EP1231331A2 - Betonstahl mit Rippen, Stahlbeton - Google Patents

Betonstahl mit Rippen, Stahlbeton Download PDF

Info

Publication number
EP1231331A2
EP1231331A2 EP02002017A EP02002017A EP1231331A2 EP 1231331 A2 EP1231331 A2 EP 1231331A2 EP 02002017 A EP02002017 A EP 02002017A EP 02002017 A EP02002017 A EP 02002017A EP 1231331 A2 EP1231331 A2 EP 1231331A2
Authority
EP
European Patent Office
Prior art keywords
reinforcing steel
rib
ribs
concrete
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02002017A
Other languages
English (en)
French (fr)
Other versions
EP1231331A3 (de
EP1231331B1 (de
Inventor
Jürgen Schulz
Richard Langenecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Badische Stahlwerke AG
Original Assignee
Badische Stahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Badische Stahlwerke AG filed Critical Badische Stahlwerke AG
Publication of EP1231331A2 publication Critical patent/EP1231331A2/de
Publication of EP1231331A3 publication Critical patent/EP1231331A3/de
Application granted granted Critical
Publication of EP1231331B1 publication Critical patent/EP1231331B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/03Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance with indentations, projections, ribs, or the like, for augmenting the adherence to the concrete

Definitions

  • the present invention relates to a rebar with ribs.
  • the present Invention is used wherever reinforcing steel is used to manufacture Reinforced concrete can be used.
  • the present invention is particularly applicable to the production of reinforced concrete, especially here in the production of reinforcing steel mesh and reinforcing steel preferably used in rings.
  • reinforcing steel bars are laid crosswise on top of each other and welded at their points of contact.
  • cold-rolled reinforcing steel is used.
  • Reinforcing steel is also common on coils, so-called “rings”, wound up and transported on to the customer.
  • this is a straightening or bending and Cutting machine fed, or for example a mesh machine to reinforcing steel mesh manufacture.
  • the reinforcing steel is used in so-called roller straightening sets or alternatively straightened in rotor straightening sets. For a rebar higher Quality is increasingly used in hot-rolled reinforcing steel.
  • FIG. 1a to 1d show reinforcing steel according to the prior art, as in the DIN number 488 or in building inspectorate approvals.
  • the reinforcing steel 1 has four rows of (in the Ribs 2 from top to bottom.
  • the rib pitch angle ⁇ between the longitudinal direction of the rib under consideration and the direction of the Longitudinal axis A of the reinforcing steel in the case of reinforcing steel according to the prior art about 60 °.
  • the distance between two ribs 2 in the longitudinal direction (rib spacing) is c
  • the rib head width of a rib 2 transverse to the longitudinal direction of the considered Rib is denoted by b. Is located between two adjacent ribs 2 a depression 8.
  • FIG. 1d shows a section through the reinforcing steel 1 along the in FIG. 1b shown section line D.
  • FIG. 1c 2a in FIG. 1c is the rib head surface
  • 2b denotes the rib flank (on the other The side of the rib head surface 2a is also not visible in the drawing Rib flank present)
  • 8 is the dip between two neighboring ones Ribs 2.
  • 3 denotes the projection of a reinforcing steel in the longitudinal direction.
  • the roughly circular contour is created by the backdrops one behind the other appearing and thus forming the circumferential contour ribs 2.
  • the cutting contour 4 itself appears rather irregular. However, it occurs quite regularly in the manufacture of the reinforcing steel.
  • the roughly square Basic shape 5 with possibly rounded edges and the ribs 2 by rolling rolled into the raw material. This can be hot rolling or cold rolling.
  • the Overall structure in cross-sectional area can thus be imagined as ribs 2, which sit on a base body with a square cross-section (reference number 5).
  • the actual cross-sectional contour 4 results depending on where the Cross section cuts the respective ribs.
  • What has just been said applies to reinforcing steel with four rows of ribs.
  • the rows of ribs are through in the longitudinal direction of the material running webs 6 (rib row spacing or roll gap) and, depending on the Basic shape (e.g. round, square, hexagonal, etc.) and the rib milling depth, e.g. T. separated from each other by further webs 7 ..
  • the bond behavior of reinforcing steel in concrete is sketched in FIG. 2a.
  • the association behavior specifies the force F with which the reinforcing steel must be pulled, so that there is a shift ⁇ 1 of the reinforcing steel in the concrete.
  • the bond tension is shown over the extension path.
  • the bond stress reaches a maximum.
  • the strength of the reinforcing steel in the concrete decreases again because the bond of the Reinforcing steel weakened by shearing off the concrete base between the ribs becomes.
  • FIG. 2b shows the expansion behavior of reinforcing steel.
  • the reinforcing steel stretches in a first linear range, the elastic range, proportional to the applied force F up to a yield point F S.
  • the rebar then plastically deforms. This deformation is not reversible.
  • a fatigue test is shown in which the reinforcing steel is subjected to a periodically changing force that is less than F S. Although the applied force is so small that plastic deformation does not yet occur, such a load can lead to a fatigue fracture in the reinforcing steel.
  • An object of the present invention is to provide a reinforcing steel, which can be used in mat machines or automatic straightening and ironing machines, without problems during processing on the machine.
  • This small rib inclination angle ⁇ relative to Reinforcing steel axes have several advantages: Studies have shown that one such a low angle of inclination of the ribs significantly improves the fatigue properties can be achieved, i.e. a fatigue fracture of the reinforcing steel occurs less often or only after a longer time than with conventional reinforcing steel with a larger rib inclination angle. It occurs in the invention Reinforcing steel with a reduced rib inclination angle, less striking edges in the longitudinal direction of the reinforcing steel.
  • the rib inclination angle is for all ribs of the reinforcing steel is essentially the same. So you can achieve the above Benefits over the entire length of the reinforcing steel.
  • a rib head width b of the ribs is greater than 0.2 times, preferably less than 0.5 times of the nominal diameter, and more preferably 0.3 times to 0.4 times the Nominal diameter.
  • the object of the present invention can also be achieved by that the ratio of the rib width in the longitudinal direction b 'to the rib spacing c in the direction of the reinforcing steel axis greater than 0.35, preferably greater than 0.4 is preferably greater than 0.45. This also leads to a more even distribution on the enveloping in the direction of the rod, which has the advantages mentioned above.
  • This ratio of the rib width in the longitudinal direction to the rib spacing is suitable also when used in high-strength concrete or for an application in self-compacting concrete (SVB, slump according to ASTM at least 60 cm, preferably at least 65 cm, more preferably at least 70 cm).
  • the reinforcing steel is preferably produced by hot rolling.
  • the preferably rod-shaped, but often also supplied as a coil Reinforcing steel have several rows of ribs, preferably 4. However, it can 2, 3 or 6 rows of ribs can also be provided.
  • the degree of rib coverage is preferably greater than 45%, more preferably greater than 50%, more preferably greater than 55%.
  • the minimum value of the related rib surface is preferably in the range between 30% below and 30% above the minimum value prescribed in DIN 488 . This applies above all to reinforcing bars with a nominal diameter of greater than or equal to 4 mm.
  • the invention further relates to a reinforced concrete with a reinforcing steel, which is designed as described above, wherein concrete with a compressive strength is used which is greater than 55 N / mm 2 , preferably greater than 65 N / mm 2 , ie high-strength concrete.
  • the present invention also relates to the use of reinforcing steel, wherein the reinforcing steel is preferably used for the production of reinforced concrete with high-strength concrete with a strength of 55 N / mm 2 or greater, preferably 65 N / mm 2 and greater.
  • the present invention is of course not limited to high strength concrete, it can also be used with self-compacting or other concrete.
  • the rib pitch angle ⁇ is between 25 ° and 55 ° and preferably about 40 ° +/- 5%.
  • the rib head width b is greater than 0.2 times and preferably less than 0.5 times of the diameter.
  • the diameter can be the nominal diameter (i.e. the Diameter of an equally heavy rod with a circular cross-section). It can but also about the maximum diameter (corresponding to contour 3 in Fig. 1d) act or the diameter that results from the valleys 2c.
  • the characteristic with regard to the rib inclination angle ⁇ can be independent of or together can be realized with the features mentioned below. Also the characteristics mentioned below with regard to rib head width b, the rib width b 'in the longitudinal direction, the related rib area and the degree of rib coverage can be viewed on their own as the subject of the invention.
  • the rib head width b is larger than in the case of reinforcing steel according to the prior art.
  • the ratio of the rib width in the longitudinal direction b 'to the rib spacing c is larger than 0.35, which is not the case with state of the art reinforcing steel. There is this ratio is less than 0.35.
  • the invention is Reinforcing steel shown with four rows of ribs. However, it can just as well a different number of rows of ribs can be used.
  • the rows of ribs preferably extend in the longitudinal direction of the reinforcing steel. In Fig. 3b there are two indicated by the reference numerals 9 and 10.
  • the rows of ribs are each limited by webs 6 and 7 if necessary.
  • connection of the larger rib width in the longitudinal direction b 'and the smaller one Rib inclination angle ⁇ leads to better rib filling, especially in combination and therefore less ovality. This results in one if possible large area on the envelope, evenly distributed in the longitudinal direction. These geometric properties improve the processing options on the processing machines, jamming of the reinforcing bars in the machine is prevented. There is also a larger welding area available which improves the connection between two welded reinforcing bars.
  • the improved geometry results in the processing of the reinforced concrete less noise, especially in roller straightening systems and roller guides and less impact on mechanical, dynamic and geometric Properties due to the processing machines used. This means, that the processing of preferably hot-rolled steel significantly is improved.
  • Reinforced concrete can be produced with a reinforcing steel as described above.
  • the reinforced concrete then has a concrete and the reinforcing steel described above.
  • the concrete preferably has a strength which is greater than 55 N / mm 2 .
  • the use of the reinforcing steel described above for the production of reinforced concrete is also an aspect of the invention.
  • the concrete used preferably has a strength of at least 55 N / mm 2 , more preferably at least 65 N / mm 2 .
  • the stated strength is a compressive strength.
  • Fig. 4 shows a sketch for determining the degree of rib coverage, where c is the Rib spacing, b is the rib head width and l 'the rib length.
  • the degree of rib coverage is - clearly speaking - the proportion of the hatched area A on the envelope in relation to the total envelope of the reinforcing steel, where the areas of webs 6 and 7, if applicable, are included.
  • the required degree of rib coverage has the advantage that the smoothness and improve the directionality of the reinforced concrete. Likewise, the risk of snagging is processing less, and the weldability is due to the larger contact areas better.
  • Typical diameter of rod-shaped material of the reinforcing steel is a minimum of 4 mm, maximum 65 mm, preferably minimum 6 mm, maximum 32 mm.
  • Typical lengths rod-shaped material is a minimum of 2 m, a maximum of 30 m, preferably minimal 6m, maximum 24m.
  • Typical diameters of rebar rings are minimal 0.5 m, maximum 2 m, preferably minimum 0.7 m, maximum 1.8 m.
  • the reinforcing steel can also be mat-shaped. Then here are bars that are like above are formed, connected to one another in a lattice shape, preferably welded.
  • the reinforcing steel can also be used as prefabricated or built-in reinforcement, e.g. B. as Lattice girder, reinforcement cage or reinforcement bracket or rod designed in a fixed length his.
  • the new geometry i.e. the wider rib and the lower rib inclination angle of a hot-rolled reinforcing steel that can be processed well.
  • the reinforcing steel according to the invention are naturally cold rolled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

Die Erfindung betrifft Betonstahl mit Rippen, deren Neigungswinkel β zur Längsachse des Betonstahls 25 bis 55°, vorzugsweise 37 bis 42° beträgt, wobei die Rippenkopfbreite b größer als das 0,2fache und vorzugsweise kleiner als das 0,5fache des Nenndurchmessers ist, und wobei das Verhältnis der Rippenbreite in Längsrichtung b' zum Rippenabstand c in Richtung der Betonstahlachse größer0,35, und der Rippenbedeckungsgrad größer 45%, vorzugsweise größer 50%, weiter vorzugsweise größer 55% ist. <IMAGE>

Description

Die vorliegende Erfindung betrifft einen Betonstahl mit Rippen. Die vorliegende Erfindung findet überall dort Anwendung, wo Betonstähle zur Herstellung von Stahlbeton verwendet werden. Die vorliegende Erfindung findet insbesondere bei der Herstellung von Stahlbeton, insbesondere hier bei der Herstellung von Betonstahlmatten und Betonstahl vorzugsweise in Ringen Anwendung.
Bei Bewehrungsmatten werden mehrere Betonstahlstäbe kreuzweise übereinandergelegt und an ihren Berührungspunkten verschweißt. Üblicherweise wird für diesen Betonstahl kaltgewalzter Betonstahl verwendet. Weiterhin wird Betonstahl häufig auf Spulen, sog. "Ringe", aufgewickelt und so weiter zum Abnehmer transportiert. Zur Weiterverarbeitung dieses Betonstahls wird dieser einer Richt-oder Biege- und Schneidemaschine zugeführt, oder beispielsweise einer Mattenmaschine, um Betonstahlmatten herzustellen. Dabei wird der Betonstahl in sogenannten Rollenrichtsätzen oder alternativ in Rotorrichtsätzen gerade gerichtet. Für einen Betonstahl höherer Güte wird in zunehmendem Maß warmgewalzter Betonstahl verwendet. Durch die in den entsprechenden Betonstahlnormen vorgeschriebenen Rippengeometrien ergeben sich relativ stark ausgeprägte Rippen. Damit neigen die gerichteten Stäbe wenn sie, wie oft üblich, über ein Stabmagazin zur Weiterverarbeitung zugeführt werden, beim Vereinzeln oder Herausziehen aus dem Magazin zum Verhaken miteinander. Weiterhin erhält man beim kreuzweisen Übereinanderlegen für das Verschweißen z. Teil ungünstig kleine Kontaktflächen. Aufgrund der obengenannten Nachteile mit warmgewalztem Betonstahl wurde dieser bisher zur Herstellung von Bewehrungsmatten kaum verwendet. Bei Betonstählen nach dem Stand der Technik, beispielsweise Betonstahl nach DIN 488, beträgt der Neigungswinkel β der auf der Oberfläche vorhandenen Rippen üblicherweise ca. 60°. Diese geometrische Anordnung der Rippen beeinflußt das Verbundverhalten des Betonstahls in dem Stahlbeton.
Die Verwendung von Betonstahl ohne Rippen ist für die meisten Anwendungsgebiete nicht möglich, da die Rippen beim Verbundverhalten eine bedeutende Rolle spielen, da über diese Rippen die Kräfte aus dem Beton in den Betonstahl geleitet werden.
Die Fig. 1a bis 1d zeigen Betonstähle nach dem Stand der Technik, wie er in der DIN-Nummer 488 bzw. in bauaufsichtlichen Zulassungen beschrieben ist. Der Betonstahl 1 weist in der vorliegenden Ausführungsform vier Reihen von (in der Zeichnung von oben nach unten verlaufende) Rippen 2 auf. Der Rippenneigungswinkel β zwischen Längsrichtung der betrachteten Rippe und der Richtung der Längsachse A des Betonstahls beträgt bei Betonstählen nach dem Stand der Technik ungefähr 60°. Der Abstand zweier Rippen 2 in Längsrichtung (Rippenabstand) beträgt c, die Rippenkopfbreite einer Rippe 2 quer zur Längsrichtung der betrachteten Rippe wird mit b bezeichnet. Jeweils zwischen zwei benachbarten Rippen 2 liegt eine Senke 8. Fig. 1d zeigt einen Schnitt durch den Betonstahl 1 entlang der in Fig. 1b gezeigten Schnittlinie D.
2a in Fig. 1c ist die Rippenkopffläche, 2b bezeichnet die Rippenflanke (auf der anderen Seite der Rippenkopffläche 2a ist ebenfalls eine in der Zeichnung nicht sichtbare Rippenflanke vorhanden), und 8 ist die Senke zwischen zwei benachbarten Rippen 2. In Fig. 1d bezeichnet 3 die Projektion eines Betonstahls in Längsrichtung. Die näherungsweise kreisförmige Kontur entsteht durch die kulissenhaft hintereinander erscheinenden und so die Umfangskontur bildenden Rippen 2. Die Schnittkontur 4 selbst erscheint eher unregelmäßig. Jedoch entsteht sie durchaus regelmäßig bei der Herstellung des Betonstahls. Hierbei werden die etwa quadratische Grundform 5 mit gegebenenfalls verrundeten Kanten und die Rippen 2 durch Walzen in das Rohmaterial gewalzt. Dies kann Warmwalzen oder Kaltwalzen sein. Dem Gesamtaufbau in Querschnittsfläche kann man sich somit als Rippen 2 vorstellen, die auf einem Grundkörper mit quadratischem Querschnitt (Bezugsziffer 5) aufsitzen. Die eigentliche Querschnittskontur 4 ergibt sich in Abhängigkeit davon, wo der Querschnitt die jeweiligen Rippen schneidet. Das eben Gesagte gilt für Betonstähle mit vier Rippenreihen. Die Rippenreihen sind durch in Längsrichtung des Materials verlaufende Stege 6 (Rippenreihenabstand oder Walzspalt) und, abhängig von der Grundform (z. B. rund, quadratisch, sechseckig, usw) und der Rippeneinfräßtiefe, z. T. durch weitere Stege 7 voneinander getrennt..
In Fig. 2a ist das Verbundverhalten von Betonstahl in Beton skizziert. Das Verbundverhalten gibt an, mit welcher Kraft F der Betonstahl gezogen werden muß, damit sich eine Verschiebung Δ1 des Betonstahls im Beton ergibt. Als Kennlinie wird die Verbundspannung über den Ausziehweg dargestellt. Wie aus Fig. 2a zu erkennen ist, erreicht die Verbundspannung ein Maximum. Bei weiterer Verschiebung des Betonstahls in dem Beton nimmt die Kraft wieder ab, da der Verbund des Betonstahls durch Abscheren der Betonsockel zwischen den Rippen geschwächt wird.
In Fig. 2b ist das Dehnverhalten von Betonstahl abgebildet. Der Betonstahl dehnt sich in einem ersten linearen Bereich, dem elastischen Bereich, proportional zur angelegten Kraft F bis zu einer Streckgrenze FS. Anschließend verformt sich der Betonstahl plastisch. Diese Verformung ist nicht reversibel. Weiterhin ist ein Dauerschwingversuch abgebildet, bei dem der Betonstahl einer periodisch sich ändernden Kraft unterworfen wird, die geringer als FS ist. Obwohl die angelegte Kraft so gering ist, daß es noch nicht zu einer plastischen Verformung kommt, kann eine derartige Belastung zu einem Ermüdungsbruch des Betonstahls führen.
Diese mechanischen/dynamischen Eigenschaften (Dauerschwingeigenschaften) sind verbesserbar. Die eingeleiteten statischen und dynamischen Kräfte können dann sicher und dauerhaft aufgefangen werden.
Eine Aufgabe der vorliegenden Erfindung liegt darin, einen Betonstahl anzugeben, der in Mattenmaschinen oder Richt- und Bügelautomaten verwendet werden kann, ohne daß hierbei bei der Verarbeitung auf der Maschine Probleme auftreten.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Rippenneigungswinkel β zur Längsachse des Betonstahls 25 bis 55°, vorzugsweise 35 bis 45°, weiter vorzugsweise 37 bis 42° beträgt. Dieser geringe Rippenneigungswinkel β relativ zur Betonstahlachse hat mehrere Vorteile: Untersuchungen haben ergeben, daß bei einem derart geringen Rippenneigungswinkel wesentlich verbesserte Dauerschwingeigenschaften erreicht werden können, d.h. ein Ermüdungsbruch des Betonstahl tritt seltener beziehungsweise erst nach längerer Zeit als bei herkömmlichem Betonstahl mit größerem Rippenneigungswinkel auf. Es treten bei dem erfindungsgemäßen Betonstahl mit verringertem Rippenneigungswinkel weniger markante Kanten in Längsrichtung des Betonstahls auf. Dadurch kommt es im Betonstahl und im Beton zu geringeren Spannungsüberhöhungen bzw. Kerbspannungen, die üblicherweise an derartigen Kanten auftreten. Durch die Schrägstellung ergibt sich in Richtung der Längsachse eine kleinere Steigung als bei einer Rippe mit gleicher Höhe, aber einem größeren Rippenneigungswinkel. Damit können Spannungsüberhöhungen beziehungsweise die Kerbwirkung des erfindungsgemäßen Betonstahls verringert werden. Weiterhin ist die Flächenverteilung auf der Umhüllung des Betonstahls in Richtung der Längsachse gleichmäßiger als bei einem gerippten Betonstahl mit einem steileren Rippenneigungswinkel.
In einer bevorzugten Ausführungsform ist der Rippenneigungswinkel für alle Rippen des Betonstahls im wesentlichen gleich. Damit erreicht man die obengenannten Vorteile über die gesamte Länge des Betonstahls.
Die Aufgabe wird erfindungsgemäß weiterhin dadurch gelöst, daß eine Rippenkopfbreite b der Rippen größer als das 0,2fache, vorzugsweise kleiner als das 0,5fache des Nenndurchmessers ist, und weiter vorzugsweise das 0,3fache bis 0,4fache des Nenndurchmessers beträgt. Hierdurch ergibt sich eine verbesserte Rippenfüllung beim Walzprozeß, was zu einer geringeren Ovalität beziehungsweise gleichmäßigen Rundheit des Außendurchmessers des Betonstahls führt. Hierdurch kann der Betonstahl besser weiterverarbeitet werden. Bei möglichst runden Betonstählen, d.h. mit möglichst geringer Ovalität, liegt der Stahl gleichmäßiger an der Rolle an. Wird der Stab beispielsweise zwischen zwei gegenüberliegenden Rollen geführt , so ist das Spiel zwischen den Rollen bei möglichst runden Stäben nicht von der Lage des Stabes abhängig. Eine Rotation des vorzugsweise stabförmigen Betonstahls um die eigene Längsachse verändert dieses Spiel nicht, wenn der Stab rund und nicht oval ist. Außerdem sind die Kraftparameter dann gleichmäßiger.
Weiterhin ergibt sich hierdurch ebenfalls eine gleichmäßigere Flächenverteilung auf der Umhüllenden in Stabrichtung. Dies ist für die Verschweißung der Betonstähle zu Betonstahlmatten vorteilhaft, da die Schweißflächen von zwei aufeinanderliegenden Betonstahlstäben größer sind als bei herkömmlichen Betonstählen mit größerem Rippenneigungswinkel und schmälerer Rippe.
Die Aufgabe der vorliegenden Erfindung kann weiterhin auch dadurch gelöst werden, daß das Verhältnis der Rippenbreite in Längsrichtung b' zum Rippenabstand c in Richtung der Betonstahlachse größer als 0,35, vorzugsweise größer 0,4, weiter vorzugssweise größer als 0,45 ist. Dies führt ebenso zu einer gleichmäßigeren Verteilung auf der umhüllenden in Stabrichtung, was die obengenannten Vorteile aufweist. Dieses Verhältnis der Rippenbreite in Längsrichtung zum Rippenabstand eignet sich auch bei Anwendung in hochfestem Beton oder für eine Anwendung in selbstverdichtendem Beton (SVB, Ausbreitmaß nach ASTM mindestens 60 cm, vorzugsweise mindestens 65 cm, weiter vorzugsweise mindestens 70 cm).
Vorzugsweise wird der Betonstahl durch Warmwalzen hergestellt.
Weiterhin kann der vorzugsweise stabförmige, oft aber auch als Coil ausgelieferte Betonstahl mehrere Rippenreihen aufweisen, vorzugsweise 4. Es können jedoch ebenso 2, 3 oder 6 Rippenreihen vorgesehen sein.
Der Rippenbedeckungsgrad ist vorzugsweise größer 45 %, weiter vorzugsweise größer 50 %, weiter vorzugsweise größer 55%.
Der Mindestwert der bezogenen Rippenfläche liegt vorzugsweise im Bereich zwischen 30 % unter und 30 % über dem in DIN 488 vorgeschriebenen Mindestwert.. Dies gilt vor allem für Betonstähle mit einem Nenndurchmesser von größer gleich 4 mm.
Die Erfindung betrifft weiterhin einen Stahlbeton mit einem Betonstahl, wobei dieser wie oben ausgeführt ausgebildet ist, wobei Beton mit einer Druckfestigkeit verwendet wird, die größer als 55 N/mm2, vorzugsweise größer 65 N/mm2 ist, d. h. hochfester Beton. Die vorliegende Erfindung betrifft ebenso die Verwendung von Betonstahl, wobei der Betonstahl zur Herstellung von Stahlbeton vorzugsweise mit hochfestem Beton mit einer Festigkeit von 55 N/mm2 oder größer, vorzugsweise 65 N/mm2 und größer verwendet wird. Die vorliegende Erfindung ist selbstverständlich nicht auf hochfesten Beton beschränkt, sie kann ebenso mit selbstverdichtendem oder sonstigem Beton verwendet werden.
Die Erfindung wird nachfolgend unter Bezugnahme auf die beiliegenden schematischen Zeichnungen anhand eines Ausführungsbeispiels näher erläutert. Hierbei zeigen:
Fig. 1a bis 1d
eine Seitenansicht, eine um die Längsachse um 90° gedrehte Seitenansicht, eine perspektivische Ansicht sowie einen Schnitt an der Linie D von Fig. 1b eines Betonstahls nach dem Stand der Technik,
Fig. 2a
schematisch das Verbundverhalten von Betonstahl in Beton und Fig. 2b eine Dehnungskurve für Betonstahl,
Fig. 3a und 3b
zwei um 90° um die Längsachse gedrehte Ansichten eines erfindungsgemäßen Betonstahls, und
Fig. 4
eine Skizze zur Ermittlung des Rippenbedeckungsgrades.
In den Figuren bedeuten allgemein gleiche Bezugszeichen gleiche Komponenten bzw. Merkmale.
In Fig. 3 ist ein erfindungsgemäßer Betonstahl dargestellt. Der Rippenneigungswinkel β liegt zwischen 25° und 55° und vorzugsweise bei ca. 40° +/- 5 %. Die Rippenkopfbreite b ist größer als das 0,2fache und vorzugsweise kleiner als das 0,5 fache des Durchmessers. Der Durchmesser kann der Nenndurchmesser sein (d.h. der Durchmesser eines gleichschweren Stabes mit kreisrundem Querschnitt). Es kann sich aber auch um den maximalen Durchmesser (entsprechend Kontur 3 in Fig. 1d) handeln oder um den Durchmesser, der sich anhand der Täler 2c ergibt. Das Merkmal hinsichtlich des Rippenneigungswinkels β kann unabhängig von oder zusammen mit den nachfolgend genannen Merkmalen verwirklicht werden. Auch die nachfolgend genannten Merkmale hinsichtlich Rippenkopfbreite b, der Rippenbreite b' in Längsrichtung, der bezogenen Rippenfläche und des Rippenbedeckungsgrades können für sich alleine stehend als Gegenstand der Erfindung angesehen werden.
Die Rippenkopfbreite b ist größer als bei Betonstahl nach dem Stand der Technik. Das Verhältnis der Rippenbreite in Längsrichtung b' zum Rippenabstand c ist größer als 0,35, was bei Betonstahl nach dem Stand der Technik nicht der Fall ist. Dort ist dieses Verhältnis kleiner als 0,35. In der dargestellten Ausführungsform ist der erfindungsgemäße Betonstahl mit vier Rippenreihen dargestellt. Es kann jedoch ebensogut eine andere Anzahl von Rippenreihen verwendet werden. Die Rippenreihen erstrecken sich vorzugsweise in Längsrichtung des Betonstahls. In Fig. 3b sind zwei von ihnen durch die Bezugsziffern 9 und 10 angedeutet. Die Rippenreihen sind jeweils durch Stege 6 und gegebenenfalls 7 begrenzt.
Die Verbindung der größeren Rippenbreite in Längsrichtung b' und des kleineren Rippenneigungswinkel β führt vor allem in Kombination zu einer besseren Rippenfüllung und dadurch zu einer geringeren Ovalität. Hierdurch ergibt sich eine möglichst große und in Stablängsrichtung gleichmäßig verteilte Fläche auf der Umhüllenden. Durch diese geometrischen Eigenschaften verbessern sich die Verarbeitungsmöglichkeiten auf den Verarbeitungsmaschinen, ein Verhaken der Betonstähle in der Maschine wird verhindert. Ebenso steht eine größere Schweißfläche zur Verfügung, wodurch die Verbindung zweier verschweißter Betonstähle verbessert wird.
Die bezogene Rippenfläche fR berechnet sich nach der Formel
Figure 00070001
wobei
Figure 00070002
die Längsschnittfläche einer Rippe in deren Achse
hS
die mittlere Höhe eines beliebigen Schrärippenabschnitts der Länge Δl der in x Abschnitte unterteilten Schrägrippe
β
die Neigung der Rippen zur Stabachse hin
dS
der Nenndurchmesser des Stabes in mm
cS
der Mittenabstand der Schrärippen in mm
k
die Anzahl der Schrägrippen am Umfang
m
die Anzahl der Schrägrippen je Reihe
i
die Anzahl der Längsrippen
hl
die Höhe der Längsrippen
(n), (n, l)
Laufvariablen sind.
Sie ist ein Maß dafür, wieviel Rippenquerschnittsfläche relativ gesehen auf dem Betonstahl vorhanden ist. A priori ist eine hohe bezogene Rippenfläche gewünscht, da dann ein guter Verbund zwischen Betonstahl und dem umgebenden Beton erwartet werden kann. Unter bestimmten Bedingungen und insbesondere in Verbindung mit hochfesten Betonen (Festigkeit größer 55 N/mm2) kann eine vergleichsweise geringe bezogene Rippenfläche gleiche oder sogar bessere Ergebnisse liefern. Erfindungsgemäß erscheinen Betonstähle mit einer bezogenen Rippenfläche fR kleiner als 130 % des in DIN 488 vorgesehenen Mindestwertes als vorteilhaft. Vorzugsweise ist die bezogene Rippenfläche kleiner als 115 %, weiter vorzugsweise kleiner als 100 %.
Bei der Verarbeitung des Stahlbetons ergibt sich durch die verbesserte Geometrie eine geringere Geräuschentwicklung, insbesondere in Rollenrichtanlagen und Rollenführungen und ein geringerer Einfluß auf mechanische, dynamische und geometrische Eigenschaften durch die verwendeten Verarbeitungsautomaten. Dies bedeutet, daß die Verarbeitung von vorzugsweise warmgewalztem Stahl dadurch erheblich verbessert wird.
Mit einem wie oben beschriebenen Betonstahl kann ein Stahlbeton hergestellt werden. Der Stahlbeton weist dann einen Beton und den oben beschriebenen Betonstahl auf. Der Beton hat vorzugsweise eine Festigkeit, die größer als 55 N/ mm2 ist.
Die Verwendung des oben beschriebenen Betonstahls zur Herstellung von Stahlbeton ist ebenfalls ein Aspekt der Erfindung. Der verwendete Beton hat vorzugsweise eine Festigkeit von mindestens 55 N/mm2, weiter vorzugsweise mindestens 65 N/mm2. Die angegebene Festigkeit ist eine Druckfestigkeit.
Fig. 4 zeigt eine Skizze zur Ermittlung des Rippenbedeckungsgrades, wobei c der Rippenabstand, b die Rippenkopfbreite und l'die Rippenlänge ist. Der Rippenbedeckungsgrad ist - anschaulich gesprochen - der Anteil der schraffierten Fläche A auf der Umhüllenden im Verhältnis zur Gesamtumhüllenden des Betonstahls, wobei die Flächen von Stegen 6 und ggf. 7 mitgerechnet werden.
Der Rippenbedeckungsgrad ist ein relatives Maß für die von Rippenköpfen 2a und Stegen 6, 7 auf der Umhüllenden eines Betonstahls eingenommene Fläche. Der Rippenbedeckungsgrad RBG berechnet sich vorzugsweise gemäß folgender Formel: RBG= b·∑l'+ce d·π·c    ·100%. mit
  • b = Rippenkopfbreite,
  • l' = Länge der Rippen in Rippenrichtung innerhalb einer Schrittweite c,
  • e = Stegbreite (Rippenreihenabstand),
  • c = Rippenabstand in Längsrichtung,
  • d = Nenndurchmeser.
  • Die Summierung erfolgt über den Umfang.
    Der geforderte Rippenbedeckungsgrad hat den Vorteil, daß sich die Laufruhe und die Richtbarkeit des Stahlbetons verbessern. Ebenso ist das Verhakungsrisiko bei der Verarbeitung geringer, und die Verschweißbarkeit ist durch die größeren Kontaktflächen besser.
    Typische Durchmesser stabförmigen Materials des Betonstahls sind minimal 4 mm, maximal 65 mm, vorzugsweise minimal 6 mm, maximal 32 mm. Typische Längen stabförmigen Materials sind minimal 2 m, maximal 30 m, vorzugsweise minimal 6m, maximal 24 m. Typische Durchmesser von Ringen des Betonstahls sind minimal 0,5 m, maximal 2 m, vorzugsweise minimal 0,7 m, maximal 1,8 m. Der Betonstahl kann auch mattenförmig ausgebildet sein. Hier sind dann Stäbe, die wie oben ausgebildet sind, gitterförmig miteinander verbunden, vorzugsweise verschweißt. Der Betonstahl kannauch als vorgefertigte bzw. eingebaute Bewehrung, z. B. als Gitterträger, Bewehrungskorb oder Bewehrungsbügel bzw. Stab in Fixlänge ausgebildet sein.
    Zusammenfassend erhält man durch die neuartige Geometrie, d.h. die breitere Rippe und den geringeren Rippenneigungswinkel einen warmgewalzten Betonstahl, der gut weiterverarbeitet werden kann. Ebenso kann der erfindungsgemäße Betonstahl selbstverständlich kaltgewalzt hergestellt werden.

    Claims (11)

    1. Betonstahl (1), insbesondere nach Anspruch 1 oder 2, mit Rippen (2), dadurch gekennzeichnet, daß eine Rippenkopfbreite b der Rippen (2) größer als das 0,2fache, vorzugsweise kleiner als das 0,5-fache, weiter vorzugsweise das 0,3- bis 0,4-fache, noch weiter vorzugsweise das 0,32- bis 0,37-fache des Nenndurchmessers beträgt.
    2. Betonstahl (1) mit Rippen (2), dadurch gekennzeichnet, daß der Rippenneigungswinkel β zur Längsachse des Betonstahls 25° bis 55°, vorzugsweise 35° bis 45°, weiter vorzugsweise 37° bis 42° beträgt.
    3. Betonstahl (1) nach Anspruch 1, dadurch gekennzeichnet, daß der Rippenneigungswinkel für alle Rippen (2) im wesentlichen gleich ist.
    4. Betonstahl (1), insbesondere nach einem der vorherigen Ansprüche, mit Rippen (2), dadurch gekennzeichnet, daß das Verhältnis der Rippenbreite in Längsrichtung b' zum Rippenabstand c in Richtung der Betonstahlachse (A) größer 0,35 ist, vorzugsweise größer 0,40, weiter vorzugsweise größer 0,45 .
    5. Betonstahl (1) nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß der Betonstahl stabfömig ausgebildet ist.
    6. Betonstahl (1) nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß der Betonstahl durch Warmwalzen hergestellt ist.
    7. Betonstahl (1) nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß er mehrere Rippenreihen aufweist, vorzugsweise vier.
    8. Betonstahl (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rippenbedeckungsgrad größer 45 %, vorzugsweise größer 50 %, weiter vorzugsweise größer 55 % ist.
    9. Betonstahl (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die bezogene Rippenfläche fR kleiner als 130 % der in DIN 488 vorgeschriebenen Mindestwertes, vorzugsweise kleiner als 115 %, weiter vorzugsweise kleiner 100 % ist.
    10. Stahlbeton (1) mit einem Betonstahl nach einem der vorstehenden Ansprüche und einem Beton, vorzugsweise einer Festigkeit, die größer als 55 N/mm2 ist, weiter vorzugsweise größer als 65 N/mm2.
    11. Verwendung von Betonstahl nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Betonstahl zur Herstellung von Stahlbeton mit Beton mit einer Festigkeit von vorzugsweise größer 55 N/mm2, weiter vorzugsweise größer 65 N/mm2 verwendet wird.
    EP02002017A 2001-02-08 2002-02-06 Betonstahl mit Rippen, Stahlbeton Expired - Lifetime EP1231331B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10105667 2001-02-08
    DE10105667A DE10105667A1 (de) 2001-02-08 2001-02-08 Betonstahl mit Rippen, Stahlbeton

    Publications (3)

    Publication Number Publication Date
    EP1231331A2 true EP1231331A2 (de) 2002-08-14
    EP1231331A3 EP1231331A3 (de) 2002-12-04
    EP1231331B1 EP1231331B1 (de) 2006-12-20

    Family

    ID=7673249

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02002017A Expired - Lifetime EP1231331B1 (de) 2001-02-08 2002-02-06 Betonstahl mit Rippen, Stahlbeton

    Country Status (3)

    Country Link
    EP (1) EP1231331B1 (de)
    AT (1) ATE348923T1 (de)
    DE (2) DE10105667A1 (de)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1512805A1 (de) * 2002-02-18 2005-03-09 Max Aicher Rohrförmiger gerippter Bewehrungsstahl, Verfahren zum Herstellen eines rohrförmigen gerippten Bewehrungsstahls und Verwendung eines rohrförmigen Bewehrungsstahls
    CN101942887A (zh) * 2010-09-09 2011-01-12 天津市建科机械制造有限公司 四面带肋钢筋
    CN102102424A (zh) * 2011-03-03 2011-06-22 天津市银龙预应力钢材集团有限公司 一种带有断续螺旋肋的无脊钢筋
    CN110392759A (zh) * 2016-12-23 2019-10-29 伊戈尔·尼古拉耶维奇·吉洪诺夫 带肋的加强杆

    Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1609638A1 (de) * 1966-01-04 1970-07-30 Filiton Ag Bewehrungsstab fuer den Stahlbetonbau
    FR2031405A7 (de) * 1969-02-13 1970-11-20 Hochwald Drahtwerk Gmbh
    DE1759485A1 (de) * 1968-05-06 1971-07-08 Schwarz & Meissner Bewehrungst Bewehrungsstab
    GB1277899A (en) * 1968-06-25 1972-06-14 Baustahlgewebe Gmbh Improvements in or relating to rods for making spot-welded reinforcing mats for use in reinforced concrete
    DE2123818A1 (de) * 1971-05-13 1973-01-04 Meyer Stahl Draht U Roehrenwer Gerippter betonbewehrungsstab und vorrichtung zu seiner herstellung
    FR2350441A1 (fr) * 1976-05-07 1977-12-02 Centre Rech Metallurgique Rond a beton en acier avec nervures longitudinales diametralement opposees et des nervures obliques
    US4811541A (en) * 1985-05-15 1989-03-14 Ulrich Finsterwalder Threaded bar
    EP0399910A1 (de) * 1989-05-26 1990-11-28 Acor Aciers De Construction Rationalises Rippenstahl mit hoher Haftfestigkeit und dessen Herstellungsverfahren
    EP0451798A2 (de) * 1990-04-09 1991-10-16 Aicher, Max, Dipl.-Ing. Betonrippenstahl mit kaltgewalzten Schrägrippen

    Family Cites Families (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DD250972A1 (de) * 1986-07-14 1987-10-28 Brandenburg Stahl Walzwerk Profilierter betonbewehrungsstab

    Patent Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1609638A1 (de) * 1966-01-04 1970-07-30 Filiton Ag Bewehrungsstab fuer den Stahlbetonbau
    DE1759485A1 (de) * 1968-05-06 1971-07-08 Schwarz & Meissner Bewehrungst Bewehrungsstab
    GB1277899A (en) * 1968-06-25 1972-06-14 Baustahlgewebe Gmbh Improvements in or relating to rods for making spot-welded reinforcing mats for use in reinforced concrete
    FR2031405A7 (de) * 1969-02-13 1970-11-20 Hochwald Drahtwerk Gmbh
    DE2123818A1 (de) * 1971-05-13 1973-01-04 Meyer Stahl Draht U Roehrenwer Gerippter betonbewehrungsstab und vorrichtung zu seiner herstellung
    FR2350441A1 (fr) * 1976-05-07 1977-12-02 Centre Rech Metallurgique Rond a beton en acier avec nervures longitudinales diametralement opposees et des nervures obliques
    US4811541A (en) * 1985-05-15 1989-03-14 Ulrich Finsterwalder Threaded bar
    EP0399910A1 (de) * 1989-05-26 1990-11-28 Acor Aciers De Construction Rationalises Rippenstahl mit hoher Haftfestigkeit und dessen Herstellungsverfahren
    EP0451798A2 (de) * 1990-04-09 1991-10-16 Aicher, Max, Dipl.-Ing. Betonrippenstahl mit kaltgewalzten Schrägrippen

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    "DIN 488, Teil 2: Betonstahl; betonstabstahl, Masse und Gewichte" Juni 1986 (1986-06) , DIN DEUTSCHES INSTITUT F]R NORMUNG E.V. , BERLIN XP002208101 * Seite 1 - Seite 5 * *
    PETERSEN, CHRISTIAN: "Stahlbau" 1993 , FRIEDR. VIEWEG & SOHN VERLAGSGESELLSCHAFT MBH , BRAUNSCHWEIG/WIESBADEN XP002208100 * Seite 31 * *

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1512805A1 (de) * 2002-02-18 2005-03-09 Max Aicher Rohrförmiger gerippter Bewehrungsstahl, Verfahren zum Herstellen eines rohrförmigen gerippten Bewehrungsstahls und Verwendung eines rohrförmigen Bewehrungsstahls
    CN101942887A (zh) * 2010-09-09 2011-01-12 天津市建科机械制造有限公司 四面带肋钢筋
    CN102102424A (zh) * 2011-03-03 2011-06-22 天津市银龙预应力钢材集团有限公司 一种带有断续螺旋肋的无脊钢筋
    CN110392759A (zh) * 2016-12-23 2019-10-29 伊戈尔·尼古拉耶维奇·吉洪诺夫 带肋的加强杆
    EP3561195A4 (de) * 2016-12-23 2020-11-11 Igor Nikolaevich Tikhonov Gerippter bewehrungsstab

    Also Published As

    Publication number Publication date
    DE10105667A1 (de) 2002-09-26
    EP1231331A3 (de) 2002-12-04
    ATE348923T1 (de) 2007-01-15
    EP1231331B1 (de) 2006-12-20
    DE50208977D1 (de) 2007-02-01

    Similar Documents

    Publication Publication Date Title
    EP1550629A1 (de) Aufzugssystem
    DE3730490A1 (de) Warmgewalzter betonbewehrungsstab, insbesondere betonrippenstab
    EP2613898B1 (de) Verfahren zur herstellung von netzartigen metallmatten, vorrichtung zur durchführung des verfahrens sowie derart hergestellte metallmatte
    DE69410125T2 (de) Armierungsfaser zur Betonbewehrung
    EP2000609A1 (de) Bewehrungsstab
    EP3573776B1 (de) Biegevorrichtung und verfahren zur herstellung eines drahtgeflechts
    EP1231331B1 (de) Betonstahl mit Rippen, Stahlbeton
    AT411279B (de) Bewehrungsmatte für stahlbeton
    EP3545210B1 (de) Dämpfungs- und federanordnung und verfahren zu deren herstellung
    DE20121825U1 (de) Betonstahl mit Rippen, Stahlbeton
    DE102013208413B4 (de) Betonstahl, Herstellungsverfahren für Betonstahl
    DE2337313C3 (de) Verfahren und Vorrichtung zum Warmwalzen von metallischen, profilierten Stäben mit in vier um 90° gegeneinander versetzten in Reihen periodisch angeordneten Erhebungen
    EP4030013B1 (de) Bewehrungselement zur erhöhung eines querkraftwiderstandes
    EP2918857B1 (de) Stange für Verbindungsstützen
    DE3049459A1 (de) Verfahren zur herstellung von gewellten doppel-t-traegern und vorrichtung zur durchfuehrung des verfahrens
    EP0738361B2 (de) Kaltgewalzter betonstahl und verfahren zu dessen herstellung
    EP1669508A1 (de) Bewehrungsmatte für Stahlbeton
    CH717912B1 (de) Armierungsdraht.
    DE2160470A1 (de) Mit Rippen versehener Betonbewehrungsstab
    DE2223248A1 (de) Betonbewehrungsstab,Verfahren zur Ermittlung der Groessen des optimalen Rippen-Abstandes und der optimalen Rippenhoehe sowie Verfahren zur Herstellung eines solchen Stabes
    DE3444583A1 (de) Rundstab mit aussengewinde
    WO2020157226A1 (de) Verfahren und vorrichtung zum herstellen eines stabförmigen elementes
    DE2214941B2 (de) Verfahren zur herstellung eines kaltverformten betonbewehrungsstabes und rippwalzen zur durchfuehrung des verfahrens
    DE19853301A1 (de) Bewehrungsanschluß
    DE19724192A1 (de) Stahlfaser zur Verstärkung aushärtender Werkstoffe

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20030403

    17Q First examination report despatched

    Effective date: 20030505

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20061220

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061220

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061220

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50208977

    Country of ref document: DE

    Date of ref document: 20070201

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20070124

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070320

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070423

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070921

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061220

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061220

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20150225

    Year of fee payment: 14

    Ref country code: IE

    Payment date: 20150224

    Year of fee payment: 14

    Ref country code: LU

    Payment date: 20150224

    Year of fee payment: 14

    Ref country code: NL

    Payment date: 20150223

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20150225

    Year of fee payment: 14

    Ref country code: GB

    Payment date: 20150227

    Year of fee payment: 14

    Ref country code: FR

    Payment date: 20150227

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20150218

    Year of fee payment: 14

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160206

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 348923

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20160206

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160206

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160229

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160229

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20160301

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20161028

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160206

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160229

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160206

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160301

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160206

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20200229

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50208977

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210901