WO2019192656A1 - Bifazial-solarzelle, solarmodul und herstellungsverfahren für eine bifazial-solarzelle - Google Patents

Bifazial-solarzelle, solarmodul und herstellungsverfahren für eine bifazial-solarzelle Download PDF

Info

Publication number
WO2019192656A1
WO2019192656A1 PCT/DE2019/100288 DE2019100288W WO2019192656A1 WO 2019192656 A1 WO2019192656 A1 WO 2019192656A1 DE 2019100288 W DE2019100288 W DE 2019100288W WO 2019192656 A1 WO2019192656 A1 WO 2019192656A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sinx
solar cell
refractive index
range
Prior art date
Application number
PCT/DE2019/100288
Other languages
English (en)
French (fr)
Inventor
Axel Schwabedissen
Janko Cieslak
Verena Mertens
Matthias Junghänel
Original Assignee
Hanwha Q Cells Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Q Cells Gmbh filed Critical Hanwha Q Cells Gmbh
Priority to CN201980036236.1A priority Critical patent/CN112567532A/zh
Publication of WO2019192656A1 publication Critical patent/WO2019192656A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a bifacial solar cell, a solar module and a
  • the invention relates to a bifacial solar cell with a backside layer stack and a solar module comprising such a bifacial solar cell and a
  • a solar cell usually has a front side and a rear side, which may each have layer stacks. She is an electric one
  • a component that converts incident sunlight directly into electrical energy on its front surface A component that converts incident sunlight directly into electrical energy on its front surface.
  • the solar cell may have an anti-reflection coating.
  • Such a solar cell is
  • DE102006062092B4 discloses a photovoltaic module with solar cells, each of which has a cell layer system which is arranged between a lamination material and a light-receiving surface of the solar cell, which has a varying refractive index and which comprises at least three different layers with different solar cells
  • the solar cells according to the prior art described above are monofacial solar cells.
  • Monofacial solar cells can only utilize incident light on their front. Therefore, their efficiency is limited.
  • bifacial solar cells In addition to monofacial solar cells bifacial solar cells (also common in the English spelling: bifacial solar cell) are known.
  • a bifacial solar cell is a solar cell that can exploit incidental sunlight from two sides. The bifacial solar cell can not only utilize a direct light incidence across the front but also a direct or indirect light incidence over the back, the latter reflected example in shape
  • the layer stack consists of an AlOx layer disposed on the substrate and a SiNx layer on top of the substrate
  • the object is achieved by a bifacial solar cell with the features of claim 1, a solar module having the features of claim 8 and a manufacturing method for a bifacial solar cell having the features of claim 11.
  • the invention relates to a bifacial solar cell with a backside
  • the back layer stack comprises an AlOx layer, one or more SiNx layers and one or more SiOxNy layers.
  • the respective SiNx or SiOxNy layers may differ in their refractive index.
  • This backside layer stack increases the efficiency of the bifacial solar cell. Compared to a bifacial solar cell with a
  • the rear layer stack comprising an AlOx layer and a SiNx layer results in a higher efficiency both on the front side (+ 0.2%) and on the back side of the light (+ 0.8 to 1.0%) and a reduced PID degradation.
  • a PID Pieric Induced Degradation
  • PID causes a deterioration in the performance of the solar modules over time.
  • SiNx and SiOxNy layers Due to the manufacturing process of SiNx and SiOxNy layers, for example in the PECVD process (plasma-enhanced chemical vapor deposition process), hydrogen is incorporated during the deposition of the layers, i. H. the SiNx layer or SiOxNy layer is hydrogenated, which is represented by the designation SiNx: H layer or SiOxNy layer: H layer.
  • This hydrogen contained in such a layer passesivate recombination centers at the SiNx / Si interface or SiOxNy interface and in the volume of the silicon substrate. This will be the
  • back layer stack according to the invention is possible in a PECVD system in a process without ventilation or system change. This can save costs.
  • all layers of the backside stack are deposited in a tube PECVD system with a graphite boat as a wafer holder by means of a direct plasma.
  • ALD atomic layer deposition
  • microwave remote plasma it is also possible to deposit the SiNx and SiOxNy layers in a tube PECVD system.
  • the bifacial solar cell is preferably a monocrystalline or multicrystalline solar cell having a silicon substrate.
  • the bifacial solar cell is a PERC cell (Passed Emitter and Rear Cell).
  • the AlOx layer is arranged on a substrate of the solar cell, the SiNx layer is arranged on a side of the AlOx layer facing away from the substrate and the SiOxNy layer is on a side of the SiNx layer facing away from the substrate arranged.
  • the backside of the bifacial solar cell has the following structure: substrate / AlOx layer / SiNx layer / SiOxNy layer.
  • the layers of the layer stack are arranged directly or directly above one another, i. without another intermediate layer.
  • the SiNx layer is a SiNx double layer comprising a first SiNx layer and a second SiNx layer.
  • the SiNx layer is a SiNx double layer comprising a first SiNx layer and a second SiNx layer.
  • Layer stack therefore four layers. More preferably, the layer stack consists of these four layers in the following order: AlOx layer / SiNx double layer / SiOxNy layer. It should always be noted that there may be additional backside metallization on the back of the solar cell.
  • a third SiNx layer is arranged on a side of the SiOxNy layer remote from the substrate.
  • the layer stack preferably has five layers in this embodiment. More preferably, the layer stack is composed of the five layers in the following order: AlOx layer / SiNx double layer / SiOxNy layer / SiNx layer. Again, it should be noted that there may be additional backside metallization on the back of the solar cell.
  • a refractive index of the first SiNx layer is smaller than a refractive index of a second SiNx layer, wherein the first SiNx layer on a side facing away from the substrate side of the second SiNx layer is arranged and the second SiNx layer is disposed on a side facing away from the substrate side of the AlOx layer.
  • the solar cell preferably has the following structure on the back: substrate / AlOx layer / second SiNx layer / first SiNx layer / SiOxNy layer or
  • the refractive index of the third SiNx layer is preferably smaller than the refractive index of the second SiNx layer.
  • the refractive index of the third SiNx layer is equal to or substantially equal to the refractive index of the first SiNx layer.
  • a refractive index of the SiOxNy layer is smaller than a refractive index of the SiNx layer, i. the first, second and third SiNx layers.
  • the refractive index of the SiOxNy layer may be greater than a refractive index of the AlOx layer.
  • the refractive index of the AlOx layer is in the range of 1.5 to 1.7
  • the refractive index of the SiNx layer is in the range of 2.0 to 2.4
  • the refractive index of the SiOxNy layer is in the range of 1, 5 to 1, 9, measured according to DIN at a wavelength of 632 nm. If the SiNx layer is a SiNx double layer, is preferred
  • the layer stack has the third SiNx layer, it is preferable
  • Refractive index of the third SiNx layer in the range of 2.0 to 2.2. In the range of these values, the bifacial solar cell has a high light coupling and a high passivation effect is achieved.
  • a total layer thickness of the layer stack is preferably at least 95 nm, preferably at least 105 nm, more preferably at least 11 nm, even more preferably at least 120 nm. This results in a higher light incident from the front side as well as from the rear side
  • a layer thickness of the SiOxNy layer is greater than a layer thickness of the SiNx layer.
  • a layer thickness of the SiOxNy layer is preferably equal to or larger than the layer thickness of the SiOx double layer.
  • a layer thickness of the AlOx layer is preferably smaller than the layer thickness of the SiNx layer.
  • a layer thickness of the AlOx layer in the range of 5 to 20 nm is a layer thickness of SiNx layer disposed on a side facing away from the substrate side of the AlOx layer in the range of 20 to 50 nm, is a layer thickness a third SiNx layer arranged in the range of 5 to 30 nm and a layer thickness of the SiOxNy layer in the range of 40 to 80 nm.
  • a thickness of the first SiNx layer is preferably in the range of
  • a thickness of the third SiNx layer is more preferably in the range of 10 to 20 nm. In the range of these values, the bifacial solar cell has a high Lichteinkopplung on and it is achieved a high passivation effect.
  • the backside layer stack consists of the following four layers: an AlOx layer arranged on the substrate, the second SiNx layer arranged on the side of the AlOx layer facing away from the substrate, the first on the side of the SiNx layer facing away from the substrate Layer arranged SiNx layer and arranged on the side facing away from the substrate side of the first SiNx layer SiOxNy layer.
  • the refractive index of the AlOx layer is preferably in the range of 1.5 to 1.7, more preferably 1.6
  • the refractive index of the second SiNx layer is preferably in the range of 2.2 to 2.4
  • the refractive index of the first SiNx layer in the range of 2.0 to 2.1
  • the refractive index of the SiOxNy layer in the range of 1, 5 to 1, 7, measured as indicated above.
  • Layer stack comprising the following five layers: an AlOx layer arranged on the substrate, the second SiNx layer arranged on the side of the AlOx layer facing away from the substrate, the first on the side facing away from the substrate Side of the SiNx layer arranged SiNx layer, which arranged on the side facing away from the substrate side of the first SiNx layer SiOxNy layer and the third on the side facing away from the substrate side of the SiOxNy layer SiNx layer of this embodiment is the refractive index of the AlOx layer is preferably in the range of 1.5 to 1.7, more preferably 1.6, the refractive index of the second SiNx layer is preferably in the range of 2.2 to 2.4, the refractive index of the first and third SiNx layers Layer in the range of 2.0 to 2, 1, and the refractive index of the SiOxNy layer in the range of 1, 5 to 1, 7, measured as indicated above.
  • the expression that the layer stack consists of said layers means that furthermore a backside metallization can be provided
  • the total layer thickness of this layer stack is in the range of 100 to 130 nm, more preferably 125 nm. This results in improved resistance to paste degradation in the manufacture of the bifacial solar cell. In addition, more hydrogen is provided quantitatively for chemical passivation of the surface and volume. At the same time, good optical (antireflection) properties for light incidence from the rear were achieved with this layer stack (bifaciality> 70% or efficiencies> 16%).
  • the visual impression of the backside after encapsulation of the bifacial solar cell in a solar module is extremely homogeneous in comparison to a bifacial solar cell with an approximately 75-80 nm thick backside layer stack consisting of an AlOx layer (layer thickness of about 15-20 nm , Refractive index of 1.6) and a SiNx layer (layer thickness of about 60 nm, refractive index of 2.05).
  • the bifacial solar cell according to the invention Compared to the solar cell with this two-layer stack of an AlOx layer and a SiNx layer, the bifacial solar cell according to the invention with the four-layer layer stack when irradiated from the front a higher Voc (open circuit voltage, +3 mV) and a higher T] front (front Efficiency, + 0.2%); when irradiated from the back, even up to 5 mV Voc (open circuit voltage) gain and + 0.8% Back in the bifacial solar cell according to the invention with the four-layer stack compared to the bifacial solar cell with the two-layer stack according to the prior art measured.
  • a further advantage of the layer stack according to the invention is the improved resistance of the bifacial solar cell to P! D from the rear side.
  • the invention further relates to a solar module comprising a plurality of bifacial solar cells according to one or more of the preceding embodiments.
  • the efficiency of the solar module is increased.
  • the solar module may be bifacial or monofacial. In the latter case, so bifacial solar cells are arranged in a solar module, which is actually for monofacial
  • a bifacial solar module has the property of both incident on the front light and on the back incident light for
  • a monofacial solar module has the property of only incident on the front light for
  • a substantially opaque backside encapsulation element is used, with a transmission of less than 2%.
  • the solar module is designed as a monofacial solar module. Furthermore, the solar module preferably has a white backside encapsulation element. This makes it possible to increase the current Isc (short-circuit current) by approx. 90 mA (approx. 1% relative) and thus a higher current
  • Module power of usually 2 - 3 W peak can be achieved.
  • Einkapsel energy-to-modules
  • the bifacial solar cell continues to save aluminum paste, since only about 10 - 20% of the surface is metallised. This can save costs.
  • Jsc short-circuit current density
  • the invention further relates to a manufacturing method for the bifacial solar cell according to one or more of the described
  • FIG. 2b shows a further layer stack according to the invention
  • FIG. 3f shows a variant of the invention shown in Fig. 2b
  • FIGS. 4 and 5 are graphs comparing two bifacial solar cells for Jsc, Voc, FF and Eta.
  • Fig. 1 shows a layer stack according to the prior art.
  • This known layer stack is applied in two layers and on the back side on a substrate (not shown).
  • the layer stack consists of an AlOx layer 1, which is arranged on the substrate (not shown), and a first SiNx layer 2, which is arranged on a side of the AlOx layer 1 facing away from the substrate.
  • the AlOx layer 1 has a refractive index of 1.6 as measured above and a layer thickness of 16 nm.
  • the first SiNx layer 2 has a refractive index of 2.05 as measured above and a layer thickness of 60 nm.
  • the total layer thickness of the layer stack is therefore 76 nm.
  • Fig. 2a shows a layer stack according to the invention.
  • the layer stack according to the invention has four layers and is applied on the back to a substrate (not shown).
  • the layer stack has an AlOx layer 1, which is arranged on the substrate (not shown), a SiNx double layer 2, 3, which is arranged on a side of the AlOx layer 1 facing away from the substrate, and an SiOxNy layer 4, which is arranged on a side facing away from the substrate side of the SiNx double layer.
  • the SiNx double layer 2, 3 has a first SiNx layer 2 and a second SiNx layer 3, wherein the first SiNx layer 2 is arranged on a side of the second SiNx layer 3 remote from the substrate and the second SiNx layer 2 Layer 3 is arranged on a side facing away from the substrate side of the AlOx layer 1.
  • the AlOx layer 1 has a refractive index of 1.6 as measured above and a layer thickness of 5 to 20 nm.
  • the first SiNx layer 2 has a refractive index in the range of 2.0 to 2.2, as measured above, and a layer thickness in the range of 20 to 40 nm.
  • the second SiNx layer 3 has a refractive index in the range of 2, 1 to 2.4, as measured above, and a layer thickness in the range of 10 to 30 nm.
  • the SiOxNy layer 4 has a refractive index in the range of 1.5 to 1.9, as measured above, and a layer thickness in the range of 50 to 80 nm.
  • the total layer thickness of the layer stack is therefore 89 to 170 nm, preferably 110 to 140 nm.
  • Fig. 2b shows a further layer stack according to the invention.
  • the layer stack shown in FIG. 2b corresponds to the layer stack shown in FIG. 2a with the difference that on a side facing away from the substrate
  • the third SiNx layer 5 has a refractive index in the range of 2.0 to 2.2, as measured above, and a layer thickness in the range of 10 to 20 nm.
  • FIGS. 3 a to 3 e show variants of the layer stack according to the invention shown in FIG. 2 a.
  • the AlOx layer 1 has a layer thickness of 16 nm and a refractive index of 1.6
  • the second SiNx layer 3 has a layer thickness of 40 nm and a refractive index of 2
  • FIG. 40 the first SiNx layer 2 has a layer thickness of 20 nm and a refractive index of 2.05
  • the SiOxNy layer 4 has a layer thickness of 60 nm and a refractive index of 1.7.
  • the total layer thickness of the layer stack is 136 nm.
  • FIG. 3b shows a back-side layer stack according to FIG. 2a, in which the AlOx layer 1 has a layer thickness of 16 nm and a refractive index of 1.6
  • the first SiNx layer 2 has a layer thickness of 20 nm and a refractive index of 2.05, the SiOxNy layer 4 has a layer thickness of 70 nm and a refractive index of 1.7.
  • the total layer thickness of the layer stack is 126 nm.
  • FIG. 3c shows a back-side layer stack according to FIG. 2a, in which the AlOx layer 1 has a layer thickness of 16 nm and a refractive index of 1.6, the second SiNx layer 3 has a layer thickness of 20 nm and a refractive index of 2, 10, the first SiNx layer 2 has a layer thickness of 30 nm and a refractive index of 2.05, the SiOxNy layer 4 has a layer thickness of 50 nm and a refractive index of 1.7.
  • the total layer thickness of the layer stack is 116 nm.
  • FIG. 3d shows a back-side layer stack according to FIG. 2a, in which the AlOx layer 1 has a layer thickness of 16 nm and a refractive index of 1.6, the second SiNx layer 3 has a layer thickness of 20 nm and a refractive index of 2, FIG. 20, the first SiNx layer 2 has a layer thickness of 30 nm and a refractive index of 2.05, the SiOxNy layer 4 has a layer thickness of 50 nm and a refractive index of 1.7.
  • the total layer thickness of the layer stack is 116 nm.
  • FIG. 3e shows a backside layer stack according to FIG. 2a, in which the AlOx layer 1 has a layer thickness of 10 nm and a refractive index of 1.6, the second SiNx layer 3 has a layer thickness of 20 nm and a refractive index of 2, FIG. 20, the first SiNx layer 2 has a layer thickness of 30 nm and a refractive index of 2.05, the SiOxNy layer 4 has a layer thickness of 80 nm and a refractive index of 1.7.
  • the total layer thickness of the layer stack is 140 nm.
  • Fig. 3f shows a variant of the invention shown in Fig. 2b
  • the AlOx layer 1 has a layer thickness of 16 nm and a refractive index of 1, 6, the first SiNx layer 2 has a layer thickness of 20 nm and a refractive index of 2.05, the second SiNx layer 3 has a layer thickness of 20 nm and a refractive index of 2.4, the SiOxNy layer 4 has a layer thickness of 70 nm and a refractive index of 1.5, and the third SiNx layer 5 has a layer thickness of 10 nm and a refractive index of 2.05 has.
  • FIG. 4 shows box plots comparing two bifacial solar cells for short-circuit current density (Jsc), no-load voltage (Voc), fill factor (FF) and efficiency (Eta) for a front-side illumination of the bifacial solar cells.
  • B1 designates the bifacial solar cell according to the invention shown in FIG. 3b
  • C1 designates the bifacial solar cell according to the prior art shown in FIG.
  • the bifacial solar cell according to the invention has a higher short-circuit current density, one higher by about 3 mV
  • Open circuit voltage a higher fill factor and about 0.2% higher efficiency compared to the bifacial solar cell according to the prior art on.
  • FIG. 5 shows box plots comparing two bifacial solar cells for short-circuit current density (Jsc), no-load voltage (Voc), fill factor (FF) and efficiency (Eta) in a backlight of the bifacial solar cells.
  • B1 designates the bifacial solar cell according to the invention shown in FIG. 3b
  • C1 designates the bifacial solar cell according to the prior art shown in FIG.
  • the bifacial solar cell of the present invention has a short-circuit current density higher by 1.2 mA / cm 2 , an open-circuit voltage higher by 5 mV, a higher filling factor and 0.75% higher Efficiency compared to the bifacial solar cell according to the prior art on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung betrifft eine Bifazial-Solarzelle mit einem rückseitigen Schichtstapel, dadurch gekennzeichnet, dass der rückseitige Schichtstapel eine AlOx-Schicht (1), eine oder mehrere SiNx-Schichten (2, 3, 5) und eine SiOxNy-Schicht (4) aufweist. Ferner betrifft die Erfindung ein Solarmodul, das mehrere derartige Bifazial-Solarzellen aufweist. Weiterhin betrifft die Erfindung ein Herstellungsverfahren für die Bifazial-Solarzelle, bei dem der rückseitige Schichtstapel aus AlOx-Schicht (1), SiNx-Schicht(en) (2, 3, 5) und SiOxNy-Schicht (4) in einer Rohr PECVD Anlage mit einem Graphitboot als Waferhalter abgeschieden werden und die Schichten nacheinander in ein- und demselben Rohr aufgebracht werden.

Description

Bifazial-Solarzelle, Solarmodul und Herstellungsverfahren für eine Bifazial- Solarzelle
Beschreibung:
Die Erfindung betrifft eine Bifazial-Solarzelle, ein Solarmodul und ein
Herstellungsverfahren für eine Bifazial-Solarzelle. Insbesondere betrifft die Erfindung eine Bifazial-Solarzelle mit einem rückseitigen Schichtstapel und ein Solarmodul, das eine derartige Bifazial-Solarzelle aufweist sowie ein
Herstellungsverfahren für die Bifazial-Solarzelle.
Eine Solarzelle weist üblicherweise eine Vorderseite und eine Rückseite auf, die jeweils Schichtstapel aufweisen können. Sie ist ein elektrisches
Bauelement, das auf ihre Vorderseite einfallendes Sonnenlicht direkt in elektrische Energie umwandelt.
Zur Vermeidung einer Lichteinbuße durch Reflexion kann die Solarzelle eine Antireflexionsbeschichtung aufweisen. Eine derartige Solarzelle ist
beispielsweise in der DE102009056594A1 beschrieben, die eine
Antireflexionsbeschichtung für die Vorderseite einer Solarzelle vorschlägt, die eine erste SiNx-Schicht mit einem hohen Brechungsindex und eine zweite SiNx- Schicht mit einem geringeren Brechungsindex aufweist. Ferner ist aus der DE102006062092B4 ein Photovoltaikmodul mit Solarzellen bekannt, welche jeweils ein Zell-Schichtsystem aufweisen, das zwischen einem Laminierungsmaterial und einer Licht aufnehmenden Oberfläche der Solarzelle angeordnet ist, das einen variierenden Brechungsindex aufweist und das aus mindestens drei unterschiedlichen Schichten mit unterschiedlichem
Brechungsindex besteht.
Bei den vorstehend beschriebenen Solarzellen gemäß dem Stand der Technik handelt es sich um Monofazial-Solarzellen. Monofazial-Solarzellen können nur auf ihre Vorderseite einfallendes Licht verwerten. Daher ist ihr Wirkungsgrad begrenzt.
Neben Monofazial-Solarzellen sind Bifazial-Solarzellen (auch üblich in der englischen Schreibweise: Bifacial-Solarzelle) bekannt. Eine Bifazial-Solarzelle ist eine Solarzelle, die einfallendes Sonnenlicht von zwei Seiten ausnutzen kann. Die Bifazial-Solarzelle kann nicht nur einen direkten Lichteinfall über die Vorderseite sondern auch einen direkten oder indirekten Lichteinfall über die Rückseite verwerten, letzteres beispielsweise in Form reflektierten
Sonnenlichts. Hierdurch wird ein höherer Wirkungsgrad der Solarzelle erzielt als bei Monofazial-Solarzellen. So kann zum Beispiel ein von einer hellen Hauswand zurückgeworfenes Licht von der Rückseite der Bifazial-Solarzelle genutzt werden.
Beispielsweise beschreiben Dullweber et al. in Proc. 31 st EUPVSEC 2015, Hamburg Paper 2B0.4.3, S. 345-350 eine Bifazial-Solarzelle mit einem zweischichtigen Schichtstapel, der rückseitig auf ein Substrat aufgebracht ist. Der Schichtstapel besteht aus einer AlOx-Schicht, die auf dem Substrat angeordnet ist, und einer SiNx-Schicht, die auf einer vom Substrat
abgewandten Seite der AlOx-Schicht angeordnet ist. Es besteht aber weiterhin ein Bedarf, die Effizienz der Solarzelle zu steigern.
Es ist eine Aufgabe der Erfindung eine Solarzelle und ein Solarmodul sowie ein Herstellungsverfahren für eine Solarzelle bereitzustellen, die eine optimierte Effizienz aufweisen.
Erfindungsgemäß wird die Aufgabe durch eine Bifazial-Solarzelle mit den Merkmalen des Patentanspruchs 1 , ein Solarmodul mit den Merkmalen des Patentanspruchs 8 und ein Herstellungsverfahren für eine Bifazial-Solarzelle mit den Merkmalen des Patentanspruchs 11 gelöst. Vorteilhafte
Weiterbildungen und Modifikationen sind in den Unteransprüchen angegeben. Die Erfindung betrifft eine Bifazial-Solarzelle mit einem rückseitigen
Schichtstapel, bei der erfindungsgemäß vorgesehen ist, dass der rückseitige Schichtstapel eine AlOx-Schicht, eine oder mehrere SiNx-Schichten und eine oder mehrere SiOxNy-Schichten aufweist. Die jeweiligen SiNx bzw. SiOxNy Schichten können sich in ihrem Brechungsindex unterscheiden.
Durch diesen rückseitigen Schichtstapel wird die Effizienz der Bifazial- Solarzelle gesteigert. Gegenüber einer Bifazial-Solarzelle mit einem
rückseitigen Schichtstapel aus einer AlOx-Schicht und einer SiNx-Schicht ergibt sich eine höhere Effizienz sowohl bei vorderseitigem (+0,2%) als auch rückseitigem Lichteinfall (+0,8 bis 1 ,0%) sowie eine verringerte PID- Degradation. Eine PID (Potential Induced Degradation = potentialinduzierte Degradation) ist ein Phänomen, das Solarzellen von Solarmodul-Anlagen angreift. PID verursacht eine Verschlechterung der Leistung der Solarmodule mit der Zeit.
Bedingt durch den Herstellungsprozess von SiNx- und SiOxNy-Schichten beispielsweise im PECVD-Verfahren (plasma enhanced Chemical vapor deposition-Verfahren) wird bei der Abscheidung der Schichten Wasserstoff eingelagert, d. h. die SiNx-Schicht bzw. SiOxNy-Schicht wird hydrogenisiert, was durch die Bezeichnung SiNx:H-Schicht bzw. SiOxNy-Schicht: H-Schicht dargestellt wird. Dieser in einer derartigen Schicht enthaltene Wasserstoff passiviert Rekombinationszentren an der SiNx/Si-Grenzfläche bzw. SiOxNy- Grenzfläche und im Volumen des Siliziumsubstrats. Hierdurch wird der
Wirkungsgrad der Solarzelle positiv beeinflusst. Die Herstellung des
erfindungsgemäßen rückseitigen Schichtstapels ist in einer PECVD-Anlage in einem Prozess ohne Belüftung oder Anlagenwechsel möglich. Dadurch können Kosten gespart werden. Bevorzugt werden alle Schichten des Rückseitenstapels in einer Rohr-PECVD Anlage mit einem Graphitboot als Waferhalter mittels eines direkten Plasmas abgeschieden. Es ist aber auch möglich, das AlOx mittels„ Atomic -Layer- Deposition“ (ALD) oder Mikrowellen -Remote- Plasma abzuscheiden, und die SiNx- und SiOxNy-Schichten in einer Rohr-PECVD Anlage abzuscheiden. Die Bifazial-Solarzelle ist bevorzugt eine mono- oder multikristalline Solarzelle, die ein Siliziumsubstrat aufweist. Bevorzugt ist die Bifazial-Solarzelle eine PERC-Zelle (PERC - Passivated Emitter and Rear Cell).
In einer bevorzugten Ausführungsform ist die AlOx-Schicht auf einem Substrat der Solarzelle angeordnet, ist die SiNx-Schicht auf einer von dem Substrat abgewandten Seite der AlOx-Schicht angeordnet und ist die SiOxNy-Schicht auf einer von dem Substrat abgewandten Seite der SiNx-Schicht angeordnet. In dieser Ausführungsform weist die Bifazial-Solarzelle rückseitig folgenden Aufbau auf: Substrat/AlOx-Schicht/SiNx-Schicht/SiOxNy-Schicht. Bevorzugt sind die Schichten des Schichtstapels direkt oder unmittelbar übereinander angeordnet, d.h. ohne eine andere Zwischenschicht.
Bevorzugt ist die SiNx-Schicht eine SiNx-Doppelschicht, die eine erste SiNx- Schicht und eine zweite SiNx-Schicht aufweist. Bevorzugt weist der
Schichtstapel daher vier Schichten auf. Bevorzugter besteht der Schichtstapel aus diesen vier Schichten in der folgenden Reihenfolge: AlOx-Schicht/SiNx- Doppelschicht/SiOxNy-Schicht. Hierbei ist immer zu beachten, dass auf der Rückseite der Solarzelle eine zusätzliche Rückseitenmetallisierung vorliegen kann.
In einer anderen bevorzugten Ausführungsform ist eine dritte SiNx-Schicht auf einer von dem Substrat abgewandten Seite der SiOxNy-Schicht angeordnet. Bevorzugt weist der Schichtstapel in dieser Ausführungsform fünf Schichten auf. Bevorzugter besteht der Schichtstapel aus den fünf Schichten in der folgenden Reihenfolge: AlOx-Schicht/SiNx-Doppelschicht/SiOxNy-Schicht/SiNx- Schicht. Auch hierbei ist zu beachten, dass auf der Rückseite der Solarzelle eine zusätzliche Rückseitenmetallisierung vorliegen kann.
Vorteilhafterweise ist ein Brechungsindex der ersten SiNx-Schicht kleiner als ein Brechungsindex einer zweiten SiNx-Schicht, wobei die erste SiNx-Schicht auf einer von dem Substrat abgewandten Seite der zweiten SiNx-Schicht angeordnet ist und die zweite SiNx-Schicht auf einer von dem Substrat abgewandten Seite der AlOx-Schicht angeordnet ist. In dieser Ausführungsform weist die Solarzelle bevorzugt rückseitig folgenden Aufbau auf: Substrat/AlOx- Schicht/zweite SiNx-Schicht/erste SiNx-Schicht/SiOxNy-Schicht oder
Substrat/AlOx-Schicht/zweite SiNx-Schicht/erste SiNx-Schicht/SiOxNy- Schicht/dritte SiNx-Schicht. Der Brechungsindex der dritten SiNx-Schicht ist bevorzugt kleiner als der Brechungsindex der zweiten SiNx-Schicht.
Bevorzugter ist der Brechungsindex der dritten SiNx-Schicht gleich oder im Wesentlichen gleich zu dem Brechungsindex der ersten SiNx-Schicht.
Vorteilhafterweise ist ein Brechungsindex der SiOxNy-Schicht kleiner als ein Brechungsindex der SiNx-Schicht d.h. der ersten, zweiten und dritten SiNx- Schicht. Insbesondere kann der Brechungsindex der SiOxNy-Schicht größer als ein Brechungsindex der AlOx-Schicht sein.
In einer bevorzugten Ausführungsform liegt der Brechungsindex der AlOx- Schicht im Bereich von 1 ,5 bis 1 ,7, liegt der Brechungsindex der SiNx-Schicht im Bereich von 2,0 bis 2,4 und liegt der Brechungsindex der SiOxNy-Schicht im Bereich von 1 ,5 bis 1 ,9, gemessen nach DIN bei einer Wellenlänge von 632 nm. Wenn die SiNx-Schicht eine SiNx-Doppelschicht ist, liegt bevorzugt ein
Brechungsindex der ersten SiNx-Schicht im Bereich von 2,0 bis 2,2 und ein Brechungsindex der zweiten SiNx-Schicht im Bereich von 2,2 bis 2,4. Wenn der Schichtstapel die dritte SiNx-Schicht aufweist, liegt bevorzugt ein
Brechungsindex der dritten SiNx-Schicht im Bereich von 2,0 bis 2,2. Im Bereich dieser Werte weist die Bifazial-Solarzelle eine hohe Lichteinkopplung auf und es wird eine hohe Passivierungswirkung erzielt.
Bevorzugt beträgt eine Gesamtschichtdicke des Schichtstapels mindestens 95 nm, bevorzugt mindestens 105nm, bevorzugter mindestens 1 15nm, noch bevorzugter mindestens 120 nm. Dadurch werden sowohl bei Lichteinfall von der Vorderseite als auch bei Lichteinfall von der Rückseite eine höhere
Leerlaufspannung und ein höherer Wirkungsgrad erzielt. Bevorzugt ist eine Schichtdicke der SiOxNy-Schicht größer als eine Schichtdicke der SiNx-Schicht. Wenn die SiNx-Schicht eine SiNx-Doppelschicht ist, ist bevorzugt eine Schichtdicke der SiOxNy-Schicht gleich oder größer als die Schichtdicke der SiOx-Doppelschicht. Eine Schichtdicke der AlOx-Schicht ist bevorzugt kleiner als die Schichtdicke der SiNx-Schicht. In einer bevorzugten Ausführungsform liegt eine Schichtdicke der AlOx-Schicht im Bereich von 5 bis 20 nm, liegt eine Schichtdicke der auf einer von dem Substrat abgewandten Seite der AlOx-Schicht angeordneten SiNx-Schicht im Bereich von 20 bis 50 nm, liegt eine Schichtdicke auf einer von dem Substrat abgewandten Seite der SiOxNy-Schicht angeordneten dritten SiNx-Schicht im Bereich von 5 bis 30 nm und liegt eine Schichtdicke der SiOxNy-Schicht im Bereich von 40 bis 80 nm. Eine Dicke der ersten SiNx-Schicht liegt bevorzugt im Bereich von 20 bis 40 nm, und eine Dicke der zweiten SiNx-Schicht liegt bevorzugt im Bereich von 10 bis 30 nm. Eine Dicke der dritten SiNx-Schicht liegt bevorzugter im Bereich von 10 bis 20 nm. Im Bereich dieser Werte weist die Bifazial-Solarzelle eine hohe Lichteinkopplung auf und es wird eine hohe Passivierungswirkung erzielt.
In einer bevorzugten Ausführungsform besteht der rückseitige Schichtstapel aus folgenden vier Schichten: eine auf dem Substrat angeordnete AlOx-Schicht, die zweite auf der vom Substrat abgewandten Seite der AlOx-Schicht angeordnete SiNx-Schicht, die erste auf der vom Substrat abgewandten Seite der SiNx- Schicht angeordnete SiNx-Schicht und die auf der vom Substrat abgewandten Seite der ersten SiNx-Schicht angeordnete SiOxNy-Schicht. In dieser
Ausführungsform ist der Brechungsindex der AlOx-Schicht bevorzugt im Bereich von 1 ,5 bis 1 ,7, bevorzugter bei 1 ,6, ist der Brechungsindex der zweiten SiNx- Schicht bevorzugt im Bereich von 2,2 bis 2,4, der Brechungsindex der ersten SiNx-Schicht im Bereich von 2,0 bis 2,1 , und der Brechungsindex der SiOxNy- Schicht im Bereich von 1 ,5 bis 1 ,7, gemessen wie vorstehend angegeben.
In einer anderen bevorzugten Ausführungsform besteht der rückseitige
Schichtstapel aus folgenden fünf Schichten: eine auf dem Substrat angeordnete AlOx-Schicht, die zweite auf der vom Substrat abgewandten Seite der AlOx- Schicht angeordnete SiNx-Schicht, die erste auf der vom Substrat abgewandten Seite der SiNx-Schicht angeordnete SiNx-Schicht, die auf der vom Substrat abgewandten Seite der ersten SiNx-Schicht angeordnete SiOxNy-Schicht und die dritte auf der vom Substrat abgewandten Seite der SiOxNy-Schicht angeordnete SiNx-Schicht \n dieser Ausführungsform ist der Brechungsindex der AlOx- Schicht bevorzugt im Bereich von 1 , 5 bis 1 ,7, bevorzugter bei 1 ,6, ist der Brechungsindex der zweiten SiNx-Schicht bevorzugt im Bereich von 2,2 bis 2,4, der Brechungsindex der ersten und dritten SiNx-Schicht im Bereich von 2,0 bis 2, 1 , und der Brechungsindex der SiOxNy-Schicht im Bereich von 1 ,5 bis 1 ,7, gemessen wie vorstehend angegeben. Wie vorstehend bereits erwähnt, ist mit dem Ausdruck, dass der Schichtstapel aus den genannten Schichten besteht derart gemeint, dass weiterhin eine Rückseitenmetallisierung auf dem rückseitigen Schichtstapel vorgesehen sein kann.
Bevorzugt liegt die Gesamtschichtdicke dieses Schichtstapels im Bereich von 100 bis 130 nm, bevorzugter bei 125 nm. Dadurch ergibt sich eine verbesserte Beständigkeit gegenüber Pastenfraß bei der Herstellung der Bifazial-Solarzelle. Zudem wird quantitativ mehr Wasserstoff für eine chemische Passivierung der Oberfläche und des Volumen bereitgestellt. Gleichzeitig wurden mit diesem Schichtstapel gute optische (Antireflexions-) Eigenschaften für Lichteinfall von der Rückseite erzielt (Bifazialität > 70 % bzw. Wirkungsgrade> 16 %). Der visuelle Eindruck der Rückseite nach Einkapselung der Bifazial-Solarzelle in einem Solarmodul ist außerordentlich homogen im Vergleich zu einer Bifazial- Solarzelle mit einem ca. 75 - 80 nm dicken rückseitigen Schichtstapel, der aus einer AlOx-Schicht (Schichtdicke von ca 15 - 20 nm, Brechungsindex von 1 ,6) und einer SiNx-Schicht (Schichtdicke von ca. 60nm, Brechungsindex von 2,05) besteht.
Gegenüber der Solarzelle mit diesem zweischichtigem Schichtstapel aus einer AlOx-Schicht und einer SiNx-Schicht weist die erfindungsgemäße Bifazial- Solarzelle mit dem vierschichtigen Schichtstapel bei Einstrahlung von der Vorderseite eine höheres Voc (Leerlaufspannung, +3 mV) sowie einen höheres T] front (vorderseitiger Wirkungsgrad, + 0,2 %) auf; bei Einstrahlung von der Rückseite wurden sogar bis zu 5 mV Voc (Leerlaufspannung ) Gewinn und + 0,8% rjback (rückseitiger Wirkungsgrad) bei der erfindungsgemäßen Bifazial-Solarzelle mit dem vierschichtigen Schichtstapel im Vergleich zur Bifazial-Solarzelle mit dem zweischichtigen Schichtstapel gemäß Stand der Technik gemessen. Ein weiterer Vorteil des erfindungsgemäßen Schichtstapels ist die verbesserte Beständigkeit der Bifazial-Solarzelle gegenüber P!D von der Rückseite.
Die Erfindung betrifft ferner ein Solarmodul, aufweisend mehrere Bifazial- Solarzellen nach einer oder mehreren der vorstehenden Ausführungsformen. Die Effizienz des Solarmoduls ist gesteigert. Das Solarmodul kann bifazial oder monofazial ausgebildet sein. Im letzteren Fall werden also Bifazial-Solarzellen in einem Solarmodul angeordnet, welches eigentlich für monofaziale
Stromgewinnung eingesetzt wird.
Ein bifaziales Solarmodul besitzt die Eigenschaft, sowohl auf die Vorderseite einfallendes Licht als auch auf die Rückseite einfallendes Licht zur
Stromerzeugung zu nutzen. Bei dem bifazialen Solarmodul wird eine
transparente Folie oder Glas als Rückseitenverkapselungselement verwendet. So kann Licht, dass ungenutzt durch das Modul geht und reflektiertes Licht aus der Umgebung auf der Rückseite genutzt werden. Ein monofaziales Solarmodul besitzt die Eigenschaft, nur auf die Vorderseite einfallendes Licht zur
Stromerzeugung zu nutzen. Bei einem monofazialen Solarmodul wird ein weitgehend lichtundurchlässiges Rückseitenverkapselungselement verwendet, mit einer Transmission von weniger als 2 %.
In einer bevorzugten Ausführungsform ist das Solarmodul als monofaziales Solarmodul ausgebildet. Weiterhin bevorzugt weist das Solarmodul ein weißes Rückseitenverkapselungselement auf. Dadurch kann ein um ca. 90 mA höherer Strom Isc (Kurzschlussstrom) (ca. 1% relativ) und damit eine höhere
Modulleistung von üblicherweise 2 - 3 Wpeak erzielt werden.
Das weiße Rückseitenverkapselungselement stellt im Sinne der Erfindung ein Rückseitenverkapselungselement dar, das im Wellenlängenbereich von 300 bis 1200nm weitgehend intransparent ist. Es ist daher bei der Verwendung des weißen Rückseitenverkapselungselements nur ein geringer Lichteinfall auf den Bifazial-Solarzellen zu erwarten (< 2%). Die Erfinder haben jedoch nach Auswertung von sogenannten Einkapselmessungen (Cell-To-Module
encapsulation loss) an Monofazial- und Bifazial-Solarzellen mit verschiedenen Verkapselungselement-Materialien (Glas-Glas, Glas-transparentes
Rückseitenverkapselungselement, Glas-weißes
Rückseitenverkapselungselement) herausgefunden, dass - bei Beleuchtung von vorne, d,h, bei Lichteinfall auf die Vorderseite - gegenüber einer Monofazial- Solarzelle ein ca. 1 % höherer Isc Strom (Kurzschlussstrom) pro Solarzelle gemessen wird, was bei einem Solarmodul mit zweiundsiebzig Solarzellen ca. 2 W höhere Solarmodulleistung unter Standard-Test-Bedingungen ergibt.
Gegenüber einer Monofazial-Solarzelle wird bei der Bifazial-Solarzelle weiterhin Aluminiumpaste gespart, da nur ca. 10 - 20 % der Fläche metallisiert sind. Dadurch können Kosten gespart werden.
Desweiteren wurde festgestellt, dass eine höhere Jsc (Kurzschlussstromdichte) bei den Bifazial-Solarzellen gegenüber den Monofazial-Solarzellen erhalten wird, der aus der Rückreflektion von Strahlung im Nah-IR Bereich (700 - 1200 n ) an dem weißem Rückseitenverkapselungselement herrühren dürfte. Diese Strahlung wird dann nochmals in die Bifazial-Solarzelle eingekoppelt und kann Ladungsträger erzeugen.
Die Erfindung betrifft ferner ein Herstellungsverfahren für die Bifazial- Solarzelle entsprechend einer oder mehreren der beschriebenen
Ausführungsformen, bei dem der rückseitige Schichtstapel aus AlOx-Schicht, SiNx-Schicht(en) und SiOxNy-Schicht in einer Rohr PECVD Anlage mit einem Graphitboot als Waferhalter abgeschieden werden und die Schichten nacheinander in ein- und demselben Rohr aufgebracht werden.
Weitere Eigenschaften und Vorteile der Erfindung werden im Zusammenhang mit den Figuren gezeigt und nachfolgend exemplarisch beschrieben. Es zeigen schematisch und nicht maßstabsgetreu: Fig. 1 einen Schichtstapel gemäß dem Stand der Technik;
Fig. 2a einen erfindungsgemäßen Schichtstapel;
Fig. 2b einen weiteren erfindungsgemäßen Schichtstapel;
Fig. 3a bis 3e Varianten des in Fig. 2a gezeigten erfindungsgemäßen
Schichtstapels;
Fig. 3f eine Variante des in Fig. 2b gezeigten erfindungsgemäßen
Schichtstapels;
Fig. 4 und 5 jeweils Graphen mit einem Vergleich zweier Bifazial-Solarzellen für Jsc, Voc, FF und Eta.
Fig. 1 zeigt einen Schichtstapel gemäß dem Stand der Technik. Dieser bekannte Schichtstapel ist zweischichtig und rückseitig auf ein Substrat (nicht gezeigt) aufgebracht. Der Schichtstapel besteht aus einer AlOx-Schicht 1 , die auf dem Substrat (nicht gezeigt) angeordnet ist, und einer ersten SiNx-Schicht 2, die auf einer vom Substrat abgewandten Seite der AlOx-Schicht 1 angeordnet ist. Die AlOx-Schicht 1 weist einen Brechungsindex von 1 ,6, wie vorstehend angegeben gemessen, und eine Schichtdicke von 16 nm auf. Die erste SiNx-Schicht 2 weist einen Brechungsindex von 2,05, wie vorstehend angegeben gemessen, und eine Schichtdicke von 60 nm auf. Die Gesamtschichtdicke des Schichtstapels beträgt daher 76 nm.
Fig. 2a zeigt einen erfindungsgemäßen Schichtstapel. Der erfindungsgemäße Schichtstapel ist vierschichtig und rückseitig auf ein Substrat (nicht gezeigt) aufgebracht. Der Schichtstapel weist eine AlOx-Schicht 1 , die auf dem Substrat (nicht gezeigt) angeordnet ist, eine SiNx-Doppelschicht 2, 3, die auf einer vom Substrat abgewandten Seite der AlOx-Schicht 1 angeordnet ist und eine SiOxNy- Schicht 4 auf, die auf einer vom Substrat abgewandten Seite der SiNx- Doppelschicht angeordnet ist. Die SiNx-Doppelschicht 2, 3 weist eine erste SiNx-Schicht 2 und eine zweite SiNx-Schicht 3 auf, wobei die erste SiNx-Schicht 2 auf einer von dem Substrat abgewandten Seite der zweiten SiNx-Schicht 3 angeordnet ist und die zweite SiNx-Schicht 3 auf einer von dem Substrat abgewandten Seite der AlOx-Schicht 1 angeordnet ist. Die AlOx-Schicht 1 weist einen Brechungsindex von 1 ,6, wie vorstehend angegeben gemessen, und eine Schichtdicke von 5 bis 20 nm auf. Die erste SiNx-Schicht 2 weist einen Brechungsindex im Bereich von 2,0 bis 2,2, wie vorstehend angegeben gemessen, und eine Schichtdicke im Bereich von 20 bis 40 nm auf. Die zweite SiNx-Schicht 3 weist einen Brechungsindex im Bereich von 2, 1 bis 2,4, wie vorstehend angegeben gemessen, und eine Schichtdicke im Bereich von 10 bis 30 nm auf. Die SiOxNy-Schicht 4 weist einen Brechungsindex im Bereich von 1 ,5 bis 1 ,9, wie vorstehend angegeben gemessen, und eine Schichtdicke im Bereich von 50 bis 80 nm auf. Die Gesamtschichtdicke des Schichtstapels beträgt daher 89 bis 170 nm, bevorzugt 110 bis 140 nm.
Fig. 2b zeigt einen weiteren erfindungsgemäßen Schichtstapel. Der in Fig. 2b gezeigte Schichtstapel entspricht dem in Fig. 2a gezeigten Schichtstapel mit dem Unterschied, dass auf einer von dem Substrat abgewandten Seite der
SiOxNy-Schicht 4 weiterhin eine dritte SiNx-Schicht 5 angeordnet ist. Die dritte SiNx-Schicht 5 weist einen Brechungsindex im Bereich von 2,0 bis 2,2, wie vorstehend angegeben gemessen, und eine Schichtdicke im Bereich von 10 bis 20 nm auf.
Fig. 3a bis 3e zeigen Varianten des in Fig. 2a gezeigten erfindungsgemäßen Schichtstapels.
Fig. 3a zeigt einen rückseitigen Schichtstapel gemäß Fig.2a, bei dem die AlOx- Schicht 1 eine Schichtdicke von 16 nm und einen Brechungsindex von 1 ,6 aufweist, die zweite SiNx-Schicht 3 eine Schichtdicke von 40 nm und einen Brechungsindex von 2,40 aufweist, die erste SiNx-Schicht 2 eine Schichtdicke von 20 nm und einen Brechungsindex von 2,05 aufweist, die SiOxNy-Schicht 4 eine Schichtdicke von 60 nm und einen Brechungsindex von 1 ,7 aufweist. Die Gesamtschichtdicke des Schichtstapels beträgt 136 nm.
Fig. 3b zeigt einen rückseitigen Schichtstapel gemäß Fig.2a, bei dem die AlOx- Schicht 1 eine Schichtdicke von 16 nm und einen Brechungsindex von 1 ,6 aufweist, die zweite SiNx-Schicht 3 eine Schichtdicke von 20 nm und einen Brechungsindex von 2,40 aufweist, die erste SiNx-Schicht 2 eine Schichtdicke von 20 nm und einen Brechungsindex von 2,05 aufweist, die SiOxNy-Schicht 4 eine Schichtdicke von 70 nm und einen Brechungsindex von 1 ,7 aufweist. Die Gesamtschichtdicke des Schichtstapels beträgt 126 nm.
Fig. 3c zeigt einen rückseitigen Schichtstapel gemäß Fig.2a, bei dem die AlOx- Schicht 1 eine Schichtdicke von 16 nm und einen Brechungsindex von 1 ,6 aufweist, die zweite SiNx-Schicht 3 eine Schichtdicke von 20 nm und einen Brechungsindex von 2, 10 aufweist, die erste SiNx-Schicht 2 eine Schichtdicke von 30 nm und einen Brechungsindex von 2,05 aufweist, die SiOxNy-Schicht 4 eine Schichtdicke von 50 nm und einen Brechungsindex von 1 ,7 aufweist. Die Gesamtschichtdicke des Schichtstapels beträgt 116 nm.
Fig. 3d zeigt einen rückseitigen Schichtstapel gemäß Fig.2a, bei dem die AlOx- Schicht 1 eine Schichtdicke von 16 nm und einen Brechungsindex von 1 ,6 aufweist, die zweite SiNx-Schicht 3 eine Schichtdicke von 20 nm und einen Brechungsindex von 2,20 aufweist, die erste SiNx-Schicht 2 eine Schichtdicke von 30 nm und einen Brechungsindex von 2,05 aufweist, die SiOxNy-Schicht 4 eine Schichtdicke von 50 nm und einen Brechungsindex von 1 ,7 aufweist. Die Gesamtschichtdicke des Schichtstapels beträgt 116 nm.
Fig. 3e zeigt einen rückseitigen Schichtstapel gemäß Fig.2a, bei dem die AlOx- Schicht 1 eine Schichtdicke von 10 nm und einen Brechungsindex von 1 ,6 aufweist, die zweite SiNx-Schicht 3 eine Schichtdicke von 20 nm und einen Brechungsindex von 2,20 aufweist, die erste SiNx-Schicht 2 eine Schichtdicke von 30 nm und einen Brechungsindex von 2,05 aufweist, die SiOxNy-Schicht 4 eine Schichtdicke von 80 nm und einen Brechungsindex von 1 ,7 aufweist. Die Gesamtschichtdicke des Schichtstapels beträgt 140 nm.
Fig. 3f zeigt eine Variante des in Fig. 2b gezeigten erfindungsgemäßen
Schichtstapels, bei dem die AlOx Schicht 1 eine Schichtdicke von 16 nm und einen Brechungsindex von 1 ,6, die erste SiNx-Schicht 2 eine Schichtdicke von 20 nm und einen Brechungsindex von 2,05, die zweite SiNx-Schicht 3 eine Schichtdicke von 20 nm und einen Brechungsindex von 2,4, die SiOxNy Schicht 4 eine Schichtdicke von 70 nm und einen Brechungsindex von 1 ,5 und die dritte SiNx Schicht 5 eine Schichtdicke von 10 nm und einen Brechungsindex von 2,05 auf weist.
Fig. 4 und 5 zeigen jeweils Graphen in denen Vergleiche der
Kurzschlussstromdichte (Jsc), der Leerlaufspannung (Voc), des Füllfaktors (FF) und des Wirkungsgrades (Eta) zweier erfindungsgemäßer Bifazial-Solarzellen stattfinden. Bei den Graphen handelt es sich um sogenannte Boxplots mit Median (auch als Zahl daneben dargestellt), sowie oberem und unterem
Quartil. Es handelt sich um Batchexperimente mit typischerweise hundert Bifazial-Solarzellen per Batch.
Fig. 4 zeigt Boxplots mit einem Vergleich zweier Bifazial-Solarzellen für Kurzschlussstromdichte (Jsc), Leerlaufspannung (Voc), Füllfaktor (FF) und Wirkungsgrad (Eta) bei einer Vorderseitenbeleuchtung der Bifazial-Solarzellen. B1 bezeichnet die in Fig. 3b gezeigte erfindungsgemäße Bifazial-Solarzelle und C1 bezeichnet die in Fig. 1 gezeigte Bifazial-Solarzelle gemäß dem Stand der Technik. Wie in Fig. 4 gezeigt, weist die erfindungsgemäße Bifazial-Solarzelle eine höhere Kurzsch lusstromdichte, eine um etwa 3 mV höhere
Leerlaufspannung, einen höheren Füllfaktor und einen um etwa 0,2% höheren Wirkungsgrad im Vergleich zu der Bifazial-Solarzelle gemäß dem Stand der Technik auf.
Fig. 5 zeigt Boxplots mit einem Vergleich zweier Bifazial-Solarzellen für Kurzschlussstromdichte (Jsc), Leerlaufspannung (Voc), Füllfaktor (FF) und Wirkungsgrad (Eta) bei einer Rückseitenbeleuchtung der Bifazial-Solarzellen.
B1 bezeichnet die in Fig. 3b gezeigte erfindungsgemäße Bifazial-Solarzelle und C1 bezeichnet die in Fig. 1 gezeigte Bifazial-Solarzelle gemäß dem Stand der Technik. Wie in Fig. 5 gezeigt weist die erfindungsgemäße Bifazial-Solarzelle eine um 1 ,2 mA/cm2 höhere Kurzschlussstromdichte, eine um 5 mV höhere Leerlaufspannung, einen höheren Füllfaktor und einen um 0,75% höheren Wirkungsgrad im Vergleich zu der Bifazial-Solarzelle gemäß dem Stand der Technik auf.
Bezugszeichenliste:
1 AlOx-Schicht
2 erste SiNx-Schicht 3 zweite SiNx-Schicht
4 SiOxNy- Schicht
5 dritte SiNx-Schicht

Claims

Patentansprüche:
1 . Bifazial-Solarzelle mit einem rückseitigen Schichtstapel, dadurch
gekennzeichnet, dass der rückseitige Schichtstapel eine AlOx-Schicht (1 ), eine oder mehrere SiNx-Schichten (2, 3, 5) und eine SiOxNy-Schicht (4) auf weist.
2. Bifazial-Solarzelle nach Anspruch 1 , dadurch gekennzeichnet, dass die AlOx-Schicht (1 ) auf einem Substrat der Solarzelle angeordnet ist, die SiNx-Schicht (2, 3) auf einer von dem Substrat abgewandten Seite der AlOx-Schicht (1 ) angeordnet ist und die SiOxNy-Schicht (4) auf einer von dem Substrat abgewandten Seite der SiNx-Schicht (2, 3) angeordnet ist.
3. Bifazial-Solarzelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die SiNx-Schicht (2, 3) eine SiNx-Doppelschicht ist, die eine erste SiNx- Schicht (2) und eine zweite SiNx-Schicht (3) aufweist.
4. Bifazial-Solarzelle nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass eine dritte SiNx-Schicht (5) auf einer von dem Substrat abgewandten Seite der SiOxNy-Schicht (4) angeordnet ist.
5. Bifazial-Solarzelle nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass ein Brechungsindex der ersten SiNx-Schicht (2) kleiner ist als ein
Brechungsindex einer zweiten SiNx-Schicht (3), wobei die erste SiNx- Schicht (2) auf einer von dem Substrat abgewandten Seite der zweiten SiNx-Schicht (3) angeordnet ist und die zweite SiNx-Schicht (3) auf einer von dem Substrat abgewandten Seite der AlOx-Schicht (1 ) angeordnet ist.
6. Bifazial-Solarzelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Brechungsindex der AlOx-Schicht (1 ) im Bereich von 1 ,5 bis 1 ,7 liegt, ein Brechungsindex der SiNx-Schicht (2, 3, 5) im Bereich von 2,0 bis 2,4 liegt und ein Brechungsindex der SiOxNy-Schicht (4) im Bereich von 1 ,5 bis 1 ,9 liegt, gemessen nach DIN bei einer Wellenlänge von 632 nm, wobei bevorzugt ein Brechungsindex der ersten und dritten SiNx-Schicht (2, 5) im Bereich von 2,0 bis 2,2 liegt und ein Brechungsindex der zweiten SiNx-Schicht (3) im Bereich von 2,2 bis 2,4 liegt.
7. Bifazial-Solarzelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Gesamtschichtdicke des Schichtstapels mindestens 95 nm, bevorzugt mindestens 105nm, bevorzugter mindestens 115nm, noch bevorzugter mindestens 120 nm beträgt.
8. Bifazial-Solarzelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Dicke der AlOx-Schicht (1 ) im Bereich von 5 bis 20 nm liegt, eine Dicke der auf einer von dem Substrat abgewandten Seite der AlOx-Schicht (1 ) angeordneten SiNx-Schicht (2, 3) im Bereich von 20 bis 50 nm liegt, eine Dicke der einer von dem Substrat abgewandten Seite der SiOxNy-Schicht (4) angeordneten dritten SiNx-Schicht (5) im Bereich von 5 bis 30 nm und eine Dicke der SiOxNy-Schicht (4) im Bereich von 40 bis 80 nm liegt, wobei bevorzugt eine Dicke der ersten SiNx-Schicht (2) im Bereich von 20 bis 40 nm liegt, die Dicke der zweiten SiNx-Schicht (3) im Bereich von 10 bis 30 nm liegt und die Dicke der dritten SiNx-Schicht (5) im Bereich von 10 bis 20 nm liegt
9. Solarmodul, aufweisend mehrere Bifazial-Solarzellen nach einem der vorangehenden Ansprüche.
10. Solarmodul nach Anspruch 9, ausgebildet als monofaziales Solarmodul.
11. Solarmodul nach Anspruch 10, gekennzeichnet durch ein weißes
Rückseitenverkapselungselement.
12. Herstellungsverfahren für eine Bifazial-Solarzelle nach einem der
Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der rückseitige
Schichtstapel aus AlOx-Schicht (1 ), SiNx-Schicht(en) (2, 3, 5) und SiOxNy- Schicht (4) in einer Rohr PECVD Anlage mit einem Graphitboot als
Waferhalter abgeschieden werden und die Schichten nacheinander in ein- und demselben Rohr aufgebracht werden.
PCT/DE2019/100288 2018-04-06 2019-03-27 Bifazial-solarzelle, solarmodul und herstellungsverfahren für eine bifazial-solarzelle WO2019192656A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980036236.1A CN112567532A (zh) 2018-04-06 2019-03-27 双面太阳能电池、太阳能模块及双面太阳能电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018108158.8A DE102018108158B4 (de) 2018-04-06 2018-04-06 Bifazial-Solarzelle, Solarmodul und Herstellungsverfahren für eine Bifazial-Solarzelle
DE102018108158.8 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019192656A1 true WO2019192656A1 (de) 2019-10-10

Family

ID=66429123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2019/100288 WO2019192656A1 (de) 2018-04-06 2019-03-27 Bifazial-solarzelle, solarmodul und herstellungsverfahren für eine bifazial-solarzelle

Country Status (3)

Country Link
CN (1) CN112567532A (de)
DE (1) DE102018108158B4 (de)
WO (1) WO2019192656A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020122431B3 (de) 2020-08-27 2022-02-17 Hanwha Q Cells Gmbh Solarzelle, Solarmodul und Verfahren zur Herstellung einer Solarzelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056594A1 (de) 2009-12-04 2011-06-09 Q-Cells Se Antireflexionsbeschichtung sowie Solarzelle und Solarmodul
WO2011080661A1 (de) * 2010-01-04 2011-07-07 Roth & Rau Ag Verfahren zur abscheidung von mehrlagenschichten und/oder gradientenschichten
DE102006062092B4 (de) 2006-12-29 2014-02-13 Anton Näbauer In Bezug auf Wirkungsgrad und Zuverlässigkeit optimierte Solarmodule
CN206148449U (zh) * 2016-11-01 2017-05-03 国家电投集团西安太阳能电力有限公司 一种适合薄片化的n型pert双面电池结构
CN107256898A (zh) * 2017-05-18 2017-10-17 广东爱康太阳能科技有限公司 管式perc双面太阳能电池及其制备方法和专用设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008019023B4 (de) * 2007-10-22 2009-09-24 Centrotherm Photovoltaics Ag Vakuum-Durchlaufanlage zur Prozessierung von Substraten
KR101393353B1 (ko) * 2007-10-29 2014-05-13 서울바이오시스 주식회사 발광다이오드
DE102009044052A1 (de) * 2009-09-18 2011-03-24 Schott Solar Ag Kristalline Solarzelle, Verfahren zur Herstellung einer solchen sowie Verfahren zur Herstellung eines Solarzellenmoduls
KR20120084104A (ko) * 2011-01-19 2012-07-27 엘지전자 주식회사 태양전지
CN102738252A (zh) * 2012-06-20 2012-10-17 常州天合光能有限公司 一种双面钝化的mwt太阳电池及其制造方法
CN103050553B (zh) * 2012-12-29 2015-06-24 中国科学院沈阳科学仪器股份有限公司 一种双面钝化晶硅太阳能电池及其制备方法
CN105633174A (zh) * 2014-11-04 2016-06-01 中国东方电气集团有限公司 一种具有背面钝化结构的单晶硅太阳能电池及其制备方法
CN104576801B (zh) * 2014-11-27 2017-09-01 湖南共创光伏科技有限公司 具有过渡层的晶硅及硅薄膜复合型单结pin太阳能电池及其制备方法
CN105870249B (zh) * 2016-03-24 2017-10-03 江苏微导纳米装备科技有限公司 一种晶硅太阳能电池的制造工艺
CN106653923B (zh) * 2016-11-01 2018-03-06 国家电投集团西安太阳能电力有限公司 一种适合薄片化的n型pert双面电池结构及其制备方法
CN106653871B (zh) * 2016-11-18 2019-01-08 横店集团东磁股份有限公司 一种perc太阳能电池结构及其制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006062092B4 (de) 2006-12-29 2014-02-13 Anton Näbauer In Bezug auf Wirkungsgrad und Zuverlässigkeit optimierte Solarmodule
DE102009056594A1 (de) 2009-12-04 2011-06-09 Q-Cells Se Antireflexionsbeschichtung sowie Solarzelle und Solarmodul
WO2011080661A1 (de) * 2010-01-04 2011-07-07 Roth & Rau Ag Verfahren zur abscheidung von mehrlagenschichten und/oder gradientenschichten
CN206148449U (zh) * 2016-11-01 2017-05-03 国家电投集团西安太阳能电力有限公司 一种适合薄片化的n型pert双面电池结构
CN107256898A (zh) * 2017-05-18 2017-10-17 广东爱康太阳能科技有限公司 管式perc双面太阳能电池及其制备方法和专用设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B.B. VAN AKEN ET AL: "White Bifacial Modules - Improved STC Performance Combined with Bifacial Energy Yield", PROCEEDINGS OF THE 32TH EU-PVSEC, 20 June 2016 (2016-06-20) - 24 June 2016 (2016-06-24), Munich-GERMANY, pages 42 - 47, XP040679581, ISBN: 978-3-936338-41-6 *
DULLWEBER ET AL., PROC. 31ST EUPVSEC 2015, HAMBURG PAPER 2B0.4.3, pages 345 - 350

Also Published As

Publication number Publication date
CN112567532A (zh) 2021-03-26
DE102018108158B4 (de) 2023-06-07
DE102018108158A1 (de) 2019-10-10

Similar Documents

Publication Publication Date Title
DE102010017461B4 (de) Solarzelle, Solarzellenherstellungsverfahren und Prüfverfahren
EP2191515B1 (de) Solarzellenaufbau
DE10237515A1 (de) Stapelförmiger photoelektrischer Wandler
DE202011104896U1 (de) Struktur für ein Hocheffizienz-CIS/CIGS-basiertes Tandemphotovoltaikmodul
DE3709153A1 (de) Mehrlagige duennfilmsolarzelle
DE102009056594A1 (de) Antireflexionsbeschichtung sowie Solarzelle und Solarmodul
DE112009002238T5 (de) Verfahren und Struktur für eine photovoltaische Dünnschicht-Tandemzelle
DE112009002039T5 (de) Vierpoliges fotovoltaisches Dünnschichtbauelement mit mehreren Sperrschichten und Verfahren dafür
DE102010038796A1 (de) Dünnschichtsolarzelle und Verfahren zu ihrer Herstellung
DE102010003379A1 (de) Mehrschichtiger Dünnfilm für photovoltaische Zelle
DE3048381A1 (de) &#34;halbleiterbauelement&#34;
DE112010001140T5 (de) Solarzellen-Modul und Verfahren zum Herstellen desselben
DE4410220B4 (de) Dünnschicht-Solarzelle
DE102010043006A1 (de) Photovoltaisches Bauelement
WO2013097964A1 (de) Solarzellenanordnung in tandem-konfiguration
WO2019192656A1 (de) Bifazial-solarzelle, solarmodul und herstellungsverfahren für eine bifazial-solarzelle
WO2019243298A1 (de) Monofazial-solarzelle, solarmodul und herstellungsverfahren für eine monofazial-solarzelle
DE212009000047U1 (de) Photovoltaische Vorrichtung
DE102011109846A1 (de) Dünnschicht-Solarzelle und Verfahren zu deren Herstellug
DE102009056128A1 (de) Rückseitenschichtsystem für Dünnschichtsolarmodule, Dünnschichtsolarmodul und Verfahren zur Herstellung eines Rückseitenschichtsystems
DE102020122431B3 (de) Solarzelle, Solarmodul und Verfahren zur Herstellung einer Solarzelle
DE102008044882A1 (de) Verfahren zur lokalen Kontaktierung und lokalen Dotierung einer Halbleiterschicht
DE102014102864A1 (de) Rückseitenkontaktierte Si-Dünnschicht-Solarzelle
DE102019114498A1 (de) Wafer-Solarzelle, Solarmodul und Verfahren zur Herstellung der Wafer-Solarzelle
DE102012201284A1 (de) Photovoltaische Solarzelle und Verfahren zum Herstellen einer photovoltaischen Solarzelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19721970

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19721970

Country of ref document: EP

Kind code of ref document: A1