EP1249280A2 - Surfaces auto-nettoyantes avec des structures hydrophobes et procédé pour leur réalisation - Google Patents

Surfaces auto-nettoyantes avec des structures hydrophobes et procédé pour leur réalisation Download PDF

Info

Publication number
EP1249280A2
EP1249280A2 EP02003960A EP02003960A EP1249280A2 EP 1249280 A2 EP1249280 A2 EP 1249280A2 EP 02003960 A EP02003960 A EP 02003960A EP 02003960 A EP02003960 A EP 02003960A EP 1249280 A2 EP1249280 A2 EP 1249280A2
Authority
EP
European Patent Office
Prior art keywords
particles
self
carrier
cleaning
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02003960A
Other languages
German (de)
English (en)
Other versions
EP1249280A3 (fr
EP1249280B2 (fr
EP1249280B1 (fr
Inventor
Edwin Dr. Nun
Markus Dr. Oles
Bernhard Dr. Schleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Creavis Gesellschaft fuer Technologie und Innovation mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7681415&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1249280(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Creavis Gesellschaft fuer Technologie und Innovation mbH filed Critical Creavis Gesellschaft fuer Technologie und Innovation mbH
Publication of EP1249280A2 publication Critical patent/EP1249280A2/fr
Publication of EP1249280A3 publication Critical patent/EP1249280A3/fr
Application granted granted Critical
Publication of EP1249280B1 publication Critical patent/EP1249280B1/fr
Publication of EP1249280B2 publication Critical patent/EP1249280B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/786Fluidic host/matrix containing nanomaterials
    • Y10S977/787Viscous fluid host/matrix containing nanomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • Y10T428/24388Silicon containing coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to self-cleaning surfaces and methods for their Production.
  • Objects with extremely difficult to wet surfaces have a number of economical ones significant features.
  • the most economically significant feature is the self-cleaning effect of difficult to wet surfaces, because the cleaning of Surface is time and cost intensive.
  • Self-cleaning surfaces are therefore of the highest quality economic interest.
  • Detention mechanisms are usually through interfacial energy parameters between the two surfaces in contact.
  • the systems try to lower their free interface energy. Lie the free interface energies between two components are inherently very low, So it can generally be assumed that the liability between these two Components is weak.
  • the relative lowering of the free is important Interfacial energy. For pairings with a high and a low interfacial energy the possibilities of interactions are very important.
  • hydrophobic materials such as perfluorinated polymers
  • hydrophobic surfaces are known.
  • a further development of these surfaces is to structure the surfaces in the ⁇ m range to the nm range.
  • U.S. Patent 5,599,489 discloses a Process in which a surface is bombarded with particles of an appropriate size and subsequent perfluorination can be made particularly repellent.
  • Another Methods describe H. Saito et al in "Service Coatings International" 4, 1997, p. 168 ff.
  • particles of fluoropolymers are applied to metal surfaces, with a strong reduced wettability of the surfaces thus produced against water with a considerably reduced tendency to icing was found.
  • US Pat. Nos. 3,354,022 and WO 96/04123 describe further methods for lowering the Wettability of objects due to topological changes in the surfaces described.
  • artificial elevations or depressions with a height of approx. 5 up to 1 000 ⁇ m and a distance of approx. 5 to 500 ⁇ m on hydrophobic or after Structuring applied hydrophobic materials.
  • Surfaces of this type lead to a rapid drop formation, the rolling drops absorbing dirt particles and thus clean the surface.
  • EP 1 040 874 A2 describes the stamping of microstructures and claims them Use of such structures in analysis (microfluidics). A disadvantage of these structures is the insufficient mechanical stability.
  • JP 11171592 describes a water-repellent product and its production, the dirt-repellent surface is produced by a film on the treating surface is applied, the fine particles of metal oxide and the hydrolyzate a metal alkoxide or chelate. To solidify this film, the substrate, to which the film was applied are sintered at temperatures above 400 ° C. The method can therefore only be used for substrates that are also at temperatures above of 400 ° C are stable.
  • the object of the present invention was to provide particularly good self-cleaning Surfaces with structures in the nanometer range, as well as a simple process for Manufacture of such self-cleaning surfaces.
  • the present invention therefore relates to a self-cleaning surface which has a artificial, at least partially hydrophobic surface structure from surveys and Has depressions, the elevations and depressions by means of a carrier fixed surface particles are formed, which is characterized in that the Particles a fissured structure with elevations and / or depressions in the nanometer range exhibit.
  • the present invention also relates to a method for producing self-cleaning surfaces where a suitable, at least partially hydrophobic Surface structure by fixing particles on a surface using a carrier is created, which is characterized in that particles, the jagged structures with elevations and / or depressions in the nanometer range can be used.
  • Self-cleaning surfaces are accessible through the method according to the invention Show particles with a jagged structure.
  • particles which have a rugged structure surfaces are easily accessible that up to are structured in the nanometer range.
  • To maintain this structure in the nanometer range it is necessary that the particles do not pass through the carrier with which they are on the surface are fixed, are wetted, otherwise the structure in the nano range would be lost.
  • Another advantage of the method according to the invention is that it is scratch-sensitive Surfaces when applying the particles are not caused by particles present in the carrier is damaged because when using paints and then applying the Particles on the carrier, the scratch-sensitive surface is already protected by the carrier.
  • the self-cleaning surface according to the invention which is an artificial, at least partially Has hydrophobic surface structure of elevations and depressions, the Elevations and depressions by particles fixed on the surface by means of a carrier are characterized in that the particles have a jagged structure Show elevations and / or depressions in the nanometer range.
  • the Increases on average a height of 20 to 500 nm, particularly preferably from 50 to 200 nm on.
  • the distance between the elevations or depressions on the particles is preferably less than 500 nm, very particularly preferably less than 200 nm.
  • the jagged structures with elevations and / or depressions in the nanometer range can e.g. over cavities, pores, grooves, tips and / or peaks are formed.
  • the Particles themselves have an average size of less than 50 ⁇ m, preferably of smaller size 30 ⁇ m and very particularly preferably from less than 20 ⁇ m.
  • the particles preferably have a BET surface area of 50 to 600 square meters per gram. Very particularly preferably the particles have a BET surface area of 50 to 200 m 2 / g.
  • the particles preferably have at least one material selected from silicates, doped silicates, minerals, metal oxides, silicas, polymers and metal powders coated with silicic acid.
  • the particles very particularly preferably have pyrogenic silicas or precipitated silicas, in particular aerosils, Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , zinc powder coated with Aerosil R974, preferably with a particle size of 1 ⁇ m or powdery polymers, such as cryogenically ground or spray-dried polytetrafluoroethylene (PTFE) or perfluorinated copolymers or copolymers with tetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • the particles for generating the self-cleaning surfaces preferably have in addition to the rugged structures also have hydrophobic properties.
  • the particles can themselves be hydrophobic, e.g. Particles containing PTFE, or the particles used can have been made hydrophobic.
  • the hydrophobicization of the particles can be done by a person skilled in the art known way.
  • Typical hydrophobized particles are e.g. Very fine powder like Aerosil-R 8200 (Degussa AG), which can be purchased.
  • the preferably used silicas preferably have a dibutyl phthalate adsorbtion, based on DIN 53 601, of between 100 and 350 ml / 100 g, preferably values between 250 and 350 ml / 100 g.
  • the particles are fixed to the surface by means of a carrier.
  • the self-cleaning surface can be to generate.
  • the carrier is a lacquer hardened by means of thermal energy and / or light energy Two-component paint system or another reactive paint system, the curing preferably carried out by polymerization or crosslinking.
  • the mixing ratios can be in wide limits can be varied. It is also possible that the hardened paint connections with functional groups, e.g. Hydroxy groups, epoxy groups, amine groups, or fluorine-containing compounds, e.g. perfluorinated esters of acrylic acid.
  • Varnishes are not just varnishes Acrylic resin base can be used, but also varnishes based on polyurethane or varnishes that Have polyurethane acrylates or silicone acrylates.
  • the self-cleaning surfaces according to the invention have a roll angle of less 20 °, particularly preferably less than 10 °, the roll angle being defined such that one from 1 cm height on a flat surface resting on an inclined plane Water drops roll off.
  • the progression angle and the retreat angle are above 140 °, preferably above 150 ° and have a hysteresis of less than 15 °, preferably less 10 ° on. Because the surfaces according to the invention have a progressive and Have retraction angles above at least 140 °, preferably above 150 °, particularly good self-cleaning surfaces become accessible.
  • the self-cleaning surfaces are semi-transparent.
  • the surfaces according to the invention can be contact-transparent, that is to say after Creating a surface according to the invention on a labeled object Lettering, depending on the size of the font, is still legible.
  • the self-cleaning surfaces according to the invention are preferably by Process according to the invention for producing these surfaces.
  • This Process according to the invention for producing self-cleaning surfaces in which a suitable, at least partially hydrophobic surface structure by fixing particles is created on a surface by means of a carrier, characterized in that Particles, the fissured structures with elevations and / or depressions in the Have nanometer range, are used.
  • Those particles which have at least one material selected from silicates, doped silicates, minerals, metal oxides, silicas or polymers are preferably used.
  • the particles very particularly preferably have pyrogenic silicates or silicas, in particular aerosils, minerals such as magadiite Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2, Zn powder coated with Aerosil R 974 or powdery polymers, such as, for example, cryogenically ground or spray-dried polytetrafluoroethylene (PTFE).
  • Particles with a BET surface area of 50 to 600 m 2 / g are particularly preferably used. Particles which have a BET surface area of 50 to 200 m 2 / g are very particularly preferably used.
  • the particles for generating the self-cleaning surfaces preferably have in addition to the rugged structures also have hydrophobic properties.
  • the particles can themselves be hydrophobic, e.g. Particles containing PTFE, or the particles used can have been made hydrophobic.
  • the hydrophobicization of the particles can be done by a person skilled in the art known way.
  • Typical hydrophobized particles are e.g. Very fine powder like Aerosil R 974 or Aerosil-R 8200 (Degussa AG), which can be purchased.
  • the curable substance can e.g. by spraying, knife coating, spreading or spraying.
  • the curable substance is in a thickness of 1 to 100 microns, preferably applied in a thickness of 5 to 50 microns.
  • the viscosity of the curable substance it may be advantageous to apply the substance before applying the particles to harden or let dry.
  • the viscosity of the curable substance will be like this chosen that the applied particles sink at least partially into the curable substance but the curable substance or the particles applied to it no longer run, when the surface is placed vertically.
  • the particles can be applied by conventional methods such as spraying or powdering respectively.
  • the particles can be applied by spraying using an electrostatic spray gun. After applying the particles you can excess particles, i.e. particles that do not adhere to the hardenable substance, by shaking, Brushing or blowing off the surface. These particles can be collected and be used again.
  • a varnish can be used as the carrier, which at least mixtures of simple and / or has polyunsaturated acrylates and / or methacrylates become.
  • the mixing ratios can be varied within wide limits.
  • a curable by means of thermal or chemical energy and / or light energy is preferred Paint used.
  • a varnish or a varnish system is selected as the curable substance, the hydrophobic Has properties if the particles used have hydrophobic properties. Conversely, a varnish with hydrophilic properties is selected as the curable substance if the particles used have hydrophilic properties.
  • the mixtures used as paint have compounds with functional groups, e.g. Hydroxy groups, epoxy groups, amine groups or fluorine-containing compounds, e.g. perfluorinated esters of acrylic acid.
  • functional groups e.g. Hydroxy groups, epoxy groups, amine groups or fluorine-containing compounds, e.g. perfluorinated esters of acrylic acid.
  • hydrophobic particles such as Aerosil VPR 411 matched to one another by means of N- [2- (acryloyloxy) ethyl] -N-ethylperfluorooctane-1-sulfonamide become.
  • two-component paint systems or other reactive paint systems can be used.
  • the particles are fixed on the carrier by hardening the carrier according to the paint system used, preferably by thermal and / or chemical energy and / or light energy takes place.
  • Hardening of the carrier triggered by chemical or thermal energy and / or light energy, e.g. by polymerization or crosslinking the Components of the paints or paint systems are made.
  • the curable substance is preferably applied within 0.1 to 10 minutes, preferably hardened within 1 to 5 minutes after application of the particles.
  • particles to use which have hydrophobic properties and / or by treatment with at least one compound from the group of alkylsilanes, alkyldisilazanes or Perfluoroalkylsilanes have hydrophobic properties.
  • the hydrophobization of particles is known and can e.g. in the Pigments series, number 18, by Degussa AG be looked up.
  • the particles of the treated Surface by treatment with at least one compound from the group of Alkylsilanes, the perfluoroalkylsilanes, e.g. are available from Sivento GmbH with hydrophobic properties.
  • the treatment is preferably carried out in that the particle-containing surface that is to be hydrophobicized into a Solution containing a water repellent such as e.g. Has alkylsilanes, is immersed, Excess water repellent is drained and the surface at a annealed as high as possible.
  • the maximum applicable temperature is by the Softening temperatures of carrier or substrate limited.
  • the inventive method according to at least one of claims 8 to 17 can excellent for producing self-cleaning surfaces on planar or non-planar Objects, especially on non-planar objects. This is with the conventional methods only possible to a limited extent. In particular about procedures at where prefabricated films are applied to a surface or in processes in which a structure to be created by embossing are non-planar objects, such as Sculptures, not or only partially accessible.
  • the invention can Process for the production of self-cleaning surfaces on objects with planar surfaces, e.g. Greenhouses or public transport become.
  • the use of the method according to the invention for the production of Self-cleaning surfaces on greenhouses have advantages because of the process self-cleaning surfaces e.g.
  • the method according to the invention can also be used to produce self-cleaning Surfaces on non-rigid surfaces of objects, such as e.g. Umbrellas or other surfaces that are kept flexible.
  • objects such as e.g. Umbrellas or other surfaces that are kept flexible.
  • inventive method according to at least one of claims 8 to 17, for Production of self-cleaning surfaces on flexible or inflexible walls in the Sanitary area can be used.
  • Such walls can e.g. Partitions in public Toilets, walls of shower cubicles, swimming pools or saunas, but also shower curtains (flexible wall).
  • 1 and 2 are scanning electron microscopic (SEM) images of as Structured particles used reproduced.
  • FIG. 2 shows an SEM image of the surface of particles of silica Sipernat FK 350 (Degussa AG) on a carrier.
  • the support was at a wavelength of 308 nm under nitrogen hardened. After the carrier had hardened, excess Aerosil VPR 411 was brushed off. The surface was initially characterized visually and is logged with +++. +++ means that water drops form almost completely. The roll angle was 2.4 °. The advancing and retreating angles were measured to be greater than 150 ° each. The associated Hysteresis is below 10 °.
  • Example 2 The experiment from Example 1 was repeated, particles of aluminum oxide C (Degussa AG), an aluminum oxide with a BET surface area of 100 m 2 / g, being sprayed on electrostatically.
  • the carrier had cured in accordance with Example 1 and excess particles had been brushed off
  • the hardened, brushed plate was immersed in a formulation of tridecafluorooctyltriethoxysilane in ethanol (Dynasilan 8262, Sivento GmbH) to make it hydrophobic.
  • the plate After draining excess Dynasilan 8262, the plate was annealed at a temperature of 80 ° C. The surface is classified with ++, which means that the shape of the water drops is not ideal, the roll angle is below 20 °.
  • Silica Sipernat 350 is added to the plate from Example 1 treated with the support Degussa AG spread. After 5 minutes of penetration, the treated plate under nitrogen in UV light hardened at 308 nm. Excess particles are brushed off and the The plate is then again immersed in Dynasilan 8262 and then at 80 ° C annealed The surface is classified with +++.
  • Aerosil VPR 411 Aerosil R 8200 (Degussa AG) is used, which has a BET surface area of 200 ⁇ 25 m 2 / g.
  • the evaluation of the surface is +++.
  • the roll angle has been determined to be 1.3 °.
  • Progress and retreat angles were also measured, each of which was greater than 150 °.
  • the associated hysteresis is below 10 °.
  • Example 2 The varnish from Example 1, which had already been mixed with the UV hardener, was added 10 wt .-% (based on the total weight of the paint mixture) 2- (N-ethylperfluorooctanesulfonamido) ethyl acrylate added. This mixture was at least 60 again stirred for min. This mixture was used as a carrier on a 2 mm thick PMMA plate in a 50 ⁇ m thickness applied. The layer was dried for 5 minutes. Then were as particles hydrophobicized, pyrogenic silica Aerosil VPR 411 (Degussa AG) by means of a electrostatic spray gun sprayed on. After 3 minutes the support became at one wavelength hardened from 308 nm under nitrogen. After the carrier hardened, excess became Aerosil VPR 411 brushed. The surface was initially characterized visually and is logged with +++. +++ means that water drops form almost completely.
  • the roll angle was 0.5 °. Progress and retreat angles were measured at each greater than 150 °. The associated hysteresis is below 10 °.
  • the bad cleaning effect is due to the smearing of the jagged structures due. This is probably not done by dissolving monomers of the yet hardened paint system in ethanol. Before curing, the ethanol and the evaporates Monomers remain in the jagged structures in which they harden during the process also harden, whereby the jagged structures are smeared or filled. In this way, the self-cleaning effect deteriorates significantly.

Landscapes

  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Laminated Bodies (AREA)
EP02003960A 2001-04-12 2002-02-22 Surfaces auto-nettoyantes avec des structures hydrophobes et procédé pour leur réalisation Expired - Lifetime EP1249280B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118352 2001-04-12
DE10118352A DE10118352A1 (de) 2001-04-12 2001-04-12 Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung

Publications (4)

Publication Number Publication Date
EP1249280A2 true EP1249280A2 (fr) 2002-10-16
EP1249280A3 EP1249280A3 (fr) 2003-01-02
EP1249280B1 EP1249280B1 (fr) 2006-09-27
EP1249280B2 EP1249280B2 (fr) 2009-07-01

Family

ID=7681415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02003960A Expired - Lifetime EP1249280B2 (fr) 2001-04-12 2002-02-22 Surfaces auto-nettoyantes avec des structures hydrophobes et procédé pour leur réalisation

Country Status (7)

Country Link
US (1) US6858284B2 (fr)
EP (1) EP1249280B2 (fr)
JP (1) JP2002346469A (fr)
AT (1) ATE340654T1 (fr)
CA (1) CA2381134A1 (fr)
DE (2) DE10118352A1 (fr)
ES (1) ES2271131T5 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283076A2 (fr) * 2001-07-16 2003-02-12 Creavis Gesellschaft für Technologie und Innovation mbH Surfaces auto-nettoyantes grâce à des structures hydrophobes et leur procédé de préparation
WO2004014574A2 (fr) * 2002-07-25 2004-02-19 Creavis Gesellschaft Für Technologie Und Innovation Mbh Procede de production de surfaces structurees
WO2008113624A1 (fr) 2007-03-19 2008-09-25 Robert Bosch Gmbh Lame en caoutchouc d'essuie-glace et procédé pour sa fabrication
WO2009067414A1 (fr) * 2007-11-19 2009-05-28 E. I. Du Pont De Nemours And Company Surfaces de matière plastique traitées ayant de meilleures propriétés nettoyantes
DE102011110163A1 (de) * 2010-08-30 2012-03-01 Gm Global Technology Operations Llc, ( N.D. Ges. D. Staates Delaware) Scheibenwischerblatt für Fahrzeugscheibenwischer
DE102012201899A1 (de) * 2012-02-09 2013-09-19 Robert Bosch Gmbh Wischgummi mit Oberflächenstrukturierung und hochhydrophober Schicht
CN109642003A (zh) * 2016-05-10 2019-04-16 澳大利亚国立大学 互穿聚合物网络
CN111484723A (zh) * 2020-05-14 2020-08-04 上海金山锦湖日丽塑料有限公司 一种自清洁阻燃pc树脂及其制备方法
CN111763100A (zh) * 2020-06-10 2020-10-13 大理大学 一种天然青石自清洁表面的制备方法

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118345A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Eigenschaften von Strukturbildnern für selbstreinigende Oberflächen und die Herstellung selbiger
DE10118346A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Textile Flächengebilde mit selbstreinigender und wasserabweisender Oberfläche
DE10118352A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118351A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10159767A1 (de) * 2001-12-05 2003-06-18 Degussa Verfahren zur Herstellung von Gegenständen mit antiallergischen Oberflächen
DE10205007A1 (de) * 2002-02-07 2003-08-21 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung von Schutzschichten mit schmutz- und wasserabweisenden Eigenschaften
DE10210668A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Vorrichtung, hergestellt durch Spritzgussverfahren, zur Aufbewahrung von Flüssigkeiten und Verfahren zur Herstellung dieser Vorrichtung
DE10210671A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Entformungsmittel, welches hydrophobe, nanoskalige Partikel aufweist sowie Verwendung dieser Entformungsmittel
DE10210667A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Herstellung von Bahnenwaren mit selbstreinigenden Oberflächen mittels eines Kalandrierprozesses, Bahnenwaren selbst und die Verwendung dieser
DE10210673A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Spritzgusskörper mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Spritzgusskörper
DE10210674A1 (de) * 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Flächenextrudate mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Extrudate
GB0206930D0 (en) 2002-03-23 2002-05-08 Univ Durham Method and apparatus for the formation of hydrophobic surfaces
DE10231757A1 (de) 2002-07-13 2004-01-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Herstellung einer tensidfreien Suspension auf wässriger basis von nanostrukturierten, hydrophoben Partikeln und deren Verwendung
DE10233830A1 (de) * 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Flammpulverbeschichtung von Oberflächen zur Erzeugung des Lotus-Effektes
DE10242560A1 (de) * 2002-09-13 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von selbstreinigenden Oberflächen auf textilen Beschichtungen
US7196043B2 (en) * 2002-10-23 2007-03-27 S. C. Johnson & Son, Inc. Process and composition for producing self-cleaning surfaces from aqueous systems
DE10250328A1 (de) * 2002-10-29 2004-05-13 Creavis Gesellschaft Für Technologie Und Innovation Mbh Herstellung von Suspensionen hydrophober Oxidpartikel
DE10308379A1 (de) * 2003-02-27 2004-09-09 Creavis Gesellschaft Für Technologie Und Innovation Mbh Dispersion von Wasser in hydrophoben Oxiden zur Herstellung von hydrophoben nanostrukturierten Oberflächen
DE10315128A1 (de) * 2003-04-03 2004-10-14 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Unterdrückung von Schimmelbildung unter Verwendung hydrophober Stoffe sowie ein schimmelpilzhemmendes Mittel für Gebäudeteile
ES2275039T3 (es) * 2003-04-24 2007-06-01 Goldschmidt Gmbh Procedimiento para la produccion de revestimientos laminares desprendibles, repelentes de la suciedad y del agua.
DE10321851A1 (de) * 2003-05-15 2004-12-02 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verwendung von mit Fluorsilanen hydrophobierten Partikeln zur Herstellung von selbstreinigenden Oberflächen mit lipophoben, oleophoben, laktophoben und hydrophoben Eigenschaften
DE10325863A1 (de) * 2003-06-06 2005-01-05 Infineon Technologies Ag Verfahren zum Herstellen eines integrierten Fingerabdrucksensors sowie Sensorschaltungsanordnung und Einspritzanordnung
TW200526406A (en) * 2003-10-10 2005-08-16 Inventqjaya Sdn Bhd Self-cleaning window structure
DE10356752A1 (de) * 2003-12-04 2005-06-30 Roche Diagnostics Gmbh Beschichtete Testelemente
US8034173B2 (en) * 2003-12-18 2011-10-11 Evonik Degussa Gmbh Processing compositions and method of forming the same
US7828889B2 (en) 2003-12-18 2010-11-09 The Clorox Company Treatments and kits for creating transparent renewable surface protective coatings
US8974590B2 (en) 2003-12-18 2015-03-10 The Armor All/Stp Products Company Treatments and kits for creating renewable surface protective coatings
US20110018249A1 (en) * 2004-02-16 2011-01-27 Horst Sonnendorfer Shopping cart or transport container, and production method
US9016221B2 (en) * 2004-02-17 2015-04-28 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
US7650848B2 (en) * 2004-02-17 2010-01-26 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
US7213309B2 (en) 2004-02-24 2007-05-08 Yunzhang Wang Treated textile substrate and method for making a textile substrate
DE102004036073A1 (de) * 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
DE102004046232B4 (de) * 2004-09-22 2024-10-24 Sew-Eurodrive Gmbh & Co Kg Antriebskomponente
US7390760B1 (en) 2004-11-02 2008-06-24 Kimberly-Clark Worldwide, Inc. Composite nanofiber materials and methods for making same
US20060094320A1 (en) * 2004-11-02 2006-05-04 Kimberly-Clark Worldwide, Inc. Gradient nanofiber materials and methods for making same
DE102004062740A1 (de) * 2004-12-27 2006-07-13 Degussa Ag Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
DE102004062742A1 (de) * 2004-12-27 2006-07-06 Degussa Ag Textile Substrate mit selbstreinigenden Eigenschaften (Lotuseffekt)
DE102004062743A1 (de) * 2004-12-27 2006-07-06 Degussa Ag Verfahren zur Erhöhung der Wasserdichtigkeit von textilen Flächengebilden, so ausgerüstete textile Flächengebilde sowie deren Verwendung
DE102004062739A1 (de) 2004-12-27 2006-07-06 Degussa Ag Selbstreinigende Oberflächen mit durch hydrophobe Partikel gebildeten Erhebungen, mit verbesserter mechanischer Festigkeit
GB2421727B (en) * 2004-12-30 2007-11-14 Ind Tech Res Inst Method for forming coating material and the material formed thereby
DE102005017384A1 (de) * 2005-04-14 2006-10-19 Ropimex R. Opel Gmbh Desinfektionsmittel mit keimabtötenden Eigenschaften, Verfahren zur Herstellung und Verwendung
US20060240218A1 (en) * 2005-04-26 2006-10-26 Nanosys, Inc. Paintable nonofiber coatings
US7772393B2 (en) * 2005-06-13 2010-08-10 Innovative Surface Technologies, Inc. Photochemical crosslinkers for polymer coatings and substrate tie-layer
EP1926562A1 (fr) * 2005-09-12 2008-06-04 Perlen Converting AG Procédé d'application d'un enduit structuré sur une surface lisse
AU2006326053A1 (en) * 2005-12-15 2007-06-21 Ashland Licensing And Intellectual Property Llc Spray wax composition
DE102006001641A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Substrate mit bioziden und/oder antimikrobiellen Eigenschaften
WO2007102960A2 (fr) * 2006-01-30 2007-09-13 Ashland Licensing And Intellectual Property Llc Compositions de revêtement autonettoyant hydrophobe
US20080221263A1 (en) * 2006-08-31 2008-09-11 Subbareddy Kanagasabapathy Coating compositions for producing transparent super-hydrophobic surfaces
US20080221009A1 (en) * 2006-01-30 2008-09-11 Subbareddy Kanagasabapathy Hydrophobic self-cleaning coating compositions
US8258206B2 (en) 2006-01-30 2012-09-04 Ashland Licensing And Intellectual Property, Llc Hydrophobic coating compositions for drag reduction
EP1844863A1 (fr) * 2006-04-12 2007-10-17 General Electric Company Article ayant une surface de mouillabilité réduite et sa méthode de production
IL175477A (en) * 2006-05-08 2013-09-30 Efraim Kfir A kit for lifting the sinus membranes for use in dental implant surgery
DE102006027480A1 (de) * 2006-06-14 2008-01-10 Evonik Degussa Gmbh Kratz- und abriebfeste Beschichtungen auf polymeren Oberflächen
DE102006054158A1 (de) * 2006-11-16 2008-05-21 Wacker Chemie Ag Ultrahydrophobe Beschichtungen
GB0624729D0 (en) * 2006-12-12 2007-01-17 Univ Leeds Reversible micelles and applications for their use
US20080145631A1 (en) * 2006-12-19 2008-06-19 General Electric Company Articles having antifouling surfaces and methods for making
FR2910315B1 (fr) * 2006-12-20 2010-04-02 Oreal Composition cosmetique a film hydrophobe
WO2008075282A2 (fr) * 2006-12-20 2008-06-26 L'oreal Kit esthétique produisant un film hydrophobe
TWI384039B (zh) * 2006-12-27 2013-02-01 Ind Tech Res Inst 透明疏水自潔塗料的製作方法、所製得之塗料以及塗膜
DE102007009590A1 (de) * 2007-02-26 2008-08-28 Evonik Degussa Gmbh Glänzender und kratzfester Nagellack durch Zusatz von Sol-Gel-Systemen
DE102007009589A1 (de) * 2007-02-26 2008-08-28 Evonik Degussa Gmbh Glänzender und kratzfester Nagellack durch Zusatz von Silanen
US7943234B2 (en) * 2007-02-27 2011-05-17 Innovative Surface Technology, Inc. Nanotextured super or ultra hydrophobic coatings
US7732497B2 (en) * 2007-04-02 2010-06-08 The Clorox Company Colloidal particles for lotus effect
US20080250978A1 (en) * 2007-04-13 2008-10-16 Baumgart Richard J Hydrophobic self-cleaning coating composition
EP2011630A1 (fr) * 2007-07-03 2009-01-07 F. Hoffmann-La Roche AG Procédé destiné à la réalisation d'un élément d'analyse
US20090064894A1 (en) * 2007-09-05 2009-03-12 Ashland Licensing And Intellectual Property Llc Water based hydrophobic self-cleaning coating compositions
US8153834B2 (en) * 2007-12-05 2012-04-10 E.I. Dupont De Nemours And Company Surface modified inorganic particles
US7878056B2 (en) * 2007-12-19 2011-02-01 Siargo Ltd. Micromachined thermal mass flow sensor with self-cleaning capability and methods of making the same
US8870839B2 (en) 2008-04-22 2014-10-28 The Procter & Gamble Company Disposable article including a nanostructure forming material
US11786036B2 (en) 2008-06-27 2023-10-17 Ssw Advanced Technologies, Llc Spill containing refrigerator shelf assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US20100028604A1 (en) * 2008-08-01 2010-02-04 The Ohio State University Hierarchical structures for superhydrophobic surfaces and methods of making
CA2739920C (fr) 2008-10-07 2017-12-12 Ross Technology Corporation Surfaces anti-eclaboussures a bordures hydrophobes et oleophobes
AU2009314119B2 (en) * 2008-11-11 2016-03-03 University Of Florida Research Foundation, Inc. Method of patterning a surface and articles comprising the same
US8691983B2 (en) * 2009-03-03 2014-04-08 Innovative Surface Technologies, Inc. Brush polymer coating by in situ polymerization from photoreactive surface
US8147607B2 (en) * 2009-10-26 2012-04-03 Ashland Licensing And Intellectual Property Llc Hydrophobic self-cleaning coating compositions
WO2011056742A1 (fr) 2009-11-04 2011-05-12 Ssw Holding Company, Inc. Surfaces d'appareils de cuisson ayant une configuration permettant la retenue des débordements et procédés de fabrication de ces surfaces
US20110118686A1 (en) * 2009-11-13 2011-05-19 The Procter & Gamble Company Substrate with adherence for feces and menses
MX2012010669A (es) * 2010-03-15 2013-02-07 Ross Technology Corp Destacadores y metodos para producir supreficies hidrofobas.
WO2012115986A1 (fr) 2011-02-21 2012-08-30 Ross Technology Corporation Revêtements très hydrophobes et oléophobes comprenant des systèmes de liants à faible teneur en cov
US9937655B2 (en) 2011-06-15 2018-04-10 University Of Florida Research Foundation, Inc. Method of manufacturing catheter for antimicrobial control
GB201111439D0 (en) 2011-07-04 2011-08-17 Syngenta Ltd Formulation
DE102011085428A1 (de) 2011-10-28 2013-05-02 Schott Ag Einlegeboden
EP2791255B1 (fr) 2011-12-15 2017-11-01 Ross Technology Corporation Composition et revêtement pour une performance superhydrophobe
CA2876151C (fr) * 2012-06-08 2021-05-25 University Of Houston Revetements autonettoyants et leurs procedes de fabrication
EP2864430A4 (fr) 2012-06-25 2016-04-13 Ross Technology Corp Revêtements élastomères ayant des propriétés hydrophobes et/ou oléophobes
DE102012022757A1 (de) 2012-11-22 2013-01-24 Sew-Eurodrive Gmbh & Co. Kg Antriebskomponente
WO2014097309A1 (fr) 2012-12-17 2014-06-26 Asian Paints Ltd. Revêtement autonettoyant répondant à des stimuli
US10072241B2 (en) 2013-03-13 2018-09-11 Innovative Surface Technologies, Inc. Conical devices for three-dimensional aggregate(s) of eukaryotic cells
CN106675305A (zh) * 2016-12-28 2017-05-17 华南理工大学 一种可自修复的紫外光固化聚丙烯酸酯‑聚硅氧烷‑白炭黑超疏水涂层及其制备方法
JP6333454B1 (ja) * 2017-08-18 2018-05-30 株式会社フェクト 撥水・撥油性コーティングの形成方法及び撥水・撥油性コーティング
CN111545432A (zh) * 2020-05-11 2020-08-18 中国工程物理研究院化工材料研究所 一种高稳定性的疏黏液表面的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432000A (en) 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
WO2000039239A1 (fr) * 1998-12-24 2000-07-06 Sunyx Surface Nanotechnologies Gmbh Procede pour produire une surface ultraphobe a base d'hydroxyde de nickel, surface ultraphobe ainsi produite et son utilisation
WO2000071834A2 (fr) * 1999-05-26 2000-11-30 Basf Corporation Charge de bardeaux metalliques de couverture et procede de fabrication associe
WO2002055446A1 (fr) 2001-01-12 2002-07-18 Basf Aktiengesellschaft Procede de traitement anti-salissure de surfaces

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US5141915A (en) * 1991-02-25 1992-08-25 Minnesota Mining And Manufacturing Company Dye thermal transfer sheet with anti-stick coating
DE4238380B4 (de) * 1992-11-13 2004-02-19 Merck Patent Gmbh Verfahren zum Beschichten von Substratmaterialien mit einer glänzenden Beschichtung
KR940018419A (ko) 1993-01-18 1994-08-18 이마무라 가즈수케 발수성을 향상시킨 불소 함유 고분자 성형체 및 이로 부터 제조된 세정용 지그
DK0772514T3 (da) 1994-07-29 1999-08-23 Wilhelm Barthlott Selvrensende overflader af genstande samt fremgangsmåde til fremstilling deraf
ES2203450T3 (es) 1999-03-25 2004-04-16 Wilhelm Barthlott Procedimiento para la preparacion de superficies autolimpiables, desprendibles.
DE19914007A1 (de) 1999-03-29 2000-10-05 Creavis Tech & Innovation Gmbh Strukturierte flüssigkeitsabweisende Oberflächen mit ortsdefinierten flüssigkeitsbenetzenden Teilbereichen
DE19917367A1 (de) 1999-04-16 2000-10-19 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Überzügen auf Basis fluorhaltiger Kondensate
DE10015855A1 (de) * 2000-03-30 2001-10-11 Basf Ag Anwendung des Lotus-Effekts in der Verfahrenstechnik
DE10022246A1 (de) * 2000-05-08 2001-11-15 Basf Ag Beschichtungsmittel für die Herstellung schwer benetzbarer Oberflächen
DE10118345A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Eigenschaften von Strukturbildnern für selbstreinigende Oberflächen und die Herstellung selbiger
DE10118349A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118352A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10118351A1 (de) * 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432000A (en) 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
WO2000039239A1 (fr) * 1998-12-24 2000-07-06 Sunyx Surface Nanotechnologies Gmbh Procede pour produire une surface ultraphobe a base d'hydroxyde de nickel, surface ultraphobe ainsi produite et son utilisation
WO2000071834A2 (fr) * 1999-05-26 2000-11-30 Basf Corporation Charge de bardeaux metalliques de couverture et procede de fabrication associe
WO2002055446A1 (fr) 2001-01-12 2002-07-18 Basf Aktiengesellschaft Procede de traitement anti-salissure de surfaces

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283076A2 (fr) * 2001-07-16 2003-02-12 Creavis Gesellschaft für Technologie und Innovation mbH Surfaces auto-nettoyantes grâce à des structures hydrophobes et leur procédé de préparation
EP1283076A3 (fr) * 2001-07-16 2003-11-26 Creavis Gesellschaft für Technologie und Innovation mbH Surfaces auto-nettoyantes grâce à des structures hydrophobes et leur procédé de préparation
US7211313B2 (en) 2001-07-16 2007-05-01 Degussa Ag Surfaces rendered self-cleaning by hydrophobic structures and a process for their production
WO2004014574A2 (fr) * 2002-07-25 2004-02-19 Creavis Gesellschaft Für Technologie Und Innovation Mbh Procede de production de surfaces structurees
WO2004014574A3 (fr) * 2002-07-25 2004-06-03 Creavis Tech & Innovation Gmbh Procede de production de surfaces structurees
WO2008113624A1 (fr) 2007-03-19 2008-09-25 Robert Bosch Gmbh Lame en caoutchouc d'essuie-glace et procédé pour sa fabrication
DE102007012924A1 (de) 2007-03-19 2008-09-25 Robert Bosch Gmbh Wischgummi und Verfahren zu seiner Herstellung
EP2332792A1 (fr) 2007-03-19 2011-06-15 Robert Bosch GmbH Raclette d'essuie glace et méthode de production
EP2332792B1 (fr) * 2007-03-19 2016-07-13 Robert Bosch GmbH Raclette d'essuie glace et methode de production
WO2009067414A1 (fr) * 2007-11-19 2009-05-28 E. I. Du Pont De Nemours And Company Surfaces de matière plastique traitées ayant de meilleures propriétés nettoyantes
US8443483B2 (en) 2010-08-30 2013-05-21 GM Global Technology Operations LLC Wiper blade for vehicle window wiper
DE102011110163A1 (de) * 2010-08-30 2012-03-01 Gm Global Technology Operations Llc, ( N.D. Ges. D. Staates Delaware) Scheibenwischerblatt für Fahrzeugscheibenwischer
DE102011110163B4 (de) * 2010-08-30 2018-10-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Scheibenwischerblatt für Fahrzeugscheibenwischer
DE102012201899A1 (de) * 2012-02-09 2013-09-19 Robert Bosch Gmbh Wischgummi mit Oberflächenstrukturierung und hochhydrophober Schicht
CN109642003A (zh) * 2016-05-10 2019-04-16 澳大利亚国立大学 互穿聚合物网络
CN109642003B (zh) * 2016-05-10 2022-02-15 澳大利亚国立大学 互穿聚合物网络
CN111484723A (zh) * 2020-05-14 2020-08-04 上海金山锦湖日丽塑料有限公司 一种自清洁阻燃pc树脂及其制备方法
CN111484723B (zh) * 2020-05-14 2022-09-16 上海金山锦湖日丽塑料有限公司 一种自清洁阻燃pc树脂及其制备方法
CN111763100A (zh) * 2020-06-10 2020-10-13 大理大学 一种天然青石自清洁表面的制备方法
CN111763100B (zh) * 2020-06-10 2021-10-26 大理大学 一种天然青石自清洁表面的制备方法

Also Published As

Publication number Publication date
ES2271131T5 (es) 2009-10-30
EP1249280A3 (fr) 2003-01-02
US20020150724A1 (en) 2002-10-17
ATE340654T1 (de) 2006-10-15
CA2381134A1 (fr) 2002-10-12
EP1249280B2 (fr) 2009-07-01
JP2002346469A (ja) 2002-12-03
DE50208229D1 (de) 2006-11-09
ES2271131T3 (es) 2007-04-16
DE10118352A1 (de) 2002-10-17
US6858284B2 (en) 2005-02-22
EP1249280B1 (fr) 2006-09-27

Similar Documents

Publication Publication Date Title
EP1249280B2 (fr) Surfaces auto-nettoyantes avec des structures hydrophobes et procédé pour leur réalisation
EP1283076B1 (fr) Surfaces auto-nettoyantes grâce à des structures hydrophobes et leur procédé de préparation
EP1249281B1 (fr) Surface auto-nettoyante avec une structure hydrophobe et procédé pour sa réalisation
EP1249467B1 (fr) Surfaces auto-nettoyantes par leur structure hydrophobe et leur procédé de préparation
EP1674535A1 (fr) Surfaces auto-nettoyantes ayant une surface structurée composée de particules hydrophobiques structurelles et de particules de cires
EP1317967B1 (fr) Surface à réflexion diffuse et procédé pour sa fabrication
EP1171529B1 (fr) Procede de realisation de surfaces autonettoyantes pouvant etre retirees
EP0772514B1 (fr) Surfaces autonettoyantes d'objets et leur procede de production
EP0933388B1 (fr) Surfaces structurelles avec propriétés hydrophobes
EP1283077A1 (fr) Obtention de l'effet Lotus par prévention de la croissance microbienne sur des surfaces auto-nettoyantes
EP1249468A2 (fr) Surfaces autonettoyantes par structures hydrophobes et procédé pour leur préparation
DE10210027A1 (de) Hydrophile Oberflächen
DE10239071A1 (de) Verfahren zur Herstellung von Oberflächen, auf denen Flüssigkeiten nicht haften
WO2003013827A1 (fr) Surfaces structurees a effet lotus
DE10231757A1 (de) Verfahren zur Herstellung einer tensidfreien Suspension auf wässriger basis von nanostrukturierten, hydrophoben Partikeln und deren Verwendung
DE10106213A1 (de) Selbstreinigende Lackbeschichtungen und Verfahren und Mittel zur Herstellung derselben
DE10134362A1 (de) Strukturierte Oberflächen mit Lotus-Effekt
DE10139572A1 (de) Erhalt des Lotus-Effektes durch Verhinderung des Mikrobenwachstums nach Beschädigung der selbstreinigenden Oberfläche
DE10233831A1 (de) Verfahren zur Herstellung von strukturierten Oberflächen
DE102013218380A1 (de) Selbstgenerierende strukturierte Oberflächen mit selbstreinigenden Eigenschaften und ein Verfahren zur Herstellung dieser Oberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030407

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060927

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50208229

Country of ref document: DE

Date of ref document: 20061109

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DEGUSSA GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2271131

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DEGUSSA GMBH

Effective date: 20070221

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 20070627

NLR1 Nl: opposition has been filed with the epo

Opponent name: BASF AKTIENGESELLSCHAFT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVONIK DEGUSSA GMBH

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVONIK DEGUSSA GMBH

Effective date: 20071107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061228

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EVONIK DEGUSSA GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EVONIK DEGUSSA GMBH

Effective date: 20080806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090218

Year of fee payment: 8

Ref country code: ES

Payment date: 20090219

Year of fee payment: 8

Ref country code: LU

Payment date: 20090216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090219

Year of fee payment: 8

Ref country code: NL

Payment date: 20090217

Year of fee payment: 8

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090217

Year of fee payment: 8

Ref country code: GB

Payment date: 20090219

Year of fee payment: 8

27A Patent maintained in amended form

Effective date: 20090701

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090223

Year of fee payment: 8

NLR2 Nl: decision of opposition

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090408

Year of fee payment: 8

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090213

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20090818

Kind code of ref document: T5

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20100223

Ref country code: NL

Ref legal event code: SD

Effective date: 20100223

BERE Be: lapsed

Owner name: EVONIK DEGUSSA G.M.B.H.

Effective date: 20100228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110310

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222