EP1252445B1 - Pompe turbo-moléculaire - Google Patents
Pompe turbo-moléculaire Download PDFInfo
- Publication number
- EP1252445B1 EP1252445B1 EP01909681A EP01909681A EP1252445B1 EP 1252445 B1 EP1252445 B1 EP 1252445B1 EP 01909681 A EP01909681 A EP 01909681A EP 01909681 A EP01909681 A EP 01909681A EP 1252445 B1 EP1252445 B1 EP 1252445B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- pump according
- blades
- radially
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005086 pumping Methods 0.000 claims description 31
- 230000007423 decrease Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 4
- 230000004323 axial length Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/127—Multi-stage pumps with radially spaced stages, e.g. for contrarotating type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/16—Centrifugal pumps for displacing without appreciable compression
- F04D17/168—Pumps specially adapted to produce a vacuum
Definitions
- the invention relates to a turbomolecular pump having the features of the preamble of patent claim 1.
- Turbomolekularvakuumpumpen are for example from the WO 94/00694 known. They are designed in the manner of a turbine with rotor and Statorschaufelschschsch. Stator and rotor extend substantially cylindrical and are arranged coaxially to the axis of rotation of the rotating component. The longitudinal axes of the alternately intermeshing stator and rotor blades extend radially, so that there is a substantially axially directed conveying direction. One or more pairs of a rotor blade row and a stator blade row form a pump stage. The adjustment of the conveying properties of a pumping stage (pumping speed, compression) via the formation of the blades, preferably on the angle of attack.
- turbomolecular vacuum pumps of the type described, a minimum number of pumping stages can not be undercut. As a result, they build relatively long, especially since the drive motor still increases the axial length.
- turbomolecular pump with the features of the preamble of claim 1 is known.
- Your rotor and stator components are designed and arranged such that the gases are conveyed in the radial direction from outside to inside.
- a turbomolecular pump of this type has the advantages that its axial length (without drive motor) does not significantly exceed the stator and rotor vanes and that the rotor and stator together with their respective vanes can be integrally formed because the intermeshing vanes are no longer radially but extend axially.
- the present invention has for its object to further improve a turbomolecular pump with the features of the preamble of claim 1 in terms of their efficiency.
- Vacuum pumps of the type concerned here are preferably operated so that the delivery chamber decreases in the conveying direction of the gases.
- the decrease in the axial height of the delivery chamber is connected to a further, not only by the flow direction of the gases from the outside inward-related decrease in the delivery volume in the conveying direction, whereby the set goal of improving the efficiency of the pump is achieved.
- blade disks described can be made by cutting and EDM machines. Both techniques are relatively inexpensive. With the achievable reduction in the variety of parts, the invention is a real alternative to meet today's price pressure.
- FIG. 1 shows that in the embodiments of a friction pump 1 according to the invention, the longitudinal axes of the blades 2, 3 extend parallel to the axis of rotation 4 of the rotating component. They are arranged in concentric rows about the axis of rotation 4. The rows of rotor blades 2 and the rows of stator blades 3 alternate. They interlock and have in a conventional manner in the flow direction (arrow 16) changing angles of attack.
- FIGS. 2 to 4 show that the blades 2, 3 are components of rotating or stationary carriers 6 and 7, respectively.
- the rotating support 6 and the fixed support 7 have the shape of a disc.
- the blade-side surface of the stator disk 7 is designed conically in such a way that the distance between the two disks 6, 7 decreases from outside to inside. The length of the blades 2, 3 decreases from outside to inside.
- the fixed support 7 has the shape of a funnel, so that the distance between the supports 6 and 7 decreases from inside to outside.
- the length of the blades 2, 3 is adapted to this change in distance.
- FIG. 4 also shows that the stationary carrier 7 is part of a housing 8 of the pump 1. It consists of the carrier 7 with a connecting piece 9 and of a flat, cup-shaped housing part 11, which is flanged with its edge on the carrier 7.
- the bottom 12 of the housing part 11 extends parallel to the rotor disk 6. It carries the drive motor 13, whose shaft 14 passes through an opening in the bottom 12 and is coupled to the rotor disk 6.
- a further connection piece 15 is provided on the housing part 12.
- Vacuum pumps are preferably operated so that the delivery chamber decreases in the conveying direction of the gases.
- This property have friction pumps 1 according to the invention already when the gases are conveyed from the outside to the inside (compare the arrows 16 shown in FIGS.
- the formation of the fixed support 7 according to FIG. 3 further enhances this property.
- the width of the blades 2, 3 can also decrease from the outside to the inside (cf., in particular, FIG.
- FIG. 4 An example of a friction pump 1 operated in this way is shown in FIG. 4 (arrows 18).
- the connecting flange 9 forms the inlet, the connecting flange 15, the outlet of the pump.
- a change in the delivery chamber in the direction of the required gases is influenced by the fact that the distance of the carrier 6, 7 and thus the length of the blades 2, 3 decreases from the inside to the outside.
- FIGS. 5 and 6 show a dual-flow design of a friction pump 1.
- An inner group of blade rows conveys the gases radially outwardly (arrows 21), an outer group of blade rows from outside to inside (arrows 22).
- the connecting pieces 9 and 15 are inlet nozzles.
- the stator 7 is equipped with a connecting piece 23 which has the function of an outlet.
- By reversing the direction of rotation results in a further configuration (1 intake manifold, 2 outlet), as it can be used for leak detector with countercurrent principle.
- a plurality of radially conveying pump stages are located axially one above the other in the housing 8.
- the rotating system comprises two rotor disks 6, each of which carries rotor blades 2 on both sides.
- the housing 8 and a housing-fixed carrier 25, which is located between the two rotor disks 6, carry corresponding stator blades 3.
- Dotted arrows 27 show that the connecting piece 9 has the function of an inlet and that the subsequent, radially compressing stages (four in all) convey alternately from inside to outside and from outside to inside.
- the outlet is designated 26. It lies inside and surrounds the drive shaft 14, so that in this area sealing means are not required.
- Figure 8 shows one way in which a radially compressing friction pump 1 can be combined with an axially compressing friction pump 31 of the prior art.
- the friction pump 31 consists of a suction side arranged Turbomolkularpumpencare 32 and a pressure side arranged Molekularpumptreatment 33, the Holweckpumpe (as shown) or may be designed as Gaede-, Siegbahn-, Engtractors- or side channel pump.
- the friction pumps 1 and 31 are located in a common, approximately cylindrical housing 35 with lateral inlet 36.
- a mounted on both ends (bearing 37, 38) shaft 39 carries the respective rotating components of the pump stages (rotor disk 6 of the radially compressing pump 1, rotor 41 of the turbomolecular pumping stage 32, cylinder 42 of the Holweckpumpch 33).
- the lateral inlet 36 of the combined pump opens between the radially compressing pumping stage 1 and the axially compressing pump 31.
- the outlet 44 of the combined pump is located on the pressure side of the molecular pumping stage 33.
- the arrows 45 and 46 show that the radially compressing pumping stage 1 sucks the gases to be delivered in the region of their periphery and the axially compressing pump 31 - as usual - in the region of their high vacuum side.
- the pumped from the pump stage 1 gases pass through a bypass 47 directly to the suction side of Holweckpumpch 33rd
- the peculiarity of the solution according to FIG. 8 is that the drive motor 48 is located on the high-vacuum side of the axially conveying pump 31 (and not, as usual, on the pressure side of the Holweck pumping stage 33). Characterized in that the radially compressing pumping stage 1 is located between the inlet 36 and the drive motor 48, a relatively high pressure can be maintained in the engine compartment 49 (eg 1 x 10 -2 mbar). The usage high vacuum suitable materials in the engine compartment 49 is not required. In addition, the radially promoting pumping stage 1 supports the delivery rate of the turbomolecular pumping stage 32, without thereby significantly increasing the overall length of the pump 31.
- FIGS. 9 to 11 show embodiments of combined friction pumps for use in multi-chamber systems, here two-chamber systems. These are e.g. analyzers with multiple chambers that need to be evacuated to different pressures. As a result, the distance of the intake is predetermined, which often leads in the prior art that relatively long, cantilevered rotor systems are required, requiring complex storage systems.
- All embodiments according to FIGS. 9 to 11 have two lateral inlets 36, 36 '. They are separated from each other by at least one radially compressing pumping stage 1.
- the inlet 36 "sees” respectively, as in the embodiment according to FIG. 8, the inlet regions of an axially conveying friction pump 31 and a friction pump 1 which conveys radially from the outside to the inside.
- the outlet of the radially conveying pump 1 opens into the inlet region of a second turbomolecular pump stage 32 ', to which the second inlet 36' is connected.
- the pump 1 causes the pressure at the inlet 36 to be lower than at the inlet 36 '.
- On the pressure side of the turbomolecular pump stage 32 ' is the drive motor 48.
- This pressure side is connected via the bypass 47 with the suction side of the molecular pumping stage 33.
- a further axially compressing friction pump 1' can be provided to separate the inlets 36, 36 '(FIG. 10). It promotes a partial flow of the gases entering the inlet 36 '.
- the outlets of the two friction pumps 1 and 1 ' communicate with the bypass 47.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Claims (15)
- Pompe à vide turbomoléculaire (1) comprenant un composant fixe (7) portant des rangées d'aubes de stator, ainsi qu'un composant rotatif (6) portant des rangées d'aubes de rotor, les rangées d'aubes de stator et de rotor étant disposées de manière concentrique par rapport à l'axe de rotation (4) du composant rotatif (6) et s'engageant les unes dans les autres ; les composant (6, 7) portant les rangées d'aubes de rotor et de stator s'étendant pour l'essentiel radialement, les axes longitudinaux des aubes (2, 3) s'étendant pour l'essentiel axialement, de sorte que la pompe (1) a une direction pour l'essentiel radiale ; la pompe de refoulement est traversée de l'extérieur vers l'intérieur ; la pompe (1) étant caractérisée en ce que la longueur des aubes diminue de l'extérieur vers l'intérieur.
- Pompe selon la revendication 1, caractérisée en ce que la largeur des aubes diminue de l'extérieur vers l'intérieur.
- Pompe selon la revendication 1 ou 2, caractérisée en ce que les composants (6, 7) portant les aubes (2, 3) sont conçus en forme de disques.
- Pompe selon l'une des revendications précédentes, caractérisée en ce que le composant fixe (7) portant les aubes de stator (3) fait partie d'un carter (8) de la pompe (1).
- Pompe selon l'une des revendications 1 à 4, caractérisée en ce que plusieurs étages de pompe à refoulement radial sont disposés axialement les uns derrière les autres et les étages de pompe sont traversés en alternance de l'intérieur vers l'extérieur et de l'extérieur vers l'intérieur.
- Pompe selon la revendication 5, caractérisée en ce que des composants rotatifs et/ou fixes (6 ou 7) portent des deux côtés des aubes de rotor ou de stator (2 ou 3).
- Pompe selon l'une des revendications précédentes, caractérisée en ce que sa sortie est disposée radialement à l'intérieur et entoure un arbre d'entraînement (14) pour les composants rotatifs (6).
- Pompe selon l'une des revendications précédentes, caractérisée en ce qu'elle est combinée avec au moins un autre étage de pompe à friction (31, 32, 32', 33).
- Pompe selon la revendication 8, caractérisée en ce que l'autre pompe à friction est soit une pompe moléculaire (33), soit une pompe à friction à refoulement axial (31, 32, 32'), dans laquelle les composants portant les rangées d'aubes de rotor et de stator s'étendent pour l'essentiel axialement et les axes longitudinaux des aubes s'étendent pour l'essentiel radialement.
- Pompe selon la revendication 8 ou 9, caractérisée en ce que le composant rotatif (6), conjointement avec les composants rotatifs (41, 42) des autres étages de pompe à friction, est disposé sur un arbre (39).
- Pompe selon la revendication 10, caractérisée en ce qu'elle sépare le côté de vide poussé d'une autre pompe à friction (31) du compartiment moteur (49) d'un moteur d'entraînement commun (48).
- Pompe selon la revendication 9 ou 10, caractérisée en ce qu'elle présente deux ou plusieurs étages de pompe à vide poussé (32, 32') comprenant chacun une entrée (36, 36') et les entrées sont respectivement séparées les unes des autres par au moins un étage de pompe à refoulement radial (1, 1') selon les revendications 1 à 7.
- Pompe selon la revendication 12, caractérisée en ce que deux étages de pompe à vide poussé (32, 32') sont pourvus chacun d'une entrée (36, 36') et l'entrée de l'étage de pompe radial (1) est relié à la première (36) des deux entrées et sa sortie est reliée à la deuxième (36') des deux entrées.
- Pompe selon la revendication 12, caractérisée en ce que deux étages de pompe à refoulement radial (1, 1') séparent l'une de l'autre les entrées (36, 36').
- Pompe selon la revendication 12, caractérisée en ce que pour les étages de pompe à vide poussé (32, 32') et pour les étages de pompe à refoulement radial (1, 1', 1"), on prévoit un étage de pompe moléculaire secondaire commun (33).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10004271A DE10004271A1 (de) | 2000-02-01 | 2000-02-01 | Reibungsvakuumpumpe |
DE10004271 | 2000-02-01 | ||
PCT/EP2001/000726 WO2001057402A1 (fr) | 2000-02-01 | 2001-01-24 | Pompe a vide a friction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1252445A1 EP1252445A1 (fr) | 2002-10-30 |
EP1252445B1 true EP1252445B1 (fr) | 2008-01-23 |
Family
ID=7629403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01909681A Expired - Lifetime EP1252445B1 (fr) | 2000-02-01 | 2001-01-24 | Pompe turbo-moléculaire |
Country Status (5)
Country | Link |
---|---|
US (1) | US7011491B2 (fr) |
EP (1) | EP1252445B1 (fr) |
JP (1) | JP4819277B2 (fr) |
DE (2) | DE10004271A1 (fr) |
WO (1) | WO2001057402A1 (fr) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10150015A1 (de) * | 2001-10-11 | 2003-04-17 | Leybold Vakuum Gmbh | Mehrkammeranlage zur Behandlung von Gegenständen unter Vakuum, Verfahren zur Evakuierung dieser Anlage und Evakuierungssystem dafür |
GB0322889D0 (en) | 2003-09-30 | 2003-10-29 | Boc Group Plc | Vacuum pump |
DE10353034A1 (de) * | 2003-11-13 | 2005-06-09 | Leybold Vakuum Gmbh | Mehrstufige Reibungsvakuumpumpe |
DE102005003091A1 (de) * | 2005-01-22 | 2006-07-27 | Leybold Vacuum Gmbh | Vakuum-Seitenkanalverdichter |
US7632060B2 (en) * | 2005-01-24 | 2009-12-15 | Ford Global Technologies, Llc | Fuel pump having dual flow channel |
US7165932B2 (en) * | 2005-01-24 | 2007-01-23 | Visteon Global Technologies, Inc. | Fuel pump having dual single sided impeller |
GB0618745D0 (en) * | 2006-09-22 | 2006-11-01 | Boc Group Plc | Molecular drag pumping mechanism |
US20090081022A1 (en) * | 2007-09-21 | 2009-03-26 | Honeywell International Inc. | Radially Staged Microscale Turbomolecular Pump |
US20120014779A1 (en) * | 2010-07-16 | 2012-01-19 | Charles David Gilliam | Disc pump |
US20140020556A1 (en) * | 2011-11-04 | 2014-01-23 | Honeywell International Inc. | Mass separation via a turbomolecular pump |
GB2498816A (en) | 2012-01-27 | 2013-07-31 | Edwards Ltd | Vacuum pump |
EP2620649B1 (fr) | 2012-01-27 | 2019-03-13 | Edwards Limited | Pompe à vide de transfert gazeux |
US10352844B2 (en) | 2013-03-15 | 2019-07-16 | Particles Plus, Inc. | Multiple particle sensors in a particle counter |
US9677990B2 (en) | 2014-04-30 | 2017-06-13 | Particles Plus, Inc. | Particle counter with advanced features |
US12044611B2 (en) | 2013-03-15 | 2024-07-23 | Particles Plus, Inc. | Particle counter with integrated bootloader |
US10983040B2 (en) | 2013-03-15 | 2021-04-20 | Particles Plus, Inc. | Particle counter with integrated bootloader |
US11579072B2 (en) | 2013-03-15 | 2023-02-14 | Particles Plus, Inc. | Personal air quality monitoring system |
US20150063982A1 (en) * | 2013-09-01 | 2015-03-05 | Particles Plus, Inc. | Multi-stage inflow turbine pump for particle counters |
CN104600081A (zh) * | 2014-12-31 | 2015-05-06 | 京东方科技集团股份有限公司 | 阵列基板及其制作方法、显示面板、显示装置 |
DE102016210701A1 (de) | 2016-06-15 | 2017-12-21 | Inficon Gmbh | Massenspektrometrischer Lecksucher mit Turbomolekularpumpe und Boosterpumpe auf gemeinsamer Welle |
DE102018119747B3 (de) | 2018-08-14 | 2020-02-13 | Bruker Daltonik Gmbh | Turbomolekularpumpe für massenspektrometer |
EP3767110B1 (fr) * | 2019-07-15 | 2024-09-18 | Pfeiffer Vacuum Gmbh | Système sous vide |
US11519419B2 (en) * | 2020-04-15 | 2022-12-06 | Kin-Chung Ray Chiu | Non-sealed vacuum pump with supersonically rotatable bladeless gas impingement surface |
US11988591B2 (en) | 2020-07-01 | 2024-05-21 | Particles Plus, Inc. | Modular optical particle counter sensor and apparatus |
CN112160919A (zh) * | 2020-09-28 | 2021-01-01 | 东北大学 | 涡轮分子泵和包括该分子泵的复合分子泵 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE107118C (fr) | ||||
DE605902C (de) * | 1932-01-08 | 1934-11-20 | Hugo Seemann Dr | Turbohochvakuumpumpe |
GB479427A (en) | 1935-05-31 | 1938-01-31 | Gyoergy Jendrassik | Improvements in rotary compressors |
CH235102A (fr) * | 1941-06-24 | 1944-11-15 | Dupont Emile | Machine pour la transformation de la pression d'un fluide en travail ou inversement. |
DE845883C (de) | 1950-02-21 | 1952-08-07 | Heraeus Gmbh W C | Verfahren zur Herstellung von Spinnduesen |
DE1845883U (de) * | 1961-10-19 | 1962-02-01 | Akad Wissenschaften Ddr | Molekularpumpe. |
FR2224009A5 (fr) * | 1973-03-30 | 1974-10-25 | Cit Alcatel | |
DD107118A1 (fr) * | 1973-10-03 | 1974-07-12 | ||
SU1252552A1 (ru) | 1984-06-01 | 1986-08-23 | Научно-исследовательский институт прикладной математики и кибернетики при Горьковском государственном университете им.Н.И.Лобачевского | Ротор радиального турбомолекул рного вакуумного насоса |
FR2589529A1 (fr) * | 1985-11-06 | 1987-05-07 | Guimbal Jean | Systeme rotatif de compression ou de refoulement a haute pression |
JPH0689757B2 (ja) * | 1987-05-28 | 1994-11-14 | バキュ−ムプロダクツ株式会社 | 真空ポンプ |
GB8921071D0 (en) * | 1989-09-18 | 1989-11-01 | Framo Dev Ltd | Pump or compressor unit |
WO1994000694A1 (fr) | 1992-06-19 | 1994-01-06 | Leybold Aktiengesellschaft | Pompe a vide a gaz et a friction |
GB9609281D0 (en) * | 1996-05-03 | 1996-07-10 | Boc Group Plc | Improved vacuum pumps |
GB9810872D0 (en) * | 1998-05-20 | 1998-07-22 | Boc Group Plc | Improved vacuum pump |
KR100460173B1 (ko) * | 1998-12-11 | 2004-12-04 | 겐 코오포레이션 | 헬리코박터 파일로리 정착 억제제 |
US6508631B1 (en) * | 1999-11-18 | 2003-01-21 | Mks Instruments, Inc. | Radial flow turbomolecular vacuum pump |
DE10004263A1 (de) * | 2000-02-01 | 2001-08-02 | Leybold Vakuum Gmbh | Dynamische Dichtung |
-
2000
- 2000-02-01 DE DE10004271A patent/DE10004271A1/de not_active Withdrawn
-
2001
- 2001-01-24 EP EP01909681A patent/EP1252445B1/fr not_active Expired - Lifetime
- 2001-01-24 JP JP2001556016A patent/JP4819277B2/ja not_active Expired - Fee Related
- 2001-01-24 US US10/182,843 patent/US7011491B2/en not_active Expired - Fee Related
- 2001-01-24 WO PCT/EP2001/000726 patent/WO2001057402A1/fr active IP Right Grant
- 2001-01-24 DE DE50113533T patent/DE50113533D1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO2001057402A1 (fr) | 2001-08-09 |
DE10004271A1 (de) | 2001-08-02 |
EP1252445A1 (fr) | 2002-10-30 |
DE50113533D1 (de) | 2008-03-13 |
JP4819277B2 (ja) | 2011-11-24 |
US7011491B2 (en) | 2006-03-14 |
US20040013514A1 (en) | 2004-01-22 |
JP2003525379A (ja) | 2003-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1252445B1 (fr) | Pompe turbo-moléculaire | |
EP1252446B1 (fr) | Joint dynamique | |
DE69008683T2 (de) | Kombinierte Turbomolekularpumpe mit zwei Wellen und atmosphärischem Auslass. | |
EP1078166B1 (fr) | Pompe a vide a friction dotee d'un stator et d'un rotor | |
DE3932228A1 (de) | Turbovakuumpumpe | |
DE29516599U1 (de) | Reibungsvakuumpumpe mit Zwischeneinlaß | |
EP2295812B1 (fr) | Récipient repliable | |
WO1993023672A1 (fr) | Pompe a friction a vide a gaz | |
WO2008151968A2 (fr) | Ensemble spectromètres de masse | |
DE69104749T2 (de) | Verbesserte Turbomolekularpumpe. | |
DE102009021620B4 (de) | Vakuumpumpe | |
EP1067290B1 (fr) | Pompe à vide | |
EP1017944B1 (fr) | Pompe compound | |
EP0363503B1 (fr) | Etage de pompage pour une pompe à vide élevé | |
EP1706645B1 (fr) | Pompe à vide à frottement à plusieurs étages | |
EP2253851B1 (fr) | Pompe à vide | |
EP2039941B1 (fr) | Pompe à vide | |
EP1243796B1 (fr) | Pompe à vide | |
DE3032967C2 (fr) | ||
WO2003031823A1 (fr) | Pompe a vide rotative a refoulement axial | |
EP3267040B1 (fr) | Pompe turbomoléculaire | |
DE102011108115A1 (de) | Turbomolekularpumpe | |
EP2235377B1 (fr) | Pompe turbomoléculaire | |
EP1541871B1 (fr) | Etage d' une pompe à canal latéral | |
EP4379216A1 (fr) | Pompe à vide turbomoléculaire compacte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020713 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE FR GB IT LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LEYBOLD VACUUM GMBH |
|
17Q | First examination report despatched |
Effective date: 20060601 |
|
17Q | First examination report despatched |
Effective date: 20060601 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: TURBOMOLECULAR PUMP |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50113533 Country of ref document: DE Date of ref document: 20080313 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080211 Year of fee payment: 8 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100130 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120308 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120124 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50113533 Country of ref document: DE Effective date: 20130801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130124 |