EP1252445A1 - Reibungsvakuumpumpe - Google Patents

Reibungsvakuumpumpe

Info

Publication number
EP1252445A1
EP1252445A1 EP01909681A EP01909681A EP1252445A1 EP 1252445 A1 EP1252445 A1 EP 1252445A1 EP 01909681 A EP01909681 A EP 01909681A EP 01909681 A EP01909681 A EP 01909681A EP 1252445 A1 EP1252445 A1 EP 1252445A1
Authority
EP
European Patent Office
Prior art keywords
pump
pump according
friction
blades
radially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01909681A
Other languages
English (en)
French (fr)
Other versions
EP1252445B1 (de
Inventor
Heinrich Engländer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH, Leybold Vacuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1252445A1 publication Critical patent/EP1252445A1/de
Application granted granted Critical
Publication of EP1252445B1 publication Critical patent/EP1252445B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/127Multi-stage pumps with radially spaced stages, e.g. for contrarotating type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum

Definitions

  • the invention relates to a friction vacuum pump with a fixed component carrying stator blade rows and with a rotating component carrying rotor blade rows, the stator and rotor blade rows being arranged concentrically to the axis of rotation of the rotating component and intermeshing.
  • the friction vacuum pumps of this type include the turbomolecular vacuum pumps, as are known for example from WO 94/00694. They are designed like a turbine with rows of rotor and stator blades.
  • the stator and rotor extend essentially cylindrical and are arranged coaxially to the axis of rotation of the rotating component.
  • the longitudinal axes of the alternately intermeshing stator and rotor blades extend radially, so that there is an essentially axially directed conveying direction.
  • One or more pairs of a rotor blade row and a stator blade row form a pump stage.
  • the delivery properties of a pump stage (pumping speed, compression) are set by designing the blades, preferably by means of their angle of attack.
  • turbomolecular vacuum pumps In the case of turbomolecular vacuum pumps according to the prior art, a minimum number of pump stages cannot be undercut. As a result, turbomolecular vacuum pumps according to the prior art are relatively long, especially since the drive motor increases the axial length. In addition, in known turbomolecular pumps, only one component - usually the rotor - can be formed in one piece, while the other component - usually the stator - must consist of a plurality of parts in order to be able to mount the intermeshing rows of blades.
  • the present invention has for its object to provide a friction vacuum pump of the type mentioned, which is much shorter in the axial direction.
  • the invention makes it possible to build friction pumps whose axial length - apart from the drive motor - does not significantly exceed the length of the stator and rotor blades. Since the blades extend axially, the rotor and stator can be formed in one piece.
  • radially conveying pumps of the type according to the invention are operated in such a way that the conveyed gases flow from outside to inside.
  • the utilization of the different circumferential speeds of the blades proves to be an advantage, since the frictional losses correspond to the pressure area let reduce.
  • the backflow losses compared to the axial compressor in the conveying direction can be greatly reduced, since the stator can be made in one piece and there is no large tolerance chain due to the large number of joining parts.
  • the backflow losses due to the flow around the wing tips are also minimized, since the gaps can also be considerably reduced here by aligning the carriers.
  • wing disks described can be machined by turning and eroding machines. Both techniques are relatively inexpensive. With the achievable reduction in the number of parts, the invention is a real alternative to counter today's price pressure.
  • FIG. 1 shows a radial section through the wings of a friction vacuum pump according to the invention
  • FIGS. 2 to 4 axial sections through different designs
  • FIGS. 5 and 6 sections through a double flow design
  • FIG. 7 shows a section through a multi-stage solution
  • Figure 8 is a combination of a radially promoting
  • FIG. 1 shows that in the embodiments of a friction pump 1 according to the invention the longitudinal axes of the blades 2, 3 extend parallel to the rotary axis 4 of the rotating component. They are arranged in concentric rows around the axis of rotation 4. The rows of rotor blades 2 and the rows of stator blades 3 alternate with one another. They interlock and have, in a manner known per se, changing angles of attack in the direction of flow (arrow 16).
  • Figures 2 to 4 show that the blades 2, 3 are components of rotating or fixed carriers 6 and 7, respectively.
  • the rotating support 6 and the fixed support 7 have the shape of a disk.
  • the blade-side surface of the stator disk 7 is conical in such a way that the distance between the two disks 6, 7 decreases from the outside inwards.
  • the length of the blades 2, 3 also decreases from the outside inwards.
  • the fixed support 7 has the shape of a funnel, so that the distance between the supports 6 and 7 decreases from the inside to the outside.
  • the length of the blades 2, 3 is adapted to this change in distance.
  • FIG. 4 also shows that the fixed support 7 is part of a housing 8 of the pump 1. It consists of the carrier 7 with a connecting piece 9 and a flat, pot-shaped housing part 11 which is flanged to the carrier 7 with its edge.
  • the bottom 12 of the housing part 11 extends parallel to the rotor disk 6. It carries the drive motor 13, the shaft 14 of which extends through an opening in the bottom 12 and is coupled to the rotor disk 6.
  • a further connecting piece 15 is provided on the housing part 12.
  • Vacuum pumps are preferably operated so that the delivery space decreases in the direction of delivery of the gases. This property have friction pumps 1 according to the invention even when the gases are conveyed from the outside in (see arrows 16 shown in FIGS. 1 to 3).
  • the formation of the fixed support 7 according to FIG. 3 reinforces this property.
  • the width of the blades 2, 3 can also decrease from the outside inwards (cf. in particular FIG. 1).
  • FIG. 4 An example of a friction pump 1 operated in this way is shown in FIG. 4 (arrows 18).
  • the connecting flange 9 forms the inlet, the connecting flange 15 the outlet of the pump.
  • a change in the delivery space in the direction of the required gases is influenced by the fact that the distance between the carriers 6, 7 and thus the length of the blades 2, 3 decreases from the inside to the outside.
  • FIGS 5 and 6 show a double flow design of a friction pump 1 according to the invention.
  • An inner group of blade rows conveys the gases radially outwards (arrows 21), an outer group of blade rows from the outside inwards (arrows 22).
  • the connection pieces 9 and 15 are inlet pieces.
  • the stator disk 7 is equipped with a connecting piece 23, which has the function of an outlet. Reversing the direction of rotation results in a further configuration (1 intake port, 2 outlet port) that can be used for leak detectors with the countercurrent principle.
  • the friction pump 1 according to the invention to be multi-flow, that is to say with a plurality of blade groups which, in comparison with their neighboring blade groups, have opposite conveying directions.
  • a plurality of radially conveying pump stages are located axially one above the other in the housing 8.
  • the rotating system comprises two rotor disks 6, each of which carries rotor blades 2 on both sides.
  • the housing 8 and a housing-fixed carrier 25, which is located between the two rotor disks 6, carry corresponding stator blades 3.
  • Drawn arrows 27 show that the connecting piece 9 has the function of an inlet and that the subsequent, radially compressing steps (a total of four) convey alternately from the inside to the outside and from the outside to the inside.
  • the outlet is labeled 26. It lies inside and surrounds the drive shaft 14, so that sealants are not required in this area.
  • FIG. 8 shows one possibility of how a radially compressing friction pump 1 according to the invention can be combined with an axially compressing friction pump 31 according to the prior art.
  • the friction pump 31 consists of a turbomolecular pump stage 32 arranged on the suction side and a molecular pump stage 33 arranged on the pressure side, which as a Holweck pump (as shown provides) or can also be designed as a Gaede, Siegbahn, English or side channel pump.
  • the friction pumps 1 and 31 are located in a common, approximately cylindrical housing 35 with a lateral inlet 36.
  • a shaft 39 mounted on both end faces (bearings 37, 38) carries the rotating components of the pump stages (rotor disk 6 of the radially compressing pump 1, rotor) 41 of the turbomolecular pump stage 32, cylinder 42 of the Holweck pump stage 33).
  • the side inlet 36 of the combined pump opens between the radially compressing pump stage 1 and the axially compressing pump 31.
  • the outlet 44 of the combined pump is located on the pressure side of the molecular pump stage 33.
  • the arrows 45 and 46 shown show that the radially compressing pump stage 1 draws in the gases to be conveyed in the area of its periphery and the axially compressing pump 31 - as usual - in the area of its high vacuum side.
  • the gases conveyed by the pump stage 1 reach the suction side of the Holweck pump stage 33 via a bypass 47.
  • the peculiarity of the solution according to FIG. 8 is that the drive motor 48 is located on the high vacuum side of the axially conveying pump 31 (and not on the pressure side of the Holweck pump stage 33 as is customary). Due to the fact that the radially compressing pump stage 1 is located between the inlet 36 and the drive motor 48, a relatively high pressure can be maintained in the engine compartment 49 (eg I x 10 ⁇ 2 mbar). The use Fertilizing high vacuum compatible materials in the engine room 49 is not necessary. In addition, the radially pumping pump stage 1 supports the pumping capacity of the turbomolecular pumping stage 32 without significantly increasing the overall length of the pump 31.
  • FIGS. 9 to 11 show designs of combined friction pumps for use in multi-chamber systems, here two-chamber systems. This is e.g. multi-chamber analyzers that need to be evacuated to different pressures. As a result, the distance between the intake manifolds is predetermined, which in the prior art frequently leads to the need for relatively long, overhung rotor systems which require complex bearing systems.
  • All of the designs according to FIGS. 9 to 11 have two side inlets 36, 36 '. They are separated from one another by at least one radially compressing pump stage 1. As in the embodiment according to FIG. 8, the inlet 36 "sees" the entry areas of an axially conveying friction pump 31 as well as a friction pump 1 conveying radially from the outside inward.
  • the outlet of the radially delivering pump 1 opens into the inlet region of a second turbomolecular pump stage 32 ', to which the second inlet 36' is connected.
  • the pump 1 causes the pressure at the inlet 36 to be lower than at the inlet 36 '.
  • the drive motor 48 is located on the pressure side of the turbomolecular pump stage 32 '. This pressure side is connected via the bypass 47 to the suction side of the molecular pump stage 33.
  • a further axially compressing friction pump 1' can be provided to separate the inlets 36, 36 '(FIG. 10). It conveys a partial flow of the gases entering the inlet 36 '.
  • the outlets of the two friction pumps 1 and 1 ' are connected to the bypass 47.
  • the embodiment according to FIG. 11 has a further axially conveying friction pump 1 ′′ instead of the turbomolecular pump stage 32 ′.
  • This solution can be used when the amount of gas is not high.
  • the selected arrangement allows further high-vacuum pump systems to be arranged on the common shaft 39 and their inlets to be separated from one another by radially conveying pump stages according to the invention.
  • Both the respective high-vacuum pump stages, generally turbomolecular pump stages, and the outlets of the radially pumping pump stages can be connected to a common molecular pump stage via bypasses.
  • the examples given show that the combination and the order of the pump stages is arbitrary and can be adapted to the application-related circumstances.
  • the arrangement of the pump stages allows compact Constructions with bearings on both shaft ends. This allows the waves to be made as stiff as required. This leads to rotor-dynamically unproblematic constructions, which also have good balancing characteristics. Because almost any number of stages designed in the manner of components of a modular system can be attached to a shaft, it is easier to implement a high-vacuum pump that compresses against the atmosphere.

Abstract

Die Erfindung betrifft eine Reibungspumpe (1) mit einem feststehenden, Statorschaufelreihen tragenden Bauteil (7) sowie mit einem rotierenden, Rotorschaufelreihen tragenden Bauteil (6), wobei die Stator- und Rotorschaufelreihen konzentrisch zur Drehachse (4) des Rotierenden Bauteils (6) angeordnet sind und ineinandergreifen; um eine in axialer Richtung kurze Reibungspumpe zu schaffen, wird vorgeschlagen, dass sich die die Rotor- und Statorschaufelreihen tragenden Bauteile (6, 7) im wesentlichen radial und die Längsachsen der Schaufeln (2, 3) im wesentlichen axial erstrecken.

Description

Reibungs akuumpumpe
Die Erfindung bezieht sich auf eine ReibungsVakuumpumpe mit einem feststehenden, Statorschaufelreihen tragenden Bauteil sowie mit einem rotierenden, Rotorschaufelreihen tragenden Bauteil, wobei die Stator- und Rotorschaufelreihen konzentrisch zur Drehachse des rotierenden Bauteils angeordnet sind und ineinandergreifen.
Zu den ReibungsVakuumpumpen dieser Art gehören die Turbomolekularvakuumpumpen, wie sie beispielsweise aus der WO 94/00694 bekannt sind. Sie sind nach Art einer Turbine mit Rotor- und Statorschaufelreihen ausgebildet. Stator und Rotor erstrecken sich im wesentlichen zylindrisch und sind koaxial zur Drehachse des rotierenden Bauteils angeordnet. Die Längsachsen der abwechselnd ineinander greifenden Stator- und Rotorschaufeln erstrecken sich radial, so dass sich eine im wesentlichen axial gerichtete Förderrichtung ergibt. Ein oder mehrere Paare einer Rotorschaufelreihe und einer Statorschaufelreihe bilden eine Pumpstufe. Die Einstellung der Fördereigenschaften einer Pumpstufe (Saugvermögen, Kompression) erfolgt über die Ausbildung der Schaufeln, vorzugsweise über deren Anstellwinkel. Bei Turbomolekularvakuumpumpen nach dem Stand der Technik kann eine Mindestanzahl von Pumpstufen nicht unterschritten werden. Dadurch bauen Turbomolekularvakuumpumpen nach dem Stand der Technik relativ lang, zumal der Antriebsmotor die axiale Länge noch erhöht. Außerdem kann bei vorbekannten Turbomolekularpumpen nur ein Bauteil - üblicherweise der Rotor - einteilig ausgebildet sein, während das andere Bauteil - üblicherweise der Stator - aus einer Mehrzahl von Teilen bestehen muss, um die ineinander greifenden Schaufelreihen montieren zu können.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine ReibungsVakuumpumpe der eingangs genannten Art zu schaffen, die in axialer Richtung wesentlich kürzer baut .
Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst.
Die Erfindung ermöglicht es, Reibungspumpen zu bauen, deren axiale Länge - abgesehen vom Antriebsmotor - die Länge der Stator- und Rotorschaufeln nicht wesentlich übersteigt. Da sich die Schaufeln axial erstrecken, können Rotor und Stator einteilig ausgebildet sein.
Zweckmäßig ist es, dass radial fördernde Pumpen der erfindungsgemäßen Art so betrieben werden, dass die geförderten Gase von außen nach innen strömen. Dabei erweist sich die Ausnutzung der unterschiedlichen Umfangsgeschwindigkeiten der Schaufeln als Vorteil, da sich entsprechend dem Druckgebiet die Reibungsverluste reduzieren lassen. Außerdem lassen sich die Rückströ- mungsverluste gegenüber dem Axialverdichter in Förderrichtung stark reduzieren, da der Stator einteilig ausgeführt werden kann und sich keine große Toleranzkette durch die Vielzahl der Fügeteile ergibt. Ebenso minimieren sich die Rückströmverluste durch das Umströmen der Flügelspitzen, da auch hier die Spalte durch Ausrichten der Träger erheblich reduziert werden können.
Ein weiterer Vorteil besteht darin, dass die beschriebenen Flügelscheiben spanend durch Dreh- und Erodiermaschinen hergestellt werden können. Beide Techniken sind relativ preiswert. Mit der erzielbaren Reduzierung der Teilevielfalt ist die Erfindung eine echte Alternative, um dem heutigen Preisdruck zu begegnen.
Zweckmäßig ist es weiterhin, bekannte, axial verdichtende Turbomolekularvakuumpumpen mit erfindungsgemäß gestalteten, radial verdichtenden ReibungsVakuumpumpen zu kombinieren. Pumpsysteme dieser Art ermöglichen es, den Antriebsmotor auf der Hochvakuumseite anzuordnen, ohne dass Motor und Lager aus hochvakuumtauglichen Werkstoffen bestehen müssen. Schließlich ergeben sich Vorteile bei der Lagerung des rotierenden Bauteils. Lange Rotoren benötigen insbesondere dann, wenn sie fliegend gelagert werden sollen, einen hohen Lageraufwand, der bei den relativ kurzen Rotoren bei Reibungs- Vakuumpumpen nach der Erfindung nicht mehr erforderlich ist . Weitere Vorteile und Einzelheiten sollen anhand von in den Figuren 1 bis 11 schematisch dargestellten Ausführungsbeispielen erläutert werden. Es zeigen
Figur 1 einen Radialschnitt durch die Flügel einer ReibungsVakuumpumpe nach der Erfindung,
Figuren 2 bis 4 Axialschnitte durch unterschiedliche Ausführungen,
Figuren 5 und 6 Schnitte durch eine zweiflutige Ausführung,
Figur 7 einen Schnitt durch eine mehrstufige Lösung,
Figur 8 eine Kombination einer radial fördernden
Pumpstufe mit axial fördernden Reibungspumpenstufen sowie
Figuren 9 bis 11 kombinierte Reibungspumpen für Mehrka merSysteme .
Figur 1 zeigt, dass sich in den Ausführungsformen einer Reibungspumpe 1 nach der Erfindung die Längsachsen der Schaufeln 2, 3 parallel zur Dehrachse 4 des rotierenden Bauteils erstrecken. Sie sind in konzentrischen Reihen um die Drehachse 4 angeordnet. Die Reihen der Rotorschaufeln 2 und die Reihen der Statorschaufeln 3 wechseln einander ab. Sie greifen ineinander und haben in an sich bekannter Weise in Strömungsrichtung (Pfeil 16) wechselnde Anstellwinkel. Die Figuren 2 bis 4 zeigen, dass die Schaufeln 2, 3 Bestandteile von rotierenden bzw. feststehenden Trägern 6 bzw. 7 sind. Beim Ausführungsbeispiel nach Figur 2 haben der rotierende Träger 6 und der feststehende Träger 7 die Form einer Scheibe. Bei der Ausführung nach Figur 3 ist die schaufelseitige Oberfläche der Statorscheibe 7 derart konisch ausgebildet, dass der Abstand zwischen den beiden Scheiben 6, 7 von außen nach innen abnimmt. Auch die Länge der Schaufeln 2 , 3 nimmt von außen nach innen ab .
Bei der Ausführung nach Figur 4 hat der feststehende Träger 7 die Form eines Trichters, so dass der Abstand zwischen den Trägern 6 und 7 von innen nach außen abnimmt. Die Länge der Schaufeln 2, 3 ist dieser Abstandsänderung angepasst.
Figur 4 zeigt noch, dass der feststehende Träger 7 Bestandteil eines Gehäuses 8 der Pumpe 1 ist. Es besteht aus dem Träger 7 mit einem Anschlussstutzen 9 sowie aus einem flachen, topfförmig gestalteten Gehäuseteil 11, das mit seinem Rand am Träger 7 angeflanscht ist. Der Boden 12 des Gehäuseteils 11 erstreckt sich parallel zur Rotorscheibe 6. Er trägt den Antriebsmotor 13, dessen Welle 14 durch eine Öffnung im Boden 12 hindurchgreift und mit der Rotorscheibe 6 gekoppelt ist. Außerdem ist am Gehäuseteil 12 ein weiterer Anschlussstutzen 15 vorgesehen.
Vakuumpumpen werden vorzugsweise so betrieben, dass der Förderraum in Förderrichtung der Gase abnimmt. Diese Eigenschaft haben Reibungspumpen 1 nach der Erfindung bereits dann, wenn die Gase von außen nach innen gefördert werden (vgl. die in den Figuren 1 bis 3 eingezeichneten Pfeile 16). Die Ausbildung des feststehenden Trägers 7 nach Figur 3 verstärkt noch diese Eigenschaft. Auch die Breite der Schaufeln 2, 3 kann von außen nach innen abnehmen (vgl. insbesondere Figur 1).
Natürlich ist auch ein Betrieb der Reibungspumpen mit entgegengesetzter Förderrichtung möglich. Dazu muss lediglich die Drehrichtung des Rotors 6 umgekehrt werden. Ein Beispiel für eine in dieser Weise betriebene Reibungspumpe 1 zeigt Figur 4 (Pfeile 18) . Der Anschlussflansch 9 bildet den Einlass, der Anschlussflansch 15 den Auslass der Pumpe. Auf eine Veränderung des Förderraumes in Richtung der geforderten Gase wird dadurch Einfluss genommen, dass der Abstand der Träger 6, 7 und damit der Länge der Schaufeln 2, 3 von innen nach außen abnimmt .
Die Figuren 5 und 6 zeigen eine zweiflutige Ausführung einer Reibungspumpe 1 nach der Erfindung. Eine innere Gruppe von Schaufelreihen fördert die Gase radial nach außen (Pfeile 21), eine äußere Gruppe von Schaufelreihen von außen nach innen (Pfeile 22) . Die Anschlussstutzen 9 und 15 sind Einlassstutzen. Zwischen den beiden Gruppen ist die Statorscheibe 7 mit einem Anschlussstutzen 23 ausgerüstet, der die Funktion eines Auslasses hat. Durch Umkehrung der Drehrichtung ergibt sich eine weitere Konfiguration (1 Ansaugstutzen, 2 Auslassstutzen) , wie sie für Lecksucher mit Gegenstrom- prinzip genutzt werden kann. Schließlich besteht auch die Möglichkeit, die Reibungspumpe 1 nach der Erfindung mehrflutig auszubilden, d. h. , mit mehreren Schaufelgruppen, die - verglichen mit ihren jeweils benachbarten Schaufelgruppen - entgegengesetzte Förderrichtung haben .
Beim Ausführungsbeispiel nach Figur 7 befinden sich im Gehäuse 8 mehrere radial fördernde Pumpstufen axial übereinander. Das rotierende System umfasst zwei Rotorscheiben 6, die jeweils auf beiden Seiten Rotorschaufeln 2 tragen. Das Gehäuse 8 und ein gehäusefester Träger 25, der sich zwischen den beiden Rotorscheiben 6 befindet, tragen korrespondierende Statorschaufeln 3.
Eingezeichnete Pfeile 27 zeigen, dass der Anschlussstutzen 9 die Funktion eines Einlasses hat und dass die sich anschließenden, radial komprimierenden Stufen (insgesamt vier) abwechselnd von innen nach außen und von außen nach innen fördern. Der Auslass ist mit 26 bezeichnet. Er liegt innen und umgibt die Antriebswelle 14, so dass in diesem Bereich Dichtmittel nicht erforderlich sind. Durch eine Anspassung der Schaufellängen vom Einlass zum Auslass (Abnahme) kann wieder Einfluss auf das Volumen des Förderraumes genommen werden.
Figur 8 zeigt eine Möglichkeit, wie eine radial verdichtende Reibungspumpe 1 nach der Erfindung mit einer axial verdichtenden Reibungspumpe 31 nach dem Stand der Technik kombiniert werden kann. Die Reibungspumpe 31 besteht aus einer saugseitig angeordneten Turbomolku- larpumpenstufe 32 und einer druckseitig angeordneten Molekularpumpstufe 33, die als Holweckpumpe (wie darge- stellt) oder auch als Gaede-, Siegbahn-, Engländeroder Seitenkanalpumpe ausgebildet sein kann.
Die Reibungspumpen 1 und 31 befinden sich in einem gemeinsamen, etwa zylindrischen Gehäuse 35 mit seitlichem Einlass 36. Eine auf beiden Stirnseiten gelagerte (Lager 37, 38) Welle 39 trägt die jeweils rotierenden Bauteile der Pumpstufen (Rotorscheibe 6 der radial verdichtenden Pumpe 1, Rotor 41 der Turbomolekularpumpstufe 32, Zylinder 42 der Holweckpumpstufe 33) . Der seitliche Einlass 36 der kombinierten Pumpe mündet zwischen der radial verdichtenden Pumpstufe 1 und der axial verdichtenden Pumpe 31. Der Auslass 44 der kombinierten Pumpe befindet sich auf der Druckseite der Molekularpumpstufe 33.
Die eingezeichneten Pfeile 45 und 46 zeigen, dass die radial verdichtende Pumpstufe 1 die zu fördernden Gase im Bereich ihrer Peripherie und die axial verdichtende Pumpe 31 - wie üblich - im Bereich ihrer Hochvakuumseite ansaugt. Die von der Pumpstufe 1 geförderten Gase gelangen über einen Bypass 47 unmittelbar zur Saugseite der Holweckpumpstufe 33.
Die Besonderheit der Lösung nach Figur 8 besteht darin, dass sich der Antriebsmotor 48 auf der Hochvakuumseite der axial fördernden Pumpe 31 befindet (und nicht wie üblich auf der Druckseite der Holweckpumpstufe 33). Dadurch, dass sich die radial verdichtende Pumpstufe 1 zwischen dem Einlass 36 und dem Antriebsmotor 48 befindet, kann im Motorraum 49 ein relativ hoher Druck aufrecht erhalten werden (z.B. I x 10~2 mbar) . Die Verwen- düng hochvakuumtauglicher Werkstoffe im Motorräum 49 ist nicht erforderlich. Außerdem unterstützt die radial fördernde Pumpstufe 1 die Förderleistung der Turbomolekularpumpstufe 32, ohne dass sich damit die Baulänge der Pumpe 31 wesentlich vergrößert.
Die Figuren 9 bis 11 zeigen Ausführungen von kombinierten Reibungspumpen für den Einsatz bei MehrkammerSystemen, hier Zweikammersystemen. Dabei handelt es sich z.B. um Analysengeräte mit mehreren Kammern, die auf unterschiedliche Drücke evakuiert werden müssen. Dadurch ist der Abstand der Ansaugstutzen vorgegeben, was beim Stand der Technik häufig dazu führt, dass relativ lange, fliegend gelagerte Rotorsysteme nötig sind, die aufwendige Lagersysteme erfordern.
Sämtliche Ausführungen nach den Figuren 9 bis 11 v/eisen zwei seitliche Einlasse 36, 36' auf. Sie sind durch mindestens eine radial verdichtende Pumpstufe 1 voneinander getrennt. Der Einlass 36 "sieht" jeweils, wie auch bei der Ausführung nach Figur 8, die Eintrittsbereiche einer axial fördernden Reibungspumpe 31 sowie einer radial von außen nach innen fördernden Reibungspumpe 1.
Bei der Ausführung nach Figur 9 mündet der Auslass der radial fördernden Pumpe 1 in den Einlassbereich einer zweiten Turbomolekularpumpenstufe 32', an den der zweite Einlass 36' angeschlossen ist. Die Pumpe 1 bewirkt, dass der Druck am Einlass 36 niedriger ist als am Einlass 36'. Auf der Druckseite der Turbomolekular- pumpenstufe 32' befindet sich der Antriebsmotor 48. Diese Druckseite ist über den Bypass 47 mit der Saugseite der Molekularpumpstufe 33 verbunden.
Ist die Förderung eines Teilstromes vom Einlass 36 in den Bereich des Einlasses 36' unerwünscht, kann eine weitere axial verdichtende Reibungspumpe 1 ' zur Trennung der Einlasse 36, 36' vorgesehen sein (Figur 10) . Sie fördert einen Teilstrom der in den Einlass 36' gelangenden Gase. Die Auslässe der beiden Reibungspumpen 1 und 1' stehen mit dem Bypass 47 in Verbindung.
Die Ausführung nach Figur 11 weist anstelle der Turbomolekularpumps ufe 32 ' eine weitere axial fördernde Reibungspumpe 1 ' ' auf. Diese Lösung kann eingesetzt werden, wenn die anfallende Gasmenge nicht hoch ist.
Bei den Ausführungen nach den Figuren 9 bis 11 sind jeweils zwei Hochvakuumpumpsysteme 32, 32' bzw. 1'' mit jeweils einem Einlass 36 bzw. 36' vorgesehen. Die gewählte Anordnung lässt es zu, auch weitere Hochvakuumpumpsysteme auf der gemeinsamen Welle 39 anzuordnen und deren Einlasse jeweils durch radial fördernde Pumpstufen nach der Erfindung voneinander zu trennen. Über By- pässe können sowohl die jeweiligen Hochvakuumpumpstufen, in der Regel Turbomolekularpumpstufen, als auch die Auslässe der radial fördernden Pumpstufen mit einer gemeinsamen Molekularpumpstufe verbunden werden.
Die angeführten Beispiele zeigen, dass die Kombination und die Reihenfolge der Pumpstufen beliebig ist und den applikationsbedingten Begebenheiten angepasst werden können. Die Anordnung der Pumpstufen erlaubt kompakte Konstruktionen mit Lagern an beiden Wellenenden. Hierdurch lassen sich die Wellen beliebig steif machen. Dies führt zu rotordynamisch unproblematischen Konstruktionen, die zu dem auch noch eine gute Wuchtcharakteristik haben. Dadurch, dass nahezu beliebig viele nach Art von Bauteilen eines Baukastensystems ausgebildete Stufen auf einer Welle angebracht werden können, lässt sich eine Hochvakuumpumpe, die gegen Atmosphäre verdichtet, leichter realisieren.

Claims

Reibungsvakuumpumpe
1. Reibungspumpe (1) mit einem feststehenden, Statorschaufelreihen tragenden Bauteil (7) sowie mit einem rotierenden, Rotorschaufelreihen tragenden Bauteil (6), wobei die Stator- und Rotorschaufelreihen konzentrisch zur Drehachse (4) des rotierenden Bauteils (6) angeordnet sind und ineinandergreifen, dadurch gekennzeichnet, dass sich die die Rotor- und Statorschaufelreihen tragenden Bauteile (6, 7) im wesentlichen radial und die Längsachsen der Schaufeln (2, 3) im wesentlichen axial erstrecken.
2. Pumpe nach Anspruch 1 , dadurch gekennzeichnet, dass die die Schaufeln (2, 3) tragenden Bauteile (6, 7) scheibenförmig gestaltet sind.
3. Pumpe nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Pumpe von außen nach innen durchströmt ist.
4. Pumpe nach Anspruch 3 , dadurch gekennzeichnet, dass die Schaufellänge von außen nach innen abnimmt .
5. Pumpe nach Anspruch 3 oder4 , dadurch gekennzeichnet, dass die Schaufelbreite von außen nach innen abnimmt .
6. Pumpe nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass bei einer von innen nach außen durchströmten Pumpe (1) die Schaufellänge von innen nach außen abnimmt .
7. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das feststehende, die Statorschaufeln (3) tragende Bauteil (7) Bestandteil eines Gehäuses (8) der Pumpe (1) ist.
8. Pumpe nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass sie zwei- oder mehrflutig ausgebildet ist .
9. Pumpe nach einem der Ansprüche 1 bis 7 , dadurch gekennzeichnet, dass mehrere radial fördernde Pumpstufen axial hintereinander angeordnet sind.
10. Pumpe nach Anspruch 9, dadurch gekennzeichnet, dass rotierende und/oder feststehende Bauteile (6 bzw. 7) beidseitig Rotor- bzw. Statorschaufeln (2 bzw. 3) tragen.
11. Pumpe nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass ihr Auslass radial innen angeordnet ist und die Antriebswelle (14) für die rotierenden Bauteile (6) umgibt.
12. Pumpe nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass sie mit mindestens einer weiteren Reibungspumpenstufe (32, 33) kombiniert ist.
13. Pumpe nach Anspruch 12, dadurch gekennzeichnet, dass das rotierende Bauteil (6) gemeinsam mit den rotierenden Bauteilen (41, 42) der weiteren Reibungspumpenstufen auf einer Welle (39) angeordnet ist .
14. Pumpe nach Anspruch 13, dadurch gekennzeichnet, dass sie die Hochvakuumseite einer weiteren Reibungspumpe (31) vom Motorraum (49) des gemeinsamen Antriebsmotors (48) trennt.
15. Pumpe nach Anspruch 13, dadurch gekennzeichnet, dass der Auslass der Pumpe (1) mit dem Einlass einer Molekularpumpe (33) verbunden ist.
16. Kombinierte ReibungsVakuumpumpe nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass sie zwei oder mehr Hochvakuumpumpstufen (32, 33) mit jeweils einem Einlass (36, 36') aufweist und dass die Einlasse jeweils durch mindestens eine radial fördernde Pumpstufen (1, 1') voneinander getrennt sind.
17. Pumpe nach Anspruch 16, dadurch gekennzeichnet, dass zwei Hochvakuumpumpstufen (32, 32') mit jeweils einem Einlass (36, 36') vorgesehen sind und dass der Einlass der radialen Pumpstufe (1) mit dem einen (36) der beiden Einlasse und ihr Auslass mit dem zweiten (36') der beiden Einlasse in Verbindung steht.
18. Pumpe nach Anspruch 16, dadurch gekennzeichnet, dass zwei radial fördernde Pumpstufen (1, 1') die Einlasse (36, 36') voneinander trennen.
19. Pumpe nach Anspruch 16, dadurch gekennzeichnet, dass für die Hochvakuumpumpstufen (32, 32') und für die radial fördernden Pumpstufen (1, 1'; 1, 1'') eine gemeinsame weiterführende Molekularpumpstufe (33) vorgesehen ist.
EP01909681A 2000-02-01 2001-01-24 Turbomolekularpumpe Expired - Lifetime EP1252445B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10004271A DE10004271A1 (de) 2000-02-01 2000-02-01 Reibungsvakuumpumpe
DE10004271 2000-02-01
PCT/EP2001/000726 WO2001057402A1 (de) 2000-02-01 2001-01-24 Reibungsvakuumpumpe

Publications (2)

Publication Number Publication Date
EP1252445A1 true EP1252445A1 (de) 2002-10-30
EP1252445B1 EP1252445B1 (de) 2008-01-23

Family

ID=7629403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909681A Expired - Lifetime EP1252445B1 (de) 2000-02-01 2001-01-24 Turbomolekularpumpe

Country Status (5)

Country Link
US (1) US7011491B2 (de)
EP (1) EP1252445B1 (de)
JP (1) JP4819277B2 (de)
DE (2) DE10004271A1 (de)
WO (1) WO2001057402A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150015A1 (de) * 2001-10-11 2003-04-17 Leybold Vakuum Gmbh Mehrkammeranlage zur Behandlung von Gegenständen unter Vakuum, Verfahren zur Evakuierung dieser Anlage und Evakuierungssystem dafür
GB0322889D0 (en) 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
DE10353034A1 (de) * 2003-11-13 2005-06-09 Leybold Vakuum Gmbh Mehrstufige Reibungsvakuumpumpe
DE102005003091A1 (de) * 2005-01-22 2006-07-27 Leybold Vacuum Gmbh Vakuum-Seitenkanalverdichter
US7165932B2 (en) * 2005-01-24 2007-01-23 Visteon Global Technologies, Inc. Fuel pump having dual single sided impeller
US7632060B2 (en) * 2005-01-24 2009-12-15 Ford Global Technologies, Llc Fuel pump having dual flow channel
GB0618745D0 (en) * 2006-09-22 2006-11-01 Boc Group Plc Molecular drag pumping mechanism
US20090081022A1 (en) * 2007-09-21 2009-03-26 Honeywell International Inc. Radially Staged Microscale Turbomolecular Pump
US20120014779A1 (en) * 2010-07-16 2012-01-19 Charles David Gilliam Disc pump
US20140020556A1 (en) * 2011-11-04 2014-01-23 Honeywell International Inc. Mass separation via a turbomolecular pump
GB2498816A (en) 2012-01-27 2013-07-31 Edwards Ltd Vacuum pump
EP2620649B1 (de) 2012-01-27 2019-03-13 Edwards Limited Gastransfervakuumpumpe
US10983040B2 (en) 2013-03-15 2021-04-20 Particles Plus, Inc. Particle counter with integrated bootloader
US9677990B2 (en) 2014-04-30 2017-06-13 Particles Plus, Inc. Particle counter with advanced features
US10352844B2 (en) 2013-03-15 2019-07-16 Particles Plus, Inc. Multiple particle sensors in a particle counter
US11579072B2 (en) 2013-03-15 2023-02-14 Particles Plus, Inc. Personal air quality monitoring system
US20150063982A1 (en) * 2013-09-01 2015-03-05 Particles Plus, Inc. Multi-stage inflow turbine pump for particle counters
CN104600081A (zh) * 2014-12-31 2015-05-06 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板、显示装置
DE102016210701A1 (de) 2016-06-15 2017-12-21 Inficon Gmbh Massenspektrometrischer Lecksucher mit Turbomolekularpumpe und Boosterpumpe auf gemeinsamer Welle
DE102018119747B3 (de) 2018-08-14 2020-02-13 Bruker Daltonik Gmbh Turbomolekularpumpe für massenspektrometer
EP3767110A1 (de) 2019-07-15 2021-01-20 Pfeiffer Vacuum Gmbh Vakuumsystem
US11519419B2 (en) * 2020-04-15 2022-12-06 Kin-Chung Ray Chiu Non-sealed vacuum pump with supersonically rotatable bladeless gas impingement surface
CN112160919A (zh) * 2020-09-28 2021-01-01 东北大学 涡轮分子泵和包括该分子泵的复合分子泵

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE107118C (de)
DE605902C (de) * 1932-01-08 1934-11-20 Hugo Seemann Dr Turbohochvakuumpumpe
GB479427A (en) 1935-05-31 1938-01-31 Gyoergy Jendrassik Improvements in rotary compressors
CH235102A (fr) 1941-06-24 1944-11-15 Dupont Emile Machine pour la transformation de la pression d'un fluide en travail ou inversement.
DE845883C (de) 1950-02-21 1952-08-07 Heraeus Gmbh W C Verfahren zur Herstellung von Spinnduesen
DE1845883U (de) * 1961-10-19 1962-02-01 Akad Wissenschaften Ddr Molekularpumpe.
FR2224009A5 (de) 1973-03-30 1974-10-25 Cit Alcatel
DD107118A1 (de) * 1973-10-03 1974-07-12
SU1252552A1 (ru) 1984-06-01 1986-08-23 Научно-исследовательский институт прикладной математики и кибернетики при Горьковском государственном университете им.Н.И.Лобачевского Ротор радиального турбомолекул рного вакуумного насоса
FR2589529A1 (fr) 1985-11-06 1987-05-07 Guimbal Jean Systeme rotatif de compression ou de refoulement a haute pression
JPH0689757B2 (ja) 1987-05-28 1994-11-14 バキュ−ムプロダクツ株式会社 真空ポンプ
GB8921071D0 (en) * 1989-09-18 1989-11-01 Framo Dev Ltd Pump or compressor unit
WO1994000694A1 (de) 1992-06-19 1994-01-06 Leybold Aktiengesellschaft Gasreibungsvakuumpumpe
GB9609281D0 (en) 1996-05-03 1996-07-10 Boc Group Plc Improved vacuum pumps
GB9810872D0 (en) 1998-05-20 1998-07-22 Boc Group Plc Improved vacuum pump
KR100460173B1 (ko) * 1998-12-11 2004-12-04 겐 코오포레이션 헬리코박터 파일로리 정착 억제제
US6508631B1 (en) * 1999-11-18 2003-01-21 Mks Instruments, Inc. Radial flow turbomolecular vacuum pump
DE10004263A1 (de) * 2000-02-01 2001-08-02 Leybold Vakuum Gmbh Dynamische Dichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0157402A1 *

Also Published As

Publication number Publication date
JP4819277B2 (ja) 2011-11-24
WO2001057402A1 (de) 2001-08-09
DE10004271A1 (de) 2001-08-02
US7011491B2 (en) 2006-03-14
JP2003525379A (ja) 2003-08-26
EP1252445B1 (de) 2008-01-23
DE50113533D1 (de) 2008-03-13
US20040013514A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
EP1252445B1 (de) Turbomolekularpumpe
EP1252446B1 (de) Dynamische dichtung
EP1078166B1 (de) Reibungsvakuumpumpe mit stator und rotor
EP2295812B1 (de) Vakuumpumpe
WO2008151968A2 (de) Massenspektrometer-anordnung
DE3728154C2 (de) Mehrstufige Molekularpumpe
EP1067290B1 (de) Vakuumpumpe
DE102012003680A1 (de) Vakuumpumpe
EP1706645B1 (de) Mehrstufige reibungsvakuumpumpe
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
EP1017944B1 (de) Compoundpumpe
EP2039941B1 (de) Vakuumpumpe
DE102009021642B4 (de) Vakuumpumpe
EP1243796B1 (de) Vakuumpumpe
EP2113637A2 (de) Rotierende Einheit für einen Axialkompressor
WO2013092982A1 (de) Verdichter und verfahren zum betrieb eines verdichters
EP0825346B1 (de) Eingangsstufe für eine zweiflutige Gasreibungspumpe
DE3032967C2 (de)
EP1119709A1 (de) Reibungsvakuumpumpe mit stator und rotor
EP2565464B1 (de) Vakuumpumpe
WO2003031823A1 (de) Axial fördernde reibungsvakuumpumpe
EP3267040B1 (de) Turbomolekularpumpe
EP1081387B1 (de) Vakuumpumpe
EP2235377B1 (de) Turbomolekularpumpe
EP1541871B1 (de) Seitenkanalpumpstufe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

17Q First examination report despatched

Effective date: 20060601

17Q First examination report despatched

Effective date: 20060601

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: TURBOMOLECULAR PUMP

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50113533

Country of ref document: DE

Date of ref document: 20080313

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080211

Year of fee payment: 8

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100130

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120308

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120124

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113533

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130124