WO2003013827A1 - Surfaces structurees a effet lotus - Google Patents

Surfaces structurees a effet lotus Download PDF

Info

Publication number
WO2003013827A1
WO2003013827A1 PCT/EP2002/006754 EP0206754W WO03013827A1 WO 2003013827 A1 WO2003013827 A1 WO 2003013827A1 EP 0206754 W EP0206754 W EP 0206754W WO 03013827 A1 WO03013827 A1 WO 03013827A1
Authority
WO
WIPO (PCT)
Prior art keywords
structured surfaces
structured
periodic
elevations
surfaces according
Prior art date
Application number
PCT/EP2002/006754
Other languages
German (de)
English (en)
Inventor
Markus Oles
Bernhard Schleich
Edwin Nun
Original Assignee
Creavis Gesellschaft Für Technologie Und Innovation Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creavis Gesellschaft Für Technologie Und Innovation Mbh filed Critical Creavis Gesellschaft Für Technologie Und Innovation Mbh
Publication of WO2003013827A1 publication Critical patent/WO2003013827A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic

Definitions

  • the present invention relates to structured surfaces with a low surface energy, which have elevations, the elevations being connected to one another by ridges. These surfaces can be modeled from stochastic or periodic fine structures.
  • CH-PS-268258 describes a method in which structured surfaces are produced by applying powders such as caolin, talc, clay or silica gel.
  • powders such as caolin, talc, clay or silica gel.
  • this patent does not describe what the grain size distribution is.
  • the writing also remains guilty of how the radii of curvature or the other structural features of the applied particles are.
  • WO 00/58410 comes to the conclusion that it is technically possible to make the surfaces of objects artificially self-cleaning.
  • the surface structures of elevations and depressions required for this have a distance between the elevations of the surface structures in the range from 0.1 to 200 ⁇ m and a height of the elevation in the range from 0.1 to 100 ⁇ m.
  • the materials used for this must consist of hydrophobic polymers or durable hydrophobic material. Detergent detachment from the carrier matrix must be prevented. As with the fonts described above, no information is given about the geometric shape of the structures used. Methods for producing these structured surfaces are also known.
  • DE 100 62 201 describes a method for embossing hydrophobic polymers, in which elevations with a height of 50 nm to 1000 microns and a distance of 50 nm to 500 microns are generated.
  • DE 101 10 589 describes structured surfaces and a method for their production, the structured surface consisting of elevations with a height of 50 nm to 200 ⁇ m and a distance of 50 nm to 200 ⁇ m and the elevations having an external shape which is described by a mathematical function with a rotational symmetry with respect to a maximum.
  • an aspect ratio of> 1 is not decisive for the self-cleaning effect. More important than the aspect ratio is the correct distance between the structures and the hydrophobicity of the surface. Contact angles greater than 150 ° can only be achieved by combining the size of the surface offered by the drops with a low surface energy.
  • DE 101 34 362 has therefore developed a structured surface which has line-shaped elevations and which have a height of the elevations from one another of 50 nm to 200 ⁇ m.
  • line-shaped elevations are mechanically much more stable compared to pointed or conical elevations, this only applies to forces that act in the direction of the lines.
  • the elevations are less stable when forces occur perpendicular to the lines.
  • structured, hydrophobic surfaces the structure of which is formed by elevations, adjacent elevations being connected by ridges which have a lower average height than the elevations connected by them, have a significantly higher stability to forces from all directions than conventional structures.
  • the present invention therefore relates to structured, hydrophobic surfaces according to claim 1, the structure of which is formed by elevations, which are characterized in that adjacent elevations are connected by ridges which have a lower average height than the elevations connected by them.
  • the present invention also relates to a method for producing structured surfaces according to at least one of claims 1 to 9 by molding a negative shape onto an unstructured surface, which is characterized in that the negative shape is a surface made up of parts of spheres or rounded truncated pyramids and between the Ball parts has valley-shaped incisions.
  • the present invention also relates to the use of the structured Surface according to one of claims 1 to 8 for the production of containers, foils, semi-finished products or reaction vessels and movable objects which have an outer shell with wholly or partially structured surfaces according to one of claims 1 to 9.
  • the surfaces according to the invention have the advantage that they have a significantly greater mechanical stability than conventional surfaces with a self-cleaning effect.
  • the surfaces according to the invention are also easy to produce.
  • the structured, hydrophobic surfaces according to the invention are characterized in that adjacent elevations are connected by ridges which have a lower average height than the elevations connected by them.
  • the surveys themselves preferably have an average height of 50 nm to 200 ⁇ m, particularly preferably an average height of 100 nm to 500 nm, from 0.5 ⁇ m to 50 ⁇ m or from 50 ⁇ m to 200 ⁇ m and very particularly preferably an average height of 0.5 ⁇ m to 10 ⁇ m.
  • the average height of the ridges connecting the elevations can be designed differently. This enables flat and deep forms of the structures made up of elevations and ridges.
  • the average height of the ridges connecting the elevations is preferably from 5 to 99%, preferably from 40 to 90%, particularly preferably from 40 to 50%, from 50 to 60%, from 60 to 80% and very particularly preferably from 60 to 70 % of the average height of the surveys connected by the ridge.
  • the surfaces structured according to the invention can have elevations which have a stochastic or periodic structure.
  • the stochastic structure is preferably a speckle pattern with an average speckle size of 30 to 50 ⁇ m, preferably 30 to 35 ⁇ m, 35 to 40 ⁇ m, 40 to 45 ⁇ m or 45 to 50 ⁇ m.
  • the structure has a stochastic structure, on which a periodic fine structure is superimposed.
  • This fine-tied structure preferably has a period of 0.5 to 10 ⁇ m, particularly preferably a period from 0.5 to 3 ⁇ m, from 3 to 6 ⁇ m or from 6 to 10 ⁇ m and very particularly preferably a period from 1 to 2.5 ⁇ m.
  • the structure has a periodic coarse structure on which a periodic fine structure is superimposed.
  • the structured surface according to the invention preferably has a coarse structure which has a pattern which has a 2-, 3-, 4-, 6- or 8-fold symmetry. It can be advantageous if the coarse structure has a period, that is to say a distance from tip to tip of 20 to 30 ⁇ m. Any fine structure that is present preferably has a period of 0.5 to 10 ⁇ m, very particularly preferably 1 to 2.5 ⁇ m.
  • the saddle depth ie the depth from tip to ridge of the coarse structure, is preferably from 2 to 20 ⁇ m, very particularly preferably from 7 to 11 ⁇ m. This depth in particular can be varied. Both deep coarse structures and flat coarse structures are suitable. A periodic coarse structure with a periodic fine structure has proven to be particularly suitable.
  • the structured surface can be made from a wide variety of materials. However, the surface very particularly preferably has a polymer.
  • the structured surfaces according to the invention are preferably produced by the method according to the invention for the production of structured surfaces by molding a negative shape onto an unslurctured surface, the negative shape having a surface made up of parts of spheres or rounded truncated pyramids and the negative shape having valley-shaped incisions between the spherical parts.
  • the burrs on the structured surfaces are created by the incisions that connect the spheres or pyramid tips.
  • the molding can e.g. B. done by embossing or rolling.
  • the molding by embossing or rolling is particularly suitable for the production of surfaces according to the invention on planar objects, such as. B. foils or plates. It is also possible that
  • IMD injection molding or "In Mold Decoration”
  • the latter method is particularly suitable for equipping non-planar or three-dimensional objects with a surface according to the invention.
  • the molding can also take place in liquid or pasty coatings or in reactive lacquers with simultaneous curing of the coating.
  • the surfaces according to the invention can be produced in particular by embossing in polymeric moldings or else by molding in and subsequent hardening of coating systems.
  • the ideal way to do this is to use rollers that have corresponding patterns over the circumference.
  • Polymer moldings in the aforementioned sense are, for example, injection molded moldings or deep drawn moldings.
  • the structuring can take place simultaneously with the shaping.
  • Flat polymer moldings are intelligently provided with the corresponding structures during rolling or calendering.
  • a subsequent painting and molding of the structure after the shaping falls into the paint with simultaneous or subsequent hardening, for example by UV light.
  • a material selected from soft metals or soft metal alloys, plastics, thermoplastic plastics or thermosetting plastics, in particular polyamides, polymethacrylates, polysulfones, polyoxymethylenes, polyparaphenylene oxides, polyparaphenylene sulfides or polyimides, can be used as the material for producing surfaces according to the invention. Embossing into hydrophobic polymers, hydrophobic copolymers or hydrophobic polymer blends is particularly advantageous.
  • the objects do not have to consist entirely of the materials mentioned, but it may be sufficient if the objects are coated or coated with one of the materials mentioned, the thickness of the coating or coating having to be at least so large that the impression of the surveys according to the invention is possible.
  • the surface or the material of the surface preferably has hydrophobic properties, it being possible for the surface or the material to be rendered hydrophobic before or after the structuring, or else the material itself can have hydrophobic properties without treatment. If the surface is rendered hydrophobic, this is preferably done by treating the surface with at least one compound from the group of alkylsilanes, perfluoroalkylsilanes or alkyldisilazanes.
  • the material for producing surfaces according to the invention has hydrophobic properties.
  • Such materials include in particular bulk polymers with polytetrafluoroethylene, polyvinylidene fluoride or polymers made from perfluoroalkyoxy compounds, be it as a homo- or copolymer or as a component of a blend of a polymer blend.
  • Surfaces according to the invention can therefore be produced from materials which have hydrophobic behavior even before the structuring of their surface.
  • a surface modification with compounds which contain hydrophobic groups may be sufficient.
  • Methods of this type involve the covalent attachment of monomers or oligomers to the surface by a chemical reaction, e.g. B. Treating surfaces with alkyl fluorosilanes, such as Dynasilan F 8261 from Sivento Chemie Rheinfelden GmbH, with fluorinated ormocers, or by treatment with at least one compound from the group consisting of alkylsilanes, perfluoroalkylsilanes or alkyldisilazanes.
  • alkyl fluorosilanes such as Dynasilan F 8261 from Sivento Chemie Rheinfelden GmbH
  • radical sites are first generated on the surface, which react with free-radically polymerizable monomers in the presence or absence of oxygen.
  • the surfaces can be activated by means of plasma, UV or gamma radiation and by means of special photoinitiators. After activating the surface, i.e. H. after the generation of free radicals, the monomers can be polymerized. Such a method generates a mechanically particularly resistant coating.
  • the coating of a material or a structured surface by plasma polymerization of fluoroalkenes or fully or partially fluorinated vinyl compounds has proven particularly useful.
  • hydrophobization of a structured surface by means of an RF hollow cathode plasma source by plasma polymerization with argon as the carrier gas and a fluoromonomer, such as. B. C 4 F 8 , octafluro-2-butene, perfluorocyclobutane or tetrafluoroethylene, as a monomer at a pressure of about 0.2 mbar represents a technically simple and elegant variant for subsequent coating.
  • hydrophobization of polymer surfaces of any shape by means of elemental fluorine diluted in inert gas is an elegant standard process for appropriately equipped companies and is therefore suitable for the hydrophobization of surfaces according to the invention.
  • an object that has already been manufactured can be coated with a thin layer of a hydrophobic polymer. This can be done in the form of a lacquer or by polymerizing appropriate monomers on the surface of the object. Solutions, pastes or dispersions of polymers such as e.g. B. polyvinylidene fluoride (PVDF) or reactive paints are used. Particularly suitable monomers for polymerization on the materials or their structured surfaces are alkyl fluorosilanes such as Dynasilan F 8261 (Sivento Chemie Rheinfelden GmbH, Rheinfelden).
  • the negative form with stochastic structures is preferably produced by exposing a photoresist plate to a speckle pattern.
  • speckle patterns are described in detail in the book by Pramod K. Rastogi, title "Digital Speckle Pattern Interferrometry and Related Techniques", published by Wiley-Verlag, Chichester 2000.
  • An outstanding property of this stochastic structure is that there are no interference phenomena on the surface .
  • the stochastic structures can be produced by exposure to speckle patterns in a photoresist.
  • the respective speckle pattern can be generated by coherent radiation of a primary diffuser. It is possible to set both the size and the symmetry of the speckies. Etched glass panes, for example, can be used as the primary diffuser.
  • the negative forms preferably have structures that are periodic and / or stochastic in character. Such negative forms are obtainable by producing positive forms with stochastic and / or periodic structures, from which the negative forms are molded.
  • the positive forms preferably have stochastic structures that are overlaid with a periodic fine structure or periodic coarse structures that are overlaid with a periodic fine structure.
  • the stochastic structure is based on speckle patterns with an average speckle size of 30 to 50 ⁇ m. After creating this rough stochastic structure, this structure is overlaid with a periodic fine structure.
  • the period of this fine structure is from 0.5 to 10 ⁇ m, preferably from 1 to 2.5 ⁇ m.
  • the periodic rough structure which is overlaid by a periodic fine structure, arises from the overlay of two periodic structures.
  • the coarse structure preferably has a period between 20 to 30 ⁇ m.
  • a fine structure with a Period from 0.5 to 10 microns, preferably from 1 to 2.5 microns.
  • the saddle depth of the rough structure is approx. 4 ⁇ m. This depth in particular can be varied. Both deep coarse structures and flat coarse structures are suitable.
  • a periodic coarse structure with a periodic fine structure has proven to be particularly suitable.
  • Surfaces structured according to the invention have particularly high contact angles. This largely prevents wetting of the surface and leads to rapid drop formation. If the surface is inclined appropriately, the drops can roll on the elevations, pick up dirt particles and thus clean the surface at the same time.
  • Objects with surfaces structured according to the invention are very easy to clean. If rolling drops of z. B. rain water, dew or other water in the area of application of the object is not sufficient for cleaning, the objects can be cleaned by simply rinsing with water.
  • Bacteria and other microorganisms require water for adhesion to a surface or for multiplication on a surface, which is not available on the hydrophobic surfaces of the present invention.
  • Surfaces structured according to the invention prevent the growth of bacteria and other microorganisms and are therefore bacteriophobic and / or antimicrobial.
  • One area of application for the surfaces according to the invention are containers which are to be emptied without residues or holders which can be cleaned quickly, such as, for example, wafer holders in semiconductor production.
  • wafers are transported to various baths using special holders (cassettes).
  • cleaning steps in particular the holders, are required.
  • the cleaning or drying steps are dispensed with if the respective bath liquid drips completely from the holder when the wafer is removed from the bath.
  • the structured surfaces according to the invention are outstandingly suitable for the production of products, whose surfaces favor the drainage of liquids.
  • the structured surfaces according to the invention are particularly suitable for the production of containers, foils, semi-finished products or reaction vessels.
  • Surfaces according to the invention are preferably used for the production of products which clean or empty themselves by running water.
  • Preferred uses are containers, transparent bodies, pipettes, reaction vessels, foils, semi-finished products or holders.
  • objects made of almost any materials can be equipped with the structured foils according to the invention by applying and fixing the foil on the object.
  • the present invention also includes movable objects which have an outer shell with a wholly or partially structured surface according to the invention.
  • movable objects can e.g. B. be selected from vehicles, blades of wind turbines, turbine wheels or agitator blades.
  • the moving objects can in particular vehicles such. B. cars, buses, trucks, ships, boats, submarines, airplanes, balloons, zeppelins or rockets or toys.
  • the use of the surface according to the invention largely prevents contamination of the vehicles or the agitator blades.
  • the surveys of the present invention have a significantly higher durability.
  • FIGS. 1 to 3 show various structural variants according to the invention in accordance with the present invention, without the invention being restricted to these embodiments.
  • Example 1 shows an SEM image of a self-cleaning surface produced according to the invention, which has a stochastic structure. The production of this surface is described in Example 1.
  • Example 2 shows an SEM image of a self-cleaning surface produced according to the invention, which has a periodic coarse structure in the deep form, overlaid by one has periodic fine structure. The production of this surface is described in Example 2.
  • Example 3 shows an SEM image of a self-cleaning surface produced according to the invention, which has a periodic coarse structure in the flat design, superimposed by a periodic fine structure. The production of this surface is described in Example 3.
  • Example 1 Production of a self-cleaning surface with a stochastic structure
  • a glass pane was coated with a highly viscous positive photoresist ma - P1275, with a lacquer thickness of approx. 15 ⁇ m.
  • the speckle pattern was generated by irradiating a primary diffuser. Coherent laser light with a dose of 10 mJ / cm 2 and a wavelength of 364 nm was used. After exposure, a highly concentrated developer was used to develop the structure.
  • the photoresist was sputtered with a gold layer as a piater base and then electroplated in nickel. With the nickel shim thus produced, the structure was molded in a hydrophobic, UV-curing lacquer system.
  • Example 2 Production of a self-cleaning surface with a periodic coarse structure, overlaid with a periodic fine structure in the deep expression
  • a glass pane was coated with a highly viscous positive photoresist ma - P1275, with a lacquer thickness of approx. 15 ⁇ m.
  • the rough structure as well as the fine structure was generated by irradiating a cross grating (27 ⁇ m and 2 ⁇ m period) with different distances.
  • Coherent laser light with a dose of 2 x 70 mJ / cm 2 and a wavelength of 364 nm was used to produce the coarse structure.
  • Coherent laser light with a dose as in Example 1 was used for the subsequent generation of the fine structure. With the coarse structure, a saddle depth of 9 ⁇ m could be achieved at a height of the elevations of 9.5 to 10 ⁇ m.
  • the height distance from the lowest to the highest elevations of the fine structure was also approx. 10 ⁇ m.
  • a highly concentrated developer was used to develop the structure.
  • the photoresist was sputtered with a gold layer as a piater base and then electroplated in nickel. With the nickel shim thus produced, the The structure is molded in a hydrophobic, UV-curing lacquer system.
  • Example 3 Production of a self-cleaning surface with a periodic coarse structure, superimposed by a periodic fine structure in the flat shape.
  • This structure is produced analogously to Example 2.
  • the radiation doses for the coarse structure were reduced to 2 x 6mJ / cm 2 .
  • the coarse structure had a height of 3 to 3.5 ⁇ m.
  • the rough structure of this variant has a saddle depth of 2 ⁇ m.
  • the contact angle of a liquid with the surface was determined with a contact angle measuring device. The more hydrophobic the surface, the greater the contact angle. A distinction is made in the measurement between the advancing and retreating angles. At the advancing angle, a drop is pipetted onto the surface and the angle of the tangent at the point of contact between the solid and the spreading liquid drops is determined. At the retreat angle, the tangent of a water drop that decreases in volume is measured. Have good lotus surfaces Progress and retreat angles of more than 150 °.
  • Roll-off angle specifies the inclination of a surface where a drop of water rolls off this surface independently. The smaller the roll angle, the better the self-cleaning effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention concerne des surfaces autonettoyantes qui sont obtenues grâce à une structure stochastique ou à une combinaison de deux structures périodiques. Des surfaces à propriétés de mouillabilité réduite, présentent une série de caractéristiques importantes d'un point de vue économique. Ces surfaces difficilement mouillables avec de l'eau, en combinaison avec une structure appropriée, sont mentionnées en tant que surfaces à effet lotus. Les saletés sont éliminées facilement de ces surfaces grâce à de l'eau en mouvement. Cela permet d'éviter d'avoir recours à un nettoyage coûteux et long des surfaces.
PCT/EP2002/006754 2001-08-03 2002-06-19 Surfaces structurees a effet lotus WO2003013827A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10138036.4 2001-08-03
DE10138036A DE10138036A1 (de) 2001-08-03 2001-08-03 Strukturierte Oberflächen mit Lotus-Effekt

Publications (1)

Publication Number Publication Date
WO2003013827A1 true WO2003013827A1 (fr) 2003-02-20

Family

ID=7694215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/006754 WO2003013827A1 (fr) 2001-08-03 2002-06-19 Surfaces structurees a effet lotus

Country Status (2)

Country Link
DE (1) DE10138036A1 (fr)
WO (1) WO2003013827A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800354B2 (en) 2000-12-21 2004-10-05 Ferro Gmbh Substrates with a self-cleaning surface, a process for their production and their use
US6872441B2 (en) 2000-04-01 2005-03-29 Ferro Gmbh Glass ceramic and metal substrates with a self-cleaning surface, method for the production and use thereof
WO2006028603A2 (fr) * 2004-07-27 2006-03-16 Ut-Battelle, Llc Matiere ordonnee, composite a details de surface nets
WO2006088721A1 (fr) * 2005-02-16 2006-08-24 3M Innovative Properties Company Procédé de fabrication de revêtements à motifs formés topographiquement
US7544411B2 (en) 2001-02-10 2009-06-09 Ferro Gmbh Self-cleaning paint coating and a method and agent for producing the same
WO2010017503A1 (fr) * 2008-08-07 2010-02-11 Uni-Pixel Displays, Inc. Microstructures pour réduire l'apparition d'empreintes sur des surfaces
US7697808B2 (en) 2004-07-27 2010-04-13 Ut-Battelle, Llc Multi-tipped optical component
WO2011002827A1 (fr) * 2009-06-30 2011-01-06 Ut-Battelle, Llc Surfaces polymères prothétiques autonettoyantes de type peau
WO2011094508A1 (fr) * 2010-01-28 2011-08-04 President And Fellows Of Harvard College Surfaces super-hydrophobes à motifs pour réduire la formation, l'adhérence et l'accumulation de glace
WO2011094344A1 (fr) * 2010-01-28 2011-08-04 President And Fellows Of Harvard College Structures pour empêcher la fixation de microorganismes
WO2013135590A3 (fr) * 2012-03-14 2013-12-05 Ewald Dörken Ag Bande antisalissure
US8993059B2 (en) 2005-02-16 2015-03-31 3M Innovative Properties, Company Method of making morphologically patterned coatings
US9121307B2 (en) 2011-01-19 2015-09-01 President And Fellows Of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
US9625075B2 (en) 2012-05-24 2017-04-18 Massachusetts Institute Of Technology Apparatus with a liquid-impregnated surface to facilitate material conveyance
US9630224B2 (en) 2012-07-13 2017-04-25 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces having improved stability
US9828284B2 (en) 2014-03-28 2017-11-28 Ut-Battelle, Llc Thermal history-based etching
US9932484B2 (en) 2011-01-19 2018-04-03 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
US9963597B2 (en) 2012-07-12 2018-05-08 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
US10011800B2 (en) 2012-07-13 2018-07-03 President And Fellows Of Harvard College Slips surface based on metal-containing compound
US10385181B2 (en) 2013-03-13 2019-08-20 President And Fellows Of Harvard College Solidifiable composition for preparaton of liquid-infused slippery surfaces and methods of applying
US10882085B2 (en) 2012-11-19 2021-01-05 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US10968035B2 (en) 2012-03-23 2021-04-06 Massachusetts Institute Of Technology Self-lubricating surfaces for food packaging and food processing equipment
US11058803B2 (en) 2012-05-24 2021-07-13 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces
US11492500B2 (en) 2012-11-19 2022-11-08 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US11744708B2 (en) 2016-02-16 2023-09-05 Koninklijke Philips N.V. Surface topographies for altering the physiology of living cells
US11933551B2 (en) 2011-08-05 2024-03-19 Massachusetts Institute Of Technology Liquid-impregnated surfaces, methods of making, and devices incorporating the same
US11998369B2 (en) 2021-04-12 2024-06-04 Freeflow Medical Devices Llc Packaging for medical devices coated with perfluorinated liquids or dispersions thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10356752A1 (de) 2003-12-04 2005-06-30 Roche Diagnostics Gmbh Beschichtete Testelemente
DE102004062739A1 (de) 2004-12-27 2006-07-06 Degussa Ag Selbstreinigende Oberflächen mit durch hydrophobe Partikel gebildeten Erhebungen, mit verbesserter mechanischer Festigkeit
DE102005001350B4 (de) * 2005-01-11 2007-03-01 Schulze-Hagenest, Detlef, Dr. Selbstreinigende Fixierwalzen
DE102005013560A1 (de) * 2005-03-23 2006-06-29 Siemens Ag Medizintechnisches Gerät
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
US8193406B2 (en) 2007-05-17 2012-06-05 Ut-Battelle, Llc Super-hydrophobic bandages and method of making the same
ATE531454T1 (de) 2008-03-31 2011-11-15 Sony Dadc Austria Ag Substrat und zielplatte
DE202008018474U1 (de) 2008-11-26 2014-07-08 Gmbu E.V., Fachsektion Dresden Schicht mit hierarchischer mikro- und nanostrukturierter Oberfläche sowie Zusammensetzung zu ihrer Herstellung
DE102008060800A1 (de) 2008-11-26 2010-05-27 Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V., Arbeitsgruppe funktionelle Schichten Schicht mit hierarchischer mikro- und nanostrukturierter Oberfläche sowie Zusammensetzung und Verfahren zu ihrer Herstellung
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
DE102014216118A1 (de) * 2014-08-13 2016-02-18 Carl Zeiss Smt Gmbh Vakuum-System, insbesondere EUV-Lithographiesystem, und optisches Element
DE102014113097A1 (de) 2014-09-11 2016-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Reduzieren der Schmutzhaftung an einem Substrat
DE102018108053A1 (de) * 2018-04-05 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mikrostrukturierter Gegenstand
DE102018108074A1 (de) * 2018-04-05 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verwendung eines Bauteils mit mikrostrukturierter Oberfläche als Fließbett für diskrete Mengen einer Flüssigkeit
DE102018109337A1 (de) 2018-04-19 2019-10-24 Ralph Domnick Verfahren zur Herstellung einer TCO-Schicht und Gegenstand mit einer TCO-Beschichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) * 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US4650138A (en) * 1985-09-30 1987-03-17 Internorth, Inc. Cascaded micro-groove aerodynamic drag reducer
WO1996004123A1 (fr) * 1994-07-29 1996-02-15 Wilhelm Barthlott Surfaces autonettoyantes d'objets et leur procede de production
US5860626A (en) * 1993-10-20 1999-01-19 Moser; Josef Surface of a body exposed to circumfluent fluid
WO2001005572A1 (fr) * 1999-07-16 2001-01-25 Advanced Design Concept Gmbh Profil ou moulage a structure de surface a franges
DE19943299A1 (de) * 1999-09-10 2001-03-22 Binder Gottlieb Gmbh & Co Oberfläche für einen Gegenstand einschliesslich Verfahren zu ihrer Herstellung sowie ihre Verwendung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) * 1964-03-31 1967-11-21 Du Pont Water-repellant surface
US4650138A (en) * 1985-09-30 1987-03-17 Internorth, Inc. Cascaded micro-groove aerodynamic drag reducer
US5860626A (en) * 1993-10-20 1999-01-19 Moser; Josef Surface of a body exposed to circumfluent fluid
WO1996004123A1 (fr) * 1994-07-29 1996-02-15 Wilhelm Barthlott Surfaces autonettoyantes d'objets et leur procede de production
WO2001005572A1 (fr) * 1999-07-16 2001-01-25 Advanced Design Concept Gmbh Profil ou moulage a structure de surface a franges
DE19943299A1 (de) * 1999-09-10 2001-03-22 Binder Gottlieb Gmbh & Co Oberfläche für einen Gegenstand einschliesslich Verfahren zu ihrer Herstellung sowie ihre Verwendung

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872441B2 (en) 2000-04-01 2005-03-29 Ferro Gmbh Glass ceramic and metal substrates with a self-cleaning surface, method for the production and use thereof
US6800354B2 (en) 2000-12-21 2004-10-05 Ferro Gmbh Substrates with a self-cleaning surface, a process for their production and their use
US7544411B2 (en) 2001-02-10 2009-06-09 Ferro Gmbh Self-cleaning paint coating and a method and agent for producing the same
WO2006028603A2 (fr) * 2004-07-27 2006-03-16 Ut-Battelle, Llc Matiere ordonnee, composite a details de surface nets
WO2006028603A3 (fr) * 2004-07-27 2006-04-13 Ut Battelle Llc Matiere ordonnee, composite a details de surface nets
US7150904B2 (en) 2004-07-27 2006-12-19 Ut-Battelle, Llc Composite, ordered material having sharp surface features
US7697808B2 (en) 2004-07-27 2010-04-13 Ut-Battelle, Llc Multi-tipped optical component
US8182871B2 (en) 2005-02-16 2012-05-22 3M Innovative Properties Company Method of making topographically patterned coatings
WO2006088721A1 (fr) * 2005-02-16 2006-08-24 3M Innovative Properties Company Procédé de fabrication de revêtements à motifs formés topographiquement
US8993059B2 (en) 2005-02-16 2015-03-31 3M Innovative Properties, Company Method of making morphologically patterned coatings
WO2010017503A1 (fr) * 2008-08-07 2010-02-11 Uni-Pixel Displays, Inc. Microstructures pour réduire l'apparition d'empreintes sur des surfaces
US8142516B2 (en) 2009-06-30 2012-03-27 Ut-Battelle, Llc Self-cleaning skin-like prosthetic polymer surfaces
US9668884B2 (en) 2009-06-30 2017-06-06 Ut-Battelle, Llc Method of making self-cleaning skin-like prosthetic polymer surfaces
WO2011002827A1 (fr) * 2009-06-30 2011-01-06 Ut-Battelle, Llc Surfaces polymères prothétiques autonettoyantes de type peau
WO2011094508A1 (fr) * 2010-01-28 2011-08-04 President And Fellows Of Harvard College Surfaces super-hydrophobes à motifs pour réduire la formation, l'adhérence et l'accumulation de glace
WO2011094344A1 (fr) * 2010-01-28 2011-08-04 President And Fellows Of Harvard College Structures pour empêcher la fixation de microorganismes
CN102834124A (zh) * 2010-01-28 2012-12-19 哈佛大学校长及研究员协会 防止微生物附着的结构
US9121307B2 (en) 2011-01-19 2015-09-01 President And Fellows Of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
US9932482B2 (en) 2011-01-19 2018-04-03 President And Fellows Of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
US9121306B2 (en) 2011-01-19 2015-09-01 President And Fellows Of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
US9353646B2 (en) 2011-01-19 2016-05-31 President And Fellows Of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
US10233334B2 (en) 2011-01-19 2019-03-19 President And Fellows Of Harvard College Containers, bottles, drums, vats, and tanks having a slippery surface
US11118067B2 (en) 2011-01-19 2021-09-14 President And Fellows Of Harvard College Sanitation systems and components thereof having a slippery surface
US10550272B2 (en) 2011-01-19 2020-02-04 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
US10982100B2 (en) 2011-01-19 2021-04-20 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
US9932484B2 (en) 2011-01-19 2018-04-03 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
US11933551B2 (en) 2011-08-05 2024-03-19 Massachusetts Institute Of Technology Liquid-impregnated surfaces, methods of making, and devices incorporating the same
CN104245163A (zh) * 2012-03-14 2014-12-24 艾华德·多肯股份公司 防污片
WO2013135590A3 (fr) * 2012-03-14 2013-12-05 Ewald Dörken Ag Bande antisalissure
US10968035B2 (en) 2012-03-23 2021-04-06 Massachusetts Institute Of Technology Self-lubricating surfaces for food packaging and food processing equipment
US11684705B2 (en) 2012-05-24 2023-06-27 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces
US9625075B2 (en) 2012-05-24 2017-04-18 Massachusetts Institute Of Technology Apparatus with a liquid-impregnated surface to facilitate material conveyance
US11058803B2 (en) 2012-05-24 2021-07-13 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces
US9963597B2 (en) 2012-07-12 2018-05-08 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
US11186731B2 (en) 2012-07-12 2021-11-30 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
US9630224B2 (en) 2012-07-13 2017-04-25 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces having improved stability
US10011800B2 (en) 2012-07-13 2018-07-03 President And Fellows Of Harvard College Slips surface based on metal-containing compound
US10882085B2 (en) 2012-11-19 2021-01-05 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US11492500B2 (en) 2012-11-19 2022-11-08 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
US10385181B2 (en) 2013-03-13 2019-08-20 President And Fellows Of Harvard College Solidifiable composition for preparaton of liquid-infused slippery surfaces and methods of applying
US10155688B2 (en) 2014-03-28 2018-12-18 Ut-Battelle, Llc Thermal history-based etching
US9828284B2 (en) 2014-03-28 2017-11-28 Ut-Battelle, Llc Thermal history-based etching
US11744708B2 (en) 2016-02-16 2023-09-05 Koninklijke Philips N.V. Surface topographies for altering the physiology of living cells
US11998369B2 (en) 2021-04-12 2024-06-04 Freeflow Medical Devices Llc Packaging for medical devices coated with perfluorinated liquids or dispersions thereof
US12005161B2 (en) 2023-05-15 2024-06-11 Massachusetts Institute Of Technology Medical devices and implements with liquid-impregnated surfaces

Also Published As

Publication number Publication date
DE10138036A1 (de) 2003-02-20

Similar Documents

Publication Publication Date Title
WO2003013827A1 (fr) Surfaces structurees a effet lotus
EP0933388B1 (fr) Surfaces structurelles avec propriétés hydrophobes
EP1249280B2 (fr) Surfaces auto-nettoyantes avec des structures hydrophobes et procédé pour leur réalisation
EP0772514B1 (fr) Surfaces autonettoyantes d'objets et leur procede de production
DE102006036863B4 (de) Mechanisch stabile poröse Membran, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1238717A2 (fr) Faconnement géometrique de surfaces ayant un effet Lotus
EP1249281B1 (fr) Surface auto-nettoyante avec une structure hydrophobe et procédé pour sa réalisation
EP1283076B1 (fr) Surfaces auto-nettoyantes grâce à des structures hydrophobes et leur procédé de préparation
EP2038452B1 (fr) Procédé destiné à la fabrication d'une surface superhydrophobe
EP1247636B1 (fr) Procédé pour former des polymères hydrophobes pour la production de surfaces avec des propriétés hydrophobes et oléophobes durables
EP1317967B1 (fr) Surface à réflexion diffuse et procédé pour sa fabrication
EP1249467B1 (fr) Surfaces auto-nettoyantes par leur structure hydrophobe et leur procédé de préparation
DE10134362A1 (de) Strukturierte Oberflächen mit Lotus-Effekt
EP1358018B2 (fr) Revetement autonettoyant sous forme de peinture et procede et agent permettant de fabriquer ladite peinture
EP1674535A1 (fr) Surfaces auto-nettoyantes ayant une surface structurée composée de particules hydrophobiques structurelles et de particules de cires
EP1171529A1 (fr) Procede de realisation de surfaces autonettoyantes pouvant etre retirees
EP1393819A1 (fr) Procédé pour préparer des surfaces répulsives aux liquides
DE10028772B4 (de) Aluminiumwerkstoff mit ultrahydrophober Oberfläche, Verfahren zu dessen Herstellung sowie Verwendung
DE10058258B4 (de) Poröse Membranen, deren Herstellung und Verwendung
DE19913601C1 (de) Vorrichtung und Verfahren zum verlustfreien Transport von Flüssigkeiten
DE10064520A1 (de) Verfahren zur Herstellung von selbstreinigenden Oberflächenstrukturen
DE10233831A1 (de) Verfahren zur Herstellung von strukturierten Oberflächen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE CH CY DE DK FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP