EP1256403A2 - Metallgussformkörper mit eingegossenem Hartstoffkörper - Google Patents

Metallgussformkörper mit eingegossenem Hartstoffkörper Download PDF

Info

Publication number
EP1256403A2
EP1256403A2 EP02009288A EP02009288A EP1256403A2 EP 1256403 A2 EP1256403 A2 EP 1256403A2 EP 02009288 A EP02009288 A EP 02009288A EP 02009288 A EP02009288 A EP 02009288A EP 1256403 A2 EP1256403 A2 EP 1256403A2
Authority
EP
European Patent Office
Prior art keywords
casting
hard material
metal casting
matrix
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02009288A
Other languages
English (en)
French (fr)
Other versions
EP1256403A3 (de
Inventor
Horst Herbst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHW Casting Technologies GmbH
Original Assignee
SCHWAEBISCHE HUETTENWERKEGMBH
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10122886A external-priority patent/DE10122886B4/de
Application filed by SCHWAEBISCHE HUETTENWERKEGMBH, Schwaebische Huettenwerke Automotive GmbH filed Critical SCHWAEBISCHE HUETTENWERKEGMBH
Publication of EP1256403A2 publication Critical patent/EP1256403A2/de
Publication of EP1256403A3 publication Critical patent/EP1256403A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/003Shape or construction of discs or rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/11Details
    • B02C7/12Shape or construction of discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/02Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic

Definitions

  • the invention relates to a metal casting with at least one cast-in Hard material body, a use of the metal casting and a method for its manufacture.
  • Machining body needed for the processing of materials and workpieces.
  • processing bodies i.e. Action body needed, at least on their processing surface or more Machining surfaces are wear-resistant.
  • a metal casting has at least one active surface for one Machining or processing of a material based on a composite is formed. If only processing is mentioned below, the Processing must always be included.
  • the composite material has a casting matrix a metallic casting material at least one porous hard material body in which the cast material has penetrated. The at least one hard material body is, so to speak impregnated with the casting material.
  • the hard material body has a higher one Wear resistance or wear resistance than the cast material, so that by the composite has an active surface with an increased compared to the pure casting material Wear resistance is obtained.
  • the composite material preferably has one closed, non-porous structure.
  • a wear-resistant iron-based alloy forms, particularly prefers wear-resistant cast iron, the matrix.
  • Another preferred matrix material is for example GX 300 NiMo3Mg or ADI (tempered ductile iron), their structure consist essentially of bainitic or accicular basic mass. Structure with bainitic or accicular base mass are examples of preferred structures.
  • any of wear castings for the Material processing known casting material form the matrix material.
  • the casting material should however have a Vickers hardness of at least 400 HV.
  • the metal casting is preferred for the crushing of materials accordingly uses and forms a grinding body, crushing body or Crushing bodies for crushing granular feed or larger ones Task goods.
  • Such wear castings are preferably used in Food industry, the coating industry, the cement industry and the Brickmaking industry, to name just a few.
  • Metal moldings as grinding media for coal and lime grinding, the Clinker grinding and, for example, the production of raw cement used become.
  • the invention also relates to one Hard metal moldings in general, the matrix of which Iron-based alloy is formed.
  • the matrix material is also particularly preferred in in this case a cast iron material. So the composite material, which only consists of the Cast matrix and the embedded hard material consists or at least essentially is formed by these two materials, for example also advantageously as Friction bodies are used in brakes, for example in wheel vehicle brakes.
  • the at least one hard material body is preferably a ceramic body that consists of a Ceramic material from the group of carbides, oxides and nitrides or a combination consists of several of these materials or one of these materials or one Combination of several of these materials as an essential ingredient.
  • carbides are particularly preferred, wherein it is one or more carbides of a carbide former or else carbides several carbide formers from the group consisting of Si, Cr, W, Mo, V, Nb, Ti, Zr, Ta and Hf can act and the carbide content of the ceramic body at least 20 wt .-% and is at most 70% by weight.
  • the carbide content is preferably at least 30 % By weight and at most 60% by weight.
  • the carbide portion is preferably formed by SiC alone or in combination with other carbides.
  • the hardness of the hard material body is preferably greater than that of the matrix material. While the Vickers hardness of the matrix material is no greater than about 800 HV the hard body has a Vickers hardness of at least 1000 HV and more preferably of at least 2000 HV. Furthermore, it preferably also has a larger one Compressive strength as the matrix material. Ceramic hard material bodies of the type mentioned possess these properties and often have a Vickers hardness of up to approximately 3000 HV on.
  • the hard material body is open-pore, i.e. it has an open porosity.
  • the pore density of the hard material body should be at least 5 ppi (pores per square inch), but at most 100 ppi. Is particularly preferred the pore density is at least 10 ppi and at most 50 ppi.
  • the pores have one Diameter of preferably at least 20 microns and preferably at most 1000 microns on. The diameter of the pores is particularly preferably at least 50 ⁇ m and at most 500 ⁇ m.
  • a ceramic hard material body preferably has a foam structure.
  • Such a Ceramic foam body can consist of a ceramic material and a structure have, as of casting filters for molten metals, in particular of casting filters for Cast iron materials are known.
  • a pouring filter even provides one particularly preferred hard material body.
  • the hard material body therefore does not have to Made especially for the invention, but can advantageously, so to speak, of the Rod can be obtained.
  • a preferred structure is spongy.
  • Table 1 below shows a preferred ceramic foam material with preferred value ranges of material characteristics, with particularly preferred value ranges being entered in brackets:
  • the oxidic portion given in the table above is preferably composed of ceramic oxides and dioxides.
  • the proportion of oxide is preferably between 10 and 40% by weight, particularly preferably between 10 and 30% by weight, and the proportion of dioxide is preferably 2 to 20% by weight.
  • the table shows the oxidic content as the sum of all oxide content.
  • Aluminum oxide Al 2 O 3 is particularly suitable as oxide and silicon dioxide SiO 2 is particularly suitable as dioxide.
  • the proportion of the oxide is preferably between 10 and 40% by weight and the proportion of the dioxide is preferably between 2 and 20% by weight.
  • the shape of the at least one hard material body can affect the active surface of the metal casting according to the invention adapted, so to speak, tailor-made.
  • the composite material is provided with a plurality of Hard material bodies formed on the active surface of the metal casting next to each other, preferably arranged as close to each other as possible and in the Cast matrix are embedded.
  • Each one of the plurality of hard material bodies has preferably the following dimensions: The greatest length is at least 10 mm and at most 200 mm, the largest width is at least 10 mm and maximum 100 mm and the greatest thickness is at least 5 mm and at most 50 mm.
  • the Hard material bodies can take the form of simple cuboids, prisms and / or have cylindrical bodies.
  • an inventive Metal moldings only locally one or more embedded hard material bodies can have, in particular in an area in which one compared to other areas increased wear is to be feared.
  • the Wear resistance of the entire active surface of the metal casting by Composite of or the hard material body can be improved with the casting matrix.
  • a method according to the invention for producing a metal casting with at least one wear-resistant surface comprises at least the following two Steps: There is at least one porous hard material body in a mold on one Mold surface attached, for example by means of one or more mold nails.
  • the Mold surface on which the at least one hard material body is attached preferably the shape of the wear-resistant surface of the metal casting. If the at least one hard material body only forms a region of this surface, the surface in question is particularly wear-resistant over a larger area should be, several such hard body are close to each other on the Mold surface arranged and fastened.
  • the mold After attaching the at least one Hard body or the plurality of hard material body, the mold with a Poured out a melt of a wear-resistant iron base material in the solidified state, so that the casting material embeds the hard material body or bodies and in the or Hard body penetrates.
  • the iron base material is preferably a cast iron material of the type already mentioned as preferred.
  • the at least one hard material body is a Ceramic body made of a material known from casting filters for iron-based alloys and with a structure known from these pouring filters. It is preferably around a ceramic foam body.
  • Metal moldings made statements about the hard body and the the cast material also applies to the process, especially the process particularly preferably the production of a wear cast body according to the invention for concerns the material processing.
  • the hard body maintains its structure during the casting process, i.e. he is with the Casting temperature structurally stable.
  • the hard material body up to at least 1400 ° C, preferably up to at least 1500 ° C, structurally resistant.
  • Ceramic materials have a good one Resistance to temperature changes, which on the one hand has good resistance to Outbreaks during temperature changes during the manufacturing process and on the other also good resistance to changing temperatures in operational use the metal casting is guaranteed. Ceramic hard material bodies are over it well wettable with the usual casting materials, so that the production of Metal moldings with a closed, non-porous structure of the Composite material is possible.
  • the active surface or working surface of the grinding element is primarily subjected to pressure is and the compressive strength of preferred hard material body higher than that of Is matrix material, the matrix material is opposed by the hard material body or bodies Abrasion and other destruction protected, so that the compressive strength of the grinding media or a comparable stressed metal casting on the active surface or more generally on the wear-resistant surface is significantly increased overall.
  • the inventive method formed composite as an advantage that the mechanical properties of the Metal moldings are not disturbed by the usual skewered carbides due to the smooth-walled porous structure of the hard material body, no interior Notch effect in the solidified casting material, i.e. in the basic material structure.
  • a metal casting 1 is shown in a cross section Embodiment a grinding plate segment for a grinder for the grinding of granular substances, for example coal, lime, clinker or cement raw meal.
  • the metal casting 1 can be used as a cylindrical ring segment, such as that in FIG Figure 3 shown cast metal specimen, be formed. Also a cast as a full one Cylinder ring or any other grinding element shape is conceivable.
  • the casting takes place static under gravity in a mold with an overhead feeder 5.
  • the metal casting 1 has an end face that has a flat working or Active surface 2 forms a composite material in one over the entire active surface uniformly thick layer 3 of about 20 mm layer thickness.
  • the composite material this layer consists of a plurality of closely arranged Hard material bodies 7 (Fig. 2), which are penetrated by the solidified casting material.
  • the Casting material forms a casting matrix 4, in which the hard material bodies 7 are embedded and form the active surface 2 in combination with the casting material.
  • the hard material body 7 have an open Porosity.
  • the hard material body 7 consist of a high temperature resistant Foam ceramic, which during the casting process, i.e. at the pouring temperature of the Metal melt maintains its open-pore structure.
  • the hard material bodies 7 are made of a foam ceramic formed as from casting filters for iron base melts, preferably cast iron, are known.
  • the pore density, measured in ppi (pores per square inch) Hard material body 7 is chosen to match the casting material.
  • As a filter for the Foam ceramic that can be used in the melt already has one for the most perfect possible penetration on favorable porosity, so that the adaptation basically no problems. Because of pouring filters because of the Filter applications higher risk of clogging also higher demands on the Permeability and thus penetrability are required after full penetrability when using pouring filter materials easily Fulfills. Since for the production of the metal casting 1, the hard material body 7 only one flowed through only once, i.e.
  • the casting matrix 4 is formed, for example, from the material GX 300 CrNiSi 952.
  • Table 2 lists further particularly preferred materials for the casting matrix 4 of the exemplary embodiment and any other metal casting according to the invention.
  • Casting matrix materials abbreviations Material number / trade name DIN 1695 structure GX 300 NiMo 3 Mg 0.9610 Bainite and / or martensite, spheroidal graphite, structures generally free of carbides GX 260 NiCr 4 2 0.9620 Ni-Hard 2 Cementite in predominantly martensitic matrix GX 330 NiCr 4 2 0.9625 Ni-Hard 1 GX 300 CrNiSi 9 5 2 0.9630 Ni-Hard 4 Mainly chromium carbides in a martensitic matrix, possibly with residual austenite.
  • GS 300 CrMo 15 3 0.9635 alloy 15-3 Mainly chromium carbides in a basic composition which, depending on the composition and heat treatment, mainly consists of pearlite, martensite or austenite.
  • Figure 2 shows a ring segment-shaped mold 6 from above, on the bottom surface side by side hard material body 7 are placed close together.
  • the hard material body 7 are each by cuboids with a length of 75 mm, a width of 50 mm and one Formed thickness of 20 mm.
  • the hard material body 7 are in this arrangement Form nails attached to the bottom surface of the mold 6.
  • For the cast of the Test specimen were used exactly cuboid hard body 7 as they are immediately available as ceramic foam cast filter bodies.
  • the shape of the active surface 2 of the Metal casting 1 more precisely adapted hard material body 7 can be used.
  • the composite material layer 3 can also have a single, homogeneous one Hard laminate are formed.
  • FIG. 3 shows the cast test specimen after removal from the mold 6.
  • the Test specimen has been ground in the area of a ring segment surface 8.
  • the of The surface of the test specimen formed from the composite material was extremely difficult grind. The removal was mainly in the grinding wheel and not on Sample castings. Compared to a conventional manufacturing method, i.e. one Metal moldings only with the casting matrix 4 and without the composite layer 3, could see a significant increase in the wear resistance of the cast surface can be observed as this for a metal casting 1 for material processing is advantageous.

Abstract

Metallgussformkörper mit wenigstens einer von einem Verbundwerkstoff gebildeten Wirkfläche (2) für eine Bearbeitung oder Verarbeitung eines Materials, wobei der Verbundwerkstoff (3) in einer Gussmatrix (4) aus einem metallischen Gussmaterial wenigstens einen porösen Hartstoffkörper (7) aufweist, in den das Gussmaterial eingedrungen ist. <IMAGE>

Description

Die Erfindung betrifft einen Metallgussformkörper mit wenigstens einem eingegossenen Hartstoffkörper, eine Verwendung des Metallgussformkörpers und ein Verfahren für seine Herstellung.
Für die Bearbeitung von Materialien und Werkstücken werden verschleißfeste Bearbeitungskörper benötigt. Insbesondere für die Zerkleinerung von Materialien, beispielsweise zum Mahlen von granulatförmigen Stoffen, werden Bearbeitungskörper, d.h. Einwirkkörper, benötigt, die zumindest an ihrer Bearbeitungsfläche oder mehreren Bearbeitungsflächen verschleißfest sind.
Es ist daher eine Aufgabe der Erfindung, die Verschleißfestigkeit von Metallgussformkörpern, vorzugsweise von Metallgussformkörpern für die Materialbearbeitung oder -verarbeitung, zu verbessern.
Nach der Erfindung weist ein Metallgussformkörper wenigstens eine Wirkfläche für eine Bearbeitung oder Verarbeitung eines Materials auf, die von einem Verbundwerkstoff gebildet wird. Wenn nachfolgend nur noch von Bearbeitung die Rede ist, soll die Verarbeitung stets umfasst sein. Der Verbundwerkstoff weist in einer Gussmatrix aus einem metallischen Gussmaterial wenigstens einen porösen Hartstoffkörper auf, in den das Gussmaterial eingedrungen ist. Der wenigstens eine Hartstoffkörper ist sozusagen mit dem Gussmaterial imprägniert. Der Hartstoffkörper weist eine höhere Verschleißfestigkeit bzw. Verschleißbeständigkeit als das Gussmaterial auf, so dass durch den Verbund eine Wirkfläche mit einer gegenüber dem reinen Gussmaterial erhöhten Verschleißfestigkeit erhalten wird. Der Verbundwerkstoff besitzt vorzugsweise eine geschlossene, porenfreie Struktur.
In bevorzugten Ausführungen bildet eine verschleißfeste Eisenbasislegierung, besonders bevorzugt verschleißfestes Gusseisen, die Matrix. Ein molybdänlegiertes und/oder chromlegiertes Gusseisen, insbesondere hochchromlegiertes Gusseisen, stellt ein besonders bevorzugtes Matrixmaterial dar. Als Beispiele für solches Material seien GX 300 CrNiSi 952 und GX 300 CrMoNi genannt. Ein weiteres bevorzugtes Matrixmaterial ist beispielsweise GX 300 NiMo3Mg oder ADI (austempered ductile iron), deren Gefüge im wesentlichen aus bainitischer bzw. accicularer Grundmasse bestehen. Gefüge mit bainitischer bzw. accicularer Grundmasse sind Beispiele bevorzugter Gefüge. Falls die Gussmatrix in einer Bainitstruktur oder mit Bainitstrukturanteil vorliegt, so wird der untere Bainit mit einer Bildungstemperatur ab etwa 250 °C und bis etwa 350 °C aufgrund seiner höheren Zähigkeit einem oberen Bainit vorgezogen, der jedoch als Gefügestruktur nicht ausgeschlossen sein soll. Über die genannten, besonders bevorzugten Matrixmaterialien hinaus kann jedes von Verschleißgusskörpern für die Materialbearbeitung bekannte Gussmaterial das Matrixmaterial bilden. Das Gussmaterial sollte allerdings eine Härte nach Vickers von wenigstens 400 HV aufweisen.
Der Metallgussformkörper wird bevorzugt für die Zerkleinerung von Materialien verwendet und bildet dementsprechend einen Mahlkörper, Quetschkörper oder auch Brechkörper zum Zerkleinern von granulatförmigem Aufgabegut oder auch größeren Aufgabegütern. Verwendung finden solche Verschleißgusskörper bevorzugt in der Nahrungsmittelindustrie, der Beschichtungsindustrie, der Zementindustrie und der Ziegeleiindustrie, um nur Beispiele zu nennen. Insbesondere können erfindungsgemäße Metallgussformkörper als Mahlkörper für die Kohle- und Kalkvermahlung, die Klinkervermahlung und beispielsweise die Herstellung von Zementrohmehl verwendet werden.
Obgleich es sich bei einem erfindungsgemäßen Metallgussformkörper besonders bevorzugt um einen Verschleißgusskörper für die Materialbearbeitung handelt, und hier besonders bevorzugt für die Materialzerkleinerung, betrifft die Erfindung auch einen Hartstoff-Metallgussformkörper im Allgemeinen, dessen Matrix von einer Eisenbasislegierung gebildet wird. Besonders bevorzugt ist das Matrixmaterial auch in diesem Falle ein Gusseisenmaterial. So kann der Verbundwerkstoff, der nur aus der Gussmatrix und dem eingebetteten Hartstoff besteht oder zumindest im Wesentlichen durch diese beiden Materialien gebildet wird, beispielsweise auch vorteilhaft als Reibkörper in Bremsen verwendet werden, beispielsweise in Radfahrzeugbremsen.
Der wenigstens eine Hartstoffkörper ist vorzugsweise ein Keramikkörper, der aus einem Keramikmaterial aus der Gruppe der Carbide, Oxide und Nitride oder einer Kombination von mehreren dieser Materialien besteht oder eines dieser Materialien oder eine Kombination von mehreren dieser Materialien als wesentlichen Bestandteil enthält. Von den genannten keramischen Materialien werden die Carbide besonders bevorzugt, wobei es sich um ein oder mehrere Carbide eines Carbidbildners oder auch um Carbide mehrerer Carbidbildner aus der Gruppe bestehend aus Si, Cr, W, Mo, V, Nb, Ti, Zr, Ta und Hf handeln kann und der Carbidgehalt des Keramikkörpers mindestens 20 Gew.-% und höchstens 70 Gew.-% beträgt. Vorzugsweise beträgt der Carbidgehalt mindestens 30 Gew.-% und höchstens 60 Gew.-%. Den carbidischen Anteil bildet bevorzugt SiC allein oder auch in Kombination mit anderen Carbiden.
Die Härte des Hartstoffkörpers ist vorzugsweise größer als die des Matrixmaterials. Während die Vickershärte des Matrixmaterials nicht größer als etwa 800 HV ist, besitzt der Hartstoffkörper eine Vickershärte von mindestens 1000 HV und bevorzugter von mindestens 2000 HV. Desweiteren besitzt er vorzugsweise auch eine größere Druckfestigkeit als das Matrixmaterial. Keramische Hartstoffkörper der genannten Art besitzen diese Eigenschaften und weisen nicht selten eine Vickershärte von bis zu etwa 3000 HV auf.
Um ein Eindringen des Gussmaterials, und noch bevorzugterweise eine vollständige Durchdringung des Hartstoffkörpers zu fördern, ist der Hartstoffkörper offenporig, d.h. er weist eine offene Porosität auf. Die Porendichte des Hartstoffkörpers sollte mindestens 5 ppi (Poren pro Quadratinch), aber höchstens 100 ppi betragen. Besonders bevorzugt ist die Porendichte mindestens 10 ppi und höchstens 50 ppi. Die Poren weisen einen Durchmesser von vorzugsweise mindestens 20 µm und vorzugsweise höchstens 1000 µm auf. Besonders bevorzugt ist der Durchmesser der Poren mindestens 50 µm und höchstens 500 µm.
Ein keramischer Hartstoffkörper weist vorzugsweise eine Schaumstruktur auf. Solch ein Keramikschaumkörper kann aus einem Keramikmaterial bestehen und eine Struktur aufweisen, wie sie von Gießfiltern für Metallschmelzen, insbesondere von Gießfiltern für Gusseisenmaterialien, bekannt sind. Ein Gießfilter stellt sogar unmittelbar einen besonders bevorzugten Hartstoffkörper dar. Der Hartstoffkörper muss daher nicht erst eigens für die Erfindung hergestellt, sondern kann vorteilhafterweise sozusagen von der Stange bezogen werden. Eine bevorzugte Struktur ist schwammartig.
In der nachfolgenden Tabelle 1 wird ein bevorzugtes Keramikschaummaterial mit bevorzugten Wertebereichen von Materialkennwerten angegeben, wobei besonders bevorzugte Wertebereiche in Klammern eingetragen sind:
Schaumkeramischer Hartstoffkörper
Porendichte 5 - 100 ppi (10 - 50 ppi)
Porendurchmesser 20 - 1000 µm (50 - 500 µm)
Oberfläche/Volumen 0,01 - 10 m2/m3 (0,05 - 1,5 m2/m3)
Vickershärte 1000 - 3000 HV (> 2000 HV)
Carbidanteil 20 - 70 Gew.-% (30 - 60 Gew.-%)
oxidischer Anteil (Oxide und Oxidverbindungen) 10 - 60 Gew.-% (10 - 50 Gew.-%)
Bindemittel (anorganisch, feuerfest) 10 - 30 Gew.-% (10 - 30 Gew.-%)
Der in vorstehender Tabelle angegebene oxidische Anteil setzt sich vorzugsweise aus keramischen Oxiden und Dioxiden zusammen. Der Oxidanteil beträgt vorzugsweise zwischen 10 und 40 Gew.-%, besonders bevorzugt zwischen 10 und 30 Gew.-%, und der Dioxidanteil macht vorzugsweise 2 bis 20 Gew.-% aus. In der Tabelle ist der oxidische Anteil als Summe sämtlicher Oxidanteile angegeben. Als Oxid ist insbesondere Aluminiumoxid Al2O3 und als Dioxid ist insbesondere Siliziumdioxid SiO2 geeignet. Der Anteil des Oxids liegt vorzugsweise zwischen 10 und 40 Gew.-%, und der Anteil des Dioxids liegt vorzugsweise zwischen 2 und 20 Gew.-%.
Der wenigstens eine Hartstoffkörper kann seiner Form nach an die Wirkfläche des erfindungsgemäßen Metallgussformkörpers angepasst, sozusagen maßgeschneidert sein. In ebenfalls bevorzugter Ausführung wird der Verbundwerkstoff mit einer Mehrzahl von Hartstoffkörpern gebildet, die an der Wirkfläche des Metallgussformkörpers nebeneinander, vorzugsweise so dicht als möglich nebeneinander angeordnet und in der Gussmatrix eingebettet sind. Jeder einzelne der Mehrzahl von Hartstoffkörpern weist vorzugsweise folgende Abmessungen auf: Die größte Länge beträgt mindestens 10 mm und höchstens 200 mm, die größte Breite beträgt mindestens 10 mm und höchsten 100 mm und die größte Dicke beträgt mindestens 5 mm und höchstens 50 mm. Die Hartstoffkörper können die Form von einfachen Quadern, Prismen und/oder zylindrischen Körpern aufweisen.
Schließlich ist auch darauf hinzuweisen, dass ein erfindungsgemäßer Metallgussformkörper nur lokal einen oder mehrere eingebettete Hartstoffkörper aufweisen kann, insbesondere in einem Bereich, in dem ein gegenüber anderen Bereichen erhöhter Verschleiß zu befürchten ist. Darüber hinaus kann besonders bevorzugt auch die Verschleißfestigkeit der gesamten Wirkfläche des Metallgussformkörpers durch den Verbund des oder der Hartstoffkörper mit der Gussmatrix verbessert werden.
Ein erfindungsgemäßes Verfahren zur Herstellung eines Metallgussformkörpers mit wenigstens einer verschleißfesten Oberfläche umfasst zumindest die beiden folgenden Schritte: Es wird wenigstens ein poröser Hartstoffkörper in einer Gussform an einer Gussformfläche befestigt, beispielsweise mittels einem oder mehreren Formnägeln. Die Gussformfläche, an welcher der wenigstens eine Hartstoffkörper befestigt wird, weist vorzugsweise die Form der verschleißfesten Oberfläche des Metallgussformkörpers auf. Falls der wenigstens eine Hartstoffkörper nur einen Bereich dieser Oberfläche mitbildet, die betreffende Oberfläche aber über einen größeren Bereich besonders verschleißfest sein soll, werden mehrere solcher Hartstoffkörper dicht an dicht nebeneinander an der Gussformfläche angeordnet und befestigt. Nach der Befestigung des wenigstens einen Hartstoffkörpers oder der mehreren Hartstoffkörper wird die Gussform mit einer Schmelze eines im erstarrten Zustand verschleißfesten Eisenbasismaterials ausgegossen, so dass das Gussmaterial den oder die Hartstoffkörper einbettet und in den oder die Hartstoffkörper eindringt. Das Eisenbasismaterial ist vorzugsweise ein Gusseisenmaterial der bereits als bevorzugt genannten Art. Der wenigstens eine Hartstoffkörper ist ein Keramikkörper aus einem von Gießfiltern für Eisenbasislegierungen bekannten Material und mit einer von diesen Gießfiltern bekannten Struktur. Vorzugsweise handelt es sich um einen Keramikschaumkörper. Die in Bezug auf erfindungsgemäße Metallgussformkörper gemachten Ausführungen über den oder die Hartstoffkörper und das Gussmaterial gelten auch in Bezug auf das Verfahren, zumal das Verfahren besonders bevorzugt die Herstellung eines erfindungsgemäßen Verschleißgusskörpers für die Materialbearbeitung betrifft.
Der Hartstoffkörper behält seine Struktur bei dem Gießvorgang bei, d.h. er ist bei der Gießtemperatur strukturbeständig. Im Falle von bevorzugten Eisenbasislegierungen ist der Hartstoffkörper bis wenigstens 1400 °C, vorzugsweise bis wenigstens 1500 °C, strukturbeständig. Keramische Materialien weisen eine gute Temperaturwechselbeständigkeit auf, wodurch zum einen eine gute Beständigkeit gegen Ausbrüche bei Temperaturwechseln während des Herstellungsprozesses und zum anderen auch eine gute Beständigkeit gegen wechselnde Temperaturen im betrieblichen Einsatz der Metallgussformkörper gewährleistet ist. Keramische Hartstoffkörper sind darüber hinaus mit den üblichen Gusswerkstoffen gut benetzbar, so dass die Herstellung von Metallgussformkörpern mit wunschgemäß geschlossener, porenfreier Struktur des Verbundwerkstoffs möglich ist. Da in einer bevorzugten Verwendung als Mahlkörper die Wirkfläche bzw. Arbeitsfläche des Mahlkörpers in erster Linie auf Druck beansprucht wird und die Druckfestigkeit bevorzugter Hartstoffkörper höher als diejenige des Matrixmaterials ist, wird das Matrixmaterial durch den oder die Hartstoffkörper gegen Abrieb und sonstige Zerstörung geschützt, so dass die Druckfestigkeit des Mahlkörpers oder eines vergleichbar beanspruchten Metallgussformkörpers an der Wirkfläche oder allgemeiner an der verschleißfesten Oberfläche insgesamt deutlich erhöht wird.
Gegenüber einem metallurgischen Zulegieren von Carbiden weist der erfindungsgemäß gebildete Verbund als Vorteil auf, dass die mechanischen Eigenschaften des Metallgussformkörpers nicht durch gewöhnlich spießige Carbide gestört werden, da aufgrund der glattwandig porösen Struktur des Hartstoffkörpers keine innere Kerbwirkung im erstarrten Gussmaterial, d.h. in der Werkstoffgrundstruktur, auftritt.
Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels erläutert. An dem Ausführungsbeispiel offenbar werdende Merkmale bilden je einzeln und in jeder Merkmalskombination die Gegenstände der Ansprüche vorteilhaft weiter. Es zeigen:
Figur 1
einen Metallgussformkörper mit eingebetteten Hartstoffkörpern in einem Querschnitt,
Figur 2
eine Gießform mit darin ausgelegten Hartstoffkörpern für eine Herstellung eines Metallguss-Probekörpers und
Figur 3
den gegossenen Metallguss-Probekörper.
In Figur 1 ist in einem Querschnitt ein Metallgussformkörper 1 dargestellt, der im Ausführungsbeispiel ein Mahlplattensegment für ein Mahlwerk für die Vermahlung von granulatförmigen Stoffen, beispielsweise Kohle, Kalk, Klinker oder Zementrohmehl, ist. Der Metallgussformkörper 1 kann als Zylinderringsegment, wie beispielsweise der in Figur 3 dargestellte Metallguss-Probekörper, ausgebildet sein. Auch ein Guss als voller Zylinderring oder auch jeder anderen Mahlkörperform ist denkbar. Der Guss erfolgt statisch unter Schwerkraft in einer Gussform mit einem Überkopfspeiser 5.
Der Metallgussformkörper 1 weist an einer Stirnfläche, die eine plane Arbeits- bzw. Wirkfläche 2 bildet, einen Verbundwerkstoff in einer über die gesamte Wirkfläche gleichmäßig dicken Schicht 3 von etwa 20 mm Schichtdicke auf. Der Verbundwerkstoff dieser Schicht besteht aus einer Mehrzahl von dicht nebeneinander angeordneten Hartstoffkörpern 7 (Fig. 2), die von dem erstarrten Gussmaterial durchdrungen sind. Das Gussmaterial bildet eine Gussmatrix 4, in der die Hartstoffkörper 7 eingebettet sind und im Verbund mit dem Gussmaterial die Wirkfläche 2 bilden. Um eine möglichst vollkommene Durchdringung zu ermöglichen, weisen die Hartstoffkörper 7 eine offene Porosität auf. Die Hartstoffkörper 7 bestehen aus einer hochtemperaturfesten Schaumkeramik, die bei dem Gießvorgang, d.h. bei der Gießtemperatur der Metallschmelze ihre offenporige Struktur beibehält.
Im Ausführungsbeispiel werden die Hartstoffkörper 7 durch eine Schaumkeramik gebildet, wie sie von Gießfiltern für Eisenbasisschmelzen, vorzugsweise Gusseisen, bekannt sind. Die in ppi (Poren pro Quadratinch) gemessene Porendichte der Hartstoffkörper 7 wird dem Gussmaterial angepasst gewählt. Als Filter für die betreffende Schmelze verwendbare Schaumkeramik weist von Hause aus bereits eine für die möglichst vollkommene Durchdringung günstige Porosität auf, so dass die Anpassung grundsätzlich keine Probleme bereitet. Da an Gießfilter wegen der bei Filteranwendungen höheren Verstopfungsgefahr auch höhere Anforderungen an die Durchströmbarkeit und damit die Durchdringbarkeit gestellt werden, ist die Forderung nach vollkommener Durchdringbarkeit bei Verwendung von Gießfiltermaterialien leicht erfüllt. Da für die Herstellung des Metallgussformkörpers 1 die Hartstoffkörper 7 nur ein einziges Mal durchströmt, d.h. durchdrungen werden müssen, kann davon ausgegangen werden, dass sämtliche Gießfilter, die zum Filtern von Eisenbasisschmelzen verwendet werden, auch als Hartstoffmaterial für den Verbundwerkstoff des Metallgussformkörpers 1 geeignet sind. Es kann davon ausgegangen werden, dass die Porendichte der Hartstoffkörper 7 für den Metallgussformkörper 1 sogar größer sein kann als die Porendichten der üblichen Gießfilter für Eisenbasisschmelzen.
Die Gussmatrix 4 wird beispielsweise von dem Werkstoff GX 300 CrNiSi 952 gebildet. In der nachfolgenden Tabelle 2 sind neben diesem Werkstoff weitere besonders bevorzugte Werkstoffe für die Gussmatrix 4 des Ausführungsbeispiels und jeden anderen erfindungsgemäßen Metallgussformkörper angeführt.
Gussmatrix-Werkstoffe
Kurzzeichen Werkstoffnummer/Handelsname DIN 1695 Gefüge
G-X 300 NiMo 3 Mg 0.9610 Bainit und/oder Martensit, Kugelgraphit, Gefüge im allgemeinen frei von Carbiden
G-X 260 NiCr 4 2 0.9620 Ni-Hard 2 Zementit in überwiegend martensitischer Grundmasse
G-X 330 NiCr 4 2 0.9625 Ni-Hard 1
G-X 300 CrNiSi 9 5 2 0.9630 Ni-Hard 4 Vorwiegend Chrom-Carbide in martensitischer Grundmasse gegebenenfalls mit Restaustenit.
G-S 300 CrMo 15 3 0.9635 Legierung 15-3 Vorwiegend Chrom-Carbide in einer Grundmasse, die je nach Zu- sammensetzung und Wärmebe- handlung überwiegend aus Perlit, Martensit oder Austenit besteht.
G-X 300 CrMoNi 15 2 1 0.9640 -"- 15-2-1
G-X 260 CrMoNi 20 2 1 0.9645 -"- 20-2-1
G-X 260 Cr 27 0.9650
G-X 300 CrMo 27 1 0.9655
Figur 2 zeigt eine ringsegmentförmige Gießform 6 von oben, an deren Bodenfläche nebeneinander Hartstoffkörper 7 dicht nebeneinander gelegt sind. Die Hartstoffkörper 7 werden je durch Quader mit einer Länge von 75 mm, einer Breite von 50 mm und einer Dicke von 20 mm gebildet. Die Hartstoffkörper 7 werden in dieser Anordnung mit Formnägeln an der Bodenfläche der Gießform 6 befestigt. Für den Abguss des Probekörpers wurden exakt quaderförmige Hartstoffkörper 7 verwendet, wie sie unmittelbar als Keramikschaum-Gießfilterkörper erhältlich sind. Zur vollkommen gleichmäßigen Überdeckung der Bodenfläche der Gießform 6, und damit zur Ausbildung einer vollkommen gleichmäßigen Verbundstruktur in der Verbundwerkstoffschicht 3 (Figur 1), können selbstverständlich auch der Form der Wirkfläche 2 des Metallgussformkörpers 1 exakter angepasste Hartstoffkörper 7 verwendet werden. Insbesondere kann die Verbundwerkstoffschicht 3 auch mit einem einzigen, homogenen Hartschichtkörper gebildet werden.
Figur 3 zeigt den gegossenen Probekörper nach der Entnahme aus der Gießform 6. Der Probekörper ist im Bereich einer Ringsegmentfläche 8 angeschliffen worden. Die von dem Verbundwerkstoff gebildete Oberfläche des Probekörpers ließ sich extrem schwierig schleifen. Der Abtrag lag hauptsächlich in der Schleifscheibe und nicht am Probegusskörper. Im Vergleich zu einer herkömmlichen Fertigungsmethode, d.h. einem Metallgussformkörper nur mit der Gussmatrix 4 und ohne die Verbundwerkstoffschicht 3, konnte ein deutlicher Anstieg der Verschleißbeständigkeit der Gussoberfläche beobachtet werden, wie dies für einen Metallgussformkörper 1 zur Materialbearbeitung vorteilhaft ist.

Claims (15)

  1. Metallgussformkörper mit wenigstens einer von einem Verbundwerkstoff gebildeten Wirkfläche (2) für eine Bearbeitung oder Verarbeitung eines Materials, wobei der Verbundwerkstoff (3) in einer Gussmatrix (4) aus einem metallischen Gussmaterial wenigstens einen porösen Hartstoffkörper (7) aufweist, in den das Gussmaterial eingedrungen ist.
  2. Metallgussformkörper nach Anspruch 1, dadurch gekennzeichnet, dass eine verschleißfeste Eisenbasislegierung, vorzugsweise ein verschleißfestes Gusseisen, die Matrix bildet.
  3. Metallgussformkörper, der an einer Formkörperoberfläche (2) eingebettet in einer Gussmatrix (4) einer Eisenbasislegierung, vorzugsweise eines Gusseisenmaterials, wenigstens einen Hartstoffkörper (7) aufweist, in den das Gussmaterial eingedrungen ist.
  4. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hartstoffkörper (7) ein Keramikkörper mit einem Keramikmaterial aus der Gruppe der Carbide, Oxide und Nitride oder einer Kombination von mehreren dieser Materialien ist.
  5. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hartstoffkörper (7) ein Keramikkörper ist und ein Carbid eines Carbidbildners aus der Gruppe bestehend aus Si, Cr, W, Mo, V, Nb, Ti, Zr, Ta und Hf enthält und der Carbidgehalt mindestens 20 Gew.-% und höchstens 70 Gew.-% beträgt.
  6. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der wenigstens eine Hartstoffkörper (7) offenporig ist und eine Porendichte von mindestens 5 ppi (Poren pro Quadratinch) und höchstens 100 ppi aufweist.
  7. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der wenigstens eine Hartstoffkörper (7) ein Keramikkörper mit einer Schaumstruktur ist.
  8. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Gussmatrix (4) eine Mehrzahl von Hartstoffkörpern (7) nebeneinander angeordnet sind, um die Wirkfläche (2) zu bilden.
  9. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gussmatrix (4) von einem chromlegierten und/oder molybdänlegierten Gusseisen gebildet wird.
  10. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gussmatrix (4) ein Bainit- und/oder Martensitgefüge aufweist.
  11. Metallgussformkörper nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Metallgussformkörper (1) ein Bearbeitungskörper für eine Materialzerkleinerung, vorzugsweise ein Mahlkörper, ist.
  12. Verfahren zur Herstellung eines Metallgussformkörpers (1) mit wenigstens einer verschleißfesten Oberfläche (2), bei dem
    a) wenigstens ein poröser Hartstoffkörper (7) in einer Gussform (6) an einer Gussformfläche befestigt,
    b) und die Gussform (6) mit einem verschleißfesten Eisenbasismaterial ausgegossen wird, so dass das Eisenbasismaterial in den wenigstens einen Hartstoffkörper (7) eindringt,
    c) wobei der wenigstens eine Hartstoffkörper (7) ein Keramikkörper aus einem von Gießfiltern für Gusseisenmaterial bekannten Material und mit einer von solchen Gießfiltern bekannten Struktur ist.
  13. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass ein Keramikkörper mit Schaumstruktur verwendet wird.
  14. Verfahren nach wenigstens einen der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein keramischer Gießfilter für den wenigstens einen Hartstoffkörper (7) verwendet wird.
  15. Verfahren nach wenigstens einen der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Bildung der wenigstens einen verschleißfesten Oberfläche eine Mehrzahl von Hartstoffkörpern (7) nebeneinander an der Gießformfläche angeordnet und befestigt wird.
EP02009288A 2001-05-11 2002-04-29 Metallgussformkörper mit eingegossenem Hartstoffkörper Withdrawn EP1256403A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10122886 2001-05-11
DE10122886A DE10122886B4 (de) 2001-05-11 2001-05-11 Bearbeitungskörper mit eingegossenem Hartstoffkörper zum Zerkleinern eines Aufgabeguts

Publications (2)

Publication Number Publication Date
EP1256403A2 true EP1256403A2 (de) 2002-11-13
EP1256403A3 EP1256403A3 (de) 2004-09-15

Family

ID=7684391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02009288A Withdrawn EP1256403A3 (de) 2001-05-11 2002-04-29 Metallgussformkörper mit eingegossenem Hartstoffkörper

Country Status (6)

Country Link
US (2) US20020195223A1 (de)
EP (1) EP1256403A3 (de)
JP (1) JP4275900B2 (de)
CA (1) CA2383171C (de)
DE (1) DE10164975B4 (de)
ZA (1) ZA200203733B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043162A2 (de) * 2004-10-21 2006-04-27 Welldone Weartec N.V. Mahlelement, sowie mahlkörper mühlen, mischer, extruder und pressschnecken mit solchen mahlelementen
EP2039429A1 (de) * 2007-09-13 2009-03-25 Claudius Peters Technologies GmbH Kugelringmühle
CN102357652A (zh) * 2011-08-30 2012-02-22 辽宁卓异新材料有限公司 多尺度陶瓷/金属复合耐磨材料及其制备方法
CN103752764A (zh) * 2013-12-13 2014-04-30 柳州市柳港激光科技有限公司 具有耐磨金属与陶瓷混合表层的复合铲
EP3225359A4 (de) * 2015-12-03 2018-04-04 Shandong Kaitai Shot Blasting Machinery Share Co., Ltd Verfahren zur herstellung eines strahlströmungsrohrs einer kompositkugelstrahlmaschine
CN111069594A (zh) * 2020-01-06 2020-04-28 南通高欣耐磨科技股份有限公司 一种低成本、可修复陶瓷合金复合衬板的制造方法
CN111604122A (zh) * 2020-05-26 2020-09-01 佛山兴技源科技有限公司 磨机、辊压机中带有结构陶瓷瓦板的消耗部件及其制作方法
EP3995224A1 (de) * 2020-11-09 2022-05-11 Detlef Bauer Verschleissplatte und verschleissplattenherstellungsverfahren

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7100651B1 (en) * 2005-08-09 2006-09-05 Sandvik Intellectual Property Ab Stump grinding disk and wear strips therefor
JP2010274323A (ja) * 2009-06-01 2010-12-09 Sapporo Kokyu Imono Co Ltd セラミックス金属鋳ぐるみ複合材料及びその製造方法
US8308096B2 (en) * 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US20110183759A1 (en) * 2010-01-27 2011-07-28 Chu-Keng Lin Joystick Controller
US9636683B2 (en) 2010-03-31 2017-05-02 Magotteaux International S.A. Ring for grinding mill
JP5782986B2 (ja) * 2011-10-21 2015-09-24 三菱マテリアル株式会社 破砕装置及び破砕物製造方法
JP5853580B2 (ja) * 2011-10-21 2016-02-09 三菱マテリアル株式会社 破砕装置及び破砕物製造方法
US9346101B2 (en) 2013-03-15 2016-05-24 Kennametal Inc. Cladded articles and methods of making the same
US20140272446A1 (en) * 2013-03-15 2014-09-18 Kannametal Inc. Wear-resistant claddings
US9862029B2 (en) 2013-03-15 2018-01-09 Kennametal Inc Methods of making metal matrix composite and alloy articles
EP2873462B1 (de) * 2013-11-19 2020-04-29 Sandvik Intellectual Property AB Verschleißfeste VSI-Brecherverteilerplatte
DE102014001730A1 (de) * 2014-02-08 2015-08-13 Ellenberger & Poensgen Gmbh Schaltsystem
PE20171463A1 (es) * 2015-01-19 2017-10-11 Smidth As F L Sistema de interbloqueo de panel resistente al desgaste
US10221702B2 (en) 2015-02-23 2019-03-05 Kennametal Inc. Imparting high-temperature wear resistance to turbine blade Z-notches
GB2551079A (en) * 2015-03-19 2017-12-06 Halliburton Energy Services Inc Mesh reinforcement for metal-matrix composite tools
US11117208B2 (en) 2017-03-21 2021-09-14 Kennametal Inc. Imparting wear resistance to superalloy articles
DE102017212922B4 (de) * 2017-07-27 2023-06-29 Thyssenkrupp Ag Brecher mit einem Verschleißelement und ein Verfahren zum Herstellen eines Verschleißelements eines Brechers
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415632A (en) * 1980-02-15 1983-11-15 Kernforschungsanlage Julich Gmbh Silicon carbide body having pores filled with steel or steel alloys
US5743033A (en) * 1996-02-29 1998-04-28 Caterpillar Inc. Earthworking machine ground engaging tools having cast-in-place abrasion and impact resistant metal matrix composite components
US6033791A (en) * 1997-04-04 2000-03-07 Smith And Stout Research And Development, Inc. Wear resistant, high impact, iron alloy member and method of making the same
WO2000032335A1 (de) * 1998-12-03 2000-06-08 Otto Junker Gmbh Verbundgussteil und verfahren zu seiner herstellung
WO2000076666A1 (en) * 1999-06-10 2000-12-21 Svedala New Zealand Limited Composite sacrificial components

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2175534A1 (en) 1972-03-13 1973-10-26 Roussel Uclaf Di-acid androsteronephosphate - prepd by phosphorylation of androsterone,shows hypocholesterolaemic activity
US4955135A (en) * 1988-11-16 1990-09-11 Vapor Technologies Inc. Method of making matrix composites
GB8902050D0 (en) * 1989-01-31 1989-03-22 T & N Technology Ltd Reinforced materials
AU8305191A (en) * 1990-05-09 1991-11-27 Lanxide Technology Company, Lp Rigidized filler materials for metal matrix composites
JPH08501500A (ja) * 1992-09-17 1996-02-20 エー. リットランド,マーカス セラミック−金属複合材の製造方法
DE4322113A1 (de) * 1993-05-27 1994-12-01 Knorr Bremse Ag Bremsscheibe für Scheibenbremsen
DE59409215D1 (de) 1993-07-02 2000-04-20 Knorr Bremse Ag Bremsscheibe für scheibenbremsen
AT406837B (de) * 1994-02-10 2000-09-25 Electrovac Verfahren und vorrichtung zur herstellung von metall-matrix-verbundwerkstoffen
US5654616A (en) * 1994-09-29 1997-08-05 Itt Automotive Electrical Systems, Inc. Windshield wiper system with soft wipe mode for high speed operation
US5664616A (en) * 1996-02-29 1997-09-09 Caterpillar Inc. Process for pressure infiltration casting and fusion bonding of a metal matrix composite component in a metallic article
US5880382A (en) * 1996-08-01 1999-03-09 Smith International, Inc. Double cemented carbide composites
DE19706925C2 (de) * 1997-02-20 2000-05-11 Daimler Chrysler Ag Verfahren zum Herstellen von Keramik-Metall-Verbundkörpern, Keramik-Metall-Verbundkörper und deren Verwendung
US6193928B1 (en) 1997-02-20 2001-02-27 Daimlerchrysler Ag Process for manufacturing ceramic metal composite bodies, the ceramic metal composite bodies and their use
JPH10317057A (ja) * 1997-05-21 1998-12-02 Kimura Chuzosho:Kk 複合材の熱処理方法
DE19753249B4 (de) * 1997-12-01 2005-02-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Keramiknetzwerk, Verfahren zu dessen Herstellung und Verwendung
JP4080053B2 (ja) * 1998-03-23 2008-04-23 電気化学工業株式会社 複合体の製造方法
JP3628198B2 (ja) * 1999-01-14 2005-03-09 ニチアス株式会社 金属基複合材用プリフォーム及びその製造方法
JP3393090B2 (ja) * 1999-06-30 2003-04-07 株式会社シルバーロイ 工 具
JP3494958B2 (ja) * 2000-06-21 2004-02-09 岩谷産業株式会社 鋼の熱処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415632A (en) * 1980-02-15 1983-11-15 Kernforschungsanlage Julich Gmbh Silicon carbide body having pores filled with steel or steel alloys
US5743033A (en) * 1996-02-29 1998-04-28 Caterpillar Inc. Earthworking machine ground engaging tools having cast-in-place abrasion and impact resistant metal matrix composite components
US6033791A (en) * 1997-04-04 2000-03-07 Smith And Stout Research And Development, Inc. Wear resistant, high impact, iron alloy member and method of making the same
WO2000032335A1 (de) * 1998-12-03 2000-06-08 Otto Junker Gmbh Verbundgussteil und verfahren zu seiner herstellung
WO2000076666A1 (en) * 1999-06-10 2000-12-21 Svedala New Zealand Limited Composite sacrificial components

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043162A2 (de) * 2004-10-21 2006-04-27 Welldone Weartec N.V. Mahlelement, sowie mahlkörper mühlen, mischer, extruder und pressschnecken mit solchen mahlelementen
WO2006043162A3 (de) * 2004-10-21 2006-06-22 Welldone Weartec N V Mahlelement, sowie mahlkörper mühlen, mischer, extruder und pressschnecken mit solchen mahlelementen
EP2039429A1 (de) * 2007-09-13 2009-03-25 Claudius Peters Technologies GmbH Kugelringmühle
CN102357652A (zh) * 2011-08-30 2012-02-22 辽宁卓异新材料有限公司 多尺度陶瓷/金属复合耐磨材料及其制备方法
CN103752764A (zh) * 2013-12-13 2014-04-30 柳州市柳港激光科技有限公司 具有耐磨金属与陶瓷混合表层的复合铲
EP3225359A4 (de) * 2015-12-03 2018-04-04 Shandong Kaitai Shot Blasting Machinery Share Co., Ltd Verfahren zur herstellung eines strahlströmungsrohrs einer kompositkugelstrahlmaschine
CN111069594A (zh) * 2020-01-06 2020-04-28 南通高欣耐磨科技股份有限公司 一种低成本、可修复陶瓷合金复合衬板的制造方法
CN111069594B (zh) * 2020-01-06 2021-08-20 南通高欣耐磨科技股份有限公司 一种低成本、可修复陶瓷合金复合衬板的制造方法
CN111604122A (zh) * 2020-05-26 2020-09-01 佛山兴技源科技有限公司 磨机、辊压机中带有结构陶瓷瓦板的消耗部件及其制作方法
CN111604122B (zh) * 2020-05-26 2021-07-23 佛山兴技源科技有限公司 磨机、辊压机中带有结构陶瓷瓦板的消耗部件及其制作方法
EP3995224A1 (de) * 2020-11-09 2022-05-11 Detlef Bauer Verschleissplatte und verschleissplattenherstellungsverfahren

Also Published As

Publication number Publication date
ZA200203733B (en) 2002-12-23
JP4275900B2 (ja) 2009-06-10
EP1256403A3 (de) 2004-09-15
DE10164975B4 (de) 2009-08-20
CA2383171A1 (en) 2002-11-11
JP2003048049A (ja) 2003-02-18
US20020195223A1 (en) 2002-12-26
US7198209B2 (en) 2007-04-03
CA2383171C (en) 2007-06-26
US20050016708A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
DE10164975B4 (de) Bearbeitungskörper mit eingegossenem Hartstoffkörper
DE60210660T2 (de) Giessereistück mit verbesserter verschleissfestigkeit
DE112007000923B4 (de) Verbundwerkstoff aus Metall und Keramik, Verfahren zu dessen Herstellung, seine Verwendung sowie Energieabsorptionsbauteil
EP3366389A1 (de) Verbundwerkstoffe mit sehr hoher verschleissbeständigkeit
DE2221875A1 (de) Oberflaechengehaerteter und gesinterter karbid-formgegenstand
DE2919477C2 (de) Verschleißfester Verbundwerkstoff, Verfahren zu seiner Herstellung und Verwendung des Verbundwerkstoffes
DE102016207028A1 (de) Hartmetall mit zähigkeitssteigerndem Gefüge
DE112012000533T5 (de) Hartmetallartikel und Verfahren zu dessen Herstellung
DE3891069C2 (de) Metallkeramische Legierungen und unter deren Anwendung hergestellte mechanische Verbundstoffteile
EP0214679A1 (de) Korrosionsfeste Hartmetall-Legierung
DE10122886B4 (de) Bearbeitungskörper mit eingegossenem Hartstoffkörper zum Zerkleinern eines Aufgabeguts
DE102008032271B4 (de) Verfahren zur Herstellung eines Verbundmaterials
DE102011117232A1 (de) Matrixpulversystem und Verbundmaterialien daraus hergestellte Artikel
DE3203193A1 (de) Rollenmaterial
DE102018220222A1 (de) Verfahren zur Herstellung eines Werkstoffverbundes, Werkstoffverbund und seine Verwendung
DE102010043353A1 (de) Bearbeitungskörper zum Zerkleinern eines Aufgabeguts
EP1218555B1 (de) Verfahren zur pulvermetallurgischen in-situ herstellung eines verschleissbeständigen verbundwerkstoffes
DE202008001976U9 (de) Fluiddichte Sintermetallteile
DE102014205164B4 (de) Lagerelement für ein Wälzlager
DE102010004722A1 (de) Verschleißbeständiger, warmfester Werkstoff, sowie dessen Verwendung
DE1132735B (de) Verfahren zur Herstellung eines warmfesten Werkstoffes
DE102004012990A1 (de) Verbundwerkstoff, Verfahren zur Herstellung eines derartigen Verbundwerkstoffes sowie dessen Verwendung
DE1608131B1 (de) Gesinterte Karbidhartlegierung
DE202007004774U1 (de) Verschleißfestes Teil aus keramischem Metallmatrix-Verbundstoff, keramischer Kuchen für ein Teil aus keramischen Metallmatrix-Verbundstoff, Schleifwalze und Tischverkleidung, umfassend ein Teil aus keramischem Metallmatrix-Verbundstoff
DE1608131C (de) Gesinterte Karbidhartlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20050119

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SHW CASTING TECHNOLOGIES GMBH

17Q First examination report despatched

Effective date: 20100208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141101