EP1230414B1 - Method and device for plasma coating surfaces - Google Patents

Method and device for plasma coating surfaces Download PDF

Info

Publication number
EP1230414B1
EP1230414B1 EP00926739A EP00926739A EP1230414B1 EP 1230414 B1 EP1230414 B1 EP 1230414B1 EP 00926739 A EP00926739 A EP 00926739A EP 00926739 A EP00926739 A EP 00926739A EP 1230414 B1 EP1230414 B1 EP 1230414B1
Authority
EP
European Patent Office
Prior art keywords
plasma jet
nozzle
precursor material
plasma
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00926739A
Other languages
German (de)
French (fr)
Other versions
EP1230414A1 (en
Inventor
Peter FÖRNSEL
Christian Buske
Uwe Hartmann
Alfred Baalmann
Guido Ellinghorst
Klaus-D. Vissing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Agrodyn Hochspannungstechnik GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Plasmatreat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Plasmatreat GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1230414A1 publication Critical patent/EP1230414A1/en
Application granted granted Critical
Publication of EP1230414B1 publication Critical patent/EP1230414B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Abstract

A method for coating surfaces, for which a precursor material is caused to react with the help of plasma and the reaction product is deposited on a surface, the reaction as well as the deposition taking place at atmospheric pressure, such that a plasma jet is generated by passing a working gas through an excitation zone and the precursor material is supplied with a lance separately from the working gas to the plasma jet.

Description

Die Erfindung betrifft ein Verfahren zur Beschichtung von Oberflächen mit den Merkmalen des Oberbegriffs des Anspruches 1. Die Erfindung betrifft auch eine Vorrichtung zur Beschichtung von Oberflächen mit den Merkmalen des Anspruches 7.The invention relates to a method for coating Surfaces with the characteristics of the generic term of Claim 1. The invention also relates to a device for coating surfaces with the characteristics of Claim 7.

Bei herkömmlichen Plasmabeschichtungs- und Plasmapolymerisationsverfahren erfolgt die Abscheidung des Materials auf dem zu beschichtenden Werkstück unter Vakuum oder zumindest bei einem gegenüber dem Atmosphärendruck starkverminderten Druck. Diese Verfahren erfordern deshalb einen hohen apparativen Aufwand und sind daher für viele praktische Anwendungen nicht wirtschaftlich, zumal sich die zu beschichtenden Werkstücke in der Regel nicht kontinuierlich, sondern nur chargenweise in die Vakuumkammer einbringen lassen.With conventional plasma coating and The plasma polymerization process is used to separate the Material on the workpiece to be coated under vacuum or at least one against atmospheric pressure greatly reduced pressure. Therefore, these procedures require a lot of equipment and are therefore for many practical applications not economical, especially since the As a rule, workpieces to be coated are not continuously, but only in batches Have the vacuum chamber inserted.

Im Hinblick auf eine kostengünstige Beschichtung von Massenprodukten wäre deshalb ein Verfahren wünschenswert, das die bekannten Vorteile von Plasmabeschichtungs- oder Polymerisationsverfahren aufweist, also insbesondere eine gezielte Aufbringung sehr dünner Schichten mit genauer Zusammensetzung und definiertem Eigenschaftsprofil ermöglicht, dabei jedoch unter Atmosphärendruck durchgeführt werden kann.With regard to an inexpensive coating of Bulk products would therefore want a process that the known advantages of plasma coating or Has polymerization process, in particular one targeted application of very thin layers with more precise Composition and defined property profile allows, but under atmospheric pressure can be carried out.

In einer Veröffentlichung von R. Thyen:

  • "Plasmapolymerisation bei Atmosphärendruck", Frauenhofer-Institut Schicht- und Oberflächentechnik (IST), Braunschweig, wird zu diesem Zweck ein Verfahren vorgeschlagen, bei dem das atmsphärische Plasma mit Hilfe einer Koronaentladung erzeugt wird. Die Koronaentladung erfolgt zwischen einer Arbeitselektrode, die ein Dielektrikum als Entladungsbarriere aufweist, und einer auf der Rückseite des Werkstücks angeordneten Gegenelektrode. Das gasförmige Precursormaterial wird mit Hilfe einer sogenannten Gasdusche in den Entladungsspalt zwischen Arbeitselektrode und Werkstück zugeführt. Mit diesem Verfahren lassen sich jedoch bisher nur mäßige Beschichtungsraten in der Größenordnung von 10-20 nm/s erreichen. Ein weiterer Nachteil besteht darin, dass das Plasma nur in der sehr schmalen Entladungszone zwischen der Arbeitselektrode und dem Werkstück bzw. der Gegenelektrode entsteht, so dass die Arbeitselektrode dicht an das Werkstück herangebracht werden muss, mit der Folge, dass der Abstand zwischen Arbeitselektrode und Werkstück einen kritischen Prozessparameter darstellt und oftmals auch die Elektrodenkonfiguration speziell an die jeweilige Geometrie des Werkstücks angepasst werden muss.
  • In a publication by R. Thyen:
  • "Plasma polymerisation at atmospheric pressure", Frauenhofer Institute for Layer and Surface Technology (IST), Braunschweig, a method is proposed for this purpose in which the atmospheric plasma is generated with the help of a corona discharge. The corona discharge takes place between a working electrode, which has a dielectric as a discharge barrier, and a counter electrode arranged on the back of the workpiece. The gaseous precursor material is fed into the discharge gap between the working electrode and the workpiece using a so-called gas shower. With this method, however, only moderate coating rates on the order of 10-20 nm / s have been achieved so far. Another disadvantage is that the plasma is only created in the very narrow discharge zone between the working electrode and the workpiece or the counter electrode, so that the working electrode must be brought close to the workpiece, with the result that the distance between the working electrode and the workpiece represents a critical process parameter and often the electrode configuration has to be specially adapted to the respective geometry of the workpiece.
  • Die DE 198 07 086 A offenbart ein Verfahren und eine Vorrichtung zur Plasmabeschichtung von Oberflächen, wobei in der Anregungszone zwischen zwei Elektroden, von denen mindestens eine mit einem Dielektrikum versehen ist, eine Coronaentladung gezündet wird. Diese Art der Entladung ist auch als Funkenbüschel bekannt. Die Coronaentladung vermeidet eine ungewollte Heißentladung oder Bogenentladung zwischen den Elektroden, um eine Zerstörung der Elektroden bzw. des zu beschichtenden Substrates oder der abgeschiedenen Schicht zu verhindern.DE 198 07 086 A discloses one method and one Device for plasma coating of surfaces, wherein in the excitation zone between two electrodes, one of which at least one is provided with a dielectric, one Corona discharge is ignited. This type of discharge is also known as a tuft of sparks. The corona discharge avoids unwanted hot discharge or arc discharge between the electrodes to destroy the electrodes or the substrate to be coated or the to prevent deposited layer.

    Die W099/20809 offenbart ebenfalls ein Verfahren und eine Vorrichtung zur Beschichtung von Oberflächen, bei der mit Hilfe einer Radiofrequenzentladung, die bewusst einen Entladungsbogen vermeidet, das Arbeitsgas angeregt wird, in das strömungsabwärts das Precursormaterial eingespeist wird.W099 / 20809 also discloses a method and a Device for coating surfaces in which Help of a radio frequency discharge that deliberately a Discharge arc avoids the working gas being excited in which feeds the precursor material downstream becomes.

    Der vorliegenden Erfindung liegt das technische Problem zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, das bei einfacher Prozessführung eine effiziente und gut steuerbare Beschichtung ermöglicht, und eine zweckmäßige Vorrichtung zur Durchführung dieses Verfahrens anzugeben.The present invention has the technical problem based on a procedure of the type mentioned at the beginning create that with simple process control an efficient and easily controllable coating, and a expedient device for performing this method specify.

    Diese Aufgabe wird mit den in den unabhängigen Patentansprüchen angegebenen Merkmalen gelöst.This task is carried out with the independent Features specified claims solved.

    Bei dem erfindungsgemäßen Verfahren wird durch Hindurchleiten eines Arbeitsgases durch eine Anregungszone ein Plasmastrahl erzeugt, und das Precursormaterial wird getrennt vom Arbeitsgas in den Plasmastrahl eingespeist.In the method according to the invention Passing a working gas through an excitation zone a plasma jet is generated and the precursor material is fed into the plasma jet separately from the working gas.

    Dadurch, dass erfindungsgemäß das atmosphärische Plasma in der Form eines Strahls erzeugt wird, der eine wesentlich größere Reichweite hat als die Entladungszone einer Koronaentladung, lässt sich der Beschichtungsprozess einfach ausführen, indem die zu beschichtende Oberfläche des Substrats mit dem Plasmastrahl überstrichen wird. Da hierzu keine Gegenelektrode auf der Rückseite des Substrats erforderlich ist, kann es sich bei den Substraten auch um dickere und/oder komplexgeformte Werkstücke handeln. Da das Precursormaterial getrennt vom Arbeitsgas zugeführt und in den Plasmastrahl eingespeist wird, der erst in der Anregungszone entsteht, braucht das Precursormaterial selbst nicht die gesamte Anregungszone zu durchqueren. Dies hat den wichtigen Vorteil, dass das zumeist aus monomeren Verbindungen bestehende Precursormaterial nicht schon in der Anregungszone zersetzt oder in sonstiger Weise chemisch verändert wird. Für die erwünschte Reaktion, die zur Abscheidung einerpolymerähnlichen Schicht auf der Oberfläche des Substrats führt, steht deshalb eine wesentlich größere Anzahl an Reaktionspartnern zur Verfügung als bei dem herkömmlichen Verfahren. Aufgrund dieses Effektes lassen sich überraschend hohe Beschichtungsraten erzielen, die die bisher mit atmosphärischem Plasma erreichbaren Beschichtungsraten um mehr als einen Faktor 10 übersteigen können. Die Wahl des Einspeisungsortes relativ zur Anregungszone und zur Substratoberfläche stellt dabei einen Prozessparameter dar, mit dem sich der Beschichtungsprozess feinfühlig steuern lässt. Bei empfindlichen Precursormaterialien kann die Einspeisung in den verhältnismäßig kühlen Plasmastrahl stromabwärts der Anregungszone erfolgen. Die niedrige Temperatur dieses Plasmastrahls ermöglicht eine effiziente Beschichtung mit Precursormaterialien, die nur bei Temperaturen bis zu 200°C oder weniger stabil sind. Die nötigen Anregungsenergien für die gewünschte Reaktion der Monomere wird in erster Linie durch freie Elektronen, Ionen oder Radikale bereitgestellt, die noch in großer Zahl in dem kühlen Plasmastrahl enthalten sind. Je weiter der Einspeisungsort stromaufwärts in Richtung auf die Anregungszone verlegt wird, desto höher ist die Konzentration der reaktionsfördernden Ionen, Radikale etc.. Wenn der Einspeisungsort in den stromabwärtigen Bereich der Anregungszone hineinverlegt wird, ist in gewissem Ausmaß auch eine direkte Anregung der Monomere möglich. Auf diese Weise lassen sich die Anregungsbedingungen im Hinblick auf das jeweils verwendete Precursormaterial optimieren. Generell besteht ein Vorteil des erfindungsgemäßen Verfahrens darin, daß die Prozesse der Plasmaerzeugung einerseits und der Plasmaanregung des Precursormaterials andererseits in verschiedenen, einander räumlich nur teilweise oder gar nicht überlappenden Zonen stattfinden, so daß wechselseitige schädliche Einflüsse vermieden werden können.The fact that according to the invention the atmospheric plasma in the shape of a beam is generated, which is essential has a greater range than the discharge zone of one Corona discharge, the coating process simply run by the surface to be coated the substrate is covered with the plasma jet. There no counter electrode on the back of the substrate is required, the substrates can also be act thicker and / or complex shaped workpieces. Since that Precursor material supplied separately from the working gas and in the plasma jet is fed, which only in the Excitation zone arises, needs the precursor material not to cross the entire excitation zone itself. This has the important advantage that it mostly consists of monomers Connections existing precursor material is not already in decomposes in the excitation zone or chemically in some other way is changed. For the desired response, which leads to Deposition of a polymer-like layer on the Surface of the substrate is therefore a much larger number of reactants Available than with the conventional method. by virtue of this effect can be surprisingly high Achieve coating rates that the previously with coating rates achievable in atmospheric plasma can exceed a factor of 10. The choice of Feed location relative to the excitation zone and The substrate surface represents a process parameter with which the coating process can be precisely controlled leaves. In the case of sensitive precursor materials, the Feed into the relatively cool plasma jet downstream of the excitation zone respectively. The low temperature of this plasma jet enables an efficient coating with precursor materials that can only be used at temperatures are stable up to 200 ° C or less. The necessary excitation energies for the desired one Reaction of the monomers is primarily through free electrons, Ions or radicals are still provided in large numbers in the cool plasma jet are included. The farther upstream the infeed direction is transferred to the excitation zone, the higher the concentration of reaction-promoting ions, radicals etc. If the feed point in the downstream area of the excitation zone is in some way Direct excitation of the monomers is also possible. In this way can the excitation conditions with regard to the particular one used Optimize precursor material. Generally there is an advantage of the invention Process in that the processes of plasma generation on the one hand and Plasma excitation of the precursor material on the other hand in different, one another only partially or not at all overlapping zones take place, so that mutual harmful influences can be avoided.

    Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.Advantageous embodiments of the invention result from the subclaims.

    Das Precursormaterial braucht nicht notwendigerweise im gasförmigen Zustand eingespeist zu werden, sondern kann beispielsweise auch im flüssigen oder festen, pulverförmigen Zustand eingespeist werden, so daß es erst in der Reaktionszone verdampft oder sublimiert. Ebenso ist es möglich, dem Precursormaterial feste Partikel wie Farbpigmente oder dergleichen zuzusetzen, die dann in die auf der Substratoberfläche abgeschiedene polymerähnliche Schicht eingebettet werden. Auf diese Weise läßt sich die Farbe, die Rauhigkeit oder die elektrische Leitfähigkeit der Beschichtung nach Bedarf einstellen.The precursor material does not necessarily need to be in the gaseous state to be fed in, but can also, for example, in liquid or solid, powdery state can be fed so that it is only in the reaction zone evaporates or sublimates. It is also possible to use the precursor material add solid particles such as color pigments or the like, which then in the embedded polymer-like layer on the substrate surface become. In this way, the color, the roughness or the electrical Adjust the conductivity of the coating as required.

    Bei der Einspeisung des Precursormaterials in den Plasmastrahl kann auch der Venturieffekt ausgenutzt werden, um das Precursormaterial in den Plasmastrahl anzusaugen. Wenn andererseits das Precursormaterial aktiv zugeführt wird, läßt sich durch Wahl des Winkels, unter dem das Precursormaterial relativ zur Strahlrichtung des Plasmastrahls eingespeist wird, das Ausmaß der Vermischung des Precursormaterials im Plasma gezielt beeinflussen.When the precursor material is fed into the plasma jet, the Venturi effect can be exploited to get the precursor material into the plasma jet to suck. On the other hand, if the precursor material is actively supplied, can by choosing the angle at which the precursor material is relative to The beam direction of the plasma jet is fed in, the extent of the mixing of the precursor material in the plasma.

    Entsprechend kann bei einem verdrallten Plasmastrahl die Einspeisung des Precursormaterials gleichsinnig oder entgegengesetzt zur Drallrichtung erfolgen.Correspondingly, in the case of a swirled plasma jet, the feed of the precursor material can take place in the same direction or opposite to the direction of swirl.

    Falls die gewünschte Reaktion des Precursormaterials in reduzierenden oder inertem Atmosphären erfolgen muß, ist es möglich, den Plasmastrahl von außen mit einem geeigneten Schutzgas zu begasen, so daß die Reaktionszone durch einen schützenden Gasmantel von der Umgebungsluft getrennt wird.If the desired reaction of the precursor material in reducing or inert atmosphere must take place, it is possible to view the plasma jet from the outside with a suitable protective gas, so that the reaction zone through a protective gas jacket is separated from the ambient air.

    Sofern für die gewünschte Reaktion eine bestimmte Temperatur erforderlich ist, läßt sich diese Temperatur beispielsweise durch Beheizen des Arbeitsgases und/oder durch Beheizen der Mündung der Plasmadüse präzise einstellen.If a certain temperature is required for the desired reaction, this temperature can be achieved, for example, by heating the working gas and / or precisely by heating the mouth of the plasma nozzle.

    Für die Erzeugung des Plasmastrahls kann beispielsweise eine Plasmadüse eingesetzt werden, wie sie - zu anderen Zwecken - in DE 195 32 412 C2 beschrieben wird. Für die Beschichtung größerer Oberflächen ist es möglich, eine oder mehrere solcher Düsen exzentrisch an einem Rotationskopf anzuordnen (EP-A 986 993). Ebenso ist es möglich, eine rotierende Düse zu verwenden, bei der der Plasmastrahl schräg zur Rotationsachse abgegeben wird (DE-U-299 11974).For example, a plasma nozzle can be used to generate the plasma jet are, as described - for other purposes - in DE 195 32 412 C2 becomes. For the coating of larger surfaces it is possible to use one or to arrange several such nozzles eccentrically on a rotary head (EP-A 986 993). It is also possible to use a rotating nozzle in which the Plasma jet is emitted obliquely to the axis of rotation (DE-U-299 11974).

    Bei der Plasmaerzeugung mit einer solchen Plasmadüse lassen sich grob drei Bereiche unterscheiden: (a) der Bereich der Bogenentladung, in dem eine direkte Plasmaanregung stattfindet, so daß es zu einer starken Anregung aber auch zur Zerstörung von Monomeren kommt, (b) der Bereich der indirekten Plasmaanregung, in dem nahezu keine Zerstörung der Monomere erfolgt aber dennoch eine effiziente und materialschonende Anregung der Monomere stattfindet, und (c) ein Mischbreich, der durch wenig Zerstörung und starke Anregung der Monomere gekennzeichnet ist.When generating such a plasma nozzle, roughly three can be created Differentiate areas: (a) the area of arc discharge in which a direct Plasma excitation takes place, so that there is a strong excitation but also Destruction of monomers occurs, (b) the area of indirect plasma excitation, in which there is almost no destruction of the monomers efficient and gentle stimulation of the monomers takes place, and (c) a mixed range that is characterized by little destruction and strong excitation of the monomers is marked.

    Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.The following are exemplary embodiments of the invention with reference to the drawing explained in more detail.

    Es zeigen:

    Fig.1
    einen axialen Schnitt durch eine Plasmadüse zur Ausführung des erfindungsgemäßen Verfahrens gemäß einer ersten Ausführungsform;
    Fig.2
    einen Schnitt durch eine Plasmadüse gemäß einer zweiten Ausführungs form;
    Fig. 3
    einen Teilschnitt durch den Düsenkopf der Plasmadüse gemäß Figur 2 in einer zu Figur 2 rechtwinkligen Schnittebene;
    Fig. 4
    einen Schnitt durch den Kopf einer Plasmadüse gemäß einer dritten Ausführungsform;
    Fig. 5
    einen Schnitt durch eine Plasmadüse gemäß einer vierten Ausführungs form.
    Show it:
    Fig.1
    an axial section through a plasma nozzle for performing the method according to the invention according to a first embodiment;
    Fig.2
    a section through a plasma nozzle according to a second embodiment;
    Fig. 3
    a partial section through the nozzle head of the plasma nozzle according to Figure 2 in a sectional plane perpendicular to Figure 2;
    Fig. 4
    a section through the head of a plasma nozzle according to a third embodiment;
    Fig. 5
    a section through a plasma nozzle according to a fourth embodiment.

    Die in Fig. 1 dargestellte Plasmadüse weist ein rohrförmiges Gehäuse 10 auf, das einen langgestreckten, am unteren Ende konisch verjüngten Düsenkanal 12 bildet. In dem Düsenkanal 12 ist ein elektrisch isolierendes Keramikrohr 14 eingesetzt. Ein Arbeitsgas, beispielsweise Luft, wird vom in der Zeichnung oberen Ende her in den Düsenkanal 12 zugeführt und mit Hilfe einer in das Keramikrohr 14 eingesetzten Dralleinrichtung 16 so verdrallt, daß es wirbelförmig durch den Düsenkanal 12 strömt, wie in der Zeichnung durch einen schraubenförmigen Pfeil symbolisiert wird. In dem Düsenkanal 12 entsteht so ein Wirbelkern, der längs der Achse des Gehäuses verläuft.The plasma nozzle shown in FIG. 1 has a tubular housing 10, the one elongated nozzle channel 12, which tapers conically at the lower end forms. An electrically insulating ceramic tube 14 is inserted in the nozzle channel 12. A working gas, such as air, is from the top in the drawing End her fed into the nozzle channel 12 and with the help of one in the ceramic tube 14 used swirl device 16 so that it is vortex-shaped flows through the nozzle channel 12, as in the drawing by a helical Arrow is symbolized. A vortex core is thus created in the nozzle channel 12, which runs along the axis of the housing.

    An der Dralleinrichtung 16 ist eine stiftförmige Elektrode 18 montiert, die koaxial in den Düsenkanal 12 ragt und an die mit Hilfe eines Hochspannungsgenerators 20 eine hochfrequente Wechselspannung angelegt wird. Die mit Hilfe des Hochfrequenzgenerators 20 erzeugte Spannung liegt in der Größenordnung von einigen Kilovolt und hat beispielsweise eine Frequenz in der Größenordnung von 20 Kiloherz.A pin-shaped electrode 18 is mounted on the swirl device 16 protrudes coaxially into the nozzle channel 12 and to the with the help of a high voltage generator 20 a high-frequency AC voltage is applied. With the help The voltage generated by the high-frequency generator 20 is of the order of magnitude of a few kilovolts and has a frequency of the order of magnitude, for example from 20 kilo heart.

    Das aus Metall bestehende Gehäuse 10 ist geerdet und dient als Gegenelektrode, so daß eine elektrische Entladung zwischen der Elektrode 18 und dem Gehäuse 10 hervorgerufen werden kann. Beim Einschalten der Spannung kommt es aufgrund der hohen Frequenz der Wechselspannung und aufgrund der Dielektrizität des Keramikrohrs 14 zunächst zu einer Koronaentladung an der Dralleinrichtung 16 und der Elektrode 18. Durch diese Koronaentladung wird eine Bogenentladung von der Elektrode 18 zum Gehäuse 10 gezündet. Der Lichtbogen 22 dieser Entladung wird durch das verdrallt einströmende Arbeitsgas mitgenommen und im Kern der wirbelförmigen Gasströmung kanalisiert, so daß der Lichtbogen dann nahezu geradlinig von der Spitze der Elektrode 18 längs der Gehäuseachse verläuft und sich erst im Bereich der Mündung des Gehäuses 10 radial auf die Gehäusewand verzweigt. Im gezeigten Beispiel bildet das Gehäuse 10 am verjüngten Ende des Düsenkanals 12 eine radial nach innen verspringende Schulter 24, die die eigentliche Gegenelektrode bildet und die sich radial verzweigenden Äste des Lichtbogens 22 aufnimmt. Die Äste rotieren dabei in Drallrichtung der Gasströmung, so daß ein ungleichförmiger Abbrand an der Schulter 24 vermieden wird.The metal housing 10 is grounded and serves as a counter electrode, so that an electrical discharge between the electrode 18 and the housing 10 can be caused. When power is turned on it due to the high frequency of the AC voltage and due to the dielectric of the ceramic tube 14 first to a corona discharge on the Swirl device 16 and the electrode 18. This corona discharge an arc discharge from the electrode 18 to the housing 10 is ignited. The Arc 22 of this discharge is swirled by the working gas flowing in taken and channeled in the core of the vortex-shaped gas flow, see above that the arc is then almost rectilinear from the tip of the electrode 18th runs along the housing axis and is only in the area of the mouth of the housing 10 branches radially onto the housing wall. In the example shown forms the housing 10 at the tapered end of the nozzle channel 12 a radially inward projecting shoulder 24, which forms the actual counter electrode and the radially branching branches of the arc 22. The branches rotate thereby in the swirl direction of the gas flow, so that a non-uniform erosion on the shoulder 24 is avoided.

    In die Mündung des Gehäuses 10 ist ein zylindrisches Mundstück 26 aus Keramik eingesetzt, dessen axial inneres Ende mit der Schulter 24 bündig ist und unmittelbar von dieser Schulter umgeben ist und dessen Länge deutlich größer ist als der Innendurchmesser. Das von dem Lichtbogen 22 erzeugte Plasma strömt drallförmig durch das Mundstück 26 und wird aufgrund thermischer Ausdehnung beim Durchströmen des Mundstücks 26 beschleunigt und radial aufgeweitet, so daß man einen sehr stark fächerförmig aufgeweiteten Plasmastrahl 28 erhält, der noch um einige Zentimeter über das offene Ende 30 des Mundstücks 26 hinausreicht und dabei in Drallrichtung rotiert.In the mouth of the housing 10 is a cylindrical mouthpiece 26 made of ceramic used, the axially inner end of which is flush with the shoulder 24 and is directly surrounded by this shoulder and its length is significantly greater is than the inside diameter. The plasma generated by the arc 22 flows in a swirling manner through the mouthpiece 26 and becomes thermal due to Expansion when flowing through the mouthpiece 26 accelerated and radial expanded so that you get a very strongly fan-shaped expanded plasma jet 28 receives, which is still a few centimeters above the open end 30 of the Mouthpiece 26 extends and rotates in the direction of swirl.

    Diese Plasmadüse wird zur Plasmabeschichtung oder Plasmapolymerisation eines Substrats 34 eingesetzt. Dazu wird das Precursormaterial mit Hilfe einer Lanze 32 in den konzentrierten Plasmastrahl im Inneren des Mundstücks 26 zugeführt.This plasma nozzle is used for plasma coating or plasma polymerization of a Substrate 34 used. To do this, the precursor material is removed using a Lance 32 is fed into the concentrated plasma jet inside the mouthpiece 26.

    Während die in Figur 1 gezeigte Plasmadüse einen rotationssymmetrischen Plasmastrahl 28 erzeugt, läßt sich mit der in Figuren 2 und 3 gezeigten Plasmadüse ein flacher, fächerförmig aufgeweiteter Plasmastrahl 28' erzeugen. In die Mündung des Gehäuses 10 ist hier ein Mundstück 26' eingesetzt, das eine Venturidüse 36 für die selbstansaugende Einspeisung des Precursormaterials bildet. Das Precursormaterial wird über einen Stutzen 38 zunächst in eine Ringkammer 40 am äußeren Umfang des Mundstücks 26' zugeführt und gelangt von dort radial über eine oder mehrere Bohrungen in die Venturidüse 36. Der Einspeisungsort befindet sich somit am stromabwärtigen Ende der Anregungszone, in der der Plasmastrahl 28' erzeugt wird und die durch den von dem Lichtbogen 22 durchsetzten Düsenkanal 12 gebildet wird. While the plasma nozzle shown in Figure 1 is a rotationally symmetrical plasma jet 28 generated can be with the plasma nozzle shown in Figures 2 and 3 generate a flat, fan-shaped expanded plasma jet 28 '. In the mouth of the housing 10, a mouthpiece 26 'is inserted here, which is a Venturi nozzle 36 forms for the self-priming feed of the precursor material. The precursor material is first of all in a ring chamber via a nozzle 38 40 fed to the outer circumference of the mouthpiece 26 'and arrives from there radially through one or more holes in Venturi 36. The feed location is therefore located at the downstream end of the excitation zone, in which is generated by the plasma beam 28 'and by the arc 22 penetrated nozzle channel 12 is formed.

    Die Venturidüse 36 mündet bei diesem Ausführungsbeispiel in einen Querkanal 42, der sich an beiden Enden in einen weiteren, am Umfang des Mundstücks 26' gebildeten Ringkanal 44 öffnet und der über eine schmale, in Richtung eines Durchmessers des Mundstücks verlaufende Nut 46 zur Stirnfläche des Mundstücks hin offen ist. Das aus der Venturidüse 36 austretende, mit dem Precursorgas vermischte Plasma verteilt sich in dem Querkanal 42 und tritt dann weit gefächert durch die Nut 46 aus. Auf diese Weise läßt sich eine gleichmäßige Beschichtung auf einer streifenförmigen Oberfläche des hier nicht gezeigten Substrats erzielen.In this exemplary embodiment, the Venturi nozzle 36 opens into a transverse channel 42, which at both ends in another, on the circumference of the mouthpiece 26 'formed ring channel 44 and opens over a narrow, in the direction of a Diameter of the mouthpiece extending groove 46 to the end face of the mouthpiece is open. That emerging from the venturi 36 with the precursor gas mixed plasma is distributed in the transverse channel 42 and then passes far fanned out through the groove 46. In this way, a uniform coating can be achieved on a strip-shaped surface of the substrate, not shown here achieve.

    Fig. 4 zeigt den Mündungsbereich einer Plasmadüse, mit der wieder ein rotationssymmetrischer, verhältnismäßig scharf gebündelter Plasmastrahl 28" erzeugt wird. Zu diesem Zweck bildet das Mundstück 26" eine verhältnismäßig kleine kreisförmige Düsenöffnung 48. Die Einspeisung des Precursormaterials erfolgt wieder über eine Lanze 32, die hier jedoch erst stromabwärts der Düsenöffnung 48 in den Plasmastrahl 28" mündet. Diese Art der Einspeisung ist unter anderem in den Fällen vorteilhaft, in denen das Precursormaterial Kohlenstoff oder andere Substanzen enthält, die zur Bildung elektrisch leitfähiger Niederschläge neigen. Wenn die Eispeisung eines solchen Precursorgases in der Mündung oder gar stromaufwärts der Mündung der Plasmadüse erfolgt, so kann es aufgrund von Rückströmungen innerhalb des Düsenkanals 12 der Plasmadüse zur Bildung einer leitfähigen Schicht auf der Oberfläche des Keramikrohres 14 und damit zu einem Kurzschluß zwischen der Elektrode 18 und dem Gehäuse 10 kommen. Diese Gefahr wird mit der in Figur 4 gezeigten Anordnung vermieden.4 shows the mouth region of a plasma nozzle, with which a rotationally symmetrical, relatively sharply focused plasma beam 28 "generated becomes. For this purpose, the mouthpiece 26 "forms a proportionate small circular nozzle opening 48. The feed of the precursor material takes place again via a lance 32, but here only downstream of the nozzle opening 48 opens into the plasma jet 28 ". This type of feed is below other advantageous in cases where the precursor material is carbon or contains other substances that lead to the formation of electrically conductive precipitates tend. If the ice feed of such a precursor gas in the mouth or even upstream of the mouth of the plasma nozzle, it can due to backflows within the nozzle channel 12 of the plasma nozzle to form a conductive layer on the surface of the ceramic tube 14 and thus to a short circuit between the electrode 18 and the housing 10 come. This danger is avoided with the arrangement shown in FIG. 4.

    Weiterhin illustriert Figur 4 eine Verfahrensvariante, bei der der Plasmastrahl 28" mit Hilfe einer die Düsenöffnung 48 konzentrisch umgebenden Begasungsdüse 50 mit einem Schutzgas 52 begast wird. So läßt sich beispielsweise durchFIG. 4 also illustrates a method variant in which the plasma jet 28 "with the aid of a gassing nozzle concentrically surrounding the nozzle opening 48 50 is gassed with a protective gas 52. For example,

    Verwendung von Stickstoff als Schutzgas und auch als Arbeitsgas eine Oxidation der Reaktanden des Precursormaterials und/oder des Reaktionsprodukts verhindern.Use of nitrogen as a protective gas and also as an oxidizing gas the reactants of the precursor material and / or the reaction product prevent.

    Fig. 5 illustriert eine Verfahrensvariante, bei der die Einspeisung des Precursormaterials mit Hilfe eines isolierenden Röhrchens 54 koaxial durch das Innere des Gehäuses 10 und der Elektrode 18 hindurch erfolgt. Diese Anordnung hat aufgrund ihrer vollkommenen Symmetrie den Vorteil, daß eine gleichmäßige Verteilung des Precursormaterials im Plasmastrahl 28" erreicht wird. Weiterhin besteht bei dieser Ausführungsform die vorteilhafte Möglichkeit, den Einspeisungsort des Precursormaterials je nach Material und Prozeßbedingungen zu variieren, indem das Röhrchen 54 weiter vorgeschoben oder zurückgezogen wird. Insbesondere kann das Röhrchen 54 auch so weit zurückgezogen werden, daß die Einspeisung innerhalb des stromabwärtigen Drittels des Düsenkanals 12 erfolgt. Da der Plasmastrahl 28" durch Berührung des Arbeitsgases mit dem Lichtbogen 22 erzeugt wird, der sich hier schraubenförmig um das Röhrchen 54 windet, kann auch schon im stromabwärtigen Bereich des Düsenkanals 12 von einem Plasmastrahl gesprochen werden, so daß auch in diesem Fall die Einspeisung noch in den Plasmastrahl erfolgt. Allerdings wird bei dieser Ausführungsform des Verfahrens das Precursormaterial aufgrund der Einschnürung des Plasmas im Mündungsbereich der Düse generell etwas höheren Temperaturen ausgesetzt werden. Unter Umständen kann ein - geringer - Anteil des Precursormaterials auch durch direkte Berührung mit dem Lichtbogen 22 zerstört werden. Dies kann jedoch auch einen positiven Effekt haben, da so für bestimmte Bestandteile des Precursormaterials hohe Anregungsenergien zur Verfügung stehen.5 illustrates a method variant in which the feed of the precursor material with the help of an insulating tube 54 coaxially through the interior of the housing 10 and the electrode 18. This arrangement has due to their perfect symmetry the advantage that a uniform Distribution of the precursor material in the plasma jet 28 "is achieved. Furthermore in this embodiment there is the advantageous possibility of the feed location of the precursor material depending on the material and process conditions vary by advancing or retracting tube 54 becomes. In particular, the tube 54 can also be withdrawn as far as that the feed is within the downstream third of the nozzle channel 12 takes place. Since the plasma jet 28 "by touching the working gas with the Arc 22 is generated, which here is helical around the tube 54 winds, can also in the downstream region of the nozzle channel 12 of a plasma jet can be spoken, so that in this case the feed still done in the plasma jet. However, in this embodiment the process the precursor material due to the constriction of the Plasma in the mouth area of the nozzle generally somewhat higher temperatures get abandoned. Under certain circumstances, a - small - proportion of the precursor material can also be destroyed by direct contact with the arc 22. However, this can also have a positive effect, as it does for certain Components of the precursor material high excitation energies are available.

    Mit der in Figur 2 gezeigten Plasmadüse läßt sich ein vergleichbarer Effekt dadurch erzielen, daß der Durchsatz und/oder die Verdrallung des Arbeitsgases erhöht wird. Dies hat zur Folge, daß die Äste des Lichtbogens 22, die sich auf die Wände des Gehäuses 10 bzw. des Mundstücks 26' verzweigen, tiefer in die Venturidüse 36 eindringen und gegebenenfalls schleifenförmig aus der Düsenöffnung "herausgeblasen" werden, so daß ein mehr oder minder großer Teil des zugeführten Precursorgases mit dem Lichtbogen in Berührung kommt.A comparable effect can thereby be achieved with the plasma nozzle shown in FIG achieve that the throughput and / or swirl of the working gas is increased. As a result, the branches of the arc 22 that are on the walls of the housing 10 and the mouthpiece 26 'branch deeper into the Venturi 36 penetrate and optionally loop-shaped from the nozzle opening "blown out" so that a more or less large part of the supplied precursor gas comes into contact with the arc.

    In der vorstehenden Beschreibung wurde anhand von vier Ausführungsbeispielen eine Vielzahl von Gestaltungsmöglichkeiten der Plasmadüse und des Einspeisungssystems illustriert, die sich auf auch andere Weise miteinander kombinieren lassen. So können beispielsweise auch die kreisförmigen Düsenöffnungen gemäß Figur 1, 4 oder 5 als Venturidüsen analog zu der Venturidüse 36 in Figur 2 gestaltet und für die Ansaugung des Precursorgases genutzt werden. Umgekehrt kann auch bei der Breitschlitzdüse gemäß Figur 2 die Einspeisung des Precursormaterials stromabwärts des Mundstücks 26' in den Plasmastrahl 28' oder in den Düsenkanal 12 hinein erfolgen. Eine Außenbegasung des Plasmastrahls mit dem Schutzgas 52, wie sie in Figur 4 gezeigt, läßt sich auch bei den übrigen Ausführungsbeispielen realisieren.The above description was based on four exemplary embodiments a variety of design options for the plasma nozzle and the feed system illustrated that combine in other ways to let. For example, the circular nozzle openings 1, 4 or 5 as Venturi nozzles analogous to Venturi nozzle 36 in FIG 2 designed and used for the suction of the precursor gas. Vice versa can also in the case of the wide slot nozzle according to FIG Precursor materials downstream of the mouthpiece 26 'into the plasma jet 28' or into the nozzle channel 12. External fumigation of the plasma jet with the protective gas 52, as shown in Figure 4, can also be in the realize other embodiments.

    In Laborversuchen, bei denen Hexemethyldisiloxan, Tetraethoxysilan oder Propan als Precursorgas eingesetzt wurde, konnten mit dem erfindungsgemäßen Verfahren Beschichtungsraten von 300 - 400 nm/serreicht werden. Die Beschichtungen wiesen eine gute Haftung zum Untergrund auf und waren stabil gegen alkoholische Lösungsmittel.In laboratory tests in which hexemethyldisiloxane, tetraethoxysilane or propane was used as a precursor gas could with the invention Process coating rates of 300 - 400 nm / ser can be achieved. The coatings showed good adhesion to the substrate and were stable against alcoholic solvents.

    Schließlich ist auch eine Verfahrensvariante denkbar, bei der das Precursormaterial zusammen mit dem Substrat in den Plasmastrahl zugeführt wird, etwa indem das Precursormaterial z. B. mittels Aerosol oder Ultraschall, durch Bedampfen, durch Spritzen, Rollen oder Rakeln oder elektrostatisch auf die Oberfläche des Substrats aufgebracht wird, bevor diese Oberfläche mit dem Plasmastrahl behandelt wird.Finally, a method variant is also conceivable in which the precursor material is fed together with the substrate into the plasma jet, for example by the precursor material z. B. by means of aerosol or ultrasound, by vapor deposition, by spraying, rolling or knife coating or electrostatically on the surface of the substrate is applied before this surface with the plasma jet is treated.

    Claims (13)

    1. A method for coating surfaces,
      wherein a plasma jet (28; 28', 28'') is produced by conveying a working gas through an excitation zone (12),
      wherein a precursor material is introduced into the plasma jet separately of the working gas,
      wherein a reaction of the precursor material is triggered with the aid of the plasma jet,
      wherein the reaction product is deposited on the surface (34), and
      wherein the reaction as well as the deposition take place under atmospheric pressure,
      characterized in
      that an arc discharge is produced by applying a high-frequency A.C. voltage to electrodes (10, 18) arranged within the excitation zone.
    2. The method according to claim 1,
      characterized in that the precursor material contains liquid and/or solid components in the state, in which it is introduced into the plasma jet.
    3. The method according to claim 1 or 2,
      characterized in that the precursor material is introduced into an outlet opening (36; 48), through which the plasma jet emerges from the excitation zone (12).
    4. The method according to claim 3,
      characterized in that the precursor gas is introduced into the outlet opening that is realized in the form of a Venturi nozzle (36) by utilizing the Venturi effect.
    5. The method according to claim 1 or 2,
      characterized in that the precursor material is introduced into the plasma jet downstream of an outlet opening (48), through which the plasma jet (28') emerges from the excitation zone (12).
    6. The method according to claim 1 or 2,
      characterized in that the precursor material is introduced into the plasma jet being produced in the downstream region of the excitation zone (12).
    7. A device for coating surfaces (34),
      with a tubular, electrically conductive housing (10) that forms a nozzle channel (12),
      with an electrode (18) that is coaxially arranged in the nozzle channel (12), and
      with a supply device (32; 36, 38, 40) for introducing a precursor material into the plasma jet,
      characterized in
      that a high-frequency generator is provided for applying an A.C. voltage between the electrode (18) and the housing (10) in order to produce an arc discharge.
    8. The device according to claim 7,
      characterized in that the housing (10) contains a swirling device (16) for swirling the working gas in the nozzle channel (12).
    9. The device according to claim 7 or 8,
      characterized in that the supply device for the precursor gas consists of a lancet (32) that opens into the plasma jet downstream of the outlet of the nozzle channel (12).
    10. The device according to claim 9,
      characterized in that a tubular mouth piece (26) of electrically insulating material is inserted into the outlet of the nozzle channel (12), and in that the lancet (32) opens into the mouth piece (26).
    11. The device according to claim 7 or 8,
      characterized in that the supply device for the precursor material consists of a Venturi nozzle (36) that is situated in the outlet of the nozzle channel (12).
    12. The device according to claim 7 or 8,
      characterized in that the supply device for the precursor gas consists of a small electrically insulating tube (54) that coaxially extends through the plasma nozzle and the outlet of which may be selectively situated inside or outside the nozzle channel (12).
    13. The device according to one of claims 7-12,
      characterized in that an inert gas nozzle (50) surrounds the outlet of the plasma nozzle (10) and serves for gassing the emerging plasma jet with an inert gas (52).
    EP00926739A 1999-10-30 2000-03-17 Method and device for plasma coating surfaces Expired - Lifetime EP1230414B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE29919142U 1999-10-30
    DE29919142U DE29919142U1 (en) 1999-10-30 1999-10-30 Plasma nozzle
    PCT/EP2000/002401 WO2001032949A1 (en) 1999-10-30 2000-03-17 Method and device for plasma coating surfaces

    Publications (2)

    Publication Number Publication Date
    EP1230414A1 EP1230414A1 (en) 2002-08-14
    EP1230414B1 true EP1230414B1 (en) 2004-10-06

    Family

    ID=8081000

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00926739A Expired - Lifetime EP1230414B1 (en) 1999-10-30 2000-03-17 Method and device for plasma coating surfaces

    Country Status (7)

    Country Link
    US (1) US6800336B1 (en)
    EP (1) EP1230414B1 (en)
    JP (1) JP4082905B2 (en)
    AT (1) ATE278817T1 (en)
    DE (2) DE29919142U1 (en)
    ES (1) ES2230098T3 (en)
    WO (1) WO2001032949A1 (en)

    Cited By (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008029681A1 (en) 2008-06-23 2009-12-24 Plasma Treat Gmbh Method and device for applying a layer, in particular a self-cleaning and / or antimicrobial photocatalytic layer, to a surface
    DE102008058783A1 (en) 2008-11-24 2010-05-27 Plasmatreat Gmbh Process for the atmospheric coating of nano-surfaces
    DE102009048397A1 (en) * 2009-10-06 2011-04-07 Plasmatreat Gmbh Atmospheric pressure plasma process for producing surface modified particles and coatings
    WO2012123530A1 (en) 2011-03-16 2012-09-20 Reinhausen Plasma Gmbh Coating, and method and device for coating
    WO2013014212A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Method for applying a coating to a substrate, coating, and use of particles
    TWI384085B (en) * 2009-05-07 2013-02-01 Univ Kao Yuan Reciprocating two-section atmospheric pressure plasma coating system
    EP2644739A1 (en) 2012-03-29 2013-10-02 BSH Bosch und Siemens Hausgeräte GmbH Method for passivating a metal surface and domestic appliance, in particular domestic dishwasher with a wall portion
    DE102012102721A1 (en) 2012-03-29 2013-10-02 BSH Bosch und Siemens Hausgeräte GmbH Method for passivating a metal surface
    WO2015055486A1 (en) 2013-10-14 2015-04-23 Plasma Innovations GmbH Production method for a plasma-coated molded body and component
    DE102014219979A1 (en) 2014-10-01 2016-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite of substrate, plasma polymer layer, mixed layer and cover layer
    DE102015121253A1 (en) 2015-12-07 2017-06-08 Plasmatreat Gmbh Apparatus for generating an atmospheric plasma jet for treating the surface of a workpiece
    DE102016101456A1 (en) 2016-01-27 2017-07-27 Plasmatreat Gmbh Injection molded component with insert, process for its manufacture and uses therefor
    WO2017129582A1 (en) 2016-01-27 2017-08-03 Plasmatreat Gmbh Injection-molded component with insert part, method for producing same, and uses thereof
    DE102016104130A1 (en) 2016-03-07 2017-09-07 Plasmatreat Gmbh Method for coating a component surface and method for producing a coating material
    DE102016104128A1 (en) 2016-03-07 2017-09-07 Plasmatreat Gmbh Method for coating a component surface, coated component and use of a precursor material
    DE102017122059A1 (en) * 2017-09-22 2019-03-28 Plasma Innovations GmbH Method for producing an end surface and printed circuit board
    WO2021023605A1 (en) 2019-08-08 2021-02-11 Plasmatreat Gmbh Method for equipping an electronic display with a display screen protector
    WO2024068623A1 (en) 2022-09-29 2024-04-04 Plasmatreat Gmbh Plasma treatment with liquid cooling
    DE102023106618A1 (en) 2022-09-29 2024-04-04 Plasmatreat Gmbh Plasma treatment with liquid cooling

    Families Citing this family (240)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1170066A1 (en) 2000-07-05 2002-01-09 Förnsel, Peter Process and apparatus for cleaning rollers and bands
    BR0114200B1 (en) * 2000-10-04 2011-05-03 "Method and apparatus for forming a coating on a substrate".
    DE10061828B4 (en) * 2000-12-12 2011-03-31 Plasmatreat Gmbh Method for introducing material into a plasma jet and plasma nozzle for carrying out the method
    JP4678973B2 (en) * 2001-03-29 2011-04-27 西日本プラント工業株式会社 Apparatus and method for generating plasma arc of thermal spray torch
    DE10145131B4 (en) * 2001-09-07 2004-07-08 Pva Tepla Ag Device for generating an active gas jet
    JP4923364B2 (en) * 2001-09-10 2012-04-25 株式会社安川電機 Reactive gas generator
    US6841201B2 (en) * 2001-12-21 2005-01-11 The Procter & Gamble Company Apparatus and method for treating a workpiece using plasma generated from microwave radiation
    TW200409669A (en) * 2002-04-10 2004-06-16 Dow Corning Ireland Ltd Protective coating composition
    GB0208261D0 (en) * 2002-04-10 2002-05-22 Dow Corning An atmospheric pressure plasma assembly
    TW200308187A (en) * 2002-04-10 2003-12-16 Dow Corning Ireland Ltd An atmospheric pressure plasma assembly
    NL1020923C2 (en) * 2002-06-21 2003-12-23 Otb Group Bv Method and device for manufacturing a catalyst.
    DE60308640T2 (en) * 2002-08-14 2007-08-09 Limited Company "Proton-21" METHOD AND DEVICE FOR THE IMPACT COMPRESSION OF A FABRIC AND PLASMA CATHODE THEREFOR
    US20040175498A1 (en) * 2003-03-06 2004-09-09 Lotfi Hedhli Method for preparing membrane electrode assemblies
    US8586149B2 (en) * 2003-06-18 2013-11-19 Ford Global Technologies, Llc Environmentally friendly reactive fixture to allow localized surface engineering for improved adhesion to coated and non-coated substrates
    JP3871055B2 (en) * 2003-08-01 2007-01-24 株式会社ハイデン研究所 Plasma generation method and plasma generation apparatus
    CH696811A5 (en) * 2003-09-26 2007-12-14 Michael Dvorak Dr Ing Dipl Phy Process for coating a substrate surface using a plasma jet.
    GB0323295D0 (en) * 2003-10-04 2003-11-05 Dow Corning Deposition of thin films
    EP1714279A2 (en) * 2004-02-13 2006-10-25 PlasmaTreat GmbH Method for coating an optical data carrier and corresponding coated optical data carrier
    US20050230350A1 (en) * 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
    US20080280065A1 (en) * 2004-04-09 2008-11-13 Peter Fornsel Method and Device for Generating a Low-Pressure Plasma and Applications of the Low-Pressure Plasma
    US7122949B2 (en) * 2004-06-21 2006-10-17 Neocera, Inc. Cylindrical electron beam generating/triggering device and method for generation of electrons
    JP2006114450A (en) * 2004-10-18 2006-04-27 Yutaka Electronics Industry Co Ltd Plasma generating device
    EP1807548A2 (en) * 2004-10-29 2007-07-18 Dow Gloval Technologies Inc. Abrasion resistant coatings by plasma enhanced chemical vapor deposition
    GB0424532D0 (en) * 2004-11-05 2004-12-08 Dow Corning Ireland Ltd Plasma system
    WO2006048649A1 (en) * 2004-11-05 2006-05-11 Dow Corning Ireland Limited Plasma system
    JP4494942B2 (en) * 2004-11-19 2010-06-30 積水化学工業株式会社 Plasma processing equipment
    DE102005004280A1 (en) 2005-01-28 2006-08-03 Degussa Ag Process for producing a composite
    US20060172081A1 (en) * 2005-02-02 2006-08-03 Patrick Flinn Apparatus and method for plasma treating and dispensing an adhesive/sealant onto a part
    JP4817407B2 (en) * 2005-03-07 2011-11-16 学校法人東海大学 Plasma generating apparatus and plasma generating method
    EP1871921B1 (en) * 2005-03-22 2021-04-28 Erbslöh Aluminium GmbH Method for partial or complete coating of the surfaces of an aluminium material component
    DE102005013729A1 (en) * 2005-03-22 2006-10-12 Erbslöh Aluminium Gmbh Component used for connecting points of pipelines and connecting elements is made from aluminum with a partial or complete coating partly made from fused soldering particles having a specified degree of melting
    DE102005018926B4 (en) 2005-04-22 2007-08-16 Plasma Treat Gmbh Method and plasma nozzle for generating an atmospheric plasma jet generated by means of high-frequency high voltage comprising a device in each case for characterizing a surface of a workpiece
    GB0509648D0 (en) * 2005-05-12 2005-06-15 Dow Corning Ireland Ltd Plasma system to deposit adhesion primer layers
    US7517561B2 (en) * 2005-09-21 2009-04-14 Ford Global Technologies, Llc Method of coating a substrate for adhesive bonding
    CN100372616C (en) * 2005-10-12 2008-03-05 吴德明 Coating surface manufacturing process
    US8945684B2 (en) * 2005-11-04 2015-02-03 Essilor International (Compagnie Generale D'optique) Process for coating an article with an anti-fouling surface coating by vacuum evaporation
    DE102005059706B4 (en) * 2005-12-12 2011-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Process for producing a release layer and substrate surface with release layer
    TW200740306A (en) * 2006-04-03 2007-10-16 Yueh-Yun Kuo Low temperature normal pressure non-equilibrium plasma jet electrode component
    DE102006024050B4 (en) * 2006-05-23 2009-08-20 Daimler Ag Device for applying a coating to a surface of a workpiece
    JP4890946B2 (en) * 2006-05-31 2012-03-07 積水化学工業株式会社 Plasma processing equipment
    US7547861B2 (en) * 2006-06-09 2009-06-16 Morten Jorgensen Vortex generator for plasma treatment
    US20070284342A1 (en) * 2006-06-09 2007-12-13 Morten Jorgensen Plasma treatment method and apparatus
    US7744984B2 (en) * 2006-06-28 2010-06-29 Ford Global Technologies, Llc Method of treating substrates for bonding
    DE102006038780A1 (en) * 2006-08-18 2008-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing a coating
    ES2534215T3 (en) * 2006-08-30 2015-04-20 Oerlikon Metco Ag, Wohlen Plasma spray device and a method for introducing a liquid precursor into a plasma gas system
    EP1895818B1 (en) 2006-08-30 2015-03-11 Sulzer Metco AG Plasma spraying device and a method for introducing a liquid precursor into a plasma gas system
    TW200814170A (en) * 2006-09-13 2008-03-16 Ind Tech Res Inst Method of adjusting surface characteristic of a substrate
    EP2092590A4 (en) * 2006-11-10 2011-01-12 Univ California Atmospheric pressure plasma-induced graft polymerization
    DE202007018327U1 (en) 2006-11-23 2008-08-07 Plasmatreat Gmbh Apparatus for generating a plasma
    US20080138532A1 (en) * 2006-12-12 2008-06-12 Ford Global Technologies, Llc Method for decorating a plastic component with a coating
    US7981219B2 (en) * 2006-12-12 2011-07-19 Ford Global Technologies, Llc System for plasma treating a plastic component
    DE102007011235A1 (en) 2007-03-06 2008-09-11 Plasma Treat Gmbh Method and device for treating a surface of a workpiece
    DE102007032496B3 (en) * 2007-07-12 2009-01-29 Maschinenfabrik Reinhausen Gmbh Apparatus for generating a plasma jet
    DE102007041329B4 (en) * 2007-08-31 2016-06-30 Thermico Gmbh & Co. Kg Plasma torch with axial powder injection
    EP2232142A2 (en) * 2008-01-18 2010-09-29 Innovent e.V. Technologieentwicklung Device and method for maintaining and operating a flame
    KR100999583B1 (en) * 2008-02-22 2010-12-08 주식회사 유진테크 Apparatus and method for processing substrate
    DE102008018939A1 (en) 2008-04-15 2009-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Structured electrically conductive metal layers producing method for use during production of electronic circuit utilized for e.g. smart label, involves removing solvent from connection and transferring connection into layer
    TWI641292B (en) 2008-08-04 2018-11-11 Agc北美平面玻璃公司 Plasma source
    DE102008052102B4 (en) * 2008-10-20 2012-03-22 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Device for pre- and / or after-treatment of a component surface by means of a plasma jet
    US20100151236A1 (en) * 2008-12-11 2010-06-17 Ford Global Technologies, Llc Surface treatment for polymeric part adhesion
    TWI407842B (en) * 2008-12-31 2013-09-01 Ind Tech Res Inst Wide area atmospheric pressure plasma jet apparatus
    DE102009004968B4 (en) * 2009-01-14 2012-09-06 Reinhausen Plasma Gmbh Beam generator for generating a collimated plasma jet
    CA3198302A1 (en) 2009-02-08 2010-08-12 Ap Solutions, Inc. Plasma source and method for removing materials from substrates utilizing pressure waves
    DE102010016926A1 (en) 2009-05-16 2010-12-30 Eichler Gmbh & Co.Kg Electrostatic lacquering of electrically non-conductive parts e.g. plastic-, glass- or ceramic parts by surface conductivity-producing layers, comprises dryly coating non-conductive parts with metal conducting and semi-conducting layers
    US10049859B2 (en) * 2009-07-08 2018-08-14 Aixtron Se Plasma generating units for processing a substrate
    EP2279801B1 (en) 2009-07-27 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coating methods using plasma jet and plasma coating apparatus
    JP2011060688A (en) * 2009-09-14 2011-03-24 Kasuga Electric Works Ltd Plasma surface treatment device
    TW201117677A (en) * 2009-11-02 2011-05-16 Ind Tech Res Inst Plasma system including inject device
    US20110132543A1 (en) * 2009-12-09 2011-06-09 Electronics And Telecommunications Research Institute Brush type plasma surface treatment apparatus
    DE102010055532A1 (en) 2010-03-02 2011-12-15 Plasma Treat Gmbh A method for producing a multilayer packaging material and method for applying an adhesive, and apparatus therefor
    DE102010011643A1 (en) 2010-03-16 2011-09-22 Christian Buske Apparatus and method for the plasma treatment of living tissue
    DE102010014552A1 (en) 2010-03-22 2011-09-22 Timo Brummer Coating a substrate surface using a plasma beam or plasma beams, comprises directing a beam of an atmospheric low-temperature plasma to the substrate surface according to respective plasma coating nozzle in opposition to thermal injection
    US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
    JP2011252085A (en) 2010-06-02 2011-12-15 Honda Motor Co Ltd Plasma film deposition method
    JP5191524B2 (en) * 2010-11-09 2013-05-08 株式会社新川 Plasma device and manufacturing method thereof
    DE102010044114A1 (en) 2010-11-18 2012-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for joining substrates and composite structure obtainable therewith
    US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
    US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
    US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
    JP2014527575A (en) 2011-07-25 2014-10-16 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Methods for substrate coating and use of additive-containing powdered coating materials in such methods
    DE102011052120A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Use of specially coated, powdery coating materials and coating methods using such coating materials
    DE102011052121A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Coating process using special powder coating materials and use of such coating materials
    DE102011052119A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Coating method of particle-containing powdery coating material used for automobile component, involves performing flame spraying, high-speed flame spraying, thermal plasma spraying and/or non-thermal plasma spraying method
    DE102011052306A1 (en) 2011-07-29 2013-01-31 Jokey Plastik Sohland Gmbh Process for producing a permeation-inhibiting coating of plastic containers and coating plant
    TWI461113B (en) * 2011-08-24 2014-11-11 Nat Univ Tsing Hua Atmospheric pressure plasma jet device
    US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
    KR20130108536A (en) * 2012-01-17 2013-10-04 시너스 테크놀리지, 인코포레이티드 Deposition of graphene or conjugated carbons using radical reactor
    DE102012003563B4 (en) * 2012-02-23 2017-07-06 Drägerwerk AG & Co. KGaA Device for disinfecting wound treatment
    US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
    US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
    US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
    US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
    US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
    KR101996433B1 (en) * 2012-11-13 2019-07-05 삼성디스플레이 주식회사 Thin film forming apparatus and the thin film forming method using the same
    US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
    US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
    US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
    CN103074569A (en) * 2013-01-29 2013-05-01 电子科技大学 Atmosphere glow discharge low-temperature plasma coating device
    US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
    US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
    US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
    US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
    JP6123796B2 (en) * 2013-03-15 2017-05-10 東レ株式会社 Plasma CVD apparatus and plasma CVD method
    US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
    US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
    DE102013017109A1 (en) 2013-10-15 2015-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing particles in an atmospheric pressure plasma
    WO2015061306A1 (en) * 2013-10-25 2015-04-30 United Technologies Corporation Plasma spraying system with adjustable coating medium nozzle
    US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
    US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
    US11432393B2 (en) 2013-11-13 2022-08-30 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
    US11278983B2 (en) 2013-11-13 2022-03-22 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
    US11684995B2 (en) 2013-11-13 2023-06-27 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
    US9981335B2 (en) 2013-11-13 2018-05-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
    US10456855B2 (en) 2013-11-13 2019-10-29 Hypertherm, Inc. Consumable cartridge for a plasma arc cutting system
    ITPD20130310A1 (en) 2013-11-14 2015-05-15 Nadir S R L METHOD FOR THE GENERATION OF AN ATMOSPHERIC PLASMA JET OR JET AND ATMOSPHERIC PLASMA MINITORCIA DEVICE
    US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
    WO2015088069A1 (en) * 2013-12-11 2015-06-18 주식회사 에이피아이 Plasma generating device
    DE102014100385A1 (en) * 2014-01-15 2015-07-16 Plasma Innovations GmbH Plasma coating method for depositing a functional layer and separator
    US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
    US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
    US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
    RU2558713C1 (en) * 2014-03-11 2015-08-10 Рузиль Рашитович Саубанов Arrangement of alternating current pulse plasma source
    US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
    US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
    US20150349307A1 (en) * 2014-05-27 2015-12-03 GM Global Technology Operations LLC Method for preparing a coated lithium battery component
    US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
    US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
    US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
    EP2959992A1 (en) 2014-06-26 2015-12-30 Eckart GmbH Method for producing a particulate-containing aerosol
    US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
    US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
    US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
    US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
    EP3180151B1 (en) 2014-08-12 2021-11-03 Hypertherm, Inc. Cost effective cartridge for a plasma arc torch
    US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
    US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
    US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
    US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
    US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
    US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
    CN104445059A (en) * 2014-10-27 2015-03-25 安徽大学 Alternating-current plasma torch synthetic gas production device
    US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
    JP6508746B2 (en) 2014-12-05 2019-05-08 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. Plasma source using macro particle reduction coating and method of using plasma source with macro particle reduction coating for thin film coating and surface modification
    MX2017007356A (en) 2014-12-05 2018-04-11 Agc Flat Glass Europe S A Hollow cathode plasma source.
    US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
    US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
    US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
    US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
    US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
    US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
    US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
    US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
    US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
    KR101636872B1 (en) * 2015-05-14 2016-07-07 인하대학교 산학협력단 Plasma arc apparatus for synthesis gas production
    EP3307030B1 (en) * 2015-06-02 2020-04-29 FUJI Corporation Plasma generating device
    JP7073251B2 (en) 2015-08-04 2022-05-23 ハイパーサーム インコーポレイテッド Cartridge frame for liquid-cooled plasma arc torch
    US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
    US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
    US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
    US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
    AT517694B1 (en) * 2015-11-12 2017-04-15 Inocon Tech Ges M B H Apparatus and method for applying a coating
    US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
    US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
    US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
    US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
    US10995406B2 (en) * 2016-04-01 2021-05-04 Universities Space Research Association In situ tailoring of material properties in 3D printed electronics
    US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
    US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
    US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
    WO2018020434A1 (en) 2016-07-26 2018-02-01 BORISSOVA, Anastasiia Olegovna Tissue tolerable plasma generator and method for the creation of protective film from the wound substrate
    US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
    US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
    US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
    US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
    US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
    US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
    US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
    US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
    US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
    US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
    US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
    US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
    DE102016124209A1 (en) 2016-12-13 2018-06-14 Jokey Plastik Wipperfürth GmbH Coating device and coating method for plastic containers
    CN110178449B (en) * 2016-12-23 2021-07-23 等离子体处理有限公司 Nozzle assembly and apparatus for producing an atmospheric plasma jet
    US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
    DE102017201559A1 (en) 2017-01-31 2018-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Atmospheric pressure plasma process for the production of plasma polymer coatings
    US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
    US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
    US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
    US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
    US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
    US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
    US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
    US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
    US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
    US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
    JP6341494B2 (en) * 2017-06-05 2018-06-13 春日電機株式会社 Ion generator
    US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
    US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
    US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
    US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
    US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
    US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
    US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
    US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
    SG11202002725UA (en) 2017-10-01 2020-04-29 Space Foundry Inc Modular print head assembly for plasma jet printing
    US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
    US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
    US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
    DE102017130353A1 (en) 2017-12-18 2019-06-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sol-gel based primer layer for PTFE-based coatings and methods of making same
    US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
    US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
    US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
    US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
    US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
    TWI766433B (en) 2018-02-28 2022-06-01 美商應用材料股份有限公司 Systems and methods to form airgaps
    US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
    US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
    US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
    US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
    US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
    DE102018108881A1 (en) 2018-04-13 2019-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Surface-modified silicone, its use in non-stick coatings and composite material containing the same
    US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
    US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
    US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
    US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
    US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
    US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
    US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
    US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
    US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
    US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
    US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
    US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
    US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
    US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
    DE102019102831A1 (en) 2019-02-05 2020-08-06 Plasmatreat Gmbh Method and device for the plasma treatment of a material web and method and device for producing a hollow extrudate with a plasma-treated inner surface
    DE102019118173A1 (en) 2019-07-04 2021-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Surface-modified silicone, its use in non-stick coatings and composite material containing it
    CN110315177A (en) * 2019-08-06 2019-10-11 河北瓦尔丁科技有限公司 Plasma power supply torch head accelerates gas path device
    CN113546920B (en) * 2021-07-20 2023-04-07 浙江洁美电子科技股份有限公司 Electric arc burning-off system and paper tape manufactured by using same

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS61119664A (en) 1984-11-16 1986-06-06 Mitsubishi Heavy Ind Ltd Plasma spraying method
    FR2600229B1 (en) 1986-06-17 1994-09-09 Metallisation Ind Ste Nle PLASMA RECHARGING TORCH
    US4916273A (en) 1987-03-11 1990-04-10 Browning James A High-velocity controlled-temperature plasma spray method
    US5109150A (en) 1987-03-24 1992-04-28 The United States Of America As Represented By The Secretary Of The Navy Open-arc plasma wire spray method and apparatus
    FR2622894B1 (en) * 1987-11-10 1990-03-23 Electricite De France PROCESS AND PLANT FOR HYDROPYROLYSIS OF HEAVY HYDROCARBONS BY PLASMA JET, PARTICULARLY H2 / CH4 PLASMA
    JPH0226895A (en) 1988-07-14 1990-01-29 Fujitsu Ltd Method and device for synthesizing diamond in vapor phase
    WO1990012123A1 (en) 1989-03-31 1990-10-18 Leningradsky Politekhnichesky Institut Imeni M.I.Kalinina Method of treatment with plasma and plasmatron
    SU1835865A1 (en) 1989-12-01 1996-04-10 Ленинградский Политехнический Институт Им.М.И.Калинина Method of metal coatings air-plasma spraying
    FR2713667B1 (en) * 1993-12-15 1996-01-12 Air Liquide Method and device for deposition at low temperature of a film containing silicon on a non-metallic substrate.
    JP3700177B2 (en) * 1993-12-24 2005-09-28 セイコーエプソン株式会社 Atmospheric pressure plasma surface treatment equipment
    US5662266A (en) * 1995-01-04 1997-09-02 Zurecki; Zbigniew Process and apparatus for shrouding a turbulent gas jet
    DE19532412C2 (en) 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Device for surface pretreatment of workpieces
    US6001426A (en) * 1996-07-25 1999-12-14 Utron Inc. High velocity pulsed wire-arc spray
    US6194036B1 (en) * 1997-10-20 2001-02-27 The Regents Of The University Of California Deposition of coatings using an atmospheric pressure plasma jet
    JP4446597B2 (en) 1997-10-20 2010-04-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Coating deposit using atmospheric pressure plasma jet
    DE19807086A1 (en) * 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Atmospheric pressure plasma deposition for adhesion promoting, corrosion protective, surface energy modification or mechanical, electrical or optical layers
    DE29805999U1 (en) 1998-04-03 1998-06-25 Agrodyn Hochspannungstechnik G Device for the plasma treatment of surfaces
    DE29911974U1 (en) 1999-07-09 2000-11-23 Agrodyn Hochspannungstechnik G Plasma nozzle

    Cited By (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008029681A1 (en) 2008-06-23 2009-12-24 Plasma Treat Gmbh Method and device for applying a layer, in particular a self-cleaning and / or antimicrobial photocatalytic layer, to a surface
    DE102008058783A1 (en) 2008-11-24 2010-05-27 Plasmatreat Gmbh Process for the atmospheric coating of nano-surfaces
    TWI384085B (en) * 2009-05-07 2013-02-01 Univ Kao Yuan Reciprocating two-section atmospheric pressure plasma coating system
    DE102009048397A1 (en) * 2009-10-06 2011-04-07 Plasmatreat Gmbh Atmospheric pressure plasma process for producing surface modified particles and coatings
    WO2012123530A1 (en) 2011-03-16 2012-09-20 Reinhausen Plasma Gmbh Coating, and method and device for coating
    WO2013014212A2 (en) 2011-07-25 2013-01-31 Eckart Gmbh Method for applying a coating to a substrate, coating, and use of particles
    DE102011052118A1 (en) 2011-07-25 2013-01-31 Eckart Gmbh Method for applying a coating to a substrate, coating and use of particles
    US9771652B2 (en) 2012-03-29 2017-09-26 Plasmatreat Gmbh Method for passivating a metal surface
    EP2644739A1 (en) 2012-03-29 2013-10-02 BSH Bosch und Siemens Hausgeräte GmbH Method for passivating a metal surface and domestic appliance, in particular domestic dishwasher with a wall portion
    DE102012102721A1 (en) 2012-03-29 2013-10-02 BSH Bosch und Siemens Hausgeräte GmbH Method for passivating a metal surface
    WO2015055486A1 (en) 2013-10-14 2015-04-23 Plasma Innovations GmbH Production method for a plasma-coated molded body and component
    DE102013111306A1 (en) 2013-10-14 2015-04-30 Ensinger Gmbh Manufacturing method for a plasma-coated molded body and component
    DE102014219979A1 (en) 2014-10-01 2016-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite of substrate, plasma polymer layer, mixed layer and cover layer
    WO2016050937A1 (en) 2014-10-01 2016-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite consisting of a substrate, a plasma polymer layer, a mixed layer and a cover layer
    DE102015121253A1 (en) 2015-12-07 2017-06-08 Plasmatreat Gmbh Apparatus for generating an atmospheric plasma jet for treating the surface of a workpiece
    DE102016101456A1 (en) 2016-01-27 2017-07-27 Plasmatreat Gmbh Injection molded component with insert, process for its manufacture and uses therefor
    WO2017129582A1 (en) 2016-01-27 2017-08-03 Plasmatreat Gmbh Injection-molded component with insert part, method for producing same, and uses thereof
    DE102016104130A1 (en) 2016-03-07 2017-09-07 Plasmatreat Gmbh Method for coating a component surface and method for producing a coating material
    DE102016104128A1 (en) 2016-03-07 2017-09-07 Plasmatreat Gmbh Method for coating a component surface, coated component and use of a precursor material
    DE102017122059A1 (en) * 2017-09-22 2019-03-28 Plasma Innovations GmbH Method for producing an end surface and printed circuit board
    WO2019057450A1 (en) 2017-09-22 2019-03-28 Plasma Innovations GmbH Method for producing a finishing coating and circuit board
    WO2021023605A1 (en) 2019-08-08 2021-02-11 Plasmatreat Gmbh Method for equipping an electronic display with a display screen protector
    WO2024068623A1 (en) 2022-09-29 2024-04-04 Plasmatreat Gmbh Plasma treatment with liquid cooling
    DE102023106618A1 (en) 2022-09-29 2024-04-04 Plasmatreat Gmbh Plasma treatment with liquid cooling

    Also Published As

    Publication number Publication date
    EP1230414A1 (en) 2002-08-14
    DE50008155D1 (en) 2004-11-11
    US6800336B1 (en) 2004-10-05
    ATE278817T1 (en) 2004-10-15
    DE29919142U1 (en) 2001-03-08
    WO2001032949A1 (en) 2001-05-10
    JP2003514114A (en) 2003-04-15
    JP4082905B2 (en) 2008-04-30
    ES2230098T3 (en) 2005-05-01

    Similar Documents

    Publication Publication Date Title
    EP1230414B1 (en) Method and device for plasma coating surfaces
    DE102006019664B4 (en) Cold plasma hand-held device for the plasma treatment of surfaces
    DE4021182C2 (en)
    DE19856307C1 (en) Apparatus for producing a free cold plasma jet
    EP1292176B1 (en) Device for the production of an active gas beam
    WO1999042637A1 (en) Method and device for coating a substrate, and coated substrate
    WO2005125286A2 (en) Device for the treatment of a substrate by means of at least one plasma jet
    WO2001043512A1 (en) Plasma nozzle
    EP0986939A1 (en) Plasma processing device for surfaces
    WO2003015122A1 (en) Device for the coating of objects
    EP2130414B1 (en) Device and method for generating a plasma beam
    EP2054166B1 (en) Method and device for producing a coating
    WO2009127540A1 (en) Device for treating an inner surface of a work piece
    EP3077122B1 (en) Compressed air treatment chamber
    EP1872637B1 (en) Plasma coating device and method
    WO2005099320A2 (en) Method and device for producing low-pressure plasma and the use thereof
    WO2008061602A1 (en) Method and device for producing a plasma, and applications of the plasma
    WO2005117507A2 (en) Method for removing at least one inorganic layer from a component
    EP3430864B1 (en) Plasma nozzle and method of using the plasma nozzle
    DE10223865B4 (en) Process for the plasma coating of workpieces
    WO2011141184A1 (en) Plasma generator and method for generating and using an ionised gas
    EP2142679B1 (en) Method for the plasma-assisted surface treatment of large-volume components
    DE2229716A1 (en) METHOD AND EQUIPMENT FOR CHARGING ENERGY OF A REACTIVE MATERIAL BY MEANS OF ARC DISCHARGE
    DE102013106315B4 (en) Method and apparatus for generating a physical plasma
    EP2532214A1 (en) Hollow funnel-shaped plasma generator

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020315

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20030901

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

    Owner name: AGRODYN HOCHSPANNUNGSTECHNIK GMBH

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

    Owner name: PLASMATREAT GMBH

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041006

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50008155

    Country of ref document: DE

    Date of ref document: 20041111

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050106

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: TROESCH SCHEIDEGGER WERNER AG

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050115

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050317

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20041006

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2230098

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20050707

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050306

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20160325

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20160324

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20160324

    Year of fee payment: 17

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160317

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160317

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160329

    Year of fee payment: 17

    PGRI Patent reinstated in contracting state [announced from national office to epo]

    Ref country code: IT

    Effective date: 20170710

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20170401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170317

    PGRI Patent reinstated in contracting state [announced from national office to epo]

    Ref country code: IT

    Effective date: 20170710

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MM

    Effective date: 20170331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170331

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170318

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20190320

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20190320

    Year of fee payment: 20

    Ref country code: LU

    Payment date: 20190320

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20190319

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20190320

    Year of fee payment: 20

    Ref country code: IE

    Payment date: 20190319

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20190322

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20190322

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20190320

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50008155

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EUP

    Expiry date: 20200317

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20200316

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MK9A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20200316

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20200317

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 278817

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20200317