EP1268604A1 - Polyestercarbonate und datenträger daraus - Google Patents

Polyestercarbonate und datenträger daraus

Info

Publication number
EP1268604A1
EP1268604A1 EP01913862A EP01913862A EP1268604A1 EP 1268604 A1 EP1268604 A1 EP 1268604A1 EP 01913862 A EP01913862 A EP 01913862A EP 01913862 A EP01913862 A EP 01913862A EP 1268604 A1 EP1268604 A1 EP 1268604A1
Authority
EP
European Patent Office
Prior art keywords
bifunctional
structural units
formula
carbonate
hydroxyphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01913862A
Other languages
English (en)
French (fr)
Inventor
Friedrich-Karl Bruder
Wilfried Haese
Rolf Wehrmann
Peter Fischer
Marco Roelofs
Silke Kratschmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10045587A external-priority patent/DE10045587A1/de
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1268604A1 publication Critical patent/EP1268604A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2535Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polyesters, e.g. PET, PETG or PEN
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2542Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2595Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the invention relates to new polyester carbonates, machine-readable data carriers containing them and further shaped articles containing them.
  • Polycarbonate is preferably used in machine-readable data carriers such as compact discs.
  • machine-readable data carriers such as compact discs.
  • the materials have high transparency, low affinity for water, good heat resistance and low birefringence.
  • the increase in data density is becoming established and new storage technologies such as CD-ROM (read only), CD-R (recordable), CD-RW
  • the information is embossed in the form of so-called pits directly into a transparent thermoplastic material such as bisphenol A (BPA) polycarbonate.
  • BPA bisphenol A
  • the surface is then coated with a reflective metal film and the digital information, which is encoded by the length and position of the pits, is optically read out by a focused laser beam of low power (approx. 0.5mW).
  • the stored information can no longer be changed here (read only format).
  • a write-once format such as the CD-R
  • the function of a write-once format is to write permanent markings in a thin film on a disc with a focused laser beam (up to 40 mW).
  • the changes in the optical properties (absorption, reflectivity) generated in this way can be detected with a reading laser. Since irreversible processes take place, the information can only be saved once and then not overwritten (WORM principle, write once, read many).
  • MO magneto-optical
  • PC phase change
  • phase change materials With phase change materials, the information is stored in areas with different phases - typically amorphous or crystalline. Alloys or compounds of tellurium are usually used as the information layer, in which the glass transition temperature is close to the crystallization temperature.
  • the film can be locally converted from a crystalline to an amorphous state by heating to above the melting point with a short focused laser pulse and rapid cooling. In comparison to the crystalline state, the reflectivity changes, which is optically detected with a laser.
  • low birefringence and low water absorption are not the only important properties for the substrate materials of optical data media, the optimal combination of other properties is required, such as high transparency, heat resistance, flowability, toughness, high purity, low density, low inhomogeneities or particle proportions, and above all low raw material and manufacturing costs.
  • Polyester carbonates from linear or cyclic difunctional aliphatic carboxylic acids, bisphenols and carbonate precursors are described, for example, in EP 433 716 A, US 4 983 706 and US 5 274 068, which describe different processes for their
  • polyester carbonates in particular from linear and longer-chain dicarboxylic acids, have an undesirable tendency to crystallize, which has a particularly disruptive effect on the very slow cooling, which can be necessary for molding the finest structures and reducing the process-related birefringence.
  • Dimer fatty acids as possible acid building blocks in polyester carbonates are listed, for example, in DE 43 06 961 A, US 5 134 220 and EP 443 058 A. There is no precise definition of the acids to be used. However, thermooxidative problems occur with non-hydrogenated dimer fatty acids. In addition, the current commercial products contain more than 3 mol% of three- and polybasic carboxylic acids, which leads to a high zero viscosity, which is undesirable when molding microstructures such as pits or grooves. For this reason, these polyester carbonates have so far generally not been regarded as suitable for substrates for optical data memories.
  • the object of the invention is to provide machine-readable data carriers for increased data densities which do not have the disadvantages mentioned above, in particular have improved optical properties and can be easily produced.
  • D represents a mixture of divalent hydrocarbon radicals which have 30 to 42 carbon atoms, preferably 32 to 38, particularly preferably 34 carbon atoms atoms. D corresponds substantially to formula la and / or Ib and / or Ic and / or Id and / or Ie.
  • the high glass transition temperature of homopolycarbonates from certain bisphenols such as l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane or 6,6'-dihydroxy-3,3,3 ', 3'-tetramethyl-l, l'-spiro (bis) -indan can be efficiently reduced to an acceptable level for flowability and heat resistance in optical data carriers by cocondensation with very low molar proportions of the acids to be used according to the invention.
  • the substrates for data carriers made of the new polyester carbonates also have high transparency, good mechanical properties, especially at low temperatures, and high flowability.
  • Hydrogenated dimeric fatty acids in the context of this invention are acids which can be obtained by dimerizing unsaturated monobasic fatty acids having 16 to 22 carbon atoms and then hydrogenating them.
  • the required acids can be obtained, for example, from plant or animal sources. Synthesis and properties are eg th ed Encyclopedia of Chemical Technology, Vol 8, 4, John Wiley & Sons.. 1993, pages 223-237 set.
  • Dimer fatty acids with an iodine number of less than about 15 are preferred. It may also contain a small amount of monobasic and polybasic fatty acids. Products with very small proportions of these components, in particular with small proportions of tri- and polybasic acids, are particularly suitable for the production of the polyester carbonates according to the invention. Dimer fatty acids with a proportion of tri- and polybasic acids of less than about 1.5%, as determined by gas chromatography, are therefore preferred.
  • the invention also includes mixtures of dimeric fatty acids with other difunctional carboxylic acids with 4 to 40 carbon atoms such as adipic acid, sebacic acid, ⁇ , ⁇ -dodecanedicarboxylic acid, terephthalic acid, ice or trans-9-octadecen- ⁇ , ⁇ -dicarboxylic acid or hydroxycarboxylic acids with 4 up to 40 carbon atoms such as salicylic acid or p-
  • the dimer fatty alcohols obtained from dimer fatty acids by reduction can also be used and converted to polycarbonates or mixtures or esters of dimer fatty alcohols with dimer fatty acids to polyester carbonates.
  • At least one of the other bifunctional structural units of the formula (II) different from A is preferably used as the bi-functional structural unit B.
  • radical -ORO- stands for any diphenolate radicals in which -R- is an aromatic radical having 6 to 40 carbon atoms, which can contain one or more aromatic or condensed aromatic nuclei, optionally containing heteroatoms, and optionally with C ⁇ -C ⁇ 2 alkyl radicals or halogen is substituted and may contain aliphatic radicals, cycloaliphatic radicals, aromatic nuclei or heteroatoms as bridge members.
  • the bifunctional structural units B are particularly preferably derived from diphenol compounds of the formulas (ffia) to (IIIc)
  • Z ⁇ and Z 2 independently of one another each for a divalent radical -C (R 2 R 2 ) -, -O-,
  • R 2 independently of one another, each for a C 1 to C 12 alkyl radical, preferably C 1 to C 3 alkyl radical, particularly preferably methyl, a C 6 to C 9 aryl, preferably phenyl radical, a C 7 to C 12 aralkyl -, preferably phenyl to C alkyl, particularly preferably benzyl, hydrogen, halogen, preferably chlorine or
  • W and X independently of one another for an integer from 0 to 3, preferably 0, and
  • Y represents a single bond, a C to C 6 alkylene, C 2 to C 5 alkylidene, C 5 to C 6 cycloalkylidene radical which can be substituted by Ci to C 6 alkyl, preferably methyl or ethyl radicals, a C 6 to C 2 arylene residue, which may optionally be condensed with further aromatic rings containing heteroatoms,
  • diphenols of the formula (purple), (Illb) and (IIIc) are 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4- hydroxyphenyl) -2-methylbutane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, l, l-bis (3-methyl-4-hydroxyphenyl) cyclohexane, 2,2-bis - (3-chloro-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane , 2,4-bis (3,5-dimethyl-4-hydroxyphenyl-2-methylbutane, 2,2, -bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2-bis - (3,5-dibromo-4-hydroxyphenyl) propane, l, l-bis- (4-hydroxyphenyl) -3,3,5
  • Preferred diphenols of the formula (purple), (Illb) and (fflc) are 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) - propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 6,6'-dihydroxy-3,3,3 ', 3'-tetramethyl-l, r-spiro (bis) -indane, 9,9-bis- (4-hydroxyphenyl) fluorene, 1, 1 -B is- (3-methyl-4-hydroxyphenyl) -cyclohexane, 1 - (p-hydroxyphenyl) -
  • diphenols 1, 3,3-trimethyl-5-indanol and 4,4 '(m-phenylenediisopropylidene) diphenol.
  • the diphenols can be used individually or as a mixture of several diphenols for the production of the substrates according to the invention.
  • the carbonate structural units of the formula (II) are particularly preferably derived from
  • bifunctional monophenols such as resorcinol, hydroquinone or their derivatives substituted one or more times by C 1 to C 2 alkyl, C 6 to C 9 aryl or C 7 to C] aralkyl can also be used for the preparation of the substrates according to the invention .
  • Preferred polyester carbonates according to the invention are those which have 0.5 to 49 mol%, preferably 2 to 40 mol%, particularly preferably 5 to 20 mol%, based on 100 mol% of the bifunctional structural units A and B, structural units A.
  • the substrates according to the invention can be produced by the known three methods (cf. H. Schnell "Chemistry and Physics of Polycarbonates", Polymer review, Volume IX, page 27 ff; Interscience Publishers, New York 1964, and DE 1495 626 A, DE 22 32 877 A, DE 27 03 376 A, EP 274 544 A, DE 30 00610 A, DE 38 32 396 A).
  • the diphenols and bifunctional acids to be used are dissolved in an aqueous alkaline phase.
  • the chain terminators required for the production of the polyester carbonates according to the invention are used in amounts of 1.0 to 20 mol%, based on moles of diphenol plus, according to the invention
  • Acid dissolved in an aqueous alkaline phase, preferably sodium hydroxide solution, or to this and an inert organic phase, added in bulk. Then in the presence of an inert, preferably polycarbonate-dissolving, organic phase is reacted with phosgene.
  • the reaction temperature is between 0 ° C and 50 ° C.
  • Acids can also occur during the phosgenation or as long as chlorocarbonic acid esters are present in the synthesis mixture, in bulk, as a melt, as a solution in alkali or inert organic solvents.
  • the reaction can be accelerated by catalysts such as tertiary amines or onium salts.
  • catalysts such as tertiary amines or onium salts.
  • Tributylamine, triethylamine and N-ethylpiperidine and tetrabutylammonium, tetrathylammonium and N-ethylpiperidinium salts are preferred.
  • chlorocarbonic acid esters and / or bischlorocarbonic acid esters can also be used or added during the synthesis.
  • acid chlorides can also be used.
  • Suitable solvents are, for example, methylene chloride, chlorobenzene, toluene and mixtures thereof.
  • the diphenols and acids according to the invention are dissolved in organic bases such as pyridine, optionally with the addition of further organic solvents, then, as described under 1.
  • organic bases such as pyridine
  • chain terminators and branching agents required for the preparation of the polyester carbonates according to the invention are optionally added.
  • reaction temperature is between 10 and 50 ° C.
  • Suitable organic bases apart from pyridine are, for example, triethylamine, tributylamine, N-ethylpiperidine and N, N-dialkyl-substituted anilines, such as N, N-di- methylaniline.
  • Suitable solvents are, for example, methylene chloride, chlorobenzene, toluene, tetrahydrofuran, 1,3-dioxolane and mixtures thereof.
  • fatty acids according to the invention can be replaced by their acid chlorides.
  • the necessary chain terminators, branching agents and acids according to the invention can also be added during the phosgenation or as long as chlorocarbonic acid esters are present in the synthesis mixture, in bulk, as a melt or as a solution in inert organic solvents.
  • Processes 1 and 2 isolate the polyester carbonates according to the invention in a known manner. Suitable work-up methods are, in particular, the precipitation, the spray drying and the evaporation of the solvent in vacuo.
  • the molecular weight is condensed with the addition of diphenyl carbonate in stoichiometric amounts or in excess of up to 40% to a diphenyl melt / fatty acids with constant removal of phenol and, if appropriate, the excess diphenyl carbonate.
  • This process is carried out using conventional catalysts such as alkali metal ions, e.g. Li, Na, K, transition metal compounds, e.g.
  • chain terminators and / or branching agents can also be used for the production of the polyester carbonates according to the invention.
  • the corresponding chain terminators and / or branching devices are known, inter alia, from EP 335 214 A and DE 30 07 934 A and EP 411 433 A, DE 43 35 440 A and
  • branching agents and / or chain terminators can be replaced in whole or in part by dimer fatty acids with a higher content of tri- and / or monofunctional carboxylic acids.
  • the substrates made from the polyester carbonates according to the invention can be mixed with various thermoplastic polymers in a weight ratio of 2:98 to 98: 2 and used as blends.
  • polyester carbonates according to the invention have average molecular weights M w (weight average, determined by gel chromatography after prior calibration
  • Bisphenol-A-PC of at least 6,000, preferably between 7,000 and 40,000, particularly preferably between 9,000 and 30,000.
  • the substrates for the production of the data carriers according to the invention can contain the additives customary for thermoplastic polycarbonates, such as stabilizers, for example thermal stabilizers, such as organic phosphites, optionally in combination with monomeric or oligomeric epoxides; UV stabilizers, in particular those based on nitrogen-containing heterocycles, such as triazoles; optical brighteners, flame retardants, in particular fluorine-containing, such as perfluorinated salts of organic acid, polyperfluoroethylene, salts of organic sulfonic acids and combinations thereof; mold release agents; Flow aids; Fire retardants; Colorants; pigments; antistatic agents; Fillers and reinforcing materials, divided minerals, fibrous materials, for example alkyl and aryl phosphites, phosphates, phosphines, low molecular weight carboxylic acid esters, halogen compounds, salts, chalk, quartz, inorganic or organic nanoparticles, glass and carbon
  • Structural units A and B containing polyester carbonates according to the invention which are derived from l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and 0.5 to 49 mol%, preferably 2 to 40 mol%, particularly preferably 10
  • Up to 25 mol%, based on 100 mol% of the bifunctional structural units A and B, containing bifunctional ester structural units A, are particularly suitable for producing the data carriers according to the invention owing to their low rheo-optical constant C R , but also their very low yellowness index YI.
  • the yellowness index is measured using a 4 mm thick injection molding plate in accordance with the ASTM E 313/96 standard.
  • the substrates must have a high degree of purity. This is achieved by reducing the residual monomer, solvent, foreign particle (inorganic or organic type, in particular salts and dust) and the chlorine content to the lowest possible values in a known manner when working up and isolating the substrate resin. This is described, for example, in EP 380002 A or EP 691 361 A, to the disclosure of which reference is made in this regard.
  • the data carriers according to the invention can be designed in various forms. Known shapes such as optical cards or cylindrical perforated disks such as compact disks (CD), CD recordables (CD-R), digital versatile disks (DVD) or mini disks (MD) are particularly preferred.
  • CD compact disks
  • CD-R CD recordables
  • DVD digital versatile disks
  • MD mini disks
  • Information storage layers for example phase change layers, magneto-optical layers, dyes, fluorescent dyes, photopolymers), dielectric (for example Si / N), reflective (for example silver, gold or aluminum) can be applied to the substrate.
  • semi-reflective eg Si, Ge
  • protective layers eg acrylic lacquers
  • the stored information can be embossed in the substrate (e.g. as a pit structure) or stored in separate information layers.
  • the information can be read out through the transparent substrate or from the information side.
  • Optical information storage media in which the substrate material according to the invention in the form of foils, e.g. to cover the information layer in DVR (Direct Video Recording) or as a substrate of multilayer systems (possibly with imprinted information) are also part of the invention.
  • DVR Direct Video Recording
  • multilayer systems possibly with imprinted information
  • the invention further relates to the described polyester carbonates and other shaped articles containing them, such as optical lenses, plates and foils, which contain the polyester carbonates according to the invention and the use of these polyester carbonates for the production of such shaped articles.
  • the excellent properties of these polyester carbonates are particularly noticeable with optical lenses.
  • Birefringence in injection molded bodies one of the most important optical properties, can be described as a material property by the rheo-optical constant. This can be negative or positive. The greater their absolute value, the greater the birefringence in injection molded parts.
  • the measurement method of the rheo-optical constant is known (EP 0 621 297 A). The plane-parallel 150 to 1000 micron test specimens required for this can be produced by melt pressing or film casting.
  • the molecular weight is determined by measuring the relative viscosities at 25 ° C. in methylene chloride and a concentration of 0.5 g per 100 ml of methylene chloride.
  • the T g determination was carried out in accordance with the CEI / IEC 1074 standard.
  • the water absorption was determined according to DIN 53495 (method 1 + 1L).
  • the density was determined according to the Archimedean principle (Mettler density determination kit).
  • the hydrogenated dimer fatty acid used (Pripol ® 1009 from Uniqema) has the following specifications: iodine number ⁇ 10, monomer content of ⁇ 0.1%, content of trimer ⁇ 1%.
  • polyester carbonate is manufactured:
  • polyester carbonate is manufactured:
  • polyester carbonates obtained and a standard CD material have the following properties, given in Table 1:
  • the granules produced in Examples 1 and 2 are processed on a Netstal Diskjet injection molding machine at 320 ° C. melt temperature and 60 ° C. mold temperature to compact disks (diameter: 118 mm, thickness: 1.2 mm).
  • compact disks are produced from bisphenol A-PC (Makrolon CD 2005) under the conditions of Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Ein maschinenlesbarer Datenträger mit einem Substrat aus einem Copolyestercarbonat, das Einheiten auf Basis hydrierter Dimerfettsäuren enthält, bietet die Möglichkeit zur Aufzeichnung von Daten bei höherer Datendichte.

Description

PO YESTERCARBONATE UND DATENTRÄGER DARAUS
Die Erfindung betrifft neue Polyestercarbonate, diese enthaltende maschinenlesbare Datenträger und weitere diese enthaltende Formkörper.
In maschinenlesbaren Datenträgern wie Compact-Disks wird bevorzugt Polycarbonat eingesetzt. Für diese Anwendung ist es wichtig, dass die Materialien hohe Transparenz, geringe Affinität zu Wasser, gute Wärmeformbeständigkeit und geringe Doppelbrechung aufweisen. Die Erhöhung der Datendichte wird etablierte und neue Speichertechnologien wie CD-ROM (read only), CD-R (recordable), CD-RW
(rewritable), DVD (digital versatile disk) und MO-disks (magnetooptical) verbessern und auch höhere Anforderungen an die Substratmaterialien stellen.
Bei den vorbeschriebenen Formaten, wie der CD-ROM, wird die Information in Form von so genannten Pits direkt in ein transparentes thermoplastisches Material wie Bisphenol A (BPA)-Polycarbonat eingeprägt. Die Oberfläche wird anschließend mit einem reflektiven Metallfilm beschichtet und die digitale Information, die durch die Länge und Position der Pits codiert ist, wird durch einen fokussierten Laserstrahl geringer Leistung (ca. 0.5mW) optisch ausgelesen. Die gespeicherte Information kann hier nachträglich nicht mehr verändert werden (read only-Format).
Die Funktionsweise eines einmalbeschreibbaren Formats, wie die CD-R, besteht darin, in einem auf einer Disk aufgebrachten dünnen Film mit einem fokussierten Laserstrahl (bis 40 mW) permanente Markierungen einzuschreiben. Die dabei erzeugten Änderungen der optischen Eigenschaften (Absorption, Reflektivität) können mit einem Leselaser detektiert werden. Da dabei irreversible Prozesse ablaufen, kann die Information nur einmal abgespeichert und anschließend nicht überschrieben werden (WORM-Prinzip, write once, read many).
Für die Computerindustrie besonders interessant sind mehrfach beschreibbare
Medien. Zur Zeit sind im wesentlichen zwei Prinzipien verbreitet: Magnetooptische (MO)-Systeme und Phase Change (PC)-Systeme. Bei der MO-Speicherung wird ein Bit als etwa 1 μm große magnetische Domäne mit entweder Up- oder Down-Mag- netisierung einer aufgedampften Schicht (i.a. aus amorphen Legierungen von Seltenerd- und Übergangsmetallen) abgespeichert. Die Magnetisierungszustände werden durch Erhitzen über die Curie-Temperatur Tc und anschließendem Abkühlen in einem variablen Magnetfeld erhalten. Die so gespeicherte Information wird optisch durch die Drehung der Polarisationsebene des Lichts in der magnetischen Dünnschicht ausgelesen. Dieser sogenannte magnetooptische Kerr-Effekt führt typischerweise zu einer Drehung der Polarisation um weniger als 0,5 Grad. Doppel- brechende Substratmaterialien führen ebenfalls zu einer hier besonders störenden
Polarisationsänderung des Lichtes. Deshalb sind Substratmaterialien mit geringer Doppelbrechung bei MO-Systemen besonders wichtig.
Bei Phase-Change-Materialien werden die Informationen in Bereichen mit verschie- denen Phasen - typischerweise amorph bzw. kristallin- abgespeichert. Als Informationsschicht werden meist Legierungen oder Verbindungen von Tellur verwendet, bei denen die Glasübergangstemperatur nahe bei der Kristallisationstemperatur liegt. Durch Aufheizen über den Schmelzpunkt mit einem kurzen fokussierten Laserpuls und schnelles Abkühlen kann der Film lokal von einem kristallinen in einen amor- phen Zustand überführt werden. Im Vergleich zum kristallinen Zustand ändert sich die Reflektivität, welche optisch mit einem Laser detektiert wird.
Darüber hinaus existieren enge Toleranzen für die Geometrie des optischen Strahlengangs für den Schreib- und Leseprozess. Veränderungen der Umweltbedingungen, wie Temperatur und Luftfeuchtigkeit, können zu einem Verzug der Disk führen, was den Schreib- und Leseprozess negativ beeinflusst. Die Wasseraufnahme der Substratmaterialien führt zum Quellen und damit zu einer Volumenausdehnung, die sich in einer Verbiegung der Disk äußert, insbesondere bei unsymmetrisch aufgebauten Speicherformaten. Niedrige Wasseraufnahme des Polymers ist daher eine weitere wichtige Eigenschaft, die es zu realisieren gilt. Im Zuge von Neuentwicklungen von optischen Datenträgern werden die Anforderungen an das Trägermaterial zunehmend anspruchsvoller und verlangen eine gezielte Materialneuentwicklung, zum Beispiel mit dem Ziel geringerer Doppelbrechung und geringer Wasseraufnahme, insbesondere für die zukünftig zu erwartenden kürzeren Schreib- und Lesewellenlängen, die neue Herausforderungen stellen.
Niedrige Doppelbrechung und geringe Wasseraufnahme sind jedoch nicht die einzigen wichtigen Eigenschaften für die Substratmaterialien von optischen Datenträgern, gefordert ist eine möglichst optimale Kombination von weiteren Eigenschaften wie hohe Transparenz, Wärmeformbeständigkeit, Fließ fähigkeit, Zähigkeit, hohe Reinheit, geringe Dichte, geringe Inhomogenitäten oder Partikelanteile, sowie vor allem geringe Rohstoff- und Herstellungskosten.
Die gegenwärtig für diese Anwendungen vorgeschlagenen Materialien versagen bei einer oder mehreren dieser Anforderungen und deshalb besteht ein Bedarf an neuen
Materialien für höhere Speicherdichten.
Polyestercarbonate aus linearen oder zyklischen difunktionellen aliphatischen Carbonsäuren, Bisphenolen und Carbonatvorstufen sind beispielsweise beschrieben in EP 433 716 A, US 4 983 706 und US 5 274 068, die verschiedene Verfahren zu ihrer
Synthese beschreiben. Dem Fachmann ist bekannt, dass der Einbau von Dicarbon- säuren zu einer Verminderung der Glastemperatur und zu einer Erhöhung der Fließ- fähigkeit führt. Für die Verwendung als Substratmaterialien bedeutet jedoch die Reduzierung der Glastemperatur eine Einschränkung der Verwendbarkeit der Disks, da ihre Klimabeständigkeit dadurch verringert wird. Außerdem besitzen diese Produkte aufgrund der polaren Estergruppen eine für die Verwendung in optischen Datenspeichern ungünstige hohe Wasseraufnahme. Wie die EP 433 716 A lehrt, lassen sich die für Polyestercarbonate bekannten Carbonsäuren im Phasengrenzflächenverfahren nur durch eine aufwändige mehrstufige Fahrweise in signifikanter Menge einbauen. Außerdem zeigen Polyestercarbonate insbesondere aus linearen und längerkettigen Dicarbonsäuren eine unerwünschte Tendenz zur Kristallisation, was sich beim sehr langsamem Abkühlen, welches zur Abformung von feinsten Strukturen und zur Verminderung der prozessbedingten Doppelbrechung erforderlich werden kann, beson- ders störend auswirkt.
Dimerfettsäuren als mögliche Säurebausteine in Polyestercarbonaten werden zum Beispiel in DE 43 06 961 A, US 5 134 220 und EP 443 058 A aufgelistet. Eine genauere Definition der einzusetzenden Säuren erfolgt nicht. Bei nicht-hydrierten Dimerfettsäuren treten jedoch thermooxidative Probleme auf. Außerdem enthalten die gängigen kommerziellen Produkte mehr als 3 Mol% an drei- und mehrbasischen Carbonsäuren, was zu einer hohen Nullviskosität führt, die bei der Abformung von Mikrostukturen wie Pits oder Grooves unerwünscht ist. Deshalb wurden diese Polyestercarbonate bisher allgemein nicht als geeignet für Substrate von optischen Daten- speichern angesehen.
Der Erfindung liegt die Aufgabe zugrunde, maschinenlesbare Datenträger für erhöhte Datendichten bereitzustellen, die die zuvor genannten Nachteile nicht aufweisen, insbesondere verbesserte optische Eigenschaften aufweisen und sich gut herstellen lassen.
Gelöst wird die Aufgabe durch Datenträger, enthaltend ein Harz aus Polyestercarbonaten mit wiederkehrenden, bifunktionellen Struktureinheiten A gemäß Formel (I),
wobei
D für ein Gemisch divalenter Kohlenwasserstoffradikale steht, welche 30 bis 42 Kohlenstoffatome, bevorzugt 32 bis 38, besonders bevorzugt 34 Kohlenstoff- atome, enthalten. D entspricht substanziell Formel la und/oder Ib und/oder Ic und/oder Id und/oder Ie.
wobei
Ej, E2, E3 und E4 in Formel Ic und Id für je einen der Substituenten -(CH2),-, -(CH2),-, -(CH2)kCH3 und -(CH2)ιCH3 stehen und a, b, c, d, e, f, g, h, i, j, k, l, m, n, o und p voneinander unabhängig eine ganze Zahl zwischen 1 und 10 darstellen Es wurde gefunden, dass Substrate aus erfindungsgemäßen Polyestercarbonaten mit wiederkehrenden, bifunktionellen Struktureinheiten, abgeleitet von aromatischen Bisphenolen und hydrierten dimeren Fettsäuren mit einem hohen Anteil an difunk- tionellen Säuren, sich durch eine übenaschenderweise besonders niedrige Wasser- aufhahme, erstaunlich geringe Doppelbrechung, sehr geringe Kristallisationsneigung, niedrigen Brechungsindex, gute Fließfähigkeit und niedrige Dichte auszeichnen.
Die hohe Glastemperatur von Homopolycarbonaten aus bestimmten Bisphenolen wie l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan oder 6,6'-Dihydroxy-3,3,3',3'- tetramethyl-l,l'-spiro(bis)-indan kann durch Cokondensation mit sehr geringen molaren Anteilen der erfindungsgemäß zu verwendenden Säuren effizient auf ein für Fließfähigkeit und Wärmeformbeständigkeit in optischen Datenträgern akzeptables Niveau gesenkt werden.
Die Substrate für Datenträger aus den neuen Polyestercarbonaten besitzen außerdem hohe Transparenz, gute mechanische Eigenschaften, insbesondere bei tiefen Temperaturen, und hohe Fließfähigkeit.
Hydrierte dimere Fettsäuren im Zusammenhang mit dieser Erfindung sind Säuren, die durch Dimerisierung von ungesättigten monobasischen Fettsäuren mit 16 bis 22 Kohlenstoffatomen und anschließende Hydrierung erhalten werden können. Die erforderlichen Säuren können beispielsweise aus pflanzlichen oder tierischen Quellen gewonnen werden. Synthese und Eigenschaften werden z.B. in Encyclopedia of Chemical Technology, Vol. 8, 4th ed., John Wiley&Sons:1993, Seite 223-237 dargelegt.
Neben den in Formel I genannten Strukturelementen können sie geringe Anteile an ungesättigten aliphatischen Gruppen enthalten. Bevorzugt sind Dimerfettsäuren mit einer Iodzahl kleiner als etwa 15. Außerdem kann eine geringe Menge an mono- und polybasischen Fettsäuren enthalten sein. Produkte mit sehr geringen Anteilen dieser Komponenten, insbesondere mit geringen Anteilen an drei- und mehrbasischen Säuren, eignen sich besonders zur Herstellung der erfindungsgemäßen Polyestercarbonate. Bevorzugt werden deshalb Dimerfettsäuren mit einem Anteil an drei- und mehrbasischen Säuren von kleiner etwa 1,5 %, bestimmt durch Gaschromatographie. Die Erfindung umfasst auch Mischungen von dimeren Fettsäuren mit anderen difunktionellen Carbonsäuren mit 4 bis 40 Kohlenstoffatomen wie Adipinsäure, Sebacinsäure, α,ω-Dodekandicarbon- säure, Terephthalsäure, eis- oder trans-9-Octadecen-α,ω-dicarbonsäure oder Hydroxycarbonsäuren mit 4 bis 40 Kohlenstoffatomen wie Salicylsäure oder p-
Hydroxybenzoesäure.
Im Sinne der Erfindung können auch die aus Dimerfettsäuren durch Reduktion gewonnenen Dimerfettalkohole eingesetzt und zu Polycarbonaten oder Mischungen oder Ester aus Dimerfettalkoholen mit Dimerfettsäuren zu Polyestercarbonaten umgesetzt werden.
Als bi funktioneile Struktureinheit B wird vorzugsweise wenigstens eine der von A unterschiedlichen, weiteren bifunktionellen Struktureinheiten der Formel (II)
O-R-O-C- (II), II O eingesetzt,
worin der Rest -O-R-O- für beliebige Diphenolatreste steht, in denen -R- ein aroma- tischer Rest mit 6 bis 40 C-Atomen ist, der einen oder mehrere aromatische oder kondensierte, ggf. Heteroatome enthaltende aromatische Kerne enthalten kann und gegebenenfalls mit Cι-Cι2-Alkylresten oder Halogen substituiert ist und aliphatische Reste, cycloaliphatische Reste, aromatische Kerne oder Heteroatome als Brückenglieder enthalten kann. Die bifunktionellen Struktureinheiten B leiten sich besonders bevorzugt von Diphe- nolverbindungen der Formel (ffia) bis (IIIc) ab
in der
Z\ und Z2 unabhängig voneinander jeweils für ein divalentes Radikal -C(R2R2)-, -O-,
-S-, -N(R2)-, -N-((R2)C(=O)-,
R2 unabhängig voneinander, jeweils für einen Ci bis C12-Alkylrest, vorzugsweise Ci bis C3-Alkylrest, besonders bevorzugt Methyl, einen C6 bis Cι9-Aryl-, bevor- zugt Phenylrest, einen C7 bis C12-Aralkyl-, bevorzugt Phenyl- bis C -Alkyl, besonders bevorzugt Benzylrest, Wasserstoff, Halogen, bevorzugt Chlor oder
Brom, U und V unabhängig voneinander für eine ganze Zahl von 0 bis 3, vorzugsweise und 2,
W und X unabhängig voneinander für eine ganze Zahl von 0 bis 3, vorzugsweise 0, und
Y für eine Einfachbindung, einen C bis C6-Alkylen-, C2 bis C5-Alkyliden-, C5 bis C6-Cycloalkylidenrest, der mit Ci bis C6-Alkyl, vorzugsweise Methyl oder Ethyl-Resten substituiert sein kann, ein C6 bis Cι2-Arylenrest, gegebe- nenfalls mit weiteren, Heteroatome enthaltenden aromatischen Ringen kondensiert sein kann,
stehen.
Beispielhaft werden für diese Diphenole der Formel (lila), (Illb) und (IIIc) 4,4'-Dihy- droxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxyphenyl)-2- methylbutan, 2,2- Bis-(3-methyl-4-hydroxyphenyl)-propan, l,l-Bis-(3-methyl-4-hy- droxyphenyl)-cyclohexan, 2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan, Bis-(3,5-di- methyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl-2-methylbutan, 2,2,-Bis-(3,5- dichlor-4-hy- droxyphenyl)-propan, 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan, l,l-Bis-(4-hy- droxyphenyl)-3,3,5-trimethylcyclohexan und 1 , 1 -Bis-(4-hydroxyphenyl)-cyclohexan, 6,6,-Dihydroxy-3,3,3',3'-tetramethyl-l,r-spiro(bis)-indan, l-(p-hydroxyphenyl)- l,3,3-trimethyl-5-Indanol und 9,9-Bis-(4-hydroxyphenyl)fluoren genannt.
Bevorzugte Diphenole der Formel (lila), (Illb) und (fflc) sind 2,2-Bis-(4-hydroxy- phenyl)-propan, 2,2- Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, l,l-Bis-(4-hy- droxyphenyl)-cyclohexan, 1 , 1 -Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, 6,6'-Dihydroxy-3,3,3',3'-tetramethyl-l,r-spiro(bis)-indan, 9,9-Bis-(4-hydroxyphen- yl)fluoren, 1 , 1 -B is-(3 -methyl-4-hydroxypheny l)-cyclohexan, 1 -(p-hydroxyphenyl)-
1 ,3,3-trimethyl-5-Indanol und 4,4'(m-Phenylendiisopropyliden)-diphenol. Die Diphenole können einzeln oder als Gemisch aus mehreren Diphenolen zur Herstellung der erfindungsgemäßen Substrate eingesetzt werden.
Besonders bevorzugt leiten sich die Carbonat-Struktureinheiten der Formel (II) von
1 , 1 -B i s-(4-hydroxypheny l)-3 ,3,5 -trimethy lcyclohexan ab .
Außerdem können für die Herstellung der erfindungsgemäßen Substrate auch bi- funktionelle Monophenole wie Resorcin, Hydrochinon oder deren ein- oder mehrfach durch Ci bis Cι2-Alkyl, C6 bis Cj9-Aryl oder C7 bis C] -Aralkyl substituierte Derivate eingesetzt werden.
Bevorzugte erfindungsgemäße Polyestercarbonate sind solche, die 0,5 bis 49 Mol%, vorzugsweise 2 bis 40 Mol%, besonders bevorzugt 5 bis 20 Mol%, bezogen auf 100 Mol% der bifunktionelle Struktureinheiten A und B, Struktureinheiten A aufweisen.
Die Herstellung der erfindungsgemäßen Substrate kann nach den bekannten drei Methoden erfolgen (vergl. H. Schnell "Chemistry and Physics of Polycarbonates", Polymer review, Volume IX, Seite 27 ff; Interscience Publishers, New York 1964, sowie die DE 1495 626 A, DE 22 32 877 A, DE 27 03 376 A, EP 274 544 A, DE 30 00610 A, DE 38 32 396 A).
1. Nach dem Lösungsverfahren in disperser Phase sogenanntes "Zweiphasen- grenzflächenverfahren"
Hierbei werden die einzusetzenden Diphenole und bifunktionellen Säuren in wässri- ger alkalischer Phase gelöst. Dazu werden gegebenenfalls die zur Herstellung der erfindungsgemäßen Polyestercarbonate erforderlichen Kettenabbrecher in Mengen von 1,0 bis 20 Mol%, bezogen auf Mol Diphenol plus erfindungsgemäß einzusetzende
Säure, in einer wässrigen alkalischen Phase, vorzugsweise Natronlauge, gelöst, oder zu dieser und einer inerten organischen Phase, in Substanz zugegeben. Dann wird in Gegenwart einer inerten, vorzugsweise Polycarbonat lösenden, organischen Phase mit Phosgen umgesetzt. Die Reaktionstemperatur liegt zwischen 0°C und 50°C.
Die Zugabe der erforderlichen Kettenabbrecher, Verzweiger und erfϊndungsgemäßen
Säuren kann auch während der Phosgenierung oder solange Chlorkohlensäureester in dem Synthesegemisch vorhanden sind, in Substanz, als Schmelze, als Lösung in Alkali oder inerten organischen Lösungsmitteln, erfolgen.
Die Reaktion kann durch Katalysatoren, wie tertiäre Amine oder Oniumsalze beschleunigt werden. Bevorzugt sind Tributylamin, Triethylamin und N-Ethylpiperidin, sowie Tetrabutylammonium, Tetrathylammonium und N-Ethylpiperidiniumsalze.
Neben oder anstelle der Diphenole können auch deren Chlorkohlensäureester und/oder Bischlorkohlensäureester eingesetzt oder während der Synthese zudosiert werden. Anstelle der Dimerfettsäuren können auch deren Säurechloride eingesetzt werden. Geeignete Lösungsmittel sind beispielsweise Methylenchlorid, Chlorbenzol, Toluol und deren Mischungen.
2. Nach dem Lösungsverfahren in homogener Phase, auch "Pyridinverfahren" genannt
Hierbei werden die Diphenole und erfindungsgemäßen Säuren in organischen Basen wie Pyridin gelöst, gegebenenfalls unter Zusatz weiterer organischer Lösungsmittel, dann werden, wie unter 1. beschrieben, gegebenenfalls die zur Herstellung der erfindungsgemäßen Polyestercarbonate erforderlichen Kettenabbrecher und Verzweiger zugesetzt.
Anschließend wird mit Phosgen umgesetzt. Die Reaktionstemperatur liegt zwischen 10 und 50°C. Geeignete organische Basen außer Pyridin sind z.B. Triethylamin, Tributylamin, N-Ethylpiperidin sowie N,N-dialkylsubstituierte Aniline, wie N,N-Di- methylanilin. Geeignete Lösungsmittel sind beispielsweise Methylenchlorid, Chlorbenzol, Toluol, Tetrahydrofuran, 1,3-Dioxolan und deren Mischungen.
Neben den Diphenolen können auch bis zu 50 Mol%, bezogen auf die eingesetzten Phenole, von deren Bischlorkohlensäureester eingesetzt werden. Die erfindungsgemäßen Fettsäuren können teilweise oder ganz durch ihre Säurechloride ersetzt werden. Die Zugabe der erforderlichen Kettenabbrecher, Verzweiger und erfindungsgemäßen Säuren kann auch während der Phosgenierung oder solange Chlorkohlensäureester in dem Synthesegemisch vorhanden sind, in Substanz, als Schmelze oder als Lösung in inerten organischen Lösungsmitteln, erfolgen.
Die Isolierung der erfindungsgemäßen Polyestercarbonate erfolgt bei den Verfahren 1 und 2 in bekannter Weise. Geeignete Aufarbeitungsverfahren sind insbesondere das Ausfällen, die Sprühtrocknung und das Verdampfen des Lösungsmittel in Vakuum.
Nach dem Schmelzumesterungsverfahren
In dem Schmelzumesterungsverfahren wird unter Zugabe von Diphenylcarbonat in stöchiometrischen Mengen oder im Überschuss von bis zu 40 %, zu einer Diphenyl- schmelze/Fettsäuren unter stetiger destillativer Entfernung von Phenol und gegebenenfalls des Diphenylcarbonatüberschusses, das Molekulargewicht aufkondensiert. Dieses Verfahren wird unter Verwendung üblicher Katalysatoren wie Alkalimetallionen, z.B. Li, Na, K, Übergangsmetallverbindungen, z.B. solchen auf Basis Sn, Zn, Ti oder Stickstoff- oder Phosphor-Basen, bevorzugt Ammonium- und Phosphonium- Salzen, vorzugsweise Phosphoniumhalogeniden oder -phenolaten als einstufiges oder zweistufiges Verfahren, also mit einer eventuellen getrennten Aufkondensation der Oligomeren und des Polymeren, durchgeführt.
Statt der erfindungsgemäß zu verwendenden Säuren können deren aromatische oder aliphatische Ester, z.B. Methyl-, Ethyl-, Isopropyl- oder Phenylester eingesetzt werden. In bekannter Weise können dabei Kettenabbrecher und/oder Verzweiger für die Herstellung der erfindungsgemäßen Polyestercarbonate mitverwendet werden. Die entsprechenden Kettenabbrecher und/oder Verzweiger sind unter anderem aus der EP 335 214 A und DE 30 07 934 A bzw. EP 411 433 A, DE 43 35 440 A und
EP 691 361 A bekannt. Außerdem können die Verzweiger und/oder Kettenabbrecher ganz oder teilweise durch Dimerfettsäuren mit einen höheren Gehalt an tri- und/oder monofunktionellen Carbonsäuren ersetzt werden.
Ferner können die Substrate aus den erfindungsgemäßen Polyestercarbonaten mit verschiedenen thermoplastischen Polymeren im Gewichtsverhältnis 2:98 bis 98:2 gemischt sein und als Blends eingesetzt werden.
Die erfindungsgemäßen Polyestercarbonate weisen mittlere Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Gelchromatographie nach vorheriger Eichung auf
Bisphenol-A-PC) von wenigstens 6.000, vorzugsweise zwischen 7.000 und 40.000, besonders bevorzugt zwischen 9.000 und 30.000, auf.
Den Substraten zur Herstellung der erfindungsgemäßen Datenträger können vor, während oder nach ihrer Verarbeitung die für thermoplastische Polycarbonate üblichen Additive, wie Stabilisatoren, z.B. Thermostabilisatoren, wie organische Phos- phite, gegebenenfalls in Kombination mit monomeren oder oligomeren Epoxiden; UV-Stabilisatoren, insbesondere solchen auf Basis von stickstoffhaltigen Heterocyc- len, wie Triazolen; optischen Aufhellern, Flammschutzmitteln, insbesondere fluor- haltigen, wie perfluorierte Salze organischer Säure, Polyperfluorethylen, Salzen organischer Sulfonsäuren und deren Kombinationen; Entformungsmitteln; Fliess- hilfsmitteln; Brandschutzmitteln; Farbmitteln; Pigmenten; Antistatika; Füll- und Verstärkungsstoffen, zerteilten Mineralien, Faserstoffen, z.B. Alkyl- und Arylphosphite, -phosphate, -phosphane, niedermolekulare Carbonsäureester, Halogenverbindungen, Salze, Kreide, Quarze, anorganische oder organische Nanopartikel, Glas und Kohlenstofffasern in den üblichen Mengen zugesetzt werden. Die erfindungsgemäßen Datenträger oder anderen Formköφer können in bekannter Weise durch Spritzgießen oder Spritzprägen auf bekannten Maschinen hergestellt werden.
Erfindungsgemäße Polyestercarbonate enthaltende Struktureinheiten A und B, die sich von l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan ableiten und 0,5 bis 49 Mol%, vorzugsweise 2 bis 40 Mol%, besonders bevorzugt 10 bis 25 Mol%, bezogen auf 100 Mol% der bifunktionellen Struktureinheiten A und B, bifunktionelle Esterstruktureinheiten A enthalten, eignen sich aufgrund ihrer niedrigen rheoop- tischen Konstante CR, aber auch ihres sehr niedrigen Yellowness-Index YI besonders zur Herstellung der erfindungsgemäßen Datenträger. Der Yellowness-Index wird mit einem 4 mm dicken Spritzgussplättchen gemäß der Norm ASTM E 313/96 gemessen.
Insbesondere zur Herstellung von erfindungsgemäßen Datenträgern müssen die Substrate einen hohen Reinheitsgrad aufweisen. Dies gelingt, indem man bei der Aufarbeitung und Isolierung des Substratharzes in bekannter Weise den Restmonomeren- , Lösungsmittel-, Fremdpartikel- (anorganischer oder organischer Art, insbesondere Salze und Staub) und den Chlorgehalt auf geringstmögliche Werte reduziert. Dies ist beispielsweise in der EP 380002 A oder der EP 691 361 A beschrieben, auf deren Offenbarung insoweit verwiesen wird.
Die erfindungsgemäßen Datenträger können in verschiedenen Formen ausgeführt sein. Besonders bevorzugt sind bekannte Formen wie optische Karten oder zylindrische gelochte Scheiben wie bei Compact Disks (CD), CD-Recordables (CD-R), Digital Versatile Disks (DVD) oder Minidisks (MD).
Auf das Substrat können Informationsspeicherschichten, (z.B. Phase-Change- Schichten, magnetooptische Schichten, Farbstoffe, Fluoreszenzfarbstoffe, Photopolymere), dielektrische (z.B. Si/N), reflektierende (z.B. Silber, Gold oder Aluminium), semireflektierende (z.B. Si, Ge), Schutzschichten (z.B. Acryllacke) und weitere funktionale Schichten aufgebracht sein. Verschiedene Abfolgen solcher Schichten sind möglich.
Mehrere Schichten des Substrats oder Schichten mit anderen Substraten können übereinander laminiert sein. Die gespeicherte Information kann in das Substrat eingeprägt (z.B. als Pitstruktur) oder in separaten Informationsschichten abgelegt sein. Die Information kann durch das transparente Substrat oder von der Informationsseite ausgelesen werden.
Optische Informationsspeichermedien, bei denen das erfindungsgemäße Substratmaterial in Form von Folien, z.B. zur Abdeckung der Informationsschicht in DVR (Direct Video Recording) oder als Substrat von Multilayer-Systemen (gegebenenfalls mit eingeprägter Information) eingesetzt wird, sind ebenfalls Bestandteil der Erfin- düng.
Gegenstand der Erfindung sind ferner die beschriebenen Polyestercarbonate und andere diese enthaltende Formköφer wie optische Linsen, Platten und Folien, die die erfindungsgemäßen Polyestercarbonate enthalten und die Verwendung dieser Poly- estercarbonate zur Herstellung solcher Formköφer. Die ausgezeichneten Eigenschaften dieser Polyestercarbonate kommen insbesondere bei optischen Linsen zur Geltung.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.
Beispiele
Bestimmung der rheooptischen Konstante CR:
Doppelbrechung in Spritzgussköφern, eine der wichtigsten optischen Eigenschaften, lässt sich als Materialeigenschaft durch die rheooptische Konstante beschreiben. Diese kann negativ oder positiv sein. Je größer ihr absoluter Wert ist, umso größer ist die Doppelbrechung in spritzgegossenen Formteilen. Das Messverfahren der rheooptischen Konstante ist bekannt (EP 0 621 297 A). Die dazu benötigten planparalle- len 150 bis 1000-Mikrometer-Probeköφer können durch Schmelzpressen oder Filmgießen hergestellt werden.
Die Molekulargewichtsbestimmung erfolgt durch Messung der relativen Viskositäten bei 25°C in Methylenchlorid und einer Konzentration von 0,5 g pro 100 ml Meth- ylenchlorid.
Die Tg-Bestimmung w irde entsprechend der Norm CEI/IEC 1074 vorgenommen. Die Wasserauf ahme wurde nach DIN 53495 (Verfahren 1+1L) bestimmt. Die Bestimmung der Dichte erfolgte nach dem Archimedischen Prinzip (Mettler Dichtebe- stimmungs-Kit).
Die verwendete hydrierte Dimerfettsäure (Pripol® 1009 von Uniqema) besitzt folgenden Spezifikationen: Iodzahl <10, Gehalt an Monomer <0,1%, Gehalt an Trimer <1%.
Beispiel 1
Folgendes Polyestercarbonat wird hergestellt:
In einem Rührkessel wird unter langsamen Rühren 3036,2 g Natriumcarbonat in 12,2 kg Wasser und ca. 10 1 Methylenchlorid gelöst. Anschließend wird eine Lösung von 1093,4 g Pripol® 1009 in 27 1 Methylenchlorid zugegeben und 5 Minuten gerührt. Bei Temperaturen unterhalb 15°C und einen pH von 10 bis 8 wird in ca. 30 Minuten unter starkem Rühren 944,5 g Phosgen eingeleitet. Anschließend wird in 15 Minuten eine Lösung aus 4035,7 g l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclo- hexan, 1248 g Natriumhydroxid und 25 1 Wasser zugepumpt. Danach werden 70 bis 80 Minuten lang weitere 3214,8 g Phosgen eingeleitet, wobei ein pH von 11 bis 12 durch Zudosieren von 30%iger Natronlauge gehalten wird. Das Reaktionsgemisch wird 5 Minuten gerührt, anschließend werden 58,6 g 4-tert-Butylphenol zugegeben. Nach weiteren 5 Minuten werden 18 ml N-Ethylpiperidin zugegeben und 30 Minuten nachgerührt. Die Phasen werden daraufhin getrennt; die organische Phase anschlie- ßend nach Ansäuern mit Wasser neutral gewaschen und von Lösungsmittel befreit, extrudiert und granuliert.
Beispiel 2
Folgendes Polyestercarbonat wird hergestellt:
In einem Rührkessel wird unter langsamen Rühren 2776,8 g Natriumcarbonat in 11,1 kg Wasser, 998,4 g Pripol® 1009 und 33,9 1 Methylenchlorid gelöst. Bei Temperaturen unterhalb 15°C und einen pH von 10 bis 8 werden in ca. 30 Minuten unter starkem Rühren 863,2 g Phosgen eingeleitet. Anschließend wird 15 Minuten lang eine Lösung aus 2620,8 g l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan,
1040 g 2,2-Bis-(4-hydroxyphenyl)-propan, 1248 g Natriumhydroxid und 22,7 1 Wasser zugepumpt. Danach werden ca. 90 Minuten lang weitere 3214 g Phosgen eingeleitet, wobei ein pH von 11 bis 12 durch Zudosieren von 30%iger Natronlauge gehalten wird. Das Reaktionsgemisch wird 5 Minuten gerührt, anschließend werden 79 g 4-tert-Butylphenol zugegeben. Nach weiteren 5 Minuten werden 18 ml N-Ethylpiperidin zugegeben und 45 Minuten nachgerührt. Die Phasen werden daraufhin getrennt; die organische Phase anschließend nach Ansäuern mit Wasser neutral gewaschen und von Lösungsmittel befreit, extrudiert und granuliert. Vergleichsbeispiel
In einem Rührkessel werden 3104,4 g l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethyl- cyclohexan in 30,3 kg Wasser und 880 g Natriumhydroxid gelöst. Anschließend werden 22,8 1 Methylenchlorid zugegeben. Bei Temperaturen von 15°C bis 25°C und einen pH von 11 bis 13 werden in ca. 40 Minuten unter starkem Rühren 1978,3 g Phosgen eingeleitet. Durch Zudosieren von 30%iger Natronlauge wird der pH gehalten. Das Reaktionsgemisch wird 5 Minuten gerührt, anschließend werden 82,5 g Isooctylphenol zugegeben. Nach weiteren 5 Minuten werden 20 ml N-Ethylpiperidin zugegeben und 45 Minuten nachgerührt. Die Phasen werden daraufhin getrennt; die organische Phase anschließend nach Ansäuern mit Wasser neutral gewaschen und von Lösungsmittel befreit.
Die erhaltenen Polyestercarbonate und ein Standard-CD-Material (Makrolon CD 2005) haben folgende in Tabelle 1 angegebene Eigenschaften:
Tabelle 1
Beispiel 3
Herstellen von Compact Disks
Die in Beispiel 1 und 2 hergestellten Granulate werden auf einer Netstal Diskjet- Spritzgussmaschine bei 320 DEG C Massetemperatur und 60 DEG C Werkzeugtemperatur zu Compact Disks (Durchmesser: 118 mm, Dicke: 1.2 mm) verarbeitet.
Vergleichsbeispiel
Als Vergleich werden Compact disks aus Bisphenol A-PC (Makrolon CD 2005) unter den Bedingungen von Beispiel 3 hergestellt.
An diesen Compact disks werden beim Radius 35 mm die in Tabelle 2 aufgeführten Doppelbrechungseigenschaften gemessen.
Tabelle 2

Claims

Patentansprüche
Copolyestercarbonat, enthaltend wiederkehrende, bifunktionelle Struktureinheiten A, abgeleitet aus Säuren gemäß Formel (I),
wobei
D für ein Gemisch divalenter Kohlenwasserstoffradikale steht, welche 30 bis 42 Kohlenstoffatome enthalten, D entspricht substanziell Formel la und/oder Ib und/oder Ic und/oder Id und/oder Ie
wobei
Ei, E2, E3 und E4 in Formel Ic und Id für je einen der Substituenten -(CH2)i-, -(CH2)j-, -(CH2)kCH3 und -(CH2)ιCH3 stehen und a, b, c, d, e, f, g, h, i, j, k, l, m, n, o und p voneinander unabhängig eine ganze Zahl zwischen 1 und 10 darstellen.
2. Copolyestercarbonat nach Anspruch 1, dadurch gekennzeichnet, dass die für die bifunktionellen Strukturelemente A eingesetzten Edukte eine lodzahl kleiner als etwa 15 besitzen.
3. Copolyestercarbonat nach Anspruch 1, dadurch gekennzeichnet, dass die für die bifunktionellen Strukturelemente A eingesetzten Edukte weniger als etwa 1 ,5 % Anteile mit Funktionalitäten größer als 2 besitzen.
4. Copolyestercarbonat nach einem der Ansprüche 1 bis 3, dadurch gekenn- zeichnet, dass die Glastemperatur etwa bei 120 bis 185°C liegt.
5. Copolyestercarbonat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wasseraufhahme bei Sättigung geringer als etwa 0,35 % ist.
6. Copolyestercarbonat nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Polyestercarbonat wenigstens eine der von A unterschiedlichen, weiteren bifunktionellen Struktureinheiten B gemäß Formel (II)
-O-R-O-C- (II),
II O enthält,
worin der Rest -O-R-O- für beliebige Diphenolatreste steht, in denen -R- ein aromatischer Rest mit 6 bis 40 C- Atomen ist, der einen oder mehrere aromatische oder kondensierte, ggf. Heteroatome enthaltende aromatische Kerne enthalten kann und gegebenenfalls mit Ci bis Cπ-Alkylresten oder Halogen substituiert ist und aliphatische Reste, cycloaliphatische Reste, aromatische Kerne oder Heteroatome als Brückenglieder enthalten kann. - 25 -
14. Formköφer, enthaltend ein Copolyestercarbonat nach einem der Ansprüche 1 bis 13, insbesondere optische Linsen, Platten und Folien.
15. Maschinenlesbarer Datenträger, dadurch gekennzeichnet, dass er auf einem Substrat aus einem Copolyestercarbonat gemäß Ansprüchen 1 bis 13 basiert.
- 24 -
7. Copolyestercarbonat nach Anspruch 6, dadurch gekennzeichnet, dass die bifunktionellen Carbonatstruktureinheiten der Formel (II) als Homopolycarbo- nat eine Glastemperatur größer als etwa 170°C besitzen.
8. Copolyestercarbonat nach Anspruch 6, dadurch gekennzeichnet, dass sich wenigstens eine der bifunktionellen Carbonatstruktureinheiten B der Formel (II) von l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan ableitet.
9. Copolyestercarbonat nach Anspruch 6, dadurch gekennzeichnet, dass sich wenigstens eine der bifunktionellen Carbonatstruktureinheiten B der Formel
(II) von 2,2-Bis-(4-hydroxyphenyl)-propan ableitet.
10. Copolyestercarbonat nach Anspruch 6, dadurch gekennzeichnet, dass sich wenigstens eine der bifunktionellen Carbonatstruktureinheiten B der Formel (II) von 6,6'-Dihydroxy-3,3,3',3'-tetramethyl-l,r-spiro(bis)-indan oder 1,1-
Bis-(3-methyl-4-hydroxyphenyl)-cyclohexan oder l-(p-Hydroxyphenyl)- 1 ,3,3-trimethyl-5-indanol ableitet.
11. Copolyestercarbonat nach einem der Ansprüche 6 bis 10, dadurch gekenn- zeichnet, dass 0,5 bis 49 Mol%, bezogen auf 100 Mol% der bifunktionellen
Struktureinheiten A und B, bifunktionelle Struktureinheiten A enthalten sind.
12. Copolyestercarbonat nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das mittlere gewichtsmittellere Molekulargewicht Mw 7.000 bis 40.000 beträgt.
13. Copolyestercarbonat nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Glastemperatur etwa bei 125 bis 150°C liegt und dass 5-20 Mol%, bezogen auf 100 Mol% der bifunktionellen Struktureinheiten A und B, bifunktionelle Struktureinheiten A enthalten sind und dass das gewichtsmittlere Molekulargewicht Mw 9.000 bis 30.000 beträgt.
EP01913862A 2000-03-23 2001-03-12 Polyestercarbonate und datenträger daraus Withdrawn EP1268604A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10014372 2000-03-23
DE10014372 2000-03-23
DE10045587A DE10045587A1 (de) 2000-03-23 2000-09-15 Maschinenlesbarer Datenträger
DE10045587 2000-09-15
PCT/EP2001/002728 WO2001070847A1 (de) 2000-03-23 2001-03-12 Polyestercarbonate und datenträger daraus

Publications (1)

Publication Number Publication Date
EP1268604A1 true EP1268604A1 (de) 2003-01-02

Family

ID=26004975

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913862A Withdrawn EP1268604A1 (de) 2000-03-23 2001-03-12 Polyestercarbonate und datenträger daraus

Country Status (6)

Country Link
US (1) US20030104234A1 (de)
EP (1) EP1268604A1 (de)
JP (1) JP2003529637A (de)
CN (1) CN1235936C (de)
AU (1) AU3929001A (de)
WO (1) WO2001070847A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709592B2 (en) * 2008-04-11 2010-05-04 Sabic Innovative Plastics Ip B.V. Process for preparing polyestercarbonates
WO2022038883A1 (ja) * 2020-08-18 2022-02-24 帝人株式会社 ポリカーボネート-ポリシロキサン樹脂

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549570A (en) * 1969-02-05 1970-12-22 Gen Mills Inc Copolycarbonates
DE3320260A1 (de) * 1983-06-04 1984-12-06 Bayer Ag, 5090 Leverkusen Diphenolmonoester von carbonsaeuren, ein verfahren zu ihrer herstellung, ihre verwendung zur herstellung von polyestercarbonaten, die erfindungsgemaess erhaeltlichen polyestercarbonate sowie flammwidrige formmassen enthaltend diese polyestercarbonate
JPS61149901A (ja) * 1984-12-25 1986-07-08 Idemitsu Kosan Co Ltd 光学機器用素材
DE4029808A1 (de) * 1990-09-20 1992-03-26 Bayer Ag Segmentierte, aromatische polycarbonate
DE4419229A1 (de) * 1994-06-01 1995-12-07 Bayer Ag Neue Polyester aus Dimerfettsäure und Dimerfettdiol und ihre Verwendung zur Herstellung von Polyestercarbonaten
EP0691361B1 (de) * 1994-07-08 2002-09-18 Teijin Chemicals, Ltd. Substrat für optische Platte, optische Platte und aromatischer Polycarbonatharz
DE19513164A1 (de) * 1995-04-07 1996-10-10 Bayer Ag Polycarbonat-Diole, ihre Herstellung und Verwendung als Ausgangsprodukte für Polyurethan-Kunststoffe
JPH09176239A (ja) * 1995-12-27 1997-07-08 Lion Corp 合成樹脂製光ディスク基盤
JPH10231359A (ja) * 1996-12-09 1998-09-02 General Electric Co <Ge> ヒドロキシフェニルインダノール類から誘導される光ディスクグレードのコポリエステルカーボネート
US5859833A (en) * 1997-09-02 1999-01-12 General Electric Company Optical disk grade copolyestercarbonates derived from hydroxyphenylindanols
US6022942A (en) * 1998-01-05 2000-02-08 General Electric Company Optical data storage media
JP4162286B2 (ja) * 1998-02-26 2008-10-08 日東電工株式会社 粘着剤組成物とその粘着シ―ト類
US6060577A (en) * 1999-03-18 2000-05-09 General Electric Company Polycarbonates derived from alicyclic bisphenols

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0170847A1 *

Also Published As

Publication number Publication date
CN1235936C (zh) 2006-01-11
AU3929001A (en) 2001-10-03
CN1418233A (zh) 2003-05-14
WO2001070847A1 (de) 2001-09-27
JP2003529637A (ja) 2003-10-07
US20030104234A1 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
JP4602560B2 (ja) 光情報記録デバイス用の組成物及び製品
DE60007098T2 (de) In optischen gegenständen verwendbare polycarbonate
US6949279B2 (en) Data storage media containing transparent polycarbonate blends
JPH0827370A (ja) 芳香族ポリカーボネート組成物
JP5581274B2 (ja) 透明ポリカーボネートブレンドを含有する情報記録媒体
DE68924887T4 (de) Polycarbonat- oder Polyestercarbonatharze.
EP1268604A1 (de) Polyestercarbonate und datenträger daraus
CA2341015C (en) Polycarbonate resin molding material for optical use and optical disk substrate
DE10045587A1 (de) Maschinenlesbarer Datenträger
JP2003183378A (ja) 芳香族ポリカーボネート樹脂およびそれからの成形品
US4980426A (en) Moulding compounds of polycarbonate mixtures having a high disperse solubility
JP4711538B2 (ja) 高精密転写性ポリカーボネート光学用成形材料、およびそれより形成された光ディスク基板
JPH0820713A (ja) 芳香族ポリカーボネート組成物
JP4866508B2 (ja) 光学用成形材料の製造方法
EP1493779B1 (de) Substrat für optische scheibe und lichtleiterplatte
JP4674000B2 (ja) 高精密転写性ポリカーボネート樹脂光学用成形材料、およびそれより形成された光ディスク基板
EP1000105B1 (de) Copolycarbonate auf basis von indanbisphenolen
JP2002348367A (ja) 芳香族ポリカーボネート樹脂およびそれからの成形品
JP4052444B2 (ja) 光ディスク基板
JP2003301099A (ja) ポリカーボネート樹脂組成物、およびそれより形成された光ディスク基板
JP4673998B2 (ja) 高精密転写性ポリカーボネート樹脂光学用成形材料、およびそれより形成された光ディスク基板
JP4585643B2 (ja) 高精密転写性ポリカーボネート樹脂光学用成形材料、およびそれより形成された光ディスク基板
JP4673997B2 (ja) 高精密転写性ポリカーボネート樹脂光学用成形材料、およびそれより形成された光ディスク基板
JP2004043655A (ja) ポリカーボネート共重合体、及びそれより形成された成形品
JP2003020332A (ja) 光ディスク基板

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAESE, WILFRIED

Inventor name: BRUDER, FRIEDRICH-KARL

Inventor name: FISCHER, PETER

Inventor name: ROELOFS, MARCO

Inventor name: KRATSCHMER, SILKE

Inventor name: WEHRMANN, ROLF

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

17Q First examination report despatched

Effective date: 20041213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050624