireflexionsbeschichtungen und Oberflächen strukturierungen für die kristalline Zellkomponente, wobei ebenfalls der für die solare Energieerzeugung genutzte Teil des Solarzellenaufbaus anteilig zunimmt.
Als antireflektierendes Element der Antireflexschicht dient bei einer vorteil¬ haften Ausführungsform eine durch Lichteinwirkung eingetrübte transparente leitfähige Oxidschicht des a-Si-Submoduls. Diese Schicht ist bei a-Si-Dünn- schichtzellen von ihrem Aufbau her ohnehin vorhanden. Weiterhin wirkt das a-Si-Submodul als ein Blaufilter für das c-Si-Submodul, wobei dadurch das c-Si-Submodul eine erhöhte Dotierung eines p-Emitterbe- reichs im Vergleich zu bekannten Konfigurationen aufweisen kann. Diese erhöhte Dotierung ist bei kristallinen Zellen sonst problematisch, kann allerdings durch die optischen Eigenschaften des a-Si vorteilhaft genutzt werden.
Zweckmäßigerweise weist das c-Si-Submodul einen Schichtaufbau aus einer Verkapselungsfolie, kontaktierten kristallinen Siliziumelementen, einer weiteren Verkapselungsfolie und einem Rückglas bzw. Rückseitenfolie auf. Ein Fertigungsverfahren für eine Solarzelle aus einem Superstrate-Modul und einem Substrate-Modul enthält die Verfahrensschritte Bereitstellen eines Superstrate-Moduls mit einer amorphem Siliziumabsorptionsschicht, Bereit¬ stellen eines Substrate-Moduls aus in einer Sand wich -Anordnung eingeschlos¬ senen kontaktierten kristallinen Silizium-Wafern, Verbinden des Superstrate- und des Substrate-Moduls. Dabei kann auf bereits vorhandene Fertigungsanla¬ gen zurückgegriffen werden. Es entsteht dadurch kein zusätzlicher Fertigungsaufwand.
Zeichnungen
Die erfindungsgemäße Anordnung soll nachfolgend anhand eines Ausführungs¬ beispieles näher erläutert werden. Zur Verdeutlichung dienen die Figuren 1 und 2. Es werden für gleiche oder gleichwirkende Teile die selben Bezugszei¬ chen verwendet.
Es zeigen:
Fig. 1 eine aus dem Stand der Technik bekannte Konfiguration bestehend aus einem entkoppelten a-Si und einem CIGS
Submodul und
Fig. 2 eine beispielhafte erfindungsgemäße Konfiguration.
Ausführungsformen der Erfindung Fig. 1 zeigt zunächst eine Tandem- Konfiguration nach dem neuesten Stand der Technik. Die bekannte Konfiguration umfasst ein Superstrate a-Si Modul und entkoppelt ein Substrate CIGS Modul.
Die enthaltenen Halbleiter-Dioden sind in Form eines Schichtaufbaues aus einer Absorberschicht 4 inklusive einer p- und n-leitenden Kontaktschicht. Die Halbleiterdioden sind durch Grabenstrukturen 5a voneinander abgetrennt und über eine beispielsweise aus TCO bestehende Kontaktierung 5, 6 in Reihe geschaltet. Die genannten Schichten sind auf einem Front Glass 7 bzw. Rück- glas 8 als Trägermaterial aufgebracht.
Das Substrat-Modul weist ebenso wie das Superstrate-Modul eine Reihenschaltung aus Halbleiterdiodenzellen auf. Der Schichtaufbau entspricht im wesentlichen dem Aufbau des Superstrate-Moduls. Anstelle der a-Si-Schicht wird im Bereich des Substrates allerdings eine CIGS-Schicht 8 verwendet.
Diese bildet mit einer zur beleuchteten Seite orientierten TCO-Schicht 9 die photovoltaisch aktivierbaren Grenzschichten innerhalb des Substrate-Moduls aus. Wie bei dem Superstrate-Modul sind auch in diesem Bereich eine beispielsweise aus Molybdän bestehende Kontaktierung 10 und ein als Back-Glass 11 bezeichnete rückwärtige Trägerglasschicht vorgesehen. Sowohl das Super- strate- als auch das Substrate-Modul weisen Elektrodenzuführungen mit
Kontaktierungen 12 auf, über die die photovoltaisch erzeugten elektrischen Spannungen der einzelnen Module abgegriffen werden.
Zur Verbindung des Superstrates mit dem Substrate wird üblicherweise auf eine Laminierung 13 aus Ethylenvinylacetat (EVA) oder Polyvinylbutyral (PVB) zurückgegriffen.
Fig. 2 zeigt eine erfindungsgemäße Anordnung. Die besteht aus einem am Ort des Superstrates angeordneten a-Si-Submodul la und einem an der Stelle des Substrates angeordneten c-Si-Submodul 2a. Das a-Si-Submodul la zeigt im Wesentlichen den Aufbau eines herkömmlichen a-Si-Superstrates aus den a-Si- Zellen 3 mit einer a-Si-Schicht 4, einer Rückseiten kontaktierung in Form einer TCO-Schicht 5, der Front- Kontakt ierung 6 und dem Front-Glass 7. Die a-Si- Zellen sind auch hier durch Gräben 5a voneinander abgeteilt. Weiterhin sind die Kontaktierungen und Elektrodenzuführungen 12 angeordnet. Rückseitig ist das a-Si-Submodul durch die Laminationsfolie 13 abgeschlossen.
Das c-Si-Submodul besteht aus einer Anordnung von kristallinen Siliziumelementen oder c-Si-Elementen 14. Diese sind zwischen der Laminierung 13 und einer Rückseiten lam in ierung 15 und dem hinter dieser befindlichen Back-Glass oder polymeres Backsheet (Tedlar) 11 eingeschlossen. Die c-Si-Elemente 14 bilden zusammen mit aus der Figurenebene heraus führenden Kontaktierungs- bahnen 16 eine Reihe von kristallinen Siliziumstreifen aus, die auch als c-Si- Strings 17 bezeichnet werden. Die Laminierung 13 bildet für den Aufbau des c-Si-Submoduls eine transparente Frontbedeckung, die Rückseiten lam in ierung 15 eine Rückbedeckung der c-Si-Strings aus.
Die Kontaktierung 16 verläuft in der Weise, dass die c-Si-Strings zueinander in Reihe geschaltet sind. Die über die gesamte Reihenschaltung anliegende photovoltaisch erzeugte Spannung wird über Kontaktierungen 18 abgegriffen.
Der erfindungsgemäße Aufbau ist gegenüber dem aus dem Stand der Technik bekannten Beispiel deutlich robuster insbesondere gegenüber Feuchtigkeit. Bei dem erfindungsgemäßen Aufbau wird in Form des c-Si-Submoduls ein Niederspannungs-Modul und in Form des a-Si-Submoduls ein Hochspannungs-Modul kombiniert. Dabei entfallen eine Reihe von Fertigungsschritten für das c-Si- Submodul, wodurch sich die Prozesskette bei deren Herstellung verkürzt. Diese lässt sich somit preiswerter als bekannte c-Si-Zellen für die hier vorliegende Hybridanwendung herstellen und einsetzen. Insbesondere können die sonst für derartige Zellen üblichen Antiref lex- Besch ichtungen und Texturätzungen entfallen, weil das a-Si-Submodul bereits durch die Mattierung ihrer TCO-Schicht für das c-Si-Submodul eine hinreichend deutliche Lichtstreuung ausführt.
Schließlich erlaubt der erfindungsgemäße Aufbau eine höhere p-Dotierung der kristallinen Si-Bereiche. Auf eine damit verbundene höhere Absorption im UV- Bereich muss dabei keine Rücksicht genommen werden, weil das a-Si-Submo- dul bereits als hinreichender Blaufilter angesehen werden kann.
Weil bei der Gestaltung des a-Si-Submoduls nicht mehr deren Abstimmung mit dem konventionell dahinter befindlichen pc-Si Bottom-Zelle beachtet werden muss, kann insbesondere die Absorberdicke der a-Si-Zellen deutlich verringert werden. Dies bedingt einen deutlich verringerten Materialeinsatz bei deren Fertigung, vor allem in Hinblick auf die dabei eingesetzten Reinigungs- und Beschichtungsgase Stickstofftrif I uorid und Silan. Außerdem wird durch die verringerte Absorberdicke die lichtinduzierte Degradation innerhalb des a-Si-Sub- moduls deutlich reduziert. Es können somit die Vorteile der kristallinen und der amorphen Dünnschichttechnologien miteinander kombiniert werden. Diese zeigen sich insbesondere in Form von hohen Energieerträgen im a-Si-Submodul aufgrund eines sehr guten Schwachlichtverhaltens und eines niedrigen Temperaturkoeffizienten in Verbindung mit den in ihren Eigenschaften sehr stabilen und robusten c-Si- Zellen. Insbesondere ist kein Strom- oder Spannungsmatching notwendig.
Die Fertigung des erfindungsgemäßen Aufbaus gestaltet sich unkompliziert und kann mit einer klassischen Fertigung für herkömmliche c-Si-Solarmodule realisiert werden. Benötigt werden hierzu Superstrates mit dem dargestellten Aufbau aus amorphem Silizium sowie Längskontakte und Querverbinder. Die Verarbeitung der kristallinen c-Si-Strings erfolgt in der bekannten Weise.
Die Erfindung wurde anhand eines Ausführungsbeispiels erläutert. Im Rahmen fachmännischen Handelns sind weitere Ausführungsformen möglich, die sämtlich im Rahmen des erfindungsgemäßen Grundgedankens verbleiben. Weitere Ausführungsformen ergeben sich aus den Unteransprüchen.
Claims
1. Solarzellenanordnung mit einem Superstrate-Modul (1) und einem
Substrate-Modul (2) in Tandem -Konfiguration,
wobei das Superstrate-Modul als Dünnschichtmodul in Form eines a-Si- Submoduls (la) aus a-Si-Zellen (3) und das Substrate-Modul in Form eines c-Si-Submoduls (2a) aus mit zwischen transparenten isolierenden Schichten eingeschlossenen kontaktierten kristallinen Siliziumelementen (14) ausgebildet ist.
2. Anordnung nach Anspruch 1,
dadurch gekennzeichnet, dass
die a-Si-Zellen (3) eine reduzierte Absorberdicke aufweisen.
3. Anordnung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das a-Si-Submodul (la) als eine lichtstreuende Antireflexionseinheit für das c-Si-Submodul (2a) ausgebildet ist.
4. Anordnung nach Anspruch 3,
dadurch gekennzeichnet, dass
als ein antireflektierendes Element der Antireflexionseinheit eine durch Lichteinwirkung eingetrübte transparente leitfähige Oxidschicht (5) des a-Si-Submoduls (la) vorgesehen ist.
5. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das a-Si-Submodul (la) als ein Blaufilter für das c-Si-Submodul (2a) ausgebildet ist, und das c-Si-Submodul mit einer erhöhte Dotierung eines p-Emitterbereichs ausgeführt ist. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das c-Si-Submodui einen Schichtaufbau aus einer transparenten Frontbedeckung (13), kontaktierten kristallinen Siliziumelementen (14), einer Rückbedeckung (15) und einem Rückglas (11) aufweist.
Fertig ungs verfahren für eine Solarzelle aus einem Superstrate-Modul und einem Substrate-Modul mit den Schritten:
- Bereitstellen eines Superstrate-Moduls mit einer amorphem Siliziumabsorptionsschicht,
- Bereitstellen eines Substrate-Moduls aus in einer Sandwich- Anordnung eingeschlossenen kontaktierten kristallinen
Silizium-Wafern,
Verbinden des Superstrate- und des Substrate-Moduls.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011089916.2 | 2011-12-27 | ||
DE102011089916A DE102011089916A1 (de) | 2011-12-27 | 2011-12-27 | Solarzellenanordnung in Tandem-Konfiguration |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013097964A1 true WO2013097964A1 (de) | 2013-07-04 |
Family
ID=47143889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/071559 WO2013097964A1 (de) | 2011-12-27 | 2012-10-31 | Solarzellenanordnung in tandem-konfiguration |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102011089916A1 (de) |
WO (1) | WO2013097964A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079811A1 (ja) * | 2016-10-31 | 2018-05-03 | 京セラ株式会社 | 太陽電池モジュール |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016116192B3 (de) * | 2016-08-31 | 2017-11-23 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Photovoltaikmodul mit integriert serienverschalteten Stapel-Solarzellen und Verfahren zu seiner Herstellung |
NL2019226B1 (en) | 2017-07-11 | 2019-01-28 | Tno | Solar panel with four terminal tandem solar cell arrangement |
IT201800009650A1 (it) * | 2018-10-22 | 2020-04-22 | Cf Electronics Srl | Pannello fotovoltaico e relativo metodo di produzione. |
EP4443743A2 (de) | 2021-06-16 | 2024-10-09 | Conti Innovation Center, LLC | Solarmodul-racking-system |
US11894802B2 (en) | 2021-06-16 | 2024-02-06 | Conti Innovation Center, Llc | Solar module racking system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3727823A1 (de) * | 1987-08-20 | 1989-03-02 | Siemens Ag | Tandem-solarmodul |
EP0334111A1 (de) * | 1988-03-24 | 1989-09-27 | Siemens Aktiengesellschaft | Verfahren zur integrierten Serienverschaltung von Dickschichtsolarzellen sowie Verwendung dieses Verfahrens bei der Herstellung einer Tandem-Solarzelle |
US20050150542A1 (en) * | 2004-01-13 | 2005-07-14 | Arun Madan | Stable Three-Terminal and Four-Terminal Solar Cells and Solar Cell Panels Using Thin-Film Silicon Technology |
WO2010142575A2 (en) * | 2009-06-11 | 2010-12-16 | Oerlikon Solar Ag, Trübbach | Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications |
-
2011
- 2011-12-27 DE DE102011089916A patent/DE102011089916A1/de not_active Withdrawn
-
2012
- 2012-10-31 WO PCT/EP2012/071559 patent/WO2013097964A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3727823A1 (de) * | 1987-08-20 | 1989-03-02 | Siemens Ag | Tandem-solarmodul |
EP0334111A1 (de) * | 1988-03-24 | 1989-09-27 | Siemens Aktiengesellschaft | Verfahren zur integrierten Serienverschaltung von Dickschichtsolarzellen sowie Verwendung dieses Verfahrens bei der Herstellung einer Tandem-Solarzelle |
US20050150542A1 (en) * | 2004-01-13 | 2005-07-14 | Arun Madan | Stable Three-Terminal and Four-Terminal Solar Cells and Solar Cell Panels Using Thin-Film Silicon Technology |
WO2010142575A2 (en) * | 2009-06-11 | 2010-12-16 | Oerlikon Solar Ag, Trübbach | Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications |
Non-Patent Citations (1)
Title |
---|
KRUHLER W ET AL: "FOUR-TERMIVNAL TANDEM SOLAR MODULE USING A-SI:H AND C-SI", PROCEEDINGS OF THE INTERNATIONAL PHOTOVOLTAIC ENERGY CONFERENCE. FLORENCE, MAY 9 - 13, 1988; [PROCEEDINGS OF THE INTERNATIONAL PHOTOVOLTAIC ENERGY CONFERENCE], DORDRECHT, KLUWER, NL, vol. 1, 9 May 1988 (1988-05-09), pages 821 - 825, XP000075188 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079811A1 (ja) * | 2016-10-31 | 2018-05-03 | 京セラ株式会社 | 太陽電池モジュール |
JPWO2018079811A1 (ja) * | 2016-10-31 | 2019-09-19 | 京セラ株式会社 | 太陽電池モジュール |
Also Published As
Publication number | Publication date |
---|---|
DE102011089916A1 (de) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012207168B4 (de) | Photovoltaikmodul mit Bypass-Dioden und in Reihe geschalteten Stringanordnungen parallel geschalteter Strings aus Solarzellen | |
DE202011104896U1 (de) | Struktur für ein Hocheffizienz-CIS/CIGS-basiertes Tandemphotovoltaikmodul | |
WO2013097964A1 (de) | Solarzellenanordnung in tandem-konfiguration | |
DE19932640A1 (de) | Herstellen von photovoltaischen Dünnfilmmodulen mit hochintegrierten Verbindungsleitungen und Zweischichtkontakten | |
DE112010001882T5 (de) | Tandemphotovoltaikzelle und Verfahren, die eine dreifache Glassubstratkonfiguration verwenden | |
DE102004031950A1 (de) | Halbleiter/Elektroden-Kontaktstruktur und eine solche verwendendes Halbleiterbauteil | |
EP2758993B1 (de) | Dünnschichtsolarmodul mit serienverschaltung und verfahren zur serienverschaltung von dünnschichtsolarzellen | |
DE3709153A1 (de) | Mehrlagige duennfilmsolarzelle | |
DE102004049197A1 (de) | Solarbatterie und Herstellverfahren für eine solche | |
DE102015218164A1 (de) | Solarzelle | |
DE102009026149A1 (de) | Verbundsystem für Photovoltaik-Module | |
DE202023101309U1 (de) | Solarzelle und Photovoltaikmodul | |
DE102010043006A1 (de) | Photovoltaisches Bauelement | |
DE112010001140T5 (de) | Solarzellen-Modul und Verfahren zum Herstellen desselben | |
WO2013171619A1 (de) | Heterokontakt-solarzelle und verfahren zu deren herstellung | |
DE102013217653B4 (de) | Photovoltaische Solarzelle und Mehrfachsolarzelle | |
DE212009000047U1 (de) | Photovoltaische Vorrichtung | |
WO2013189932A2 (de) | Verfahren und herstellungsanlage zur herstellung eines photovoltaikmoduls sowie photovoltaikmodul | |
EP2529407A1 (de) | Solarzellenanordnung und dünnschichtsolarmodul, sowie herstellungsverfahren hierfür | |
DE102011109846A1 (de) | Dünnschicht-Solarzelle und Verfahren zu deren Herstellug | |
WO2019192656A1 (de) | Bifazial-solarzelle, solarmodul und herstellungsverfahren für eine bifazial-solarzelle | |
EP2377168A1 (de) | Photovoltaikelement | |
DE102010017246A1 (de) | Solarzellenmodul und Herstellungsverfahren hierfür | |
WO2010081460A1 (de) | Solarzelle und verfahren zur herstellung einer solarzelle | |
DE202013003610U1 (de) | Solarzellenmodul |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12783192 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12783192 Country of ref document: EP Kind code of ref document: A1 |