EP2354264B1 - Verschleissbeständiger, warmfester Werkstoff, sowie dessen Verwendung - Google Patents

Verschleissbeständiger, warmfester Werkstoff, sowie dessen Verwendung Download PDF

Info

Publication number
EP2354264B1
EP2354264B1 EP20100015691 EP10015691A EP2354264B1 EP 2354264 B1 EP2354264 B1 EP 2354264B1 EP 20100015691 EP20100015691 EP 20100015691 EP 10015691 A EP10015691 A EP 10015691A EP 2354264 B1 EP2354264 B1 EP 2354264B1
Authority
EP
European Patent Office
Prior art keywords
resistant
heat
wear
weight
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20100015691
Other languages
English (en)
French (fr)
Other versions
EP2354264A1 (de
Inventor
Werner Theisen
Gerhard Gevelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Koeppern GmbH and Co KG
Original Assignee
Maschinenfabrik Koeppern GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Koeppern GmbH and Co KG filed Critical Maschinenfabrik Koeppern GmbH and Co KG
Priority to SI201030048T priority Critical patent/SI2354264T1/sl
Publication of EP2354264A1 publication Critical patent/EP2354264A1/de
Application granted granted Critical
Publication of EP2354264B1 publication Critical patent/EP2354264B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Definitions

  • the invention relates to a wear-resistant, heat-resistant material, which is particularly suitable for a pressing tool for briquetting, compaction and crushing, preferably in a roller press.
  • Briquetting is one of the processes of press agglomeration in which compaction of the feed material, e.g. mineral, metallic or organic particles, under such high external pressure that uniform and sufficiently stable shaped bodies, so-called briquettes, are produced.
  • feed material e.g. mineral, metallic or organic particles
  • the briquetting takes place with the help of roller presses, which operate on the two-roll principle.
  • the material to be briquetted is conveyed into the nip of two oppositely rotating briquetting rollers.
  • the compressive stress in the nip leads to a rearrangement of the individual particles and to a compression of the feed material while reducing the void volume contained in it.
  • Correspondingly structured surfaces of the usually made of metal briquetting make briquettes of the desired geometry arise.
  • Briquetting rolls may be made from solid rolls or consist of roll cores (shafts) on which the briquetting tools are mounted in the form of closed or segmented rings.
  • Cold briquetting takes place at feed temperatures between 20 and 400 ° C. From the large number of possible cold briquetting applications, the briquetting of quicklime, chrome ore, iron oxide, filter dusts, power plant ash, magnesite, mill scale, metal shavings, sewage sludge, sodium cyanide, salt and cellulose may be mentioned at this point by way of example.
  • Direct reduced sponge iron (DRI) is of increasing importance as a feedstock for decentralized steelmaking, especially in times of high cost of raw materials and alloying elements. Since DRI can not be readily stored and transported due to the strong tendency to reoxidize, it must be mechanically compacted on so-called briquetting machines to a density above 5 kg / dm 3 for the so-called "hot briquetted iron" (HBI).
  • JP 5 135 735 discloses a material of 1.0-3.0 C, 0.1-2.0 Si, 0.1-2.0 Mn, 3.0-10.0 Cr, 0.1-9.0 Mo, 1.5-10.0 W, 0.5-10.0 Co 3.0-10.0 V, and / or Nb residual iron also very wear resistant.
  • the structure of high speed steels consists of a hardenable metallic matrix with embedded carbides of both primary and eutectic origin.
  • a typical casting condition is characterized by primary solidified metal cells encased in a shell like a eutectic carbide network FIG. 2 shown.
  • blocky carbides of the type MC may be present, which result from a pre-eutectic (primary) precipitation. Because primary and eutectic carbides are not dissolved in the usual Austenitmaschine, the production-related solidification morphology of the carbides is retained.
  • the mechanical properties of high-speed steels are set by a heat treatment in which both the hardness and the tempering temperatures must be well coordinated.
  • the primary target of the heat treatment is the desired strength, here a measure of e.g. the flexural strength from the four-point bending test, which is to be coupled to the highest degree of toughness or ductility via an appropriate choice of the process parameters, as a measure of e.g. Fracture toughness from the three-point bending test.
  • the metal matrix is in an unbalanced state as a result of the heat treatment, so that basically a driving force for time-dependent microstructural microstructural changes is present. While the microstructure at room temperature due to insufficient thermal activation for very long periods as is considered stable, the stability is especially in increasing temperature increased attention.
  • the microhardness measurement is often used.
  • the micro-microhardness is measured by indentation of a measuring body in the structural region of the alloy without hard phases, that is, in the metallic matrix, at the desired elevated temperatures on the basis of the hardness impression obtained. It is expected that the microhardness of the metal matrix decreases with increasing temperature.
  • the mechanical properties of high speed steels are influenced both at room temperature and at elevated temperatures by the morphology of the structure (in particular of carbide type, shape, size, distribution and content), which, however, also has an effect on wear resistance.
  • High carbide contents increase the wear resistance, but are also tenacious.
  • Carbides of type MC are for example harder than those of type M 2 C or M 6 C and therefore more resistant to wear.
  • Oblong, eg needle-shaped or plate-shaped carbide forms are to be regarded as more critical in terms of a possible crack propagation than compact carbides.
  • Fine carbides for example, increase the strength, but can be roughened with coarse, granular feed material without wear-protective effect.
  • Net-distributed carbides for example, can form pre-marked paths for crack propagation after tearing. So-called clusters (local accumulations of carbides) can, for example, embody potential rupture germs, especially in the case of bending stress.
  • the object of the invention is therefore to provide a material, in particular for pressing tools for briquetting of particles at elevated temperatures, which in the working area, e.g. Head area of a segmented tool, has a high wear resistance at high operating temperatures, as well as in non-working areas at the same time a high resistance to breakage and high resistance to crack propagation.
  • Carbon (C) is used for carbide formation as well as martensite and secondary hardening of the metallic matrix. In this case, sufficient carbides, and carbon are provided for the matrix with the specified proportion.
  • Vanadium (V) is used for the formation of hard, primary carbides of the type MC as well as to increase the heat resistance by creating a high matrix potential for the precipitation of fine carbides during secondary hardening.
  • Molybdenum Mo is used to participate in the formation of hard MC primary carbides and to increase the thermal stability by providing a high matrix potential for the precipitation of fine carbides during secondary curing.
  • Tungsten (W) is added to precipitate fine specialty carbides during secondary curing because of its involvement in matrix potential.
  • Cobalt (Co) is added to increase the heat resistance by stabilizing the finely precipitated special carbides and shifting the secondary hardness maximum.
  • Chromium (Cr) is used to participate in the matrix potential for precipitation of fine carbides during secondary curing, as well as to improve hardenability.
  • Titanium (Ti) and aluminum (Al) are used to refine the microstructure by improving the nucleation conditions for MC primary carbides.
  • Niobium (Nb) is used to refine the microstructure by improving the nucleation conditions for MC primary carbides and to increase hot strength by providing a high matrix potential for precipitating fine specialty carbides during secondary curing
  • the aim of the alloy developments according to the invention was to increase the wear resistance by increasing the amount of carbide and optimizing the carbide composition and by increasing the heat resistance of a martensitic curable matrix.
  • this curing matrix contains approximately 0.6% by weight of interstitial elements, in this case carbon.
  • An increase in hard phase contents and their composition was achieved by variations in the contents of the high carbide-forming elements.
  • the morphology and distribution of the carbides by nucleating agents, ie elements which solidify from the melt even at comparatively high temperatures (Al, Ti, Nb) were purposefully influenced. This allowed a homogeneous distribution of the hard phases are made possible.
  • the conventional high-speed steel HS6-5-3 acted as reference material for the developments.
  • an austenitizing temperature below 1200 ° C. already leads to the formation of a hard martensitic microstructure.
  • the alloy was chosen so that after repeated tempering at temperatures in the range of 480 ° - 600 ° C, the surface hardened working range of the tool reached a macrohardness of at least 58 HRC at room temperature.
  • an alloy consisting of: C: 2.5-3.4 wt.%, Cr: 4.0-7.0 wt.%, Mo: 5.9-7.0 wt. %, V: 6.0-10.0% by weight, W: 1.5-3.0% by weight, Nb: 0.5-0.7% by weight, Co: 5.0 7.0 wt.%, Ti: 0.5-0.9 wt.%, Al: 0.01-0.7 wt.%, As well as unavoidable impurities.
  • the alloys in the specified range are distinguished by a combination of particularly preferred properties. This range was determined on the basis of thermodynamic equilibrium calculations and meets the requirements of alloys according to the invention particularly well.
  • the alloying parameters according to the ranges mentioned in claim 1 or 2 may be such that after a heat treatment a minimum hardness of at least 550 HV 0.05 at a test temperature up to and including 550 ° C, of at least 530 HV0.05 to including from 580 ° C, from at least 400 HV0.05 up to and including 600 ° C and from at least 370 HV0.05 up to and including 640 ° C.
  • Corresponding values are of particular advantage for the use of the material as a pressing tool for hot briquetting and thus significantly increase the service life of the tool.
  • the stated temperatures all refer to the test temperature.
  • hardening in the temperature range of 900-1220 ° C. and tempering one or more times in the secondary hardness range of 150-700 ° C., preferably 480-650 ° C., have proven to be particularly suitable as the heat treatment.
  • the dispersed and homogeneously distributed, compact hard phases in volume contents of 13 to 50%, preferably from 13 to 40%, particularly preferably from 15 to 50% may be contained in the material.
  • At least 65%, particularly preferably at least 80% of the dispersed and homogeneously distributed compact hard phases of MC type can be present.
  • a further preferred embodiment provides that at least 50%, preferably at least 70%, particularly preferably at least 90% of the dispersed and homogeneously distributed primary hard phases of the MC type have at their narrowest point an extension of at least 7 ⁇ m, preferably at least 12 ⁇ m, particularly preferred have at least 15 microns.
  • all cross-combinations should also be included, i. for each volume content all specified limits of the narrowest point are claimed.
  • the dispersed and homogeneously distributed compact hard phases have a blocky shape with or without rounded corners, preferably roundish shape, particularly preferably spherical shape.
  • the hard phases are shown here in detail for clarity in FIG. This shows FIG. 4a Blocked carbides characterized by a compact construction with relatively sharp edges and corners. Roundish carbides are in FIG. 4b represented and have substantially the same compact shape as the blocky carbides, but here the corners and edges are rounded. Figure 4c finally shows an ideal case of a round or spherical carbide.
  • the hard phases can in accordance with the invention, all these forms also have a single material at the same time.
  • the material can be fed after primary molding of a surface treatment to produce a hard working surface.
  • the hardness of the surface can be adjusted specifically.
  • the prototyping is usually done by casting.
  • the material can be supplied after the prototyping of a thorough heat treatment.
  • the material has a surface hardness of at least 55 HRC, preferably at least 58 HRC, particularly preferably at least 63 HRC, adjustable by surface hardening, in particular flame hardening, at a test temperature of 20 ° C.
  • a surface hardness is particularly suitable for use in cold and hot briquetting, as well as in compaction and size reduction
  • the material may have a surface hardness of at least 52 HRC, preferably at least 54 HRC, particularly preferably at least 56 HRC at a temperature of 580 ° C., which can be set by surface hardening, in particular flame hardening.
  • the material may have a surface hardening, in particular flame hardening, surface hardness of at least 42 HRC, preferably at least 45 HRC, particularly preferably 48 HRC at a temperature of 640 ° C., to be set. Tools that are made of appropriate materials can be particularly preferably used in hot briquetting.
  • the carbide content of the alloy is included in the measurement, i. the whole structure is measured as a composite of metal matrix and hard phases.
  • the transverse rupture strength can be at least 820 N / mm 2 and the fracture toughness at least 23 MPa 0.5 , preferably at least 25 MPa 0.5 , particularly preferably at least 27 MPa 0.5 .
  • the bending strength of the material according to the invention may be at least 900 N / mm 2 and the fracture toughness at least 26 MPa 0.5 , preferably at least 29 MPa 0.5 , more preferably at least 33 MPa 0.5 .
  • the transverse rupture strength was measured by a four-point bending test according to the DIN 51110 standard and the fracture toughness by a three-point bending test according to the standard ASTM E 399-90. Corresponding values have proven to be particularly advantageous in practice, in particular for the use of the material as a pressing tool in briquetting.
  • the material according to the invention described above can be used as a cast segment, cast steel ring or composite cast on roller presses for briquetting, compaction and crushing
  • the material for hot briquetting of granular materials preferably for directly reduced iron or steel dusts at temperatures of 400 ° C ⁇ T ⁇ 850 ° C and for cold briquetting at temperatures of -20 ⁇ T ⁇ 400 ° C are used.
  • a corresponding material is consequently versatile and thus simultaneously extends the field of use of tools made from this.
  • the mold cavities of the tool to be produced can be predetermined by prototyping, so that the production process is significantly shortened.
  • mold cavities of the tool to be produced can be introduced by machining before or after the heat treatment, for example by machining, EDM, ECM.
  • the material from the melt can be gas-atomized to a powder which is compacted by sintering with or without pressure with or without liquid phase and at the same time sintered on a steel substrate to produce a segment or ring with mold cavities, the size of the primary hard phases is a maximum of 20 microns.
  • the range of application of the material according to the invention can also be extended to powder metallurgical processes, wherein in this production the size of the primary hard phases changes compared to the production of molten metal due to production.
  • the material can be gas-atomized from the melt to a powder which is compressed after filling and evacuating a gas-tight metal capsule by hot isostatic pressing on a solid or powdered steel substrate to produce a segment or ring with mold cavities, the size of the primary hard phases a maximum of 7 ⁇ m or can be compacted by cold isostatic pressing, uniaxial pressing, extrusion or powder forging or further processed by thermal spraying, wherein the size of the primary hard phases is at most 7 ⁇ m.
  • FIG. 1 is, as already stated, a cast blank of Brikettiersegmentes shown.
  • the cast blank comprises a segment head 1 and a segment feet 2.
  • a corresponding cast blank is first prepared to pre-process the surfaces, in particular with regard to the diameter. After a heat treatment is carried out, the introduction of molds or mold cavities takes place in the surface of the segment head 1.
  • a plurality of corresponding, additionally subjected to a finishing Brikettiersegmente are then arranged on a roll surface and form an approximately closed work surface on this.
  • the segment head In order to ensure a sufficient service life corresponding Brikettiersegmente both in cold and in particular the hot briquetting, the segment head must have a high wear resistance at high operating temperatures and the Segmentfuß 2 at the same time have a high resistance to breakage or high resistance to crack propagation.
  • the present invention provides a material which fully meets these requirements.
  • FIG. 3 the structure of an alloy variant according to a first example of the invention is shown.
  • HB1 in addition to small amounts of the carbide types M 2 C and M 6 C, a high proportion of high-hardness carbides of the MC type are embedded in a heat-resistant, secondarily hardened metal matrix. After austenitizing with T A ⁇ 1200 ° C and repeated tempering, the composition of the invention HB1 reached a macrohardness of 60 HRC at room temperature.
  • a corresponding alloy may be prepared by using known casting techniques using known parameters. In the context of the present invention, the following method steps and parameters were used. The casting was done by sand casting. The casting temperatures were 1400 - 1650 ° C. The cooling of the alloy took place in the molding box. Using the above parameters, the above as well as the two subsequent alloying examples were prepared as exemplary preferred embodiments of the present invention.
  • This alloy composition causes early solidification of vanadium-rich monocarbides containing Mo, Ti, Cr, and Nb and W. Calculations and measurements indicate that the alloy contains a total carbide content of 16% by volume. The carbon content was set to 2.5 wt .-% C, so that after solidification of the hard phases and austenitizing and quenching still about 0.6 wt .-% C are dissolved in the matrix to ensure a martensitic curable matrix.
  • a second alloy according to the invention which is referred to below as HB2
  • HB2 contained 3.1% by weight C, 7.0% by weight Cr, 7.0% by weight Mo, 8.0% by weight V, 1.5% by weight W, 0.7% by weight % Nb, 5.0% by weight Co, 0.9% by weight Ti and small amounts of Al.
  • the alloy according to Example 2 was designed to achieve the highest possible amount of carbide with a simultaneously heat-resistant matrix. All carbide-forming alloying elements were therefore alloyed in high concentrations.
  • HB3 A third example according to the invention of a further embodiment according to the invention of said alloying region is described in more detail by the following alloy, hereinafter referred to as HB3.
  • HB3 which contains 3.4% by weight C, 6.0% by weight Cr, 7.0% by weight Mo, 10.0% by weight V, 1.5% by weight W, 0.5% by weight Nb, 7.0% by weight % Co, 0.9% by weight of Ti and low contents of aluminum, a material was provided which is designed for high wear resistance combined with high heat resistance.
  • phase diagram determined from thermodynamic calculations has a wide range of austenite and carbide of the type MC, which in particular also allows a certain margin for the carbon content in this alloy.
  • the resulting monocarbides also form the dominant carbide type, which is present in a content of about 24 vol .-%.
  • the total carbide amount of the conventional high-speed steel HS 6-5-3 is in the range of 8 to 11% by volume and contains about 1 to 2% by volume of MC-type carbides.
  • the total carbide content of the novel alloys HB1, HB2 and HB3 of the present invention is between 16 and 24% by volume (see Table 1, column 1) and consists for the most part of hard carbides of the MC type, as additional studies have shown, e.g. Scanning electron micrographs and carbide analyzes.
  • the abrasive wear resistance at room temperature is significantly higher for HB1, HB2 and HB3, as is the case for example with the pin-disk wear test against the Abrasive Flint of grain size 220 in comparison to HS 6-5-3 (see Table 1, column 2). If, for example, a hot hardness of the metal matrix of at least 530 HV0.05 is required, the new alloys HB1, HB2 and HB3 maintain this minimum hardness even at significantly higher temperatures than the conventional material HS 6-5-3 (Table 1, column 3). At a temperature of 580 ° C, the determined minimum hardness values for HB1, HB2 and HB3 are significantly higher than for conventional HS 6-5-3 (Table 1, column 4).
  • the fracture toughnesses in the soft-annealed state of the alloys HB1, HB2 and HB3 are compared in Table 1, column 10, the fracture toughnesses in the cured and tempered state determined in the three-point bending test (3PB) and in Table 1, column 11 to the conventional material HS 6-5-3. It should be noted that an increasing content of coarse hard phases usually reduces the fracture toughness under otherwise comparable conditions.
  • the advantage according to the invention of the described alloys HB1, HB2 and HB3 lies in the combination of suitably high toughness and wear resistance and therefore appears in particular when the toughness values are combined with the total carbide content responsible for a high wear resistance multiplicatively to a characteristic value.
  • the required properties of high wear resistance, strength and toughness can finally be expressed in a characteristic value from the multiplicative linkage of the determined total carbide content, the transverse rupture strength and the fracture toughness.
  • inventive advantage of the exported alloys HB1, HB2 and HB3 in comparison to the conventional material for the cured and tempered state (see Table 1, column 14) and the annealed condition (see Table 1, column 15) is very clear.
  • the hard primary carbides of the MC type should be present homogeneously and as dispersed as possible in the alloys HB1, HB2 and HB3 according to the invention.
  • FIG. 3 shown on a recording of a Gehegeschliffs the alloy HB1 this succeeds excellently in the claimed alloy area.
  • the microstructure comprises finely divided monocarbides embedded in a heat-resistant matrix without hard-phase network formation.
  • FIG. 5 Fig. 2 graphically illustrates a comparison of the micro-microhardness achieved during the measurements made over the test temperatures. It becomes clear that the alloys according to the invention are distinguished by significantly better micro-microhardness, in particular at higher temperatures.
  • a tool made of the material according to the invention can be fixed together with other tools via a screw connection, a clamping connection or a shrink connection on a roll core.
  • the material as a tool in addition to a segment, ring or cylindrical or cylindrical geometry, other geometries such as a rod, cone, mushroom, cuboid, cube, pyramid, ball, plate or adopt a prismatic, paraboloide or hyperboloidal form and can be used in a variety of fields
  • a corresponding tool can also be used in a geometry other than a segment, ring or roller or cylindrical geometry in processing mineral goods, in which the tool is subjected to indentation and / or abrasion.

Description

  • Die Erfindung betrifft einen verschleißbeständigen, warmfesten Werkstoff, welcher insbesondere für ein Presswerkzeug zur Brikettierung, Kompaktierung und Zerkleinerung, vorzugsweise in einer Walzenpresse geeignet ist.
  • Die Brikettierung zählt zu den Verfahren der Pressagglomeration, bei der eine Verdichtung des zugeführten Materials, z.B. mineralische, metallische oder organische Partikel, unter so hohem äußeren Druck erfolgt, dass einheitliche und ausreichend stabile Formkörper, sogenannte Briketts, erzeugt werden.
  • Häufig erfolgt die Brikettierung mit Hilfe von Walzenpressen, die nach dem Zweiwalzenprinzip arbeiten. Hierbei wird das zu brikettierende Gut in den Spalt zweier gegensinnig drehenden Brikettierwalzen gefördert. Die Druckbeanspruchung im Walzenspalt führt zu einer Umordnung der einzelnen Partikel und zu einer Verdichtung des Aufgabegutes unter Reduktion des in ihm enthaltenen Hohlraumvolumens. Entsprechend strukturierte Oberflächen der für gewöhnlich aus Metall bestehenden Brikettierwerkzeuge lassen Briketts der gewünschten Geometrie entstehen. Brikettierwalzen können aus Vollwalzen gefertigt sein oder aus Walzenkemen (Wellen) bestehen, auf denen die Brikettierwerkzeuge in Form geschlossener oder segmentierter Ringe befestigt sind.
  • Die Kaltbrikettierung erfolgt bei Aufgabegut-Temperaturen zwischen 20 und 400°C. Aus der Vielzahl möglicher Kaltbrikettieranwendungen seien an dieser Stelle beispielhaft die Brikettierung von Branntkalk, Chromerz, Eisenoxid, Filterstäuben, Kraftwerksasche, Magnesit, Walzzunder, Metallspänen, Klärschlamm, Natriumzyanid, Salz und Zellulose genannt.
  • Aufgabeguttemperaturen oberhalb von 400°C fallen in den Bereich der Heißbrikettierung, die typischerweise auch die Brikettierung von Hüttenstäuben und Eisenschwamm umfasst. Direkt reduzierter Eisenschwamm (DRI) ist für die dezentrale Stahlherstellung, besonders in Zeiten höchster Kosten für Rohstoffe und Legierungselemente, als Einsatzmaterial von wachsender Bedeutung. Da DRI wegen der starken Reoxidationsneigung nicht ohne Weiteres gelagert und transportiert werden kann, muss es auf o.a. Brikettiermaschinen mechanisch zum sogenannten "Hot Briquetted Iron" (HBI) auf eine Dichte oberhalb von 5 kg/dm3 verdichtet werden.
  • Durch den Kontakt der Partikel mit den Formwerkzeugen werden die Werkzeugoberflächen tribologisch hoch beansprucht. Geeignete Werkzeugwerkstoffe sind daher hohen Anforderungen an die Verschleißbeständigkeit unterworfen. Im Falle der Heißbrikettierung erfordern die Werkzeuge also bei Aufgabeguttemperaturen über 400°C eine hohe Verschleißbeständigkeit gegen die unter hohem Druck auf die Werkzeugoberfläche gepressten und relativ dazu bewegten Partikel. Der stetige Trend zu steigenden Prozesstemperaturen und Materialdurchsätzen führt zu einer zunehmend höheren Belastung der Brikettierwerkzeuge und somit auch zu einer signifikanten Verringerung der Werkzeugstandzeit.
  • Da die Arbeitsfläche der Heißbrikettierwerkzeuge unter hohem Pressdruck im zyklischen Kontakt mit dem heißen DRI steht, kommen hier warmfeste und hochverschleißbeständige Werkstoffe zur Anwendung. In der Heißbrikettierung von Eisenschwamm wird der Stand der Technik durch Gusssegmente mit schnellarbeitsstahlähnlicher Zusammensetzung (HSS), beispielsweise die herkömmliche Variante HS6-5-3 (1.3344), repräsentiert. Schnellarbeitsstahlsegmente werden durch Randschichthärten in einen Zustand überführt, der eine harte, verschleißbeständige Arbeitsfläche bietet. Dabei bleibt der sogenannte Segmentfuß eines Brikettiersegmentes, welches in Figur 1 dargestellt ist, duktil und zäh. Die o.a. Verschärfung der Betriebsbedingungen hat jedoch dazu geführt, dass derartige Legierungen keine ausreichende Standzeit mehrbieten. JP 5 135 735 offenbart ein Material aus 1.0-3.0 C, 0.1-2.0 Si, 0.1-2.0 Mn, 3.0-10.0 Cr, 0.1-9.0 Mo, 1.5-10.0 W, 0.5-10.0 Co 3.0-10.0 V und/oder Nb Rest Eisen, das auch sehr Verschleißfest ist.
  • Aufgrund des Legierungskonzeptes besteht das Gefüge von Schnellarbeitsstählen aus einer härtbaren metallischen Matrix mit eingelagerten Karbiden, die sowohl primären als auch eutektischen Ursprungs sind. Ein typischer Gusszustand äußert sich durch primär erstarrte Metallzellen, die von einem eutektischen Karbidnetzwerk schalenförmig umschlossen sind, wie in Figur 2 dargestellt. Zudem können vereinzelt blockige Karbide vom Typ MC vorliegen, die aus einer voreutektischen (primären) Ausscheidung resultieren. Weil primäre und eutektische Karbide bei der üblichen Austenitisierung nicht gelöst werden, bleibt die herstellungsbedingte Erstarrungsmorphologie der Karbide erhalten.
  • Die mechanischen Eigenschaften von Schnellarbeitsstählen werden über eine Wärmebehandlung eingestellt, bei der sowohl die Härte- als auch die Anlasstemperaturen gut aufeinander abgestimmt sein müssen. Die primäre Zielgröße der Wärmebehandlung ist die gewünschte Festigkeit, hierbei ist ein Maß z.B. die Biegebruchfestigkeit aus dem Vierpunktbiegeversuch, die über eine entsprechende Wahl der Prozessparameter an ein Höchstmaß an Zähigkeit bzw. Duktilität gekoppelt werden soll, als Maß z.B. Bruchzähigkeit aus dem Dreipunktbiegeversuch.
  • Aus thermodynamischer Sicht befindet sich die Metallmatrix durch die Wärmebehandlung in einem Ungleichgewichtszustand, so dass grundsätzlich eine Triebkraft für zeitabhängige mikrostrukturelle Gefügeveränderungen vorhanden ist. Während das Gefüge bei Raumtemperatur infolge unzureichender thermischer Aktivierung auch über sehr lange Zeiträume als stabil zu betrachten ist, gilt der Stabilität insbesondere bei steigender Temperatur erhöhte Aufmerksamkeit.
  • Zur Beurteilung der Matrixeigenschaften sowie der Gefügestabilität bei erhöhter Temperatur wird oftmals die Mikrohärtemessung herangezogen. Hierbei wird die Mikrowarmhärte durch Indentation eines Messkörpers im Gefügebereich der Legierung ohne Hartphasen, dass heißt in der metallischen Matrix, bei den gewünschten erhöhten Temperaturen anhand des erhaltenen Härteeindrucks gemessen. Es ist zu erwarten, dass die Mikrohärte der Metallmatrix mit zunehmender Temperatur abnimmt.
  • Maßgeblich werden die mechanischen Eigenschaften von Schnellarbeitsstählen sowohl bei Raumtemperatur als auch bei erhöhten Temperaturen von der Gefügemorphologie (insbesondere von Karbidart, -form, -größe, -verteilung und -gehalt) beeinflusst, die sich jedoch insbesondere auch auf die Verschleißbeständigkeit auswirkt. Hohe Karbidgehalte steigem den Verschleißwiderstand, sind aber zugleich zähigkeitsmindemd. Karbide vom Typ MC sind z.B. härter als solche vom Typ M2C oder M6C und deswegen verschleißresistenter. Längliche, z.B. nadelige bzw. plattenförmige Karbidformen sind in Bezug auf eine mögliche Rissausbreitung kritischer anzusehen als kompakte Karbide. Feine Karbide erhöhen z.B. die Festigkeit, können bei grobem, körnigem Aufgabegut jedoch ohne verschleissschützende Wirkung ausgefurcht werden. Netzförmig verteilte Karbide können z.B. nach einer Anrissbildung vorgezeichnete Pfade für die Rissausbreitung darstellen. Sogenannte Cluster (lokale Karbidansammlungen) können z.B. insbesondere bei Biegebeanspruchung potentielle Anrisskeime verkörpern.
  • Aufgabe der Erfindung ist es daher, einen Werkstoff, insbesondere für Presswerkzeuge zur Brikettierung von Partikeln bei erhöhten Temperaturen bereitzustellen, welcher im arbeitsnahen Bereich, z.B. Kopfbereich eines segmentierten Werkzeuges, über einen hohen Verschleißwiderstand bei hohen Arbeitstemperaturen, sowie in arbeitsferneren Bereichen gleichzeitig über eine hohe Bruchsicherheit bzw. einen hohen Widerstand gegen Rissausbreitung verfügt.
  • Diese Aufgabe wird durch einen verschleißbeständigen, warmfesten Werkstoff, insbesondere für ein Presswerkzeug zur Brikettierung, Kompaktierung und/oder Zerkleinerung, vorzugsweise in einer Walzenpresse, dadurch gelöst, dass der Werkstoff eine hartphasenreiche Guß-Legierung auf Eisenbasis mit der chemischen Zusammensetzung
    • C: 2,3 - 3,7 Gew.-%
    • Cr: 3,0 - 8,0 Gew.-%
    • Mo: 4,0 - 8,0 Gew.-%
    • V: 5,0 - 11,0 Gew.-%
    • W: 0,5 - 5,0 Gew.-%
    • Nb: 0,3 - 1,0 Gew.-%
    • Co: 0,5 - 8,0 Gew.-%
    • Ti: 0,2 - 1,5 Gew.-%
    • Al: 0,01 - 1,0 Gew.-%
    sowie unvermeidbare Verunreinigungen umfasst. Hierbei sind die Hartphasen als kompakte Hartphasen ausgebildet und in Volumengehalten von 10% bis 50 % in der Legierung dispers und homogen verteilt. Wenigstens 50% der Hartphasen sind primäre Karbide vom Typ MC, wobei die Karbide im wesentlichen Vanadium und Molybdän enthalten, und wenigstens 50 % dieser primären Hartphasen weisen an ihrer schmalsten Stelle eine Größe von mindestens 7 µm auf.
  • Ein entsprechender Werkstoff wurde unter Berücksichtigung des gefügemorphologischen und wärmebehandlungstechnischen Einflusses auf die tribologischen und mechanischen Eigenschaften von Werkzeugwerkstoffen für die Brikettierung mittels Walzenpressen bei erhöhten Temperaturen sowie den vorgenannten Anforderungen an einen idealen Werkstoff ermittelt.
  • Im folgenden werden kurz die einzelnen Legierungsbestandteile und ihre Aufgabe in dem Werkstoff erläutert:
  • Kohlenstoff (C) dient der Karbidbildung sowie der Martensit- und Sekundärhärtung der metallischen Matrix. Hierbei werden mit dem angegebenen Anteil ausreichend Karbide, sowie Kohlenstoff für die Matrix bereitgestellt.
  • Vanadium (V) dient der Bildung harter, primärer Karbide vom Typ MC sowie der Erhöhung der Warmfestigkeit durch Schaffung eines hohen Matrixpotentials zur Ausscheidung feiner Sonderkarbide während der Sekundärhärtung.
  • Molybdän (Mo) wird zur Beteiligung an der Bildung harter, primärer Karbide vom Typ MC sowie zur Erhöhung der Warmfestigkeit durch Schaffung eines hohen Matrixpotentials zur Ausscheidung feiner Sonderkarbide während der Sekundärhärtung eingesetzt.
  • Wolfram (W) wird wegen der Beteiligung am Matrixpotential zur Ausscheidung feiner Sonderkarbide während der Sekundärhärtung beigegeben.
  • Kobalt (Co) wird zur Erhöhung der Warmfestigkeit durch Stabilisierung der fein ausgeschiedenen Sonderkarbide und Verschiebung des Sekundärhärtemaximums beigegeben.
  • Chrom (Cr) wird zur Beteiligung am Matrixpotential zur Ausscheidung feiner Sonderkarbide während der Sekundärhärtung eingesetzt, sowie zur Verbesserung der Härtbarkeit.
  • Titan (Ti) und Aluminium (Al) dienen zur Feinung des Gefüges durch Verbesserung der Keimbildungsbedingungen für primäre Karbide vom Typ MC.
  • Niob (Nb) dient der Feinung des Gefüges durch Verbesserung der Keimbildungsbedingungen für primäre Karbide vom Typ MC und zur Erhöhung der Warmfestigkeit durch Schaffung eines hohen Matrixpotentials zur Ausscheidung feiner Sonderkarbide während der Sekundärhärtung
  • Ziel der erfindungsgemäßen Legierungsentwicklungen war es, den Verschleißwiderstand durch Anhebung der Karbidmenge und Optimierung der Karbidzusammensetzung sowie durch Steigerung der Warmfestigkeit einer martensitisch härtbaren Matrix zu erhöhen. Zu diesem Zweck enthält diese Matrix zur Härtung etwa einen Anteil von 0,6 Gew.-% interstitieller Elemente, in diesem Fall Kohlenstoff. Eine Steigerung der Hartphasengehalte und deren Zusammensetzung wurde durch Variationen der Gehalte der stark karbidbildenden Elemente erreicht. Um bei Steigerung des Verschleißwiderstandes gleichzeitig auch noch eine ausreichende Zähigkeit zu gewährleisten, wurde die Morphologie sowie die Verteilung der Karbide durch Keimbildner, also Elemente, die bereits bei vergleichsweise hohen Temperaturen aus der Schmelze erstarren (Al, Ti, Nb), gezielt beeinflusst. Hierdurch konnte eine homogene Verteilung der Hartphasen ermöglicht werden. Der konventionelle Schnellarbeitsstahl HS6-5-3 fungierte als Vergleichswerkstoff für die Entwicklungen.
  • Durch die Feinabstimmung der Elemente in den oben genannten Bereichen führt bereits eine Austenitisierungstemperatur unterhalb von 1200 °C zur Bildung eines harten martensitischen Gefüges. Die Legierung wurde hierbei so gewählt, dass nach mehrmaligem Anlassen bei Temperaturen in dem Bereich von 480° - 600 °C der randschichtgehärtete Arbeitsbereich des Werkzeuges eine Makrohärte von mindestens 58 HRC bei Raumtemperatur erreichte.
  • Gemäß einer bevorzugten Ausführungsform hat sich eine Legierung bestehend aus: C: 2,5 - 3,4 Gew.-%, Cr: 4,0 - 7,0 Gew.-%, Mo: 5,9 - 7,0 Gew.-%, V: 6,0 - 10,0 Gew.-%, W: 1,5 - 3,0 Gew.-%, Nb: 0,5 - 0,7 Gew.-%, Co: 5,0 - 7,0 Gew.-%, Ti: 0,5 - 0,9 Gew.-%, Al: 0,01 - 0,7 Gew.-%, sowie unvermeidbare Verunreinigungen als vorteilhaft erwiesen. In der Praxis hat sich gezeigt, dass sich die Legierungen in dem angegebenen Bereich durch eine Kombination besonders bevorzugter Eigenschaften auszeichnen. Dieser Bereich wurde auf Grundlage thermodynamischer Gleichgewichtsberechnungen ermittelt und erfüllt die Anforderungen an erfindungsgemäße Legierungen besonders gut.
  • Gemäß einer weiteren bevorzugten Ausführungsform können die Legierungsparameter entsprechend der in Anspruch 1 oder 2 genannten Bereiche so gewählt sein, dass sich nach einer Wärmebehandlung eine Mikrowärmhärte von mindestens 550 HV0,05 bei einer Prüftemperatur bis einschließlich 550°C, von mindestens 530 HV0,05 bis einschließlich 580°C, von mindestens 400 HV0,05 bis einschließlich 600°C und von mindestens 370 HV0,05 bis einschließlich 640°C einstellt. Entsprechende Werte sind insbesondere für den Einsatz des Werkstoffes als Presswerkzeug für die Heißbrikettierung von besonderem Vorteil und erhöhen so die Lebensdauer des Werkzeuges deutlich. Die angegebenen Temperaturen beziehen sich hierbei alle auf die Prüftemperatur.
  • Hierbei hat sich als die Wärmebehandlung das Härten im Temperaturbereich von 900-1220°C und das ein- oder mehrmalige Anlassen im Sekundärhärtebereich von 150-700°C, vorzugsweise 480-650°C, als besonders geeignet erwiesen.
  • Gemäß einer weiteren bevorzugten Ausführungsform können die dispers und homogen verteilten, kompakten Hartphasen in Volumengehalten von 13 bis 50%, vorzugsweise von 13 bis 40 %, besonders bevorzugt von 15 bis 50% in dem Werkstoff enthalten sein.
  • Ferner können wenigstens 65%, besonders bevorzugt wenigstens 80% der dispers und homogen verteilten kompakten Hartphasen vom Typ MC vorliegen.
  • Beide vorgenannten Merkmale wirken sich insbesondere vorteilhaft auf die Makrohärte und den Verschleißwiderstand des Werkstoffes aus.
  • Eine weiter bevorzugte Ausführungsform sieht vor, dass mindestens 50%, bevorzugt mindestens 70% , besonders bevorzugt mindestens 90% der dispers und homogen verteilten primären Hartphasen des Typs MC an ihrer schmalsten Stelle eine Ausdehnung von mindestens 7 µm, bevorzugt mindestens 12 µm, besonders bevorzugt mindestens 15 µm aufweisen. Hierbei sollen auch alle Querkombinationen umfasst werden, d.h. für jeden Volumengehalt werden alle angegebenen Grenzen der schmalsten Stelle beansprucht.
  • Vorzugsweise weisen die dispers und homogen verteilten kompakten Hartphasen eine blockige Form mit oder ohne verrundete Ecken, bevorzugt rundliche Form, besonders bevorzugt kugelige Form auf. Die Hartphasen sind hierbei zur Verdeutlichung im Einzelnen in Figur 4 dargestellt. Hierbei zeigt Figur 4a blockige Karbide, die sich durch einen kompakten Aufbau mit relativ scharfen Kanten und Ecken auszeichnen. Rundliche Karbide sind in Figur 4b dargestellt und weisen im Wesentlichen die gleiche kompakte Form wie die blockigen Karbide auf, hierbei sind jedoch die Ecken und Kanten abgerundet ausgebildet. Figur 4c zeigt schließlich einen Idealfall eines runden bzw. kugeligen Karbids. Die Hartphasen können hierbei erfindungsgemäß auch alle genannten Formen gleichzeitig in einem einzelnen Werkstoff aufweisen.
  • Nach einem bevorzugten erfindungsgemäßen Verfahren kann der Werkstoff nach dem Urformen einer Randschichtbehandlung zur Erzeugung einer harten Arbeitsfläche zugeführt werden. Hierdurch kann die Härte der Oberfläche gezielt eingestellt werden. Das Urformen erfolgt in der Regel durch Gießen.
  • Ferner kann der Werkstoff nach dem Urformen einer durchgreifenden Wärmebehandlung zugeführt werden.
  • Eine andere bevorzugte Ausführungsform kann vorsehen, dass der Werkstoff eine durch Randschichthärtung, insbesondere Flammhärtung, einstellbare Oberflächenhärte von mind. 55 HRC, vorzugsweise mind. 58 HRC, besonders bevorzugt mind. 63 HRC bei einer Prüftemperatur von 20°C aufweist. Hierdurch können die Eigenschaften des Werkstoffs gezielt bereitgestellt werden. Eine entsprechende Oberflächenhärte ist insbesondere für den Einsatz in der Kalt- und Heißbrikettierung, sowie bei der Kompaktierung und Zerkleinerung geeignet
  • Ferner kann der Werkstoff eine durch Randschichthärtung, insbesondere Flammhärtung einstellbare Oberflächenhärte von mind. 52 HRC, bevorzugt mind. 54 HRC, besonders bevorzugt mind. 56 HRC bei einer Temperatur von 580°C aufweisen. Vorteilhafterweise kann der Werkstoff eine Randschichthärtung, insbesondere Flammhärtung einzustellende Oberflächenhärte von mind. 42 HRC, bevorzugt mind. 45 HRC, insbesondere bevorzugt 48 HRC bei einer Temperatur von 640°C aufweisen. Werkzeuge, die aus entsprechenden Werkstoffen hergestellt sind, können insbesondere bevorzugt bei der Heißbrikettierung eingesetzt werden. Im Gegensatz zu der Mikrowarmhärte gehen bei der HRC-Messung auch die Karbidanteile der Legierung in die Messung ein, d.h. das ganze Gefüge wird als Verbund von Metallmatrix und Hartphasen gemessen.
  • Vorteilhafterweise kann die Biegebruchfestigkeit mindestens 820 N/mm2 betragen und die Bruchzähigkeit mindestens 23 MPam0.5, bevorzugt mindestens 25 MPam0.5, besonders bevorzugt mindestens 27 MPam0.5 betragen. Gemäß einer weiteren bevorzugten Ausführungsform kann die Biegebruchfestigkeit des erfindungsgemäßen Werkstoffes mindestens 900 N/mm2 betragen und die Bruchzähigkeit mindestens 26 MPam0.5, bevorzugt mindestens 29 MPam0.5, besonders bevorzugt mindestens 33 MPam0.5 betragen. Die Biegebruchfestigkeit wurde durch einen Vier-Punktbiegeversuch gemäß der Norm DIN 51110 und die Bruchzähigkeit durch einen drei Punkt Biegeversuch gemäß der Norm ASTM E 399-90 gemessen. Entsprechende Werte haben sich in der Praxis als besonders vorteilhaft insbesondere für den Einsatz des Werkstoffes als Presswerkzeug bei der Brikettierung erwiesen.
  • Der oben beschriebene erfindungsgemäße Werkstoff kann als Gusssegment, Gussstahlring oder im Verbundguss auf Walzenpressen zur Brikettierung, Kompaktierung und Zerkleinerung verwendet werden
  • Vorzugsweise kann der Werkstoff zur Heißbrikettierung körniger Stoffe, vorzugsweise für direkt reduziertes Eisen oder Hüttenstäube bei Temperaturen von 400°C < T < 850°C sowie zur Kaltbrikettierung bei Temperaturen von -20 < T < 400°C zum Einsatz kommen. Ein entsprechender Werkstoff ist folglich vielseitig einsetzbar und erweitert somit gleichzeitig das Einsatzgebiet von aus diesem gefertigten Werkzeugen.
  • Vorteilhafterweise können die Formmulden des herzustellenden Werkzeuges durch Urformen vorgegeben werden, so dass sich das Herstellungsverfahren deutlich verkürzt.
  • Ferner können Formmulden des herzustellenden Werkzeuges durch Bearbeitung vor oder nach der Wärmebehandlung, z.B durch Spanen, EDM, ECM, eingebracht werden.
  • Gemäß eines weiteren bevorzugten Verfahrens kann der Werkstoff aus der Schmelze zu einem Pulver gasverdüst werden, das durch Sintern mit oder ohne Druck mit oder ohne flüssige Phase verdichtet und zugleich auf einem Stahlsubstrat zur Herstellung eines Segmentes oder Ringes mit Formmulden aufgesintert wird, wobei die Größe der primären Hartphasen maximal 20 µm beträgt. Hierdurch kann der Einsatzbereich des erfindungsgemäßen Werkstoffs auch auf pulvermetallurgische Verfahren erweitert werden, wobei sich bei dieser Herstellung die Größe der primären Hartphasen im Vergleich zur schmelzmetallurgischen Herstellung herstellungsbedingt ändert.
  • Gleichermaßen kann der Werkstoff aus der Schmelze zu einem Pulver gasverdüst werden, welches nach dem Befüllen und Evakuieren einer gasdichten Blechkapsel durch heißisostatisches Pressen auf einem festen oder pulverförmigen Stahlsubstrat zur Herstellung eines Segmentes oder Ringes mit Formmulden verdichtet wird, wobei die Größe der primären Hartphasen maximal 7 µm beträgt oder kann über kaltisostatisches Pressen, uniaxiales Pressen, Strangpressen oder Pulverschmieden verdichtet oder durch thermisches Spritzen weiterverarbeitet werden, wobei die Größe der primären Hartphasen maximal 7 µm beträgt.
  • Bevorzugte Ausführungsformen der Erfindung werden nachfolgend unter Bezugnahme auf die beigefügte Zeichnung näher erläutert. Es zeigt:
  • Figur 1
    eine Prinzipskizze eines gegossenen Rohlings für ein Brikettiersegment,
    Figur 2
    eine Rasterelektronenmikroskopaufnahme des Gefüges des konventionellen Schnellarbeitsstahles HS 6-5-3,
    Figur 3
    Rasterelektronenmikroskopaufnahmen der Legierung gemäß des erfindungsgemäßen Beispieles 1,
    Figur 4 und
    bevorzugte Formen dispers und homogen verteilter kompakter Hartphasen,
    Figur 5
    eine Darstellung der Mikrowärmhärte über der Prüftemperatur für die drei erfindungsgemäßen Legierungsbeispiele, sowie die konventionelle Legierung HS 6-5-3.
  • In Figur 1 ist, wie bereits ausgeführt ein Gußrohling eines Brikettiersegmentes dargestellt. Hierbei umfasst der Gußrohling einen Segmentkopf 1 und einen Segmentfüsse 2. Ein entsprechender Gußrohling wird zunächst vorbereitet, um die Flächen insbesondere hinsichtlich der Durchmesser vorzubearbeiten. Nach einer durchgeführten Wärmebehandlung erfolgt das Einbringen von Förmchen bzw. Formmulden in die Oberfläche des Segmentkopfes 1. Eine Vielzahl entsprechender, zusätzlich einer Endbearbeitung unterworfener Brikettiersegmente werden dann auf einer Walzenoberfläche angeordnet und bilden eine annähernd geschlossene Arbeitsfläche auf dieser.
  • Um eine ausreichende Lebensdauer entsprechender Brikettiersegmente sowohl bei der Kaltwie auch insbesondere der Heißbrikettierung zu gewährleisten, muss der Segmentkopf einen hohen Verschleißwiderstand bei hohen Arbeitstemperaturen aufweisen und der Segmentfuß 2 gleichzeitig über eine hohe Bruchsicherheit bzw. hohen Widerstand gegen Rissausbreitung verfügen. Die vorliegende Erfindung stellt einen Werkstoff zur Verfügung, welcher diese Anforderungen vollständig erfüllt.
  • In Figur 3 ist das Gefüge einer Legierungsvariante gemäß eines ersten Beispiels der Erfindung dargestellt. Diese Legierung, welche eine besondere Ausführungsform der Erfindung mit 2.5 Gew.-% C, 4.0 Gew.-% Cr, 5.0 Gew.-% Mo, 6.0 Gew.-% V, 2.0 Gew.-% W, 0.70 Gew.-% Nb, 5.0 Gew.-% Co, 0.90 Gew.-% Ti, 0.05 Gew.-% Al darstellt, wird im folgenden als HB1 bezeichnet. Wie aus den Gefügebildem deutlich wird, ist neben geringen Mengen der Karbidtypen M2C und M6C ein hoher Anteil an hochharten Karbiden des Typs MC in eine warmfeste, sekundär gehärtete Metallmatrix eingebettet. Nach dem Austenitisieren mit TA < 1200 °C und mehrmaligem Anlassen erreichte die erfindungsgemäße Zusammensetzung HB1 eine Makrohärte von 60 HRC bei Raumtemperatur.
  • Die besondere Ausführungsform HB1 gemäß Beispiel 1 aus dem erfindungsgemäßen Legierungsbereich mit 2.5 Gew.-% C, 4.0 Gew.-% Cr, 5.0 Gew.-% Mo, 6.0 Gew.-% V, 2.0 Gew.-% W, 0.70 Gew.-% Nb, 5.0 Gew.-% Co, 0.90 Gew.-% Ti sowie geringen Mengen Al stellt einen Werkstoff mit fein verteilten Monokarbiden, eingebettet in eine warmfeste Matrix ohne Hartphasen-Netzwerkbildung zur Verfügung.
  • Eine entsprechende Legierung kann durch Einsatz bekannter Gußverfahren unter Verwendung bekannter Parameter hergestellt werden. Im Rahmen der vorliegenden Erfindung wurden folgende Verfahrensschritte und Parameter verwendet. Das Gießen erfolgte im Sandgußverfahren. Hierbei betrugen die Abgußtemperaturen 1400 - 1650°C. Die Abkühlung der Legierung erfolgte im Formkasten. Unter Verwendung der oben genannten Parameter wurde die oben genannte, wie auch die beiden nachfolgenden Legierungsbeispiele als beispielhafte bevorzugte Ausführungsformen der vorliegenden Erfindung hergestellt.
  • Im Einzelnen wurden als Keimbildner für die weitere Ankristallisation von vanadium- und molybdänhaltigen Karbiden des Typs MC geringe Mengen an Nb und Ti zugegeben, die früh in Form von feinverteilten Monokarbiden aus der Schmelze ausgeschieden werden. In die gleiche Richtung zielt die Zugabe von Aluminium, das Sauerstoff und Stickstoff in fein ausgeschiedenen Al-Oxiden bzw. Nitriden abbindet. Zur Gewährleistung einer für einen guten Verschleißwiderstand notwendigen Karbidmenge wurden 6 Gew.-% Vanadium eingesetzt. Für die Warmfestigkeit der Matrix wurden die mischkristallverfestigenden Eigenschaften des Kobalts (5 Gew.-%) sowie in geringem Maße die des Molybdäns genutzt. Um bei dieser Legierung die Bildung von M6C-Karbiden aus der Schmelze zu minimieren, fand Wolfram mit nur 2 Gew.-% Anwendung. Diese Legierungszusammensetzung bewirkt eine frühe Erstarrung von vanadiumreichen Monokarbiden mit Anteilen an Mo, Ti, Cr sowie Nb und W. Berechnungen und Messungen zufolge enthält die Legierung einen Gesamtkarbidgehalt von 16 Vol.-%. Der Kohlenstoffgehalt wurde auf 2.5 Gew.-% C gesetzt, damit nach Erstarrung der Hartphasen und einem Austenitisieren und Abschrecken noch ca. 0,6 Gew.-% C in der Matrix gelöst sind, um eine martensitisch härtbare Matrix zu gewährleisten.
  • Nachfolgend wird ein zweites Beispiel der vorliegenden Erfindung näher erläutert. Eine zweite erfindungsgemäß ausgeführte Legierung, welche nachfolgend als HB2 bezeichnet wird, enthielt 3.1 Gew.% C, 7.0 Gew.-% Cr, 7.0 Gew.-% Mo, 8.0 Gew.-% V, 1.5 Gew.-% W, 0.7 Gew.-% Nb, 5.0 Gew.-% Co, 0.9 Gew.-% Ti und geringe Anteile Al. Die Legierung gemäß Beispiel 2 war auf die Erzielung einer möglichst hohen Karbidmenge bei gleichzeitig warmfester Matrix ausgelegt. Alle karbidbildenden Legierungselemente wurden daher in hohen Konzentrationen zulegiert. Neben den als Keimbildner fungierenden Elementen Titan (0.9 Gew.-%), Niob (0.7 Gew.-%) sowie Aluminium kamen vor allem Vanadium (8.0 Gew.-%) sowie Molybdän (7.0 Gew.-%) zum Einsatz. Molybdän wird zum Teil mit in die Monokarbide eingebaut und bildete ein hartes Mischkarbid zusammen mit Vanadium und Kohlenstoff. Insgesamt wurde ein Karbidgehalt von etwa 21 Vol.-% angestrebt. Der erhöhte Chromgehalt wurde zur Erhöhung der Einhärtetiefe sowie einer Härtesteigerung der Matrix eingesetzt. Das Element Kobalt diente mit 5 Gew.- % der Warmfestigkeitssteigerung. Der Wolframgehalt wurde auf 1.5 Gew.-% gesenkt, um die Bildung unerwünschter M6C-Karbide zu vermeiden.
  • Die große Menge keim- und karbidbildender Elemente bewirkte eine sehr frühe Erstarrung von Monokarbiden aus der Schmelze. Dies bedeutet gleichzeitig, dass andere Phasen, insbesondere die unerwünschten M6C- sowie M2C-Karbide, nur in geringem Maße aus der Schmelze entstehen. Durch einen Kohlenstoffgehalt knapp oberhalb von 3 Gew.-% C konnte ein Matrixkohlenstoffgehalt von knapp 0,6 Gew.-% bei Härtetemperaturen unterhalb von 1200 °C realisiert werden. Nach dem Härten wurde durch Anlassen im Sekundärhärtebereich ein ausreichend hartes Gefüge eingestellt, das bei Anwendungstemperaturen knapp unterhalb der Anlasstemperatur eine hohe Warmhärte aufwies.
  • Ein drittes erfindungsgemäßes Beispiel einer weiteren erfindungsgemäßen Ausführungsform des genannten Legierungsbereiches wird durch die nachfolgende Legierung, im folgenden HB3 bezeichnet, näher beschrieben. Mit HB3, welche 3.4 Gew.-% C, 6.0 Gew.-% Cr, 7.0 Gew.-% Mo, 10.0 Gew.-% V, 1.5 Gew.-% W, 0.5 Gew.-% Nb, 7.0 Gew.-% Co, 0.9 Gew.-% Ti und geringe Gehalte an Aluminium enthielt, wurde ein Werkstoff bereitgestellt, der auf hohe Verschleißbeständigkeit bei gleichzeitig hoher Warmfestigkeit ausgelegt ist. Neben den warmfestigkeitssteigemden Elementen Kobalt (7.0 Gew.-%) und Molybdän (7.0 Gew.-%), welches in diesem Konzept auch der Bildung von Mischkarbiden diente, wurde der Gehalt an M6C-bildendem Wolfram (1.5 Gew.-%) zugunsten des monokarbidbildenden Vanadiums (10 Gew.-%) reduziert. Chrom wurde mit 6 Gew.-% eingebunden, vor allem, um die Einhärtetiefe bei Randschichthärtung zu erhöhen. Der Gehalt an Kohlenstoff betrug bei dieser Legierung 3.4 Gew.-%. Thermodynamischen Gleichgewichtsberechnungen zufolge bietet dieses Legierungskonzept bereits bei moderaten Härtetemperaturen unterhalb von 1150°C einen ausreichenden Kohlenstoffgehalt von etwa 0.53 Gew.-% in der Matrix. Das aus thermodynamischen Berechnungen ermittelte Phasendiagramm weist ein weites Gebiet aus Austenit und Karbid des Typs MC auf, das insbesondere auch einen gewissen Spielraum für den Kohlenstoffgehaft in dieser Legierung erlaubt. Die entstehenden Monokarbide bilden auch hier den dominierenden Karbidtyp, der in einem Gehalt von etwa 24 Vol.-% vorliegt.
  • Die Eigenschaften der erfindungsgemäßen Legierungen wie auch die herkömmlicher Schnellarbeitsstähle wurden in verschiedenen Untersuchungen ermittelt und einander gegenübergestellt. Die ermittelten Ergebnisse sind hierbei in der nachfolgenden Tabelle 1 zusammengefasst.
    Figure imgb0001
  • Die Gesamtkarbidmenge des konventionellen Schnellarbeitsstahles HS 6-5-3 liegt im Bereich von 8 bis 11 Vol% und beinhaltet dabei etwa 1 bis 2 Vol% Karbide des Typs MC. Im Gegensatz dazu liegt der Gesamtkarbidgehalt der neuen, erfindungsgemäßen Legierungen HB1, HB2 und HB3 zwischen 16 und 24 Vol% (vergleiche Tabelle 1, Spalte 1) und besteht zum größten Anteil aus harten Karbiden des Typs MC, wie zusätzliche Untersuchungen gezeigt haben, z.B. Rasterelektronenmikroskopaufnahmen und Karbidanalysen.
  • Der abrasive Verschleißwiderstand bei Raumtemperatur liegt für HB1, HB2 und HB3 deutlich höher, wie beispielsweise der Stift-Scheibe-Verschleißversuch gegen das Abrasiv Flint der Körnung 220 im Vergleich zum HS 6-5-3 (vergleiche Tabelle 1, Spalte 2) aussagt. Wird zum Beispiel eine Warmhärte der Metallmatrix von mindestens 530 HV0.05 gefordert, so halten die neuen Legierungen HB1, HB2 und HB3 diese Mindesthärte noch bei wesentlich höheren Temperaturen als der konventionelle Werkstoff HS 6-5-3 (Tabelle 1, Spalte 3). Bei einer Temperatur von 580 °C liegen die ermittelten Mindestwerte für die Warmhärte für HB1, HB2 und HB3 signifikant höher als beim konventionellen HS 6-5-3 (Tabelle 1, Spalte 4) . Die Kombination aus hoher Verschleißbeständigkeit und hoher Warmhärte macht sich besonders im Warmverschleißversuch bemerkbar, in dem die Werkstoffproben bei hoher Temperatur einem abrasiven Angriff durch lose Flintteilchen ausgesetzt werden. Die in Tabelle 1, Spalte 5 angegebenen Kennwerte für HB1, HB2 und HB3 übersteigen den Wert für den konventionellen HS 6-5-3 erheblich und verdeutlichen das Potential der erfindungsgemäßen Legierungen für den Werkzeugeinsatz bei hohen Temperaturen.
  • Als Maß für die Festigkeit eines Brikettiersegmentes sind in der Tabelle 1 in Spalte 6 die im Vierpunkt-Biegeversuch (4PB) ermittelte Biegebruchfestigkeiten im gehärteten und angelassenen Zustand sowie in der Tabelle 1 in Spalte 7 Biegebruchfestigkeiten im weichgeglühten Zustand der Legierungen HB1, HB2 und HB3 im Vergleich zum konventionellen Werkstoff HS 6-5-3 angegeben. Dabei ist zu beachten, dass ein zunehmender Gehalt an groben Hartphasen unter ansonsten vergleichbaren Bedingungen die Anfälligkeit gegen Bruch für gewöhnlich erhöht. Der erfindungsgemäße Vorteil der ausgeführten Legierungen HB1, HB2 und HB3 liegt in der Kombination aus angemessen hoher Festigkeit und Verschleißbeständigkeit und kommt daher insbesondere dann zum Vorschein, wenn die Festigkeitswerte mit dem für einen hohen Verschleißwiderstand verantwortlichen Gesamtkarbidgehalt multiplikativ zu einem Kennwert verknüpft werden.
  • Dieser Kennwert liegt für die neuen Legierungen HB1, HB2 und HB3 sowohl für den gehärteten und angelassenen Zustand (vergleiche Tabelle 1, Spalte 8) als auch für den weichgeglühten Zustand (vergleiche Tabelle 1, Spalte 9) weit über demjenigen des Vergleichswerkstoffes HS 6-5-3.
  • Als Maß für die Zähigkeit eines Brikettiersegmentes sind in Tabelle 1, Spalte 10 die im Dreipunkt-Biegeversuch (3PB) ermittelten Bruchzähigkeiten im gehärteten und angelassenen Zustand sowie in Tabelle 1, Spalte 11 die Bruchzähigkeiten im weichgeglühten Zustand der Legierungen HB1, HB2 und HB3 im Vergleich zum konventionellen Werkstoff HS 6-5-3 angegeben. Dabei ist zu beachten, dass ein zunehmender Gehalt an groben Hartphasen unter ansonsten vergleichbaren Bedingungen die Bruchzähigkeit für gewöhnlich senkt. Der erfindungsgemäße Vorteil der beschriebenen Legierungen HB1, HB2 und HB3 liegt in der Kombination aus angemessen hoher Zähigkeit und Verschleißbeständigkeit und kommt daher insbesondere dann zum Vorschein, wenn die Zähigkeitswerte mit dem für einen hohen Verschleißwiderstand verantwortlichen Gesamtkarbidgehalt multiplikativ zu einem Kennwert verknüpft werden. Dieser Kennwert liegt für die neuen Legierungen HB1, HB2 und HB3 sowohl für den gehärteten und angelassenen Zustand (vergleiche Tabelle 1, Spalte 12) als auch für den weichgeglühten Zustand (vergleiche Tabelle 1, Spalte 13) weit über demjenigen des Vergleichswerkstoffes HS 6-5-3.
  • Die geforderten Eigenschaften hoher Verschleißbeständigkeit, Festigkeit und Zähigkeit können schließlich in einem Kennwert aus der multiplikativen Verknüpfung des ermittelten Gesamtkarbidgehaltes, der Biegebruchfestigkeit und der Bruchzähigkeit zum Ausdruck gebracht werden. Auch hierbei wird der erfindungsgemäße Vorteil der ausgeführten Legierungen HB1, HB2 und HB3 im Vergleich zum konventionellen Werkstoff für den gehärteten und angelassenen Zustand (vergleiche Tabelle 1, Spalte 14) sowie den weichgeglühten Zustand (vergleiche Tabelle 1, Spalte 15) überaus deutlich.
  • Im Vergleich zur netzförmigen Anordnung der im konventionellen Werkstoff HS 6-5-3 enthaltenen Karbide sollten die harten primären Karbide vom Typ MC in den erfindungsgemäß ausgeführten Legierungen HB1, HB2 und HB3 homogen und möglichst dispers verteilt vorliegen. Wie in Figur 3 an einer Aufnahme eines Gefügeschliffs der Legierung HB1 gezeigt, gelingt dies im beanspruchten Legierungsbereich hervorragend. Das Gefüge umfasst fein verteilte Monokarbide, eingebettet in eine warmfeste Matrix ohne Hartphasen-Netzwerkbildung.
  • Figur 5 zeigt schließen graphisch einen Vergleich der bei durchgeführten Messungen erzielen Mikrowarmhärten über die Prüftemperaturen. Es wird deutlich, dass sich die erfindungsgemäßen Legierungen durch deutlich besser Mikrowarmhärten , insbesondere bei höheren Temperaturen auszeichnen.
  • Im Einsatz kann ein aus dem erfindungsgemäßen Werkstoff hergestelltes Werkzeug zusammen mit anderen Werkzeugen über eine Schraubverbindung, eine Klemmverbindung oder eine Schrumpfverbindung auf einem Walzenkern fixiert werden.
  • Ferner kann der Werkstoff als Werkzeug außer einer segment-, ring- oder walzen- bzw. zylinderförmigen Geometrie auch andere Geometrien wie eine Stab-, Kegel-, Pilz-, Quader-, Würfel-, Pyramiden-, Kugel-, Platten- oder auch eine prismatische, paraboloide oder hyperboloide Form annehmen und lässt sich in verschiedensten Gebieten einsetzen
  • Ein entsprechendes Werkzeug kann auch in einer anderen als einer segment-, ring- oder walzen- bzw. zylinderförmigen Geometrie bei einer Verarbeitung mineralischer Güter zum Einsatz kommen, bei der das Werkzeug durch Indentation und/oder Abrasion beansprucht wird.
  • Ferner kann es auch in einer anderen als einer segment-, ring- oder walzen- bzw. zylinderförmigen Geometrie bei einer Verarbeitung mineralischer Güter zum Einsatz kommen, bei der das Werkzeug durch Drücken, Scheren, Schlagen, Prallen oder Reiben tribologisch beansprucht wird.

Claims (22)

  1. Verschleißbeständiger, warmfester Werkstoff, insbesondere für ein Presswerkzeug zur Brikettierung, Kompaktierung und/oder Zerkleinerung, vorzugsweise in einer Walzenpresse,
    in dem der Werkstoff eine hartphasenreiche Guß-Legierung auf Eisenbasis mit der chemischen Zusammensetzung
    C: 2,3 - 3,7 Gew.-%
    Cr: 3,0 - 8,0 Gew.-%
    Mo: 4,0 - 8,0 Gew.-%
    V: 5,0 - 11,0 Gew.-%
    W: 0,5 - 5,0 Gew.-%
    Nb: 0,3 - 1,0 Gew.-%
    Co: 0,5 - 8,0 Gew.-%
    Ti: 0,2 - 1,5 Gew.-%
    Al: 0,01 - 1,0 Gew.-%
    Rest Fe, sowie unvermeidbare Verunreinigungen
    umfasst,
    dass die Hartphasen als kompakte Hartphasen ausgebildet und in Volumengehalten von 10% bis 50 % in der Legierung dispers und homogen verteilt sind, wenigstens 50% der Hartphasen primäre Karbide vom Typ MC sind, wobei die Karbide im wesentlichen Vanadium und Molybdän enthalten, und wenigstens 50 % dieser primären Hartphasen an ihrer schmalsten Stelle eine Größe von mindestens 7 µm aufweisen.
  2. Verschleißbeständiger, warmfester Werkstoff nach Anspruch 1, bei dem die Guß-Legierung auf Eisenbasis folgende chemische Zusammensetzung umfasst besteht:
    C: 2,5 - 3,4 Gew.-%
    Cr: 4,0 - 7,0 Gew.-%
    Mo: 5,9 - 7,0 Gew.-%
    V: 6,0 - 10,0 Gew.-%
    W: 1,5 - 3,0 Gew.-%
    Nb: 0,5 - 0,7 Gew.-%
    Co: 5,0 - 7,0 Gew.-%
    Ti: 0,5 - 0,9 Gew.-%
    Al: 0,01 - 0,7 Gew.-%, Rest Fe, sowie unvermeidbare Verunreinigungen.
  3. Verschleißbeständiger, warmfester Werkstoff nach Anspruch 1 oder 2, bei dem die Legierungsparameter entsprechend der in Anspruch 1 oder 2 genannten Bereiche so gewählt sind, dass sich nach einer Wärmebehandlung eine Mikrowärmhärte bei einer Prüftemperatur von mindestens 550 HV0,05 bis einschließlich 550°C, von mindestens 530 HV0,05 bis einschließlich 580°C, von mindestens 400 HV0,05 bis einschließlich 600°C und von mindestens 370 HV0,05 bis einschließlich 640°C einstellt.
  4. Verschleißbeständiger, warmfester Werkstoff nach Anspruch 3, bei dem die Wärmebehandlung das Härten im Temperaturbereich von 900-1220°C und das Anlassen im Sekundärhärtebereich von 150 - 700°C, vorzugsweise von 480-650°C umfasst.
  5. Verschleißbeständiger, warmfester Werkstoff nach einem der Ansprüche 1 bis 4, bei dem die dispers und homogen verteilten, kompakten Hartphasen in Volumengehalten von 13 bis 50%, bevorzugt von 13 bis 40 %, besonders besonders bevorzugt von 15 bis 50% in dem Werkstoff enthalten sind.
  6. Verschleißbeständiger, warmfester Werkstoff nach einem der Ansprüche 1 bis 5, bei dem wenigstens 65%, besonders bevorzugt wenigstens 80% der dispers und homogen verteilten kompakten Hartphasen mit dem Typ MC vorliegen.
  7. Verschleißbeständiger, warmfester Werkstoff nach einem der Ansprüche 1 bis 6, bei dem mindestens 50%, bevorzugt mindestens 70%, besonders bevorzugt mindestens 90% der dispers und homogen verteilten primären Hartphasen des Typs MC an ihrer schmalsten Stelle eine Ausdehnung von mindestens 7 µm, bevorzugt mindestens 12 µm, besonders bevorzugt mindestens 15 µm aufweisen.
  8. Verschleißbeständiger, warmfester Werkstoff nach einem der Ansprüche 1 bis 7, bei dem die dispers und homogen verteilten kompakten Hartphasen eine blockige Form mit oder ohne verrundete Ecken, bevorzugt rundliche Form, besonders bevorzugt kugelige Form aufweisen.
  9. Verschleißbeständiger, warmfester Werkstoff nach einem der Ansprüche 1 bis 8, bei dem der Werkstoff eine durch Randschichthärtung, insbesondere Flammhärtung einstellbare Oberflächenhärte von mind. 55 HRC, vorzugsweise mind. 58 HRC, besonders bevorzugt mind. 63 HRC bei einer Prüftemperatur von 20°C aufweist.
  10. Verschleißbeständiger, warmfester Werkstoff nach Anspruch 1 bis 9, bei dem der Werkstoff eine durch Randschichthärtung, insbesondere Flammhärtung einstellbare Oberflächenhärte von mind. 52 HRC, bevorzugt mind. 54 HRC, besonders bevorzugt mind. 56 HRC bei einer Prüftemperatur von 580°C aufweist.
  11. Verschleißbeständiger, warmfester Werkstoff nach Anspruch 1 bis 9, bei dem der Werkstoff eine durch Randschichthärtung, insbesondere Flammhärtung einzustellende Oberflächenhärte von mind. 42 HRC, bevorzugt mind. 45 HRC, besonders bevorzugt mind. 48 HRC bei einer Temperatur von 640°C aufweist.
  12. Verschleißbeständiger, warmfester Werkstoff nach einem der Ansprüche 1 bis 11, bei dem die Biegebruchfestigkeit mindestens 820 N/mm2 beträgt und die Bruchzähigkeit mindestens 23 MPam0.5, bevorzugt mindestens 25 MPam0.5, besonders bevorzugt mindestens 27 MPam0.5 beträgt.
  13. Verschleißbeständiger, warmfester Werkstoff nach einem der Ansprüche 1 bis 12, bei dem die Biegebruchfestigkeit mindestens 900 N/mm2 beträgt und die Bruchzähigkeit mindestens 26 MPam0.5, bevorzugt mindestens 29 MPam0.5, besonders bevorzugt mindestens 33 MPam0.5 beträgt.
  14. Verwendung des verschleißbeständigen, warmfesten Werkstoffes nach einem der Ansprüche 1 bis 13 als Gusssegment, Gussstahlring oder im Verbundguss auf Walzenpressen zur Brikettierung, Kompaktierung und/oder Zerkleinerung.
  15. Verwendung des verschleißbeständigen, warmfesten Werkstoffes nach einem der Ansprüche 1 bis 13 zur Heißbrikettierung körniger Stoffe, vorzugsweise für direkt reduziertes Eisen oder Hüttenstäube bei Temperaturen von 400°C < T < 850°C.
  16. Verwendung des verschleißbeständigen, warmfesten Werkstoffes nach einem der Ansprüche 1 bis 13 zur Kaltbrikettierung bei Temperaturen von -20 < T < 400°C.
  17. Verfahren zur Herstellung des verschleißbeständigen, warmfesten Werkstoffes nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Werkstoff nach dem Urformen auf einer Randschichtbehandlung zur Erzeugung einer harten Arbeitsfläche zugeführt wird.
  18. Verfahren zur Herstellung des verschleißbeständigen, warmfesten Werkstoffes nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Werkstoff nach dem Urformen einer durchgreifenden Wärmebehandlung unterworfen wird.
  19. Verfahren zur Herstellung des verschleißbeständigen, warmfesten Werkstoffes nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Formmulden des herzustellenden Werkzeuges durch das Urformen vorgegeben werden oder durch Bearbeitung vor oder nach der Wärmebehandlung eingebracht werden.
  20. Verfahren zur Herstellung des verschleißbeständigen, warmfesten Werkstoffes nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Werkstoff aus der Schmelze zu einem Pulver gasverdüst wird, das durch Sintern mit oder ohne Druck mit oder ohne flüssige Phase verdichtet und zugleich auf einem Stahlsubstrat zur Herstellung eines Segmentes oder Ringes mit Formmulden aufgesintert wird, wobei die Größe der primären Hartphasen maximal 20 µm beträgt.
  21. Verfahren zur Herstellung des verschleißbeständigen, warmfesten Werkstoffes nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Werkstoff nach der Schmelze zu einem Pulver gasverdüst wird, welches nach dem Befüllen und Evakuieren einer gasdichten Blechkapsel durch heißisostatisches Pressen auf einem festen oder pulverförmigen Stahlsubstrat zur Herstellung eines Segmentes oder Ringes mit Formmulden verdichtet wird, wobei die Größe der primären Hartphasen maximal 7 µm beträgt.
  22. Verfahren zur Herstellung des verschleißbeständigen, warmfesten Werkstoffes nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Werkstoff aus der Schmelze zu einem Pulver gasverdüst wird, das über kaltisostatisches Pressen, uniaxiales Pressen, Strangpressen oder Pulverschmieden verdichtet oder durch thermisches Spritzen weiterverarbeitet wird, wobei die Größe der primären Hartphasen maximal 7 µm beträgt.
EP20100015691 2010-01-15 2010-12-15 Verschleissbeständiger, warmfester Werkstoff, sowie dessen Verwendung Not-in-force EP2354264B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201030048T SI2354264T1 (sl) 2010-01-15 2010-12-15 Na obrabo odporna, toplotno odporna snov in njena uporaba

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010004722 DE102010004722B4 (de) 2010-01-15 2010-01-15 Verschleißbeständiger, warmfester Werkstoff, sowie dessen Verwendung

Publications (2)

Publication Number Publication Date
EP2354264A1 EP2354264A1 (de) 2011-08-10
EP2354264B1 true EP2354264B1 (de) 2012-05-23

Family

ID=43759390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100015691 Not-in-force EP2354264B1 (de) 2010-01-15 2010-12-15 Verschleissbeständiger, warmfester Werkstoff, sowie dessen Verwendung

Country Status (3)

Country Link
EP (1) EP2354264B1 (de)
DE (1) DE102010004722B4 (de)
SI (1) SI2354264T1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20110685A1 (it) * 2011-12-23 2013-06-24 Internat Ct For Genetic En Gineering And Microrna per la rigenerazione cardiaca attraverso l induzione della proliferazione dei miociti cardiaci
DE102014103555A1 (de) * 2014-03-14 2015-09-17 Rwe Power Ag Formzeug aus pulvermetallurgischem Werkstoff

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469514A (en) * 1965-02-26 1984-09-04 Crucible, Inc. Sintered high speed tool steel alloy composition
SE344968C (sv) * 1970-08-28 1976-01-22 Hoeganaes Ab Pulvermaterial for framstellning av hoglegerat stal med god anlopningsbestendighet och varmhardhet
EP0430241B1 (de) * 1989-11-30 1996-01-10 Hitachi Metals, Ltd. Verschleissfeste Verbundwalze
JPH05132735A (ja) * 1991-06-26 1993-05-28 Kubota Corp 高耐摩耗ロール材およびその鋳造法
WO1993005192A1 (en) * 1991-09-12 1993-03-18 Kawasaki Steel Corporation Material of outer layer of roll for rolling and compound roll manufactured by centrifugal casting
JPH108212A (ja) * 1996-06-26 1998-01-13 Sumitomo Metal Ind Ltd 熱間圧延用ロール
JP3268210B2 (ja) * 1996-08-29 2002-03-25 株式会社クボタ 黒鉛を有するハイス系鋳鉄材
JP3824827B2 (ja) * 1999-11-30 2006-09-20 株式会社クボタ 圧延ロール用外層及び圧延ロール
JP2000160277A (ja) * 2000-01-01 2000-06-13 Kubota Corp 複合ロール

Also Published As

Publication number Publication date
EP2354264A1 (de) 2011-08-10
SI2354264T1 (sl) 2012-08-31
DE102010004722B4 (de) 2013-05-08
DE102010004722A1 (de) 2011-07-21

Similar Documents

Publication Publication Date Title
EP3228724B1 (de) Werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand
DE602004011136T2 (de) Schnellarbeitsstahl und Verfahren zu seiner Herstellung
DE69818138T2 (de) Kaltarbeitswerkzeugstahlteilchen mit hoher Schlagfestigkeit aus Metallpulver und Verfahren zu seiner Herstellung
WO2006117030A1 (de) Pulvermetallurgisch hergestellter, verschleissbeständiger werkstoff
DE1298293B (de) Hochverschleissfeste, bearbeitbare und haertbare Sinterstahllegierung und Verfahren zu deren Herstellung
EP1274872B1 (de) Verfahren zur herstellung eines stickstofflegierten, sprühkompaktierten stahls, verfahren zu seiner herstellung
EP1647606B1 (de) Hochharte Nickelbasislegierung für verschleissfeste Hochtemperaturwerkzeuge
EP2354264B1 (de) Verschleissbeständiger, warmfester Werkstoff, sowie dessen Verwendung
EP2386660B1 (de) Gusskörper
EP4018006A1 (de) Werkzeugstahl für kaltarbeits- und schnellarbeitsanwendungen
DE19711642A1 (de) Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
EP2364800A1 (de) Heißisostatisch gepresster Verbundkörper, Verfahren zu seiner Herstellung sowie dessen Verwendung
EP3323903B1 (de) Pulvermetallurgisch hergestellter stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil
DE1758714C3 (de) Verfahren zur pulvermetallurgischen Herstellung eines vorlegierten Werkzeugstahls
EP0149210B1 (de) Verfahren zum Herstellen hochfester, duktiler Körper aus Kohlenstoffreichen Eisenbasislegierungen
EP1129803B1 (de) Pulvermetallurgisch hergestelltes Material mit verbesserter Isotropie der mechanischen Eigenschaften
EP1471160A1 (de) Kaltarbeitsstahl-Gegenstand
EP3189172B1 (de) Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung
DE102021120273A1 (de) Verfahren zur Herstellung eines Sinterkarbid-Materials mit verstärkter Binderphase
DE102022102081A1 (de) Verfahren zur Herstellung eines Sinterkarbid-Materials mit verstärkter Binderphase
DE10306819A1 (de) Kupferlegierung und Verwendung einer solchen Legierung für Giessformen
DE1927111C (de) Hartmetall
DE102011079955A1 (de) Stahl, Bauteil und Verfahren zum Herstellen von Stahl
DE112017006594T5 (de) Gussmaterial und Verfahren zur Herstellung eines Gussmaterials
DE1216550B (de) Verwendung einer pulvermetallurgisch hergestellten Titankarbid-Stahl-Legierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/00 20060101ALI20110928BHEP

Ipc: C22C 37/00 20060101AFI20110928BHEP

Ipc: C21D 6/00 20060101ALI20110928BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 559129

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010000777

Country of ref document: DE

Effective date: 20120719

RIN2 Information on inventor provided after grant (corrected)

Inventor name: PACKEISEN, ANDREAS

Inventor name: GEVELMANN, GERHARD

Inventor name: THEISEN, WERNER

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120924

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010000777

Country of ref document: DE

Effective date: 20130226

BERE Be: lapsed

Owner name: MASCHINENFABRIK KOPPERN GMBH. & CO. K.G.

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120823

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120903

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010000777

Country of ref document: DE

Representative=s name: ANDREJEWSKI - HONKE PATENT- UND RECHTSANWAELTE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 559129

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211208

Year of fee payment: 12

Ref country code: FR

Payment date: 20211224

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20211208

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010000777

Country of ref document: DE

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20230810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231