WO2013097964A1 - Solarzellenanordnung in tandem-konfiguration - Google Patents

Solarzellenanordnung in tandem-konfiguration Download PDF

Info

Publication number
WO2013097964A1
WO2013097964A1 PCT/EP2012/071559 EP2012071559W WO2013097964A1 WO 2013097964 A1 WO2013097964 A1 WO 2013097964A1 EP 2012071559 W EP2012071559 W EP 2012071559W WO 2013097964 A1 WO2013097964 A1 WO 2013097964A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
submodule
superstrate
arrangement according
solar cell
Prior art date
Application number
PCT/EP2012/071559
Other languages
English (en)
French (fr)
Inventor
Andre Hedler
Christian Koitzsch
Daniel Messerschmidt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2013097964A1 publication Critical patent/WO2013097964A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a solar cell arrangement according to claim 1 and
  • Solar cells are known in a tandem configuration. These consist of two sub-cells, a so-called top cell, which is oriented in the direction of the incident sunlight, and a so-called bottom cell located behind it. The tandem cells are then connected in series on the module. In such a construction, the different
  • tandem cells are carried out according to the known state of the art as so-called 2-terminal components, which then have to provide both in lighting to avoid limitation both the same power.
  • the above solution has a number of serious disadvantages.
  • the known from the prior art standard tandem configurations with internal transition are limited mainly by the necessary power matching in their efficiency and applicability.
  • the structure based on thin silicon layers must be very different in its layer thicknesses in the case of the top cell from that of the bottom cell.
  • the bottom cell must be made significantly thicker due to the lower absorption of the microcrystalline silicon material.
  • the electricity matching is subject to seasonal and regional fluctuations and from the each given solar spectrum is dependent.
  • the a-Si formed top cell is subject to light-induced degradation during the first 1000 hours of sunshine. Therefore, the layer thickness adjustments must also be adjusted to this degraded state.
  • the efficiencies of such solar cells are in part lower than those expected for crystalline solar cell structures.
  • a configuration is known from the prior art which consists of a decoupled a-Si top cell and a separate CIGS bottom cell.
  • the decoupling is achieved by the design as a 4-terminal component.
  • Both top and bottom cell are connected separately to their own modules by means of laser structuring in series.
  • superstrate and substrate modules are understood in this description to mean a first submodule of a solar cell arrangement in tandem configuration. Accordingly, under a substrate module, a second
  • Tandem technology is the avoidance of an internal transition and thus the elimination of a necessary matching of the generated photocurrent in top and bottom cell.
  • the object of the invention is therefore to specify a solar cell configuration which makes use of the above-mentioned advantages of a 4-terminal component, while making use of the advantages of the crystalline technology for the execution of the bottom cell.
  • This is achieved with a solar cell arrangement according to the features of claim 1 and a finishing method with the steps according to claim 7.
  • the subclaims contain expedient and advantageous embodiments.
  • an arrangement is provided for a solar cell with a superstrate module and a substrate module, in which the superstrate module is a thin-film module of a-Si cells and the substrate module is in the form of contacted crystalline crystalline films enclosed between transparent insulating layers Silicon elements is formed.
  • crystalline silicon forms part of the substrate and thus one
  • the a-Si cells of the superstrate have a reduced absorber thickness compared to known tandem configurations. This is accompanied by a lower material consumption, a better transmission and a significantly reduced light-induced degradation.
  • the a-Si submodule is formed as a light scattering antireflection unit for the c-Si submodule.
  • the anti-reflective element of the antireflection layer has a clouded by exposure to light transparent conductive oxide layer of a-Si sub-module used in an advantageous embodiment ⁇ .
  • This layer is already present in a-Si thin-film cells of their structure anyway.
  • the a-Si submodule acts as a blue filter for the c-Si submodule, as a result of which the c-Si submodule can have an increased doping of a p-emitter region in comparison to known configurations. This increased doping is otherwise problematic in crystalline cells, but can be used advantageously by the optical properties of a-Si.
  • the c-Si submodule has a layer structure comprising an encapsulation film, contacted crystalline silicon elements, a further encapsulation film and a back glass or backsheet.
  • a production method for a solar cell of a superstrate module and a substrate module includes the steps of providing a superstrate module with an amorphous silicon absorber layer, providing ⁇ a substrates module from a sand wich arrangement is Schlos ⁇ Senen contacted crystalline silicon wafers , Connecting the Superstrate and the Substrate Module. In this case, it is possible to resort to already existing production systems. There is no additional manufacturing effort.
  • Fig. 1 is a known from the prior art configuration consisting of a decoupled a-Si and a CIGS
  • Fig. 1 first shows a tandem configuration according to the state of the art.
  • the known configuration comprises a superstrate a-Si module and decouples a substrate CIGS module.
  • the contained semiconductor diodes are in the form of a layer structure of an absorber layer 4 including a p- and n-type contact layer.
  • the semiconductor diodes are separated from one another by trench structures 5a and are connected in series via a contact arrangement 5, 6 consisting, for example, of TCO.
  • the layers mentioned are applied on a front glass 7 or back glass 8 as a carrier material.
  • the substrate module like the superstrate module, has a series connection of semiconductor diode cells.
  • the layer structure essentially corresponds to the structure of the superstrate module. Instead of the a-Si layer, however, a CIGS layer 8 is used in the region of the substrate.
  • a contact 10 which consists for example of molybdenum, and a rear carrier glass layer designated as back glass 11 are also provided in this region.
  • Both the superstrate and the substrate module have electrode leads Contacts 12, via which the photovoltaically generated electrical voltages of the individual modules are tapped.
  • lamination 13 of ethylene vinyl acetate (EVA) or polyvinyl butyral (PVB) is usually used.
  • Fig. 2 shows an arrangement according to the invention.
  • This consists of an a-Si submodule 1a arranged at the location of the superstrate and a c-Si submodule 2a arranged at the location of the substrate.
  • the a-Si submodule 1a essentially shows the structure of a conventional a-Si superstrate comprising the a-Si cells 3 with an a-Si layer 4, a back-side contact in the form of a TCO layer 5, the front Contact technik 6 and the front glass 7.
  • the a-Si cells are also here by trenches 5a separated from each other.
  • the contacts and electrode leads 12 are arranged.
  • the a-Si submodule is terminated by the lamination foil 13.
  • the c-Si sub-module consists of an array of crystalline silicon elements or c-Si elements 14. These are enclosed between the lamination 13 and a back side lam in 15 and the behind it located back-glass or polymeric backsheet (Tedlar) 11 ,
  • the lamination 13 forms a transparent front cover for the construction of the c-Si submodule, the rear sides lam in 15 a re-covering of the c-Si strings.
  • the contact 16 extends in such a way that the c-Si strings are connected in series with one another.
  • the voltage applied across the entire series connection photovoltaically generated voltage is tapped via contacts 18.
  • the structure of the invention is compared to the known from the prior art example significantly more robust, especially against moisture.
  • a low-voltage module is combined in the form of the c-Si submodule and a high-voltage module in the form of the a-Si submodule. This eliminates a series of manufacturing steps for the c-Si submodule, which shortens the process chain during their production. This can thus be cheaper to produce and use as known c-Si cells for the present hybrid application.
  • the structure of the invention allows a higher p-type doping of the crystalline Si regions. There is no need to consider any higher absorption in the UV range, because the a-Si submodule can already be regarded as a sufficient blue filter.
  • the absorber thickness of the a-Si cells can be significantly reduced. This requires a significantly reduced use of materials in their production, especially in view of the cleaning and coating gases used nitrogen trifluoride and silane.
  • the reduced absorber thickness significantly reduces the light-induced degradation within the a-Si submodule.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung betrifft eine Solarzellenanordnung mit einem Superstrate-Modul (1) und einem Substrate-Modul (2) in Tandem-Konfiguration, wobei das Superstrate-Modul als Dünnschichtmodul in Form eines a-Si-Submoduls (1) aus a-Si-Zellen (3) und das Substrate-Modul in Form eines c-Si-Submoduls (2) aus mit zwischen transparenten isolierenden Schichten eingeschlossenen kontaktierten kristallinen Siliziumelementen (14) ausgebildet ist.

Description

Beschreibung
Titel
Figure imgf000003_0001
Die Erfindung betrifft eine Solarzellenanordnung nach Anspruch 1 und
Fertig ungs verfahren für eine derartige Anordnung nach Anspruch 7.
Stand der Technik
Bekannt sind Solarzellen in einer Tandemkonfiguration. Diese bestehen aus zwei Sub-Zellen, einer so genannten Top Zelle, die in Richtung des einfallenden Sonnenlichtes orientiert ist, und einer dahinter befindlichen so genannten Bottom-Zelle. Die Tandem Zellen sind dann ihrerseits in Serie auf dem Modul verschaltet. Bei einem derartigen Aufbau werden die unterschiedlichen
Absorptions- und Trans missionseigenschaften verschiedener Materialien ausgenutzt, um so durch eine geschickte Abstimmung zwischen Top- und Bottom- Zelle verschiedene Wellenlängenbe reiche des einfallenden Lichtes zur effektiven Energieerzeugung nutzen zu können.
Die Tandemzellen werden nach dem bekannten Stand der Technik als sogenannte 2-Terminal Bauelemente ausgeführt, die entsprechend dann in Beleuchtung zur Vermeidung von Limitierung beide den gleichen Strom liefern müssen. Die o. g. Lösung weist jedoch eine Reihe gravierender Nachteile auf. Die aus dem Stand der Technik bekannten Standard Tandem -Konfigurationen mit innerem Übergang sind vor allem durch das notwendige Strom-Matching in ihrer Effizienz und Anwendbarkeit begrenzt. Dadurch muss insbesondere der auf dünnen Siliziumschichten basierende Aufbau in seinen Schichtdicken im Falle der Top Zelle sehr verschieden von dem der Bottom-Zelle ausgebildet sein. Die Bottom-Zelle muss aufgrund der geringeren Absorption des mikrokristallinen Silizium-Materials deutlich dicker ausgeführt sein. Hinzu kommt, dass das Strom-Matching saisonalen und regionalen Schwankungen unterliegt und vom jeweils gegebenen solaren Spektrum abhängig ist. Zusätzlich unterliegt die aus a-Si ausgebildete Top-Zelle einer lichtinduzierten Degradation während der ersten 1000 Sonnenstunden. Daher müssen die Schichtdickenanpassungen außerdem auf diesen degradierten Zustand hin angepasst werden. Die Wirkungsgrade derartiger Solarzellen liegen teilweise unter denen, die für kristal- line Solarzellenaufbauten zu erwarten sind.
Zur Vermeidung der genannten Nachteile ist aus dem Stand der Technik eine Konfiguration bekannt, die aus einer entkoppelten a-Si Top Zelle und einer separaten CIGS Bottom-Zelle besteht. Die Entkopplung wird durch die Ausfüh- rung als 4 Terminal Bauelement erreicht. Sowohl Top- als auch Bottom-Zelle werden separat zu eigenen Modulen mittels Laserstrukturierung seriell verschaltet. In diesem Zusammenhang spricht man dann von Superstrate- und Substratmodulen. Unter einem Superstrat-Modul wird in dieser Beschreibung ein erstes Submodul einer Solarzellenanordnung in Tandem -Konfiguration verstanden. Entsprechend wird unter einem Substratmodul ein zweites
Submodul einer Solarzellenanordnung in Tandem -Konfiguration verstanden. Vorteil eines solchen 4 Terminal Aufbaus im Vergleich zur Standard
Tandemtechnologie ist die Vermeidung eines inneren Übergangs und damit auch der Wegfall eines notwendigen Matchings des generierten Photostroms in Top- und Bottom-Zelle. Technische Restriktionen resultierend aus der
Bedingung des Strom Matchings wie z. Bsp. stark unterscheidliche Absorberdicken, Fehlanpassung auf Grund spektraler Verschiebungen etc. werden aufgehoben. Offenbarung der Erfindung
Gegenstand der Erfindung ist es daher, eine Solarzellenkonfiguration anzugeben, die die oben genannten Vorteile eines 4 Terminal Bauelementes nutzt und dabei aber die Vorteile der kristallinen Technologie für die Ausführung der Bottom-Zelle nutzt. Dies wird mit einer Solarzellenanordnung nach den Merkmalen des Anspruchs 1 und einem Fertig ungs verfahren mit den Schritten gemäß Anspruch 7 gelöst. Die Unteransprüche enthalten zweckmäßige und vorteilhafte Ausführungsformen. Erfindungsgemäß ist eine Anordnung für eine Solarzelle mit einem Superstrate- Modul und einem Substrate-Modul vorgesehen, bei der das Superstrate-Modul als ein Dünnschichtmodul aus a-Si-Zellen und das Substrate-Modul in Form von mit zwischen transparenten isolierenden Schichten eingeschlossenen kontaktierten kristallinen Siliziumelementen ausgebildet ist.
Im Unterschied zum Stand der Technik, bei dem von Dünnschicht Solarzellen zum Erzeugen der Tandem -Konfiguration ausgegangen wird, kommt erfindungsgemäß kristallines Silizium als Teil des Substrates und damit eine
Kombination aus einem Dünnschicht und einem Dickschichtmodul bzw. einem Hochspannungsmodui und einem iederspannungsmodul zur Anwendung. Es zeigt sich, dass die dabei kombinierten Eigenschaften beider Module hinsichtlich des Wirkungsgrades, der Performance des gesamten Solarmoduls und Fertigung äußerst vorteilhaft gegenüber den bekannten Konfigurationen sind. Bei einer ersten Ausführungsform weisen die a-Si-Zellen des Superstrates eine im Vergleich zu bekannten Tandem- Konfigurationen reduzierte Absorberdicke auf. Damit geht ein geringerer Materialverbrauch, eine bessere Transmission und eine deutlich reduzierte lichtinduzierte Degradation einher. Bei einer zweiten Ausführungsform ist das a-Si-Submodul als eine lichtstreuende Antireflexionseinheit für das c-Si-Submodul ausgebildet. Dies bedingt einen kompletten Wegfall der sonst üblichen Antireflexionsbeschichtungen und Oberflächen strukturierungen für die kristalline Zellkomponente, wobei ebenfalls der für die solare Energieerzeugung genutzte Teil des Solarzellenaufbaus anteilig zunimmt. Als antireflektierendes Element der Antireflexschicht dient bei einer vorteil¬ haften Ausführungsform eine durch Lichteinwirkung eingetrübte transparente leitfähige Oxidschicht des a-Si-Submoduls. Diese Schicht ist bei a-Si-Dünn- schichtzellen von ihrem Aufbau her ohnehin vorhanden. Weiterhin wirkt das a-Si-Submodul als ein Blaufilter für das c-Si-Submodul, wobei dadurch das c-Si-Submodul eine erhöhte Dotierung eines p-Emitterbe- reichs im Vergleich zu bekannten Konfigurationen aufweisen kann. Diese erhöhte Dotierung ist bei kristallinen Zellen sonst problematisch, kann allerdings durch die optischen Eigenschaften des a-Si vorteilhaft genutzt werden.
Zweckmäßigerweise weist das c-Si-Submodul einen Schichtaufbau aus einer Verkapselungsfolie, kontaktierten kristallinen Siliziumelementen, einer weiteren Verkapselungsfolie und einem Rückglas bzw. Rückseitenfolie auf. Ein Fertigungsverfahren für eine Solarzelle aus einem Superstrate-Modul und einem Substrate-Modul enthält die Verfahrensschritte Bereitstellen eines Superstrate-Moduls mit einer amorphem Siliziumabsorptionsschicht, Bereit¬ stellen eines Substrate-Moduls aus in einer Sand wich -Anordnung eingeschlos¬ senen kontaktierten kristallinen Silizium-Wafern, Verbinden des Superstrate- und des Substrate-Moduls. Dabei kann auf bereits vorhandene Fertigungsanla¬ gen zurückgegriffen werden. Es entsteht dadurch kein zusätzlicher Fertigungsaufwand.
Zeichnungen
Die erfindungsgemäße Anordnung soll nachfolgend anhand eines Ausführungs¬ beispieles näher erläutert werden. Zur Verdeutlichung dienen die Figuren 1 und 2. Es werden für gleiche oder gleichwirkende Teile die selben Bezugszei¬ chen verwendet. Es zeigen:
Fig. 1 eine aus dem Stand der Technik bekannte Konfiguration bestehend aus einem entkoppelten a-Si und einem CIGS
Submodul und
Fig. 2 eine beispielhafte erfindungsgemäße Konfiguration.
Ausführungsformen der Erfindung Fig. 1 zeigt zunächst eine Tandem- Konfiguration nach dem neuesten Stand der Technik. Die bekannte Konfiguration umfasst ein Superstrate a-Si Modul und entkoppelt ein Substrate CIGS Modul.
Die enthaltenen Halbleiter-Dioden sind in Form eines Schichtaufbaues aus einer Absorberschicht 4 inklusive einer p- und n-leitenden Kontaktschicht. Die Halbleiterdioden sind durch Grabenstrukturen 5a voneinander abgetrennt und über eine beispielsweise aus TCO bestehende Kontaktierung 5, 6 in Reihe geschaltet. Die genannten Schichten sind auf einem Front Glass 7 bzw. Rück- glas 8 als Trägermaterial aufgebracht.
Das Substrat-Modul weist ebenso wie das Superstrate-Modul eine Reihenschaltung aus Halbleiterdiodenzellen auf. Der Schichtaufbau entspricht im wesentlichen dem Aufbau des Superstrate-Moduls. Anstelle der a-Si-Schicht wird im Bereich des Substrates allerdings eine CIGS-Schicht 8 verwendet.
Diese bildet mit einer zur beleuchteten Seite orientierten TCO-Schicht 9 die photovoltaisch aktivierbaren Grenzschichten innerhalb des Substrate-Moduls aus. Wie bei dem Superstrate-Modul sind auch in diesem Bereich eine beispielsweise aus Molybdän bestehende Kontaktierung 10 und ein als Back-Glass 11 bezeichnete rückwärtige Trägerglasschicht vorgesehen. Sowohl das Super- strate- als auch das Substrate-Modul weisen Elektrodenzuführungen mit Kontaktierungen 12 auf, über die die photovoltaisch erzeugten elektrischen Spannungen der einzelnen Module abgegriffen werden.
Zur Verbindung des Superstrates mit dem Substrate wird üblicherweise auf eine Laminierung 13 aus Ethylenvinylacetat (EVA) oder Polyvinylbutyral (PVB) zurückgegriffen.
Fig. 2 zeigt eine erfindungsgemäße Anordnung. Die besteht aus einem am Ort des Superstrates angeordneten a-Si-Submodul la und einem an der Stelle des Substrates angeordneten c-Si-Submodul 2a. Das a-Si-Submodul la zeigt im Wesentlichen den Aufbau eines herkömmlichen a-Si-Superstrates aus den a-Si- Zellen 3 mit einer a-Si-Schicht 4, einer Rückseiten kontaktierung in Form einer TCO-Schicht 5, der Front- Kontakt ierung 6 und dem Front-Glass 7. Die a-Si- Zellen sind auch hier durch Gräben 5a voneinander abgeteilt. Weiterhin sind die Kontaktierungen und Elektrodenzuführungen 12 angeordnet. Rückseitig ist das a-Si-Submodul durch die Laminationsfolie 13 abgeschlossen.
Das c-Si-Submodul besteht aus einer Anordnung von kristallinen Siliziumelementen oder c-Si-Elementen 14. Diese sind zwischen der Laminierung 13 und einer Rückseiten lam in ierung 15 und dem hinter dieser befindlichen Back-Glass oder polymeres Backsheet (Tedlar) 11 eingeschlossen. Die c-Si-Elemente 14 bilden zusammen mit aus der Figurenebene heraus führenden Kontaktierungs- bahnen 16 eine Reihe von kristallinen Siliziumstreifen aus, die auch als c-Si- Strings 17 bezeichnet werden. Die Laminierung 13 bildet für den Aufbau des c-Si-Submoduls eine transparente Frontbedeckung, die Rückseiten lam in ierung 15 eine Rückbedeckung der c-Si-Strings aus.
Die Kontaktierung 16 verläuft in der Weise, dass die c-Si-Strings zueinander in Reihe geschaltet sind. Die über die gesamte Reihenschaltung anliegende photovoltaisch erzeugte Spannung wird über Kontaktierungen 18 abgegriffen. Der erfindungsgemäße Aufbau ist gegenüber dem aus dem Stand der Technik bekannten Beispiel deutlich robuster insbesondere gegenüber Feuchtigkeit. Bei dem erfindungsgemäßen Aufbau wird in Form des c-Si-Submoduls ein Niederspannungs-Modul und in Form des a-Si-Submoduls ein Hochspannungs-Modul kombiniert. Dabei entfallen eine Reihe von Fertigungsschritten für das c-Si- Submodul, wodurch sich die Prozesskette bei deren Herstellung verkürzt. Diese lässt sich somit preiswerter als bekannte c-Si-Zellen für die hier vorliegende Hybridanwendung herstellen und einsetzen. Insbesondere können die sonst für derartige Zellen üblichen Antiref lex- Besch ichtungen und Texturätzungen entfallen, weil das a-Si-Submodul bereits durch die Mattierung ihrer TCO-Schicht für das c-Si-Submodul eine hinreichend deutliche Lichtstreuung ausführt.
Schließlich erlaubt der erfindungsgemäße Aufbau eine höhere p-Dotierung der kristallinen Si-Bereiche. Auf eine damit verbundene höhere Absorption im UV- Bereich muss dabei keine Rücksicht genommen werden, weil das a-Si-Submo- dul bereits als hinreichender Blaufilter angesehen werden kann.
Weil bei der Gestaltung des a-Si-Submoduls nicht mehr deren Abstimmung mit dem konventionell dahinter befindlichen pc-Si Bottom-Zelle beachtet werden muss, kann insbesondere die Absorberdicke der a-Si-Zellen deutlich verringert werden. Dies bedingt einen deutlich verringerten Materialeinsatz bei deren Fertigung, vor allem in Hinblick auf die dabei eingesetzten Reinigungs- und Beschichtungsgase Stickstofftrif I uorid und Silan. Außerdem wird durch die verringerte Absorberdicke die lichtinduzierte Degradation innerhalb des a-Si-Sub- moduls deutlich reduziert. Es können somit die Vorteile der kristallinen und der amorphen Dünnschichttechnologien miteinander kombiniert werden. Diese zeigen sich insbesondere in Form von hohen Energieerträgen im a-Si-Submodul aufgrund eines sehr guten Schwachlichtverhaltens und eines niedrigen Temperaturkoeffizienten in Verbindung mit den in ihren Eigenschaften sehr stabilen und robusten c-Si- Zellen. Insbesondere ist kein Strom- oder Spannungsmatching notwendig. Die Fertigung des erfindungsgemäßen Aufbaus gestaltet sich unkompliziert und kann mit einer klassischen Fertigung für herkömmliche c-Si-Solarmodule realisiert werden. Benötigt werden hierzu Superstrates mit dem dargestellten Aufbau aus amorphem Silizium sowie Längskontakte und Querverbinder. Die Verarbeitung der kristallinen c-Si-Strings erfolgt in der bekannten Weise.
Die Erfindung wurde anhand eines Ausführungsbeispiels erläutert. Im Rahmen fachmännischen Handelns sind weitere Ausführungsformen möglich, die sämtlich im Rahmen des erfindungsgemäßen Grundgedankens verbleiben. Weitere Ausführungsformen ergeben sich aus den Unteransprüchen.

Claims

Ansprüche
1. Solarzellenanordnung mit einem Superstrate-Modul (1) und einem
Substrate-Modul (2) in Tandem -Konfiguration,
wobei das Superstrate-Modul als Dünnschichtmodul in Form eines a-Si- Submoduls (la) aus a-Si-Zellen (3) und das Substrate-Modul in Form eines c-Si-Submoduls (2a) aus mit zwischen transparenten isolierenden Schichten eingeschlossenen kontaktierten kristallinen Siliziumelementen (14) ausgebildet ist.
2. Anordnung nach Anspruch 1,
dadurch gekennzeichnet, dass
die a-Si-Zellen (3) eine reduzierte Absorberdicke aufweisen.
3. Anordnung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das a-Si-Submodul (la) als eine lichtstreuende Antireflexionseinheit für das c-Si-Submodul (2a) ausgebildet ist.
4. Anordnung nach Anspruch 3,
dadurch gekennzeichnet, dass
als ein antireflektierendes Element der Antireflexionseinheit eine durch Lichteinwirkung eingetrübte transparente leitfähige Oxidschicht (5) des a-Si-Submoduls (la) vorgesehen ist.
5. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das a-Si-Submodul (la) als ein Blaufilter für das c-Si-Submodul (2a) ausgebildet ist, und das c-Si-Submodul mit einer erhöhte Dotierung eines p-Emitterbereichs ausgeführt ist. Anordnung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das c-Si-Submodui einen Schichtaufbau aus einer transparenten Frontbedeckung (13), kontaktierten kristallinen Siliziumelementen (14), einer Rückbedeckung (15) und einem Rückglas (11) aufweist.
Fertig ungs verfahren für eine Solarzelle aus einem Superstrate-Modul und einem Substrate-Modul mit den Schritten:
- Bereitstellen eines Superstrate-Moduls mit einer amorphem Siliziumabsorptionsschicht,
- Bereitstellen eines Substrate-Moduls aus in einer Sandwich- Anordnung eingeschlossenen kontaktierten kristallinen
Silizium-Wafern,
Verbinden des Superstrate- und des Substrate-Moduls.
PCT/EP2012/071559 2011-12-27 2012-10-31 Solarzellenanordnung in tandem-konfiguration WO2013097964A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011089916.2 2011-12-27
DE102011089916A DE102011089916A1 (de) 2011-12-27 2011-12-27 Solarzellenanordnung in Tandem-Konfiguration

Publications (1)

Publication Number Publication Date
WO2013097964A1 true WO2013097964A1 (de) 2013-07-04

Family

ID=47143889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/071559 WO2013097964A1 (de) 2011-12-27 2012-10-31 Solarzellenanordnung in tandem-konfiguration

Country Status (2)

Country Link
DE (1) DE102011089916A1 (de)
WO (1) WO2013097964A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079811A1 (ja) * 2016-10-31 2018-05-03 京セラ株式会社 太陽電池モジュール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116192B3 (de) * 2016-08-31 2017-11-23 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Photovoltaikmodul mit integriert serienverschalteten Stapel-Solarzellen und Verfahren zu seiner Herstellung
NL2019226B1 (en) 2017-07-11 2019-01-28 Tno Solar panel with four terminal tandem solar cell arrangement
IT201800009650A1 (it) * 2018-10-22 2020-04-22 Cf Electronics Srl Pannello fotovoltaico e relativo metodo di produzione.
EP4443743A2 (de) 2021-06-16 2024-10-09 Conti Innovation Center, LLC Solarmodul-racking-system
US11894802B2 (en) 2021-06-16 2024-02-06 Conti Innovation Center, Llc Solar module racking system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3727823A1 (de) * 1987-08-20 1989-03-02 Siemens Ag Tandem-solarmodul
EP0334111A1 (de) * 1988-03-24 1989-09-27 Siemens Aktiengesellschaft Verfahren zur integrierten Serienverschaltung von Dickschichtsolarzellen sowie Verwendung dieses Verfahrens bei der Herstellung einer Tandem-Solarzelle
US20050150542A1 (en) * 2004-01-13 2005-07-14 Arun Madan Stable Three-Terminal and Four-Terminal Solar Cells and Solar Cell Panels Using Thin-Film Silicon Technology
WO2010142575A2 (en) * 2009-06-11 2010-12-16 Oerlikon Solar Ag, Trübbach Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3727823A1 (de) * 1987-08-20 1989-03-02 Siemens Ag Tandem-solarmodul
EP0334111A1 (de) * 1988-03-24 1989-09-27 Siemens Aktiengesellschaft Verfahren zur integrierten Serienverschaltung von Dickschichtsolarzellen sowie Verwendung dieses Verfahrens bei der Herstellung einer Tandem-Solarzelle
US20050150542A1 (en) * 2004-01-13 2005-07-14 Arun Madan Stable Three-Terminal and Four-Terminal Solar Cells and Solar Cell Panels Using Thin-Film Silicon Technology
WO2010142575A2 (en) * 2009-06-11 2010-12-16 Oerlikon Solar Ag, Trübbach Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRUHLER W ET AL: "FOUR-TERMIVNAL TANDEM SOLAR MODULE USING A-SI:H AND C-SI", PROCEEDINGS OF THE INTERNATIONAL PHOTOVOLTAIC ENERGY CONFERENCE. FLORENCE, MAY 9 - 13, 1988; [PROCEEDINGS OF THE INTERNATIONAL PHOTOVOLTAIC ENERGY CONFERENCE], DORDRECHT, KLUWER, NL, vol. 1, 9 May 1988 (1988-05-09), pages 821 - 825, XP000075188 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079811A1 (ja) * 2016-10-31 2018-05-03 京セラ株式会社 太陽電池モジュール
JPWO2018079811A1 (ja) * 2016-10-31 2019-09-19 京セラ株式会社 太陽電池モジュール

Also Published As

Publication number Publication date
DE102011089916A1 (de) 2013-06-27

Similar Documents

Publication Publication Date Title
DE102012207168B4 (de) Photovoltaikmodul mit Bypass-Dioden und in Reihe geschalteten Stringanordnungen parallel geschalteter Strings aus Solarzellen
DE202011104896U1 (de) Struktur für ein Hocheffizienz-CIS/CIGS-basiertes Tandemphotovoltaikmodul
WO2013097964A1 (de) Solarzellenanordnung in tandem-konfiguration
DE19932640A1 (de) Herstellen von photovoltaischen Dünnfilmmodulen mit hochintegrierten Verbindungsleitungen und Zweischichtkontakten
DE112010001882T5 (de) Tandemphotovoltaikzelle und Verfahren, die eine dreifache Glassubstratkonfiguration verwenden
DE102004031950A1 (de) Halbleiter/Elektroden-Kontaktstruktur und eine solche verwendendes Halbleiterbauteil
EP2758993B1 (de) Dünnschichtsolarmodul mit serienverschaltung und verfahren zur serienverschaltung von dünnschichtsolarzellen
DE3709153A1 (de) Mehrlagige duennfilmsolarzelle
DE102004049197A1 (de) Solarbatterie und Herstellverfahren für eine solche
DE102015218164A1 (de) Solarzelle
DE102009026149A1 (de) Verbundsystem für Photovoltaik-Module
DE202023101309U1 (de) Solarzelle und Photovoltaikmodul
DE102010043006A1 (de) Photovoltaisches Bauelement
DE112010001140T5 (de) Solarzellen-Modul und Verfahren zum Herstellen desselben
WO2013171619A1 (de) Heterokontakt-solarzelle und verfahren zu deren herstellung
DE102013217653B4 (de) Photovoltaische Solarzelle und Mehrfachsolarzelle
DE212009000047U1 (de) Photovoltaische Vorrichtung
WO2013189932A2 (de) Verfahren und herstellungsanlage zur herstellung eines photovoltaikmoduls sowie photovoltaikmodul
EP2529407A1 (de) Solarzellenanordnung und dünnschichtsolarmodul, sowie herstellungsverfahren hierfür
DE102011109846A1 (de) Dünnschicht-Solarzelle und Verfahren zu deren Herstellug
WO2019192656A1 (de) Bifazial-solarzelle, solarmodul und herstellungsverfahren für eine bifazial-solarzelle
EP2377168A1 (de) Photovoltaikelement
DE102010017246A1 (de) Solarzellenmodul und Herstellungsverfahren hierfür
WO2010081460A1 (de) Solarzelle und verfahren zur herstellung einer solarzelle
DE202013003610U1 (de) Solarzellenmodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12783192

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12783192

Country of ref document: EP

Kind code of ref document: A1