EP3430864B1 - Plasma nozzle and method of using the plasma nozzle - Google Patents

Plasma nozzle and method of using the plasma nozzle Download PDF

Info

Publication number
EP3430864B1
EP3430864B1 EP17712057.3A EP17712057A EP3430864B1 EP 3430864 B1 EP3430864 B1 EP 3430864B1 EP 17712057 A EP17712057 A EP 17712057A EP 3430864 B1 EP3430864 B1 EP 3430864B1
Authority
EP
European Patent Office
Prior art keywords
electrode
counter
plasma
nozzle
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17712057.3A
Other languages
German (de)
French (fr)
Other versions
EP3430864A1 (en
Inventor
Wolfgang Viöl
Martin BELLMANN
Christian Ochs
Marcus HARMS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3430864A1 publication Critical patent/EP3430864A1/en
Application granted granted Critical
Publication of EP3430864B1 publication Critical patent/EP3430864B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2439Surface discharges, e.g. air flow control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the invention relates to a plasma nozzle for generating a plasma jet with at least one electrode, a casing concentrically surrounding the electrode, a discharge chamber being formed between the electrode and the casing, and the discharge chamber having an inlet opening for a process gas and a nozzle opening for the exit of the plasma jet and the sheathing contains or consists of a dielectric and a first counter-electrode ring-shaped surrounding the discharge chamber in a first longitudinal section.
  • the invention also relates to a method for using the plasma nozzle for treating a surface of a workpiece or a workpiece with the plasma jet thus generated.
  • the plasma jet In the case of such a treatment of a workpiece, surface activation and / or functionalization and ultra-fine cleaning of the treated surface by the plasma jet take place.
  • the plasma can be operated with an inert gas or a reactive gas, so that physical and / or chemical processes take place on the surface of the workpiece to be treated. This improves the adhesion between materials, for example in the case of paintwork or adhesive bonds on plastic surfaces.
  • plasmas to non-conductive workpieces of high material thickness or complicated geometries can be carried out, for example, with known plasma nozzles (jet systems) according to US 6,677,550 B2 or U.S. 5,961,772 be made.
  • the sheathing itself forms the counter-electrode, so that thermal arc discharges form between the electrode and the counter-electrode after exposure to a high voltage.
  • the resulting plasma is expelled from the nozzle by the gas flow.
  • remote systems These jet systems are therefore referred to as remote systems, and the plasmas generated in the process are referred to as "remote plasma". Since the reactive species are not generated directly on the workpiece surface, but at some distance from it, these species can react on the way to the surface, for example with the ambient air or the electrode walls of the remote system. So only a small proportion of this species can react with the surface. This reduces the efficiency of the plasma treatment. Further devices for generating a plasma jet by means of a dielectric hindered discharge can be found in the patents KR 2014 0101235 A , JP 2007 207475 A and CN 201 528 464 U known.
  • devices for generating sliding discharges on the surface of the workpiece to be cleaned or the formation of dielectrically impeded discharges on the surface of the workpiece to be cleaned are known from the prior art.
  • high-voltage electrodes arranged parallel to the surface to be treated are at different electrical potentials and use the workpiece to be treated as a bridging medium for generating discharge filaments.
  • only sliding discharges can be achieved with discharge distances of around 1 mm. These methods are therefore only suitable for flat surfaces with low shape tolerances, since the plasma cannot penetrate into undercuts or depressions and the distance between the high-voltage electrodes must be precisely regulated.
  • dielectrically impeded or barrier discharges the workpiece held in the discharge gap must also be thin in order to generate and maintain the discharge with manageable electrical voltages.
  • the object of the present invention is thus to provide a cleaning method and a cleaning device for activating or ultra-fine cleaning of a surface, which allows an improved, in particular more efficient treatment of the surface and can be used universally on flat or even uneven surfaces of workpieces.
  • a plasma nozzle for generating a plasma jet contains at least one electrode.
  • the electrode can be elongated or rod-shaped.
  • the electrode can be hollow or contain a cavity.
  • the at least one electrode is surrounded by a casing, so that a discharge chamber is formed between the electrode and the casing.
  • the casing and the electrode can be arranged concentrically with one another. According to the invention it is proposed that the sheathing contain or consist of a dielectric.
  • the discharge chamber further has at least one inlet opening for a process gas and a nozzle opening for the exit of the plasma jet.
  • the device according to the invention has at least one first counter-electrode, which surrounds the discharge chamber in a ring-shaped manner in a first longitudinal section.
  • the first counter electrode is electrically insulated from the electrode by the sheathing.
  • there is a second counter-electrode which surrounds the discharge chamber in a second longitudinal section in an annular manner.
  • the counter-electrodes can also be arranged concentrically to the electrode and the casing.
  • a method according to the invention for using or operating a plasma nozzle according to the invention has the following method steps: Supplying a process gas having a flow through the inlet opening into the discharge chamber and generating an electrical potential difference between an electrode and / or a first counterelectrode and / or a second counterelectrode, so that a plasma is formed in the discharge chamber by igniting dielectrically impeded discharges in the process gas in the discharge chamber, and generating a plasma jet from the flow plasma expelled from the nozzle opening.
  • a plasma jet is thus generated by means of a dielectrically impeded discharge (Dielectric Barrier Discharge or DBD) (DBD-Jet).
  • the discharge filaments of the DBD are generated by applying a high electrical voltage between the electrode and the counter electrode or electrodes.
  • DBD dielectric Barrier Discharge
  • discharge filaments are generated in the process gas in which only low temperatures prevail relative to thermal arc discharges.
  • the plasmas generated in this way are therefore non-thermal plasmas in which the reactive species generated are not in thermal equilibrium with their locally surrounding process gas. Due to the dielectric hindrance, the discharge process in the individual discharge filaments is so short in time that no thermal equilibrium can develop.
  • Such plasmas, or a plasma jet generated from them can therefore be used as directly acting plasmas for surface treatment. The possibility of generating plasma close to the surface without damaging the surface enables efficient treatment.
  • the plasma nozzle according to the invention thus combines the Advantages of well-known plasma jets such as high gap clearance with the efficiency of sliding discharges or barrier discharges on the surface of the workpiece.
  • the plasma nozzle according to the invention therefore also enables workpieces to be treated on an industrial scale, since greater spacing tolerances between the plasma nozzle and workpiece are possible than with known sliding discharges and greater workpiece thicknesses than with known barrier discharges.
  • High spacing and shape tolerances which occur especially with mass-produced goods such as semi-finished extrusions, require pretreatment systems in inline operation that implement efficient activation / functionalization in the highest possible tolerance ranges and, at the same time, perform ultra-fine cleaning of the surface.
  • the plasma nozzle according to the invention can be used as such a pretreatment system. Environmentally harmful and costly wet chemical processes for surface treatment can thus be replaced.
  • the use of the plasma nozzle according to the invention in a manner similar to a sliding discharge source enables two-dimensional applications.
  • the second counter electrode is arranged on the nozzle opening in such a way that the nozzle opening runs centrally through the counter electrode.
  • Discharge filaments of the DBD are not only created in the discharge chamber, but also directly in the area of the nozzle opening and can thus affect the surface of the workpiece to be treated. In this way, both chemical and physical influences can occur on the surface occur.
  • the reactive species generated in this way can interact directly with the surface in the plasma jet without first coming into contact with the ambient air or other reaction partners.
  • the second counter-electrode can have a ring surface that is widened in the shape of a plate. This has the advantage that discharge filaments can be generated directly on a surface to be treated. The normal to the plate surface should be roughly parallel to the direction of the plasma jet. With this embodiment of the invention, electrically insulating workpieces with material thicknesses of more than 10 mm can also be treated with a DBD, since the workpiece no longer has to be completely received in the discharge gap.
  • the surface of the second counter electrode can be covered by the casing.
  • the casing thus forms a continuous dielectric that shields the electrode surface from the discharge chamber and the workpiece. This allows simple design and manufacture and reliable operation of the plasma nozzle.
  • the sheathing of a generic plasma nozzle is formed from a dielectric, the counterelectrodes being electrically insulated by the sheathing from the electrode for generating dielectrically impeded discharges in the process gas between the electrode and the counterelectrode.
  • the dielectric can contain a glass, a ceramic, or a polymer.
  • the polymer can be or contain polytetrafluoroethylene (PTFE).
  • the electrode in the discharge space is coated with a dielectric.
  • This additional coating causes an even more homogeneous discharge characteristic of the plasma generated by the DBD.
  • the coating can contain or consist of a polymer or a ceramic.
  • the coating can contain polytetrafluoroethylene or an oxide or an oxynitride.
  • the inlet opening of at least one gas feed-through can be formed in the electrode.
  • the gas feedthroughs can advantageously comprise a plurality of bores which are arranged radially symmetrically in the electrode, a uniform flow of the process gas through the discharge chamber is achieved. This also leads to a particularly homogeneous and stable plasma jet.
  • a plasma nozzle housing can be present, the counter electrodes being fixed between the casing and the plasma nozzle housing by means of a potting compound. In this way, inexpensive production of the plasma nozzle is possible and parasitic discharges in the interior of the plasma nozzle are avoided.
  • the first counter-electrode when the device is in operation, can be at a ground potential and the second counter-electrode can be at a floating potential.
  • a plasma jet is expelled from the nozzle, which can have a range of more than 10 mm or more than 20 mm or more than 30 mm.
  • the second counterelectrode when the device is in operation, can be at ground potential and the first counterelectrode can be at ground potential a floating potential.
  • the plasma filaments slide over the underside of the plasma nozzle or over the partial surface of the casing that runs parallel to the plate surface of the second electrode. In this case, sliding discharges can be generated on the workpiece at a distance of about 1 mm to about 3 mm.
  • the first counter-electrode and the second counter-electrode can be at a ground potential when the device is in operation. In this operating state, a discharge is generated between the first counter-electrode and the electrode in the interior of the discharge space, the plasma of which is expelled from the plasma nozzle.
  • the second counter electrode forms a counter potential to the plasma emerging from the nozzle. In this way, sliding discharges are possible at a distance of about 3 mm to about 20 mm from the workpiece surface.
  • the process gas can be selected from argon and / or helium and / or ambient air and / or synthetic air and / or gas mixtures of nitrogen and oxygen in a mixing ratio of 90/10 or 95/5 volume percent.
  • Possible surface treatments with the plasma jet of a plasma nozzle according to the invention are all previous areas of application in which plasma is used, e.g. surface functionalization, surface activation, layer deposition, ultra-fine cleaning and / or disinfection.
  • FIG. 1 a sectional representation of a plasma nozzle 1 according to the invention during its use in the surface treatment of a workpiece 3 with a plasma jet 5 is shown.
  • the plasma nozzle 1 has a pin-shaped electrode 7 for applying a particularly pulsed high voltage.
  • This pin electrode 7 is therefore also referred to below as the high-voltage electrode.
  • the pin electrode 7 is concentrically surrounded by a casing 9 made of a dielectric material.
  • the casing 9 has a cylindrical basic shape.
  • a discharge chamber 11 is formed between the electrode 7 and the casing 9.
  • the discharge chamber 11 has an inlet opening 12 for a process gas, for example argon, helium and / or air, and a nozzle opening 14 for the plasma jet 5 to exit.
  • the plasma jet 5 is made up of plasma generated in the discharge chamber 11 and expelled from the nozzle opening 14 by a flow of the process gas generated.
  • the flowing process gas is shown symbolically in the figure by a block arrow in the area of the inlet opening 12.
  • a second metal counter-electrode 16 is provided which surrounds the discharge chamber 11 in a ring-shaped manner.
  • the second counterelectrode 16 is electrically insulated from the electrode 7 by the dielectric sheathing 9 in order to generate dielectrically impeded discharges in the process gas between the pin-shaped electrode 7 and the counterelectrode 16.
  • the second counter-electrode 16 can be connected to ground to generate the dielectrically impeded discharges, i. E. H. be electrically grounded, which is why it is also referred to below as a ground ring.
  • the electrical contact is not shown in the figure.
  • the second counter electrode 16 is arranged in the region of the nozzle opening 14 in such a way that the nozzle opening 14 runs centrally through the second counter electrode 16.
  • the second counter electrode 16 also has an annular surface 18 that is widened in the shape of a plate.
  • widened in the shape of a plate is understood to mean a ring with a shape whose radial ring width is greater than its axial ring height.
  • the ring surface 18 of the plate-shaped widened counter-electrode 16 facing away from the plasma jet direction is covered by the casing 9 and thus also shielded from the high-voltage electrode 7 by means of the dielectric of the casing 9.
  • the plasma nozzle 1 has a plate-shaped widening (underside of the plate) in its lower area, ie in the area of the nozzle opening 14.
  • the casing 9 is therefore also referred to below as a plate bar and the entire plasma nozzle 1 is also referred to below as a “disk jet”.
  • the surface normals of the ring surface 18, which is widened in the shape of a plate, and the correspondingly shaped underside of the plate run approximately parallel to the exit direction of the generated plasma jet 5.
  • the nozzle opening 14 extends radially centrally through the plate-shaped counter-electrode 16.
  • the plasma nozzle 1 furthermore has a first counter-electrode 20 made of metal, which can also be connected electrically to ground for operating the plasma nozzle 1.
  • This first counter-electrode 20 also surrounds the discharge chamber 11 in a ring shape and is insulated from the rod-shaped electrode 7 by the casing 9.
  • the first counter electrode 20 is arranged at the level of the rod-shaped electrode 7 and is also referred to below as the upper ground ring, whereas the second counter electrode 16 arranged in the area of the nozzle opening 14 is referred to as the lower ground ring.
  • the electrical ground potential of the ground can also be replaced by any other potential and / or both ground rings can be placed on different potentials, i.e. electrically connected to different voltage sources. For safety and application reasons, however, the earth potential is to be preferred.
  • the plasma nozzle 1 can therefore be referred to as a "double-mass disk jet".
  • a pre-discharge electrode is formed from the first counter-electrode 20 opposite the second counter-electrode 16 arranged in the region of the nozzle opening 14. That is, the plasma generated by discharges between the first counter-electrode 20 and the rod-shaped electrode 7 is transported by the flow of the process gas to the second counter-electrode 16 arranged in the area of the nozzle opening 14, which enables dielectrically impeded discharges to be ignited in the area of the last-mentioned second counter-electrode. ie a dielectrically impeded post-discharge is excited.
  • the high-voltage electrode 7 has gas feedthroughs 25 and thereby functions at the same time as a process gas feed, i.e. inlet opening 12. It is made of a conductive material, e.g. stainless steel, aluminum and / or brass.
  • the plate bar serves as a dielectric and is made of a dielectric material e.g. ceramic, glass, and / or polymer.
  • the upper ground ring is attached in the upper area of the plate rod sleeve, i.e. the cylindrical part of the casing 9 which forms the discharge chamber. Outside the discharge chamber 11, the ground rings are shielded from the high-voltage electrode 7 with an optional high-voltage-resistant potting compound 27 so that no parasitic discharges occur inside the part of the plasma nozzle 1 that forms an electrode head.
  • the potting compound 27 also serves to fix the compound rings between the casing 9 and the housing 29 of the plasma nozzle 1.
  • a plasma jet 5 with plasma generation from a dielectrically impeded discharge can be ignited between the high-voltage electrode 7 and the upper ground ring 20.
  • this DBD jet can be expelled from the nozzle opening 14 up to 50 mm.
  • This DBD jet can, for example, also be ignited with compressed air as the process gas.
  • the concentric lower mass ring 16 forces filaments of discharges expelled from the nozzle opening 14 to ignite on the underside of the plate, ie on the underside of the casing 9, which is widened in the manner of a plate and faces the workpiece.
  • a discharge can thus ignite, which after acts on the principle of a repeater.
  • the discharge between the upper ground ring 20 and the high-voltage electrode 7, or the plasma of this discharge generates a further discharge in the area of the lower ground ring 16 and is therefore repeated in the figurative sense.
  • the filaments of the discharges in the area of the lower mass ring 16 can come into direct contact with the surface to be treated. Such surface discharges are more efficient than remote plasmas. The reactive species in the plasma react to a large extent on their way to the workpiece surface with remote plasmas, which results in great efficiency losses in the activation of the surface. The latter is not the case with surface discharges.
  • the filaments come into contact with the surface in the event of surface discharges, which enables the surface to be finely cleaned.
  • One embodiment of the method according to the invention uses a DBD remote plasma as an ignition source and projects its potential onto the non-conductive surface of the workpiece. Since the non-conductive workpiece thus indirectly becomes a counter potential, also called floating potential, for the lower ground ring 16, tangential filaments of a discharge develop between the underside of the plate and the non-conductive workpiece. Depending on the distance between the underside of the plate and the workpiece, a largely homogeneous plasma discharge is formed over the surface of the underside of the plate (plate surface), supported by the back pressure of the continuously flowing process gas.
  • the pin-shaped electrode 7 of the plasma nozzle is off Figure 1 shown as a detailed representation.
  • the illustrated pin electrode 7 is designed to be radially symmetrical.
  • the pin electrode 7 On its electrode base 31 facing away from the tip 30 of the pin electrode 7, the pin electrode 7 has grooves 32, which serve to fix the pin electrode 7 in the casing 9 of the plasma nozzle.
  • gas feedthroughs 25 are arranged radially symmetrically within the pin electrode 7 in the region of the electrode base 31. These form the inlet opening of the plasma nozzle for the process gas.
  • the plasma nozzle according to the invention is off Figure 1 shown in different operating modes during operation. Due to the electrode configuration with a high voltage electrode and two counter electrodes, namely the upper and the lower ground ring, the "Disk-Jet" can be operated in three different modes. In the Figures 3a to c the three modes are shown. The electrical contact is shown in the form of a circuit diagram.
  • This plasma jet 40 has a length of up to 50 mm for the process gases argon, helium or air.
  • the "Disc-Jet” can be easily integrated into existing processes and, thanks to its effectiveness, can also be used under industrial conditions.
  • a plasma can be optimally applied using the "Disc-Jet” both on flat plate / foil material and on complex workpiece geometries or undercuts.
  • Figures 4a and b Quality parameters of work results in the surface treatment of workpieces as a function of operating parameters of the method according to the invention are shown in comparison in each case in a bar diagram.
  • Figure 4a shows the peeling resistance of water-based paints on PVC in comparison with surface treatment in the "DBD-Jet” and "Disc-Jet” operating modes with argon process gas.
  • the discharge of the "Disc-Jet" has the character of a sliding discharge and can be realized in free operation, ie without a workpiece under the source, with discharge distances of up to 20 mm between the nozzle opening and the workpiece surface.
  • a high level of clearance, ie penetration depth in surface gaps, is thus achieved on the basis of direct discharges, which enables the efficient treatment of profiled or structured surfaces or also workpieces with greater shape or position tolerances.
  • Figure 5a shows the two-dimensional formation of the sliding discharge of the "disc jet" on a workpiece surface.
  • the discharge distance is in accordance with Figures 4 constant 3 mm for flat treatment. A flat discharge over the workpiece surface can be clearly seen.
  • Figure 5b shows the discharge characteristics of the "Disk-Jet" in free operation (discharge without workpiece).
  • the filaments emerge from the mouth of the nozzle opening and after a certain distance ignite again up to the plate surface of the "disk jet".
  • the filaments slide over the surface of the workpiece and form a flat discharge that adapts to the size of the plate surface as the distance decreases.
  • Figure 5c shows the use of the "Disc-Jet" on a plastic profile with a 10 mm deep longitudinal groove with an undercut.
  • the plasma jet can be seen emerging from the nozzle mouth as a plasma bundle. This bundle forms a large base point on the bottom of the longitudinal groove, from which filaments ignite to the plate surface of the "disc jet".

Description

Die Erfindung betrifft eine Plasmadüse zum Erzeugen eines Plasmastrahls mit zumindest einer Elektrode, einer die Elektrode konzentrisch umgebenden Ummantelung, wobei zwischen der Elektrode und der Ummantelung eine Entladungskammer ausgebildet ist, und wobei die Entladungskammer eine Einlassöffnung für ein Prozessgas und eine Düsenöffnung zum Austreten des Plasmastrahls aufweist und die Ummantelung ein Dielektrikum enthält oder daraus besteht und einer die Entladungskammer in einem ersten Längsabschnitt ringförmig umgebende erste Gegenelektrode. Weiterhin betrifft die Erfindung ein Verfahren zur Verwendung der Plasmadüse zur Behandlung einer Oberfläche eines Werkstückes bzw. eines Werkstückes mit dem so erzeugten Plasmastrahl.The invention relates to a plasma nozzle for generating a plasma jet with at least one electrode, a casing concentrically surrounding the electrode, a discharge chamber being formed between the electrode and the casing, and the discharge chamber having an inlet opening for a process gas and a nozzle opening for the exit of the plasma jet and the sheathing contains or consists of a dielectric and a first counter-electrode ring-shaped surrounding the discharge chamber in a first longitudinal section. The invention also relates to a method for using the plasma nozzle for treating a surface of a workpiece or a workpiece with the plasma jet thus generated.

Bei einer derartigen Behandlung eines Werkstückes erfolgt eine Oberflächenaktivierung und/oder -funktionalisierung und eine Feinstreinigung der behandelten Oberfläche durch den Plasmastrahl. Das Plasma kann mit einem Inertgas oder einem Reaktivgas betrieben werden, so dass physikalische und/oder chemische Prozesse an der Oberfläche des zu behandelnden Werkstückes ablaufen. Dadurch wird z.B. die Haftung zwischen Materialen verbessert, beispielsweise im Falle von Lackierungen oder Klebverbindungen von Kunststoffoberflächen.In the case of such a treatment of a workpiece, surface activation and / or functionalization and ultra-fine cleaning of the treated surface by the plasma jet take place. The plasma can be operated with an inert gas or a reactive gas, so that physical and / or chemical processes take place on the surface of the workpiece to be treated. This improves the adhesion between materials, for example in the case of paintwork or adhesive bonds on plastic surfaces.

Die Applikation von Plasmen auf nichtleitenden Werkstücken von hoher Materialstärke oder komplizierten Geometrien kann z.B. mit bekannten Plasmadüsen (Jet-Systemen) gemäß US 6,677,550 B2 oder US 5,961,772 vorgenommen werden. Die Ummantelung bildet dabei selbst die Gegenelektrode aus, so dass sich zwischen der Elektrode und der Gegenelektrode nach Beaufschlagung mit einer Hochspannung thermische Bogenentladungen ausbilden. Das so entstehende Plasma wird durch den Gasstrom aus der Düse ausgetrieben.The application of plasmas to non-conductive workpieces of high material thickness or complicated geometries can be carried out, for example, with known plasma nozzles (jet systems) according to US 6,677,550 B2 or U.S. 5,961,772 be made. The sheathing itself forms the counter-electrode, so that thermal arc discharges form between the electrode and the counter-electrode after exposure to a high voltage. The resulting plasma is expelled from the nozzle by the gas flow.

Nachteile dieser Jet-Systeme sind ein beim Betrieb entstehender starker Elektrodenabbrand, hohe Temperaturen bedingt durch die als Plasmastrahl aus der Düsenöffnung ausgetriebenen thermischen Bogenentladungen und eine fehlende Reinigungswirkung bzw. eine niedrige Effizienz. Diese Nachteile treten insbesondere bei hohen Prozessgeschwindigkeiten auf, d.h. wenn das Werkstück vom Plasmastrahl mit hoher Geschwindigkeit überfahren wird. Bei diesen Jet-Systemen werden nämlich die im Plasma vorhandenen, zur Oberflächenbehandlung vorgesehenen reaktiven Spezies, d.h. z.B. angeregte Moleküle, Atome und/oder Ionen, nicht direkt auf der zu behandelnden Oberfläche erzeugt, da die hohen Temperaturen in thermischen Bogenentladungen die Oberfläche beschädigen würden. Um derartige physikalische Effekte der Plasmafilamente der Bogenentladungen auf der Oberfläche zu vermeiden, werden die Bogenentladungen in einiger Entfernung zur Oberfläche erzeugt. Diese Jet-Systeme werden deshalb als Remote-Systeme, die dabei erzeugten Plasmen als "Remote-Plasma" bezeichnet. Da die reaktiven Spezies nicht direkt auf der Werkstückoberfläche generiert werden, sondern in einiger Entfernung dazu, können diese Spezies jedoch auf dem Weg zur Oberfläche z.B. mit der Umgebungsluft oder den Elektrodenwänden des Remote-Systems abreagieren. Es kann also nur ein geringer Anteil dieser Spezies mit der Oberfläche reagieren. Dadurch sinkt die Effizienz der Plasmabehandlung. Weitere Vorrichtungen zum Erzeugen eines Plasmastrahls mittels einer dielektrischen behinderten Entladung sind aus den Patentschriften KR 2014 0101235 A , JP 2007 207475 A und CN 201 528 464 U bekannt.Disadvantages of these jet systems are strong electrode burn-off that occurs during operation, high temperatures caused by the thermal arc discharges expelled from the nozzle opening as a plasma jet, and a lack of cleaning action or low efficiency. These disadvantages occur in particular at high process speeds, ie when the workpiece is passed over by the plasma jet at high speed. In these jet systems, the reactive species present in the plasma and intended for surface treatment, ie, excited molecules, atoms and / or ions, are not generated directly on the surface to be treated, since the high temperatures in thermal arc discharges would damage the surface. In order to avoid such physical effects of the plasma filaments of the arc discharges on the surface, the arc discharges are generated at some distance from the surface. These jet systems are therefore referred to as remote systems, and the plasmas generated in the process are referred to as "remote plasma". Since the reactive species are not generated directly on the workpiece surface, but at some distance from it, these species can react on the way to the surface, for example with the ambient air or the electrode walls of the remote system. So only a small proportion of this species can react with the surface. This reduces the efficiency of the plasma treatment. Further devices for generating a plasma jet by means of a dielectric hindered discharge can be found in the patents KR 2014 0101235 A , JP 2007 207475 A and CN 201 528 464 U known.

Die Anwendung von bekannten Plasma-Jets ermöglicht eine Aktivierung, jedoch keine Feinstreinigung der Oberfläche. Hoher Prozessgasverbrauch, eine notwendige Kühlung des Prozessgases und eine geringe effektive Entladungsfläche machen dieses Verfahren zu einem nur begrenzt wirtschaftlichen Verfahren.The use of known plasma jets enables activation, but not ultra-fine cleaning of the surface. High process gas consumption, the necessary cooling of the process gas and a small effective discharge area make this process a process that is only economical to a limited extent.

Alternativ sind aus dem Stand der Technik Vorrichtungen zur Erzeugung von Gleitentladungen auf der Oberfläche des zu reinigenden Werkstückes oder die Ausbildung von dielektrisch behinderten Entladungen auf der Oberfläche des zu reinigenden Werkstückes bekannt. Bei Gleitentladungen liegen parallel zur zu behandelnden Oberfläche angeordnete Hochspannungselektroden auf unterschiedlichem elektrischen Potential und nutzen das zu behandelnde Werkstück als Überbrückungsmedium für das Erzeugen von Entladungsfilamenten. Dabei sind in Abhängigkeit vom eingesetzten Prozessgas lediglich Gleitentladungen bei Entladungsabständen um 1 mm realisierbar. Diese Verfahren eignen sich damit nur für plane Oberflächen mit geringen Formtoleranzen, da das Plasma nicht in Hinterschneidungen oder Vertiefungen eindringen kann und der Abstand der Hochspannungselektroden präzise geregelt werden muss. Im Falle von dielektrisch behinderten bzw. Barrierenentladungen muss das im Entladungsspalt aufgenommene Werkstück auch noch dünn sein, um die Entladung mit handhabbaren elektrischen Spannungen zu erzeugen und aufrecht zu erhalten.Alternatively, devices for generating sliding discharges on the surface of the workpiece to be cleaned or the formation of dielectrically impeded discharges on the surface of the workpiece to be cleaned are known from the prior art. In the case of sliding discharges, high-voltage electrodes arranged parallel to the surface to be treated are at different electrical potentials and use the workpiece to be treated as a bridging medium for generating discharge filaments. Depending on the process gas used, only sliding discharges can be achieved with discharge distances of around 1 mm. These methods are therefore only suitable for flat surfaces with low shape tolerances, since the plasma cannot penetrate into undercuts or depressions and the distance between the high-voltage electrodes must be precisely regulated. In the case of dielectrically impeded or barrier discharges, the workpiece held in the discharge gap must also be thin in order to generate and maintain the discharge with manageable electrical voltages.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein Reinigungsverfahren und eine Reinigungsvorrichtung zur Aktivierung bzw. Feinstreinigung einer Oberfläche bereitzustellen, welches eine verbesserte, insbesondere effizientere Behandlung der Oberfläche erlaubt und universell auf ebenen oder auch unebenen Oberflächen von Werkstücken eingesetzt werden kann.The object of the present invention is thus to provide a cleaning method and a cleaning device for activating or ultra-fine cleaning of a surface, which allows an improved, in particular more efficient treatment of the surface and can be used universally on flat or even uneven surfaces of workpieces.

Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung gemäß Anspruch 1 und ein Verfahren nach Anspruch 10 gelöst. Vorteilhafte Weiterbildungen der Erfindung finden sich in den Unteransprüchen.The object is achieved according to the invention by a device according to claim 1 and a method according to claim 10. Advantageous further developments of the invention can be found in the subclaims.

Erfindungsgemäß wird eine Plasmadüse zum Erzeugen eines Plasmastrahls vorgeschlagen. Diese enthält zumindest eine Elektrode. Die Elektrode kann in einigen Ausführungsformen der Erfindung länglich oder stabförmig sein. Die Elektrode kann hohl sein bzw. einen Hohlraum enthalten.According to the invention, a plasma nozzle for generating a plasma jet is proposed. This contains at least one electrode. In some embodiments of the invention, the electrode can be elongated or rod-shaped. The electrode can be hollow or contain a cavity.

Die zumindest eine Elektrode ist mit einer Ummantelung umgeben, so dass sich zwischen der Elektrode und der Ummantelung eine Entladungskammer ausbildet. In einigen Ausführungsformen der Erfindung können die Ummantelung und die Elektrode konzentrisch zueinander angeordnet sein. Erfindungsgemäß wird vorgeschlagen, dass die Ummantelung ein Dielektrikum enthält oder daraus besteht.The at least one electrode is surrounded by a casing, so that a discharge chamber is formed between the electrode and the casing. In some embodiments of the invention, the casing and the electrode can be arranged concentrically with one another. According to the invention it is proposed that the sheathing contain or consist of a dielectric.

Die Entladungskammer weist weiter zumindest eine Einlassöffnung für ein Prozessgas und eine Düsenöffnung zum Austreten des Plasmastrahls auf.The discharge chamber further has at least one inlet opening for a process gas and a nozzle opening for the exit of the plasma jet.

Weiterhin weist die Erfindungsgemäße Vorrichtung zumindest eine erste Gegenelektrode auf, welche die Entladungskammer in einem ersten Längsabschnitt ringförmig umgibt. Dabei ist die erste Gegenelektrode durch die Ummantelung von der Elektrode elektrisch isoliert. Zusätzlich ist weiterhin eine zweite Gegenelektrode vorhanden, welche die Entladungskammer in einem zweiten Längsabschnitt ringförmig umgibt. Auch die Gegenelektroden können konzentrisch zur Elektrode und der Ummantelung angeordnet sein.Furthermore, the device according to the invention has at least one first counter-electrode, which surrounds the discharge chamber in a ring-shaped manner in a first longitudinal section. The first counter electrode is electrically insulated from the electrode by the sheathing. In addition, there is a second counter-electrode which surrounds the discharge chamber in a second longitudinal section in an annular manner. The counter-electrodes can also be arranged concentrically to the electrode and the casing.

Ein erfindungsgemäßes Verfahren zur Verwendung bzw. zum Betrieb einer erfindungsgemäßen Plasmadüse weist folgende Verfahrensschritte auf:
Zuführen eines eine Strömung aufweisenden Prozessgases durch die Einlassöffnung in die Entladungskammer und Erzeugen einer elektrischen Potentialdifferenz zwischen einer Elektrode und/oder einer ersten Gegenelektrode und/oder einer zweiten Gegenelektrode, so dass sich in der Entladungskammer ein Plasma durch Zünden von dielektrisch behinderten Entladungen in dem Prozessgas in der Entladungskammer ausbildet, und Erzeugen eines Plasmastrahls aus von der Strömung aus der Düsenöffnung ausgetriebenem Plasma.
A method according to the invention for using or operating a plasma nozzle according to the invention has the following method steps:
Supplying a process gas having a flow through the inlet opening into the discharge chamber and generating an electrical potential difference between an electrode and / or a first counterelectrode and / or a second counterelectrode, so that a plasma is formed in the discharge chamber by igniting dielectrically impeded discharges in the process gas in the discharge chamber, and generating a plasma jet from the flow plasma expelled from the nozzle opening.

Es wird somit ein Plasmastrahl mittels einer dielektrisch behinderten Entladung (Dielectric Barrier Discharge oder DBD)erzeugt (DBD-Jet). Die Entladungsfilamente der DBD werden dabei durch Anlegen einer elektrischen Hochspannung zwischen der Elektrode und der oder den Gegenelektroden erzeugt. Bei einer DBD werden Entladungsfilamente im Prozessgas erzeugt, in denen relativ zu thermischen Bogenentladungen nur niedrige Temperaturen herrschen. Bei den so erzeugten Plasmen handelt es sich also um nicht thermische Plasmen, in denen die erzeugten reaktiven Spezies nicht im thermischen Gleichgewicht mit ihrem lokal umgebenden Prozessgas sind. Der Entladungsprozess in den einzelnen Entladungsfilamenten ist aufgrund der dielektrischen Behinderung derart zeitlich kurz, dass sich kein thermisches Gleichgewicht ausbilden kann. Derartige Plasmen, bzw. ein daraus erzeugter Plasmastrahl, können deshalb als direkt wirkende Plasmen zur Oberflächenbehandlung eingesetzt werden. Durch die Möglichkeit der Plasmaerzeugung in Oberflächennähe ohne die Oberfläche zu beschädigen ist eine effiziente Behandlung möglich.A plasma jet is thus generated by means of a dielectrically impeded discharge (Dielectric Barrier Discharge or DBD) (DBD-Jet). The discharge filaments of the DBD are generated by applying a high electrical voltage between the electrode and the counter electrode or electrodes. In the case of a DBD, discharge filaments are generated in the process gas in which only low temperatures prevail relative to thermal arc discharges. The plasmas generated in this way are therefore non-thermal plasmas in which the reactive species generated are not in thermal equilibrium with their locally surrounding process gas. Due to the dielectric hindrance, the discharge process in the individual discharge filaments is so short in time that no thermal equilibrium can develop. Such plasmas, or a plasma jet generated from them, can therefore be used as directly acting plasmas for surface treatment. The possibility of generating plasma close to the surface without damaging the surface enables efficient treatment.

Anders als bekannte Systeme zur Plasmaaktivierung, welche oftmals das Werkstück als dielektrische Barriere nutzen, können mit der erfindungsgemäßen Vorrichtung auch dickere Werkstücke bearbeitet werden, da das nichtleitende Werkstück zu einem Gegenpotential für die zweite Gegenelektrode wird. Die erfindungsgemäße Plasmadüse kombiniert somit die Vorteile bekannter Plasmajets wie hohe Spaltgängigkeit mit der Effizienz von Gleitentladungen oder Barrierenentladungen auf der Oberfläche des Werkstückes.In contrast to known systems for plasma activation, which often use the workpiece as a dielectric barrier, thicker workpieces can also be processed with the device according to the invention, since the non-conductive workpiece becomes a counter potential for the second counter electrode. The plasma nozzle according to the invention thus combines the Advantages of well-known plasma jets such as high gap clearance with the efficiency of sliding discharges or barrier discharges on the surface of the workpiece.

Mit der erfindungsgemäßen Plasmadüse ist daher auch eine Behandlung von Werkstücken im industriellen Maßstab möglich, da größere Abstandstoleranzen zwischen Plasmadüse und Werkstück möglich sind als bei bekannten Gleitentladungen und größere Werkstückdicken als bei bekannten Barrierenentladungen. Hohe Abstands- bzw. Formtoleranzen, die gerade bei Massenware wie Extrusionshalbzeugen auftreten, erfordern im Inline-Betrieb Vorbehandlungssysteme, die in möglichst hohen Toleranzbereichen eine effiziente Aktivierung/Funktionalisierung realisieren und im gleichen Zuge eine Feinstreinigung auf der Oberfläche durchführen. Als ein derartiges Vorbehandlungssystem ist die erfindungsgemäße Plasmadüse einsetzbar. Umweltschädliche und aufwändige nasschemische Verfahren zur Oberflächenbehandlung können dadurch ersetzt werden. Der Einsatz der erfindungsgemäßen Plasmadüse ähnlich einer Gleitentladungsquelle ermöglicht flächige Anwendungen. Aufgrund der ausreichend hohen ermöglichten Entladungsabstände zwischen Werkstückoberfläche und der Mündung der Düsenöffnung können Werkstücke mit Formabweichungen bei hohen Geschwindigkeiten ohne Beschädigungen behandelt werden. Zudem ist eine gute Spaltgängigkeit für geometrisch komplizierte Werkstücke, z.B. mit Hinterschneidungen, Nuten, etc. gegeben.The plasma nozzle according to the invention therefore also enables workpieces to be treated on an industrial scale, since greater spacing tolerances between the plasma nozzle and workpiece are possible than with known sliding discharges and greater workpiece thicknesses than with known barrier discharges. High spacing and shape tolerances, which occur especially with mass-produced goods such as semi-finished extrusions, require pretreatment systems in inline operation that implement efficient activation / functionalization in the highest possible tolerance ranges and, at the same time, perform ultra-fine cleaning of the surface. The plasma nozzle according to the invention can be used as such a pretreatment system. Environmentally harmful and costly wet chemical processes for surface treatment can thus be replaced. The use of the plasma nozzle according to the invention in a manner similar to a sliding discharge source enables two-dimensional applications. Due to the sufficiently high discharge distances that are made possible between the workpiece surface and the mouth of the nozzle opening, workpieces with shape deviations can be treated at high speeds without damage. In addition, there is good clearance for geometrically complex workpieces, e.g. with undercuts, grooves, etc.

In einigen Ausführungen der Erfindung ist die zweite Gegenelektrode so an der Düsenöffnung angeordnet, dass die Düsenöffnung zentral durch die Gegenelektrode verläuft. Entladungsfilamente der DBD entstehen so nicht nur in der Entladungskammer, sondern auch direkt im Bereich der Düsenöffnung und können so die zu behandelnde Oberfläche des Werkstücks tangieren. Derart kann auf der Oberfläche sowohl eine chemische als auch eine physikalische Beeinflussung stattfinden. Zudem können die so erzeugten reaktiven Spezies im Plasmastrahl direkt mit der Oberfläche interagieren, ohne vorher mit der Umgebungsluft oder anderen Reaktionspartnern in Kontakt zu kommen.In some embodiments of the invention, the second counter electrode is arranged on the nozzle opening in such a way that the nozzle opening runs centrally through the counter electrode. Discharge filaments of the DBD are not only created in the discharge chamber, but also directly in the area of the nozzle opening and can thus affect the surface of the workpiece to be treated. In this way, both chemical and physical influences can occur on the surface occur. In addition, the reactive species generated in this way can interact directly with the surface in the plasma jet without first coming into contact with the ambient air or other reaction partners.

In einigen Ausführungsformen der Erfindung kann die zweite Gegenelektrode eine tellerförmig verbreiterte Ringoberfläche aufweisen. Dies weist den Vorteil auf, dass direkt auf einer zu behandelnden Oberfläche Entladungsfilamente erzeugt werden können. Die Tellerflächennormale sollte dabei in etwa parallel zur Plasmastrahlrichtung stehen. Mit dieser Ausführungsform der Erfindung können auch elektrisch isolierende Werkstücke mit Materialstärken von mehr als 10 mm mit einer DBD behandelt werden, da das Werkstück nicht mehr vollständig im Entladungsspalt aufgenommen werden muss.In some embodiments of the invention, the second counter-electrode can have a ring surface that is widened in the shape of a plate. This has the advantage that discharge filaments can be generated directly on a surface to be treated. The normal to the plate surface should be roughly parallel to the direction of the plasma jet. With this embodiment of the invention, electrically insulating workpieces with material thicknesses of more than 10 mm can also be treated with a DBD, since the workpiece no longer has to be completely received in the discharge gap.

In einigen Ausführungen der Erfindung kann die Oberfläche der zweiten Gegenelektrode von der Ummantelung überdeckt sein. Die Ummantelung bildet somit ein durchgängiges, die Elektrodenoberfläche zur Entladungskammer und zum Werkstück hin abschirmendes Dielektrikum aus. Dies erlaubt eine einfache Konstruktion und Herstellung und einen zuverlässigen Betrieb der Plasmadüse.In some embodiments of the invention, the surface of the second counter electrode can be covered by the casing. The casing thus forms a continuous dielectric that shields the electrode surface from the discharge chamber and the workpiece. This allows simple design and manufacture and reliable operation of the plasma nozzle.

In einigen Ausführungen der Erfindung ist bei einer gattungsgemäßen Plasmadüse die Ummantelung aus einem Dielektrikum ausgebildet, wobei die Gegenelektroden durch die Ummantelung von der Elektrode zur Erzeugung von dielektrisch behinderten Entladungen in dem Prozessgas zwischen der Elektrode und der Gegenelektrode elektrisch isoliert ist. In einigen Ausführungsformen der Erfindung kann das Dielektrikum ein Glas, eine Keramik oder ein Polymer enthalten. In einigen Ausführungsformen der Erfindung kann das Polymer Polytetrafluorethylen (PTFE) sein oder enthalten.In some embodiments of the invention, the sheathing of a generic plasma nozzle is formed from a dielectric, the counterelectrodes being electrically insulated by the sheathing from the electrode for generating dielectrically impeded discharges in the process gas between the electrode and the counterelectrode. In some embodiments of the invention, the dielectric can contain a glass, a ceramic, or a polymer. In some embodiments of the invention, the polymer can be or contain polytetrafluoroethylene (PTFE).

In einigen Ausführungen der Erfindung ist die Elektrode im Entladungsraum mit einem Dielektrikum beschichtet. Diese zusätzliche Beschichtung bewirkt eine noch homogenere Entladungscharakteristik des von der DBD erzeugten Plasmas. Die Beschichtung kann ein Polymer oder eine Keramik enthalten oder daraus bestehen. Die Beschichtung kann Polytetrafluorethylen oder ein Oxid oder ein Oxinitrid enthalten.In some embodiments of the invention, the electrode in the discharge space is coated with a dielectric. This additional coating causes an even more homogeneous discharge characteristic of the plasma generated by the DBD. The coating can contain or consist of a polymer or a ceramic. The coating can contain polytetrafluoroethylene or an oxide or an oxynitride.

In einigen Ausführungen der Erfindung kann die Einlassöffnung von mindestens einer Gasdurchführung in der Elektrode ausgebildet sein. Vorteilhaft können die Gasdurchführungen eine Mehrzahl von Bohrungen umfassen, welche radialsymmetrisch in der Elektrode angeordnet sind, wird eine gleichmäßige Strömung des Prozessgases durch die Entladungskammer erreicht. Dies führt auch zu einem besonders homogenen und stabilen Plasmastrahl.In some embodiments of the invention, the inlet opening of at least one gas feed-through can be formed in the electrode. The gas feedthroughs can advantageously comprise a plurality of bores which are arranged radially symmetrically in the electrode, a uniform flow of the process gas through the discharge chamber is achieved. This also leads to a particularly homogeneous and stable plasma jet.

In einigen Ausführungen der Erfindung kann ein Plasmadüsengehäuse vorhanden sein, wobei die Gegenelektroden mittels einer Vergussmasse zwischen der Ummantelung und dem Plasmadüsengehäuse fixiert sind. Derart ist eine kostengünstige Herstellung der Plasmadüse möglich und es werden parasitäre Entladungen im Inneren der Plasmadüse vermieden.In some embodiments of the invention, a plasma nozzle housing can be present, the counter electrodes being fixed between the casing and the plasma nozzle housing by means of a potting compound. In this way, inexpensive production of the plasma nozzle is possible and parasitic discharges in the interior of the plasma nozzle are avoided.

In einigen Ausführungsformen der Erfindung kann bei Betrieb der Vorrichtung die erste Gegenelektrode auf einem Massepotential liegen und sich die zweite Gegenelektrode auf einem Floating-Potential befinden. Hierdurch wird ein Plasmajet aus der Düse ausgetrieben, welcher eine Reichweite von mehr als 10 mm oder mehr als 20 mm oder mehr als 30 mm haben kann.In some embodiments of the invention, when the device is in operation, the first counter-electrode can be at a ground potential and the second counter-electrode can be at a floating potential. As a result, a plasma jet is expelled from the nozzle, which can have a range of more than 10 mm or more than 20 mm or more than 30 mm.

In einigen Ausführungsformen der Erfindung kann bei Betrieb der Vorrichtung die zweite Gegenelektrode auf einem Massepotential liegen und sich die erste Gegenelektrode auf einem Floating-Potential befinden. In diesem Betriebszustand gleiten die Plasmafilamente über die Unterseite der Plasmadüse bzw. über die parallel zur Tellerfläche der zweiten Elektrode verlaufende Teilfläche der Umhüllung. In diesem Fall können in einem Abstand von etwa 1 mm bis etwa 3 mm Gleitentladungen auf dem Werkstück erzeugt werden.In some embodiments of the invention, when the device is in operation, the second counterelectrode can be at ground potential and the first counterelectrode can be at ground potential a floating potential. In this operating state, the plasma filaments slide over the underside of the plasma nozzle or over the partial surface of the casing that runs parallel to the plate surface of the second electrode. In this case, sliding discharges can be generated on the workpiece at a distance of about 1 mm to about 3 mm.

In einigen Ausführungsformen der Erfindung können sich bei Betrieb der Vorrichtung die erste Gegenelektrode und die zweite Gegenelektrode auf einem Massepotential befinden. In diesem Betriebszustand wird zwischen der ersten Gegenelektrode und der Elektrode im Inneren des Entladungsraumes eine Entladung erzeugt, deren Plasma aus der Plasmadüse ausgetrieben wird. Die zweite Gegenelektrode bildet ein Gegenpotential zu dem aus der Düse austretenden Plasma. Auf diese Weise sind Gleitentladungen in einem Abstand von etwa 3 mm bis etwa 20 mm zur Werkstückoberfläche möglich.In some embodiments of the invention, the first counter-electrode and the second counter-electrode can be at a ground potential when the device is in operation. In this operating state, a discharge is generated between the first counter-electrode and the electrode in the interior of the discharge space, the plasma of which is expelled from the plasma nozzle. The second counter electrode forms a counter potential to the plasma emerging from the nozzle. In this way, sliding discharges are possible at a distance of about 3 mm to about 20 mm from the workpiece surface.

In einigen Ausführungsformen der Erfindung kann das Prozessgas ausgewählt sein aus Argon und/oder Helium und/oder Umgebungsluft und/oder synthetischer Luft und/oder Gasgemischen aus Stickstoff und Sauerstoff im Mischungsverhältnis 90/10 oder 95/5 Volumenprozent.In some embodiments of the invention, the process gas can be selected from argon and / or helium and / or ambient air and / or synthetic air and / or gas mixtures of nitrogen and oxygen in a mixing ratio of 90/10 or 95/5 volume percent.

Als mögliche Oberflächenbehandlungen mit dem Plasmastrahl einer erfindungsgemäßen Plasmadüse sind alle bisherigen Einsatzgebiete, in denen Plasma eine Anwendung findet, möglich, z.B. Oberflächenfunktionalisierung, Qberflächenaktivierung, Schichtabscheidung, Feinstreinigung und/oder Desinfektion.Possible surface treatments with the plasma jet of a plasma nozzle according to the invention are all previous areas of application in which plasma is used, e.g. surface functionalization, surface activation, layer deposition, ultra-fine cleaning and / or disinfection.

Besondere Ausführungsformen der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:

Fig. 1
einen Schnitt durch eine Ausführungsform einer erfindungsgemäßen Plasmadüse während deren Verwendung bei der Oberflächenbehandlung eines Werkstückes.
Fig. 2
die stiftförmige Elektrode der Plasmadüse aus Figur 1 als Detaildarstellung.
Fig. 3a
bis c erfindungsgemäße Plasmadüse aus Figur 1 in verschiedenen Betriebsmodi.
Fig. 4a
und b Qualitätsparameter von Arbeitsergebnissen bei der Oberflächenbehandlung von Werkstücken in Abhänggigkeit von Betriebsparametern des erfindungsgemäßen Verfahrens in jeweils einer Balkendiagrammdarstellung.
Fig. 5a
bis c photographische Aufnahmen des Plasmastrahls einer erfindungsgemäßen Plasmadüse.
Particular embodiments of the present invention are explained in more detail below with reference to the accompanying drawings. Show it:
Fig. 1
a section through an embodiment of a plasma nozzle according to the invention during its use in the surface treatment of a workpiece.
Fig. 2
the pen-shaped electrode of the plasma nozzle Figure 1 as a detailed representation.
Fig. 3a
to c plasma nozzle according to the invention Figure 1 in different operating modes.
Figure 4a
and b quality parameters of work results in the surface treatment of workpieces as a function of operating parameters of the method according to the invention, in each case in a bar diagram.
Figure 5a
to c photographic recordings of the plasma jet of a plasma nozzle according to the invention.

In Figur 1 ist eine geschnittene Darstellung einer erfindungsgemäßen Plasmadüse 1 während deren Verwendung bei der Oberflächenbehandlung eines Werkstückes 3 mit einem Plasmastrahl 5 gezeigt. Die Plasmadüse 1 weist eine stiftförmige Elektrode 7 zum Beaufschlagen mit einer insbesondere gepulsten Hochspannung auf. Diese Stiftelektrode 7 wird daher im Folgenden auch als Hochspannungselektrode bezeichnet. Die Stiftelektrode 7 ist von einer Ummantelung 9 aus einem dielektrischen Material konzentrisch umgeben. Die Ummantelung 9 weist eine zylindrische Grundform auf.In Figure 1 a sectional representation of a plasma nozzle 1 according to the invention during its use in the surface treatment of a workpiece 3 with a plasma jet 5 is shown. The plasma nozzle 1 has a pin-shaped electrode 7 for applying a particularly pulsed high voltage. This pin electrode 7 is therefore also referred to below as the high-voltage electrode. The pin electrode 7 is concentrically surrounded by a casing 9 made of a dielectric material. The casing 9 has a cylindrical basic shape.

Zwischen der Elektrode 7 und der Ummantelung 9 ist eine Entladungskammer 11 ausgebildet. Die Entladungskammer 11 weist eine Einlassöffnung 12 für ein Prozessgas, z.B. Argon, Helium und/oder Luft, und eine Düsenöffnung 14 zum Austreten des Plasmastrahls 5 auf. Der Plasmastrahl 5 wird aus in der Entladungskammer 11 erzeugtem und durch eine Strömung des Prozessgases aus der Düsenöffnung 14 ausgetriebenem Plasma erzeugt. Das strömende Prozessgas ist in der Figur durch einen Blockpfeil im Bereich der Einlassöffnung 12 symbolisch dargestellt.A discharge chamber 11 is formed between the electrode 7 and the casing 9. The discharge chamber 11 has an inlet opening 12 for a process gas, for example argon, helium and / or air, and a nozzle opening 14 for the plasma jet 5 to exit. The plasma jet 5 is made up of plasma generated in the discharge chamber 11 and expelled from the nozzle opening 14 by a flow of the process gas generated. The flowing process gas is shown symbolically in the figure by a block arrow in the area of the inlet opening 12.

Weiter ist eine die Entladungskammer 11 in einem Bereich ringförmig umgebende zweite Gegenelektrode 16 aus Metall vorgesehen. Die zweite Gegenelektrode 16 ist durch die dielektrische Ummantelung 9 von der Elektrode 7, zur Erzeugung von dielektrisch behinderten Entladungen in dem Prozessgas zwischen der stiftförmigen Elektrode 7 und der Gegenelektrode 16 elektrisch isoliert. Die zweite Gegenelektrode 16 kann zur Erzeugung der dielektrisch behinderten Entladungen auf Masse gelegt, d. h. elektrisch geerdet, sein, weshalb sie im Folgenden auch als Massering bezeichnet wird. Die elektrische Kontaktierung ist in der Figur nicht eingezeichnet.Furthermore, a second metal counter-electrode 16 is provided which surrounds the discharge chamber 11 in a ring-shaped manner. The second counterelectrode 16 is electrically insulated from the electrode 7 by the dielectric sheathing 9 in order to generate dielectrically impeded discharges in the process gas between the pin-shaped electrode 7 and the counterelectrode 16. The second counter-electrode 16 can be connected to ground to generate the dielectrically impeded discharges, i. E. H. be electrically grounded, which is why it is also referred to below as a ground ring. The electrical contact is not shown in the figure.

Die zweite Gegenelektrode 16 ist derart im Bereich der Düsenöffnung 14 angeordnet, dass die Düsenöffnung 14 zentral durch die zweite Gegenelektrode 16 verläuft. Weiter weist die zweite Gegenelektrode 16 eine tellerförmig verbreiterte Ringoberfläche 18 auf. Unter tellerförmig verbreitert wird dabei ein Ring mit einer Form verstanden, dessen radiale Ringbreite größer ist als seine axiale Ringhöhe. Die der Plasmastrahlrichtung abgewandte Ringoberfläche 18 der tellerförmig verbreiterten Gegenelektrode 16 ist von der Ummantelung 9 überdeckt und damit ebenfalls von der Hochspannungselektrode 7 mittels des Dielektrikums der Ummantelung 9 abgeschirmt. Derart weist die Plasmadüse 1 in ihrem unteren Bereich, d.h. im Bereich der Düsenöffnung 14, eine tellerförmige Verbreiterung (Tellerunterseite) auf. Die Ummantelung 9 wird daher im Folgenden auch als Tellerstab bezeichnet und die gesamte Plasmadüse 1 wird im Folgenden auch als "Disk-Jet" bezeichnet. Die Flächennormalen der tellerförmig verbreiterten Ringoberfläche 18 und der entsprechend ausgeformten Tellerunterseite verlaufen in etwa parallel zur Austrittsrichtung des erzeugten Plasmastrahls 5. Die Düsenöffnung 14 verläuft radial mittig durch die tellerförmige Gegenelektrode 16.The second counter electrode 16 is arranged in the region of the nozzle opening 14 in such a way that the nozzle opening 14 runs centrally through the second counter electrode 16. The second counter electrode 16 also has an annular surface 18 that is widened in the shape of a plate. In this case, widened in the shape of a plate is understood to mean a ring with a shape whose radial ring width is greater than its axial ring height. The ring surface 18 of the plate-shaped widened counter-electrode 16 facing away from the plasma jet direction is covered by the casing 9 and thus also shielded from the high-voltage electrode 7 by means of the dielectric of the casing 9. In this way, the plasma nozzle 1 has a plate-shaped widening (underside of the plate) in its lower area, ie in the area of the nozzle opening 14. The casing 9 is therefore also referred to below as a plate bar and the entire plasma nozzle 1 is also referred to below as a “disk jet”. The surface normals of the ring surface 18, which is widened in the shape of a plate, and the correspondingly shaped underside of the plate run approximately parallel to the exit direction of the generated plasma jet 5. The nozzle opening 14 extends radially centrally through the plate-shaped counter-electrode 16.

Die Plasmadüse 1 weist weiterhin eine erste Gegenelektrode 20 aus Metall auf, die ebenfalls zum Betrieb der Plasmadüse 1 elektrisch auf Masse gelegt werden kann. Diese erste Gegenelektrode 20 umgibt die Entladungskammer 11 ebenfalls ringförmig und ist durch die Ummantelung 9 von der stabförmigen Elektrode 7 isoliert. Die erste Gegenelektrode 20 ist dabei auf Höhe der stabförmigen Elektrode 7 angeordnet und wird im Folgenden auch als oberer Massering bezeichnet, wogegen die im Bereich der Düsenöffnung 14 angeordneten zweite Gegenelektrode 16 als unterer Massering bezeichnet wird. Das elektrische Erdpotential der Masse kann auch durch ein beliebig anderes Potential ersetzt werden und/oder es können auch beide Masseringe auf unterschiedliche Potentiale gelegt werden, d.h. mit jeweils unterschiedlichen Spannungsquellen elektrisch verbunden werden. Aus sicherheits- und anwendungstechnischen Gründen ist das Erdpotential jedoch zu bevorzugen.The plasma nozzle 1 furthermore has a first counter-electrode 20 made of metal, which can also be connected electrically to ground for operating the plasma nozzle 1. This first counter-electrode 20 also surrounds the discharge chamber 11 in a ring shape and is insulated from the rod-shaped electrode 7 by the casing 9. The first counter electrode 20 is arranged at the level of the rod-shaped electrode 7 and is also referred to below as the upper ground ring, whereas the second counter electrode 16 arranged in the area of the nozzle opening 14 is referred to as the lower ground ring. The electrical ground potential of the ground can also be replaced by any other potential and / or both ground rings can be placed on different potentials, i.e. electrically connected to different voltage sources. For safety and application reasons, however, the earth potential is to be preferred.

Die Plasmadüse 1 kann daher als "Disk-Jet mit doppelter Masse" bezeichnet werden. Von der ersten Gegenelektrode 20 gegenüber der im Bereich der Düsenöffnung 14 angeordneten zweiten Gegenelektrode 16 wird eine Vorentladungselektrode ausgebildet. D.h. das durch Entladungen zwischen der ersten Gegenelektrode 20 und der stabförmigen Elektrode 7 erzeugte Plasma wird von der Strömung des Prozessgases zur im Bereich der Düsenöffnung 14 angeordneten zweiten Gegenelektrode 16 transportiert, wodurch das Zünden von dielektrisch behinderten Entladungen im Bereich der letztgenannten zweiten Gegenelektrode möglich wird, d.h. eine dielektrisch behinderte Nachentladung angeregt wird.The plasma nozzle 1 can therefore be referred to as a "double-mass disk jet". A pre-discharge electrode is formed from the first counter-electrode 20 opposite the second counter-electrode 16 arranged in the region of the nozzle opening 14. That is, the plasma generated by discharges between the first counter-electrode 20 and the rod-shaped electrode 7 is transported by the flow of the process gas to the second counter-electrode 16 arranged in the area of the nozzle opening 14, which enables dielectrically impeded discharges to be ignited in the area of the last-mentioned second counter-electrode. ie a dielectrically impeded post-discharge is excited.

Die Hochspannungselektrode 7 weist Gasdurchführungen 25 auf und fungiert dadurch zugleich als Prozessgaszuführung, d.h. Einlassöffnung 12. Sie ist aus einem leitenden Material z.B. Edelstahl, Aluminium, und/oder Messing gefertigt. Der Tellerstab dient als Dielektrikum und ist aus einem dielektrischen Material z.B. Keramik, Glas, und/oder Polymer gefertigt. Im oberen Bereich der Tellerstabhülse, d.h. dem zylindrischen, die Entladungskammer ausbildenden Teil der Ummantelung 9, ist der obere Massering angebracht. Die Masseringe sind außerhalb der Entladungskammer 11 mit einer optionalen hochspannungsfesten Vergussmasse 27 von der Hochspannungselektrode 7 abgeschirmt, damit keine parasitären Entladungen im Inneren des einen Elektrodenkopf ausbildenden Teils der Plasmadüse 1 auftreten. Die Vergussmasse 27 dient auch zur Fixierung der Masseringe zwischen der Ummantelung 9 und dem Gehäuse 29 der Plasmadüse 1.The high-voltage electrode 7 has gas feedthroughs 25 and thereby functions at the same time as a process gas feed, i.e. inlet opening 12. It is made of a conductive material, e.g. stainless steel, aluminum and / or brass. The plate bar serves as a dielectric and is made of a dielectric material e.g. ceramic, glass, and / or polymer. The upper ground ring is attached in the upper area of the plate rod sleeve, i.e. the cylindrical part of the casing 9 which forms the discharge chamber. Outside the discharge chamber 11, the ground rings are shielded from the high-voltage electrode 7 with an optional high-voltage-resistant potting compound 27 so that no parasitic discharges occur inside the part of the plasma nozzle 1 that forms an electrode head. The potting compound 27 also serves to fix the compound rings between the casing 9 and the housing 29 of the plasma nozzle 1.

Auf Basis dieser Anordnung kann bei angelegter Spannung und eingeschalteter Prozessgaszufuhr bereits ein Plasmastrahl 5 mit Plasmaerzeugung aus dielektrisch behinderter Entladung (DBD-Jet) zwischen Hochspannungselektrode 7 und oberem Massering 20 gezündet werden. Je nach Prozessgas und angelegter elektrischer Leistung lässt sich dieser DBD-Jet bis zu 50 mm aus der Düsenöffnung 14 austreiben. Dieser DBD-Jet kann beispielsweise auch mit Druckluft als Prozessgas gezündet werden.On the basis of this arrangement, when the voltage is applied and the process gas supply is switched on, a plasma jet 5 with plasma generation from a dielectrically impeded discharge (DBD jet) can be ignited between the high-voltage electrode 7 and the upper ground ring 20. Depending on the process gas and applied electrical power, this DBD jet can be expelled from the nozzle opening 14 up to 50 mm. This DBD jet can, for example, also be ignited with compressed air as the process gas.

Bei der beschriebenen Entladungsanordnung des "Disc-Jet" zwingt der konzentrische untere Massering 16 aus der Düsenöffnung 14 ausgetriebene Filamente von Entladungen dazu, an der Unterseite des Tellers, d.h. an der dem Werkstück zugewandten tellerartig verbreiterten Unterseite der Ummantelung 9 zu zünden. So kann, im freien Betrieb, d.h. ohne dass sich ein Werkstück unter der Quelle, d.h. der Düsenöffnung 14, befindet, eine Entladung zünden, die nach dem Prinzip eines Repeaters agiert. Bei letzterem Prinzip erzeugt die Entladung zwischen dem oberem Massering 20 und der Hochspannungselektrode 7, bzw. das Plasma dieser Entladung, eine weitere Entladung im Bereich des unteren Masserings 16 und wird deshalb im übertragenen Sinne wiederholt. Die Filamente der Entladungen im Bereich des unteren Masserings 16 können direkt mit der zu behandelnden Oberfläche in Kontakt kommen. Derartige Oberflächenentladungen weisen eine bessere Effizienz als Remote-Plasmen auf. Die reaktiven Spezies im Plasma reagieren auf ihrem Weg zur Werkstückoberfläche bei Remote-Plasmen zu einem großen Teil ab, was große Effizienzeinbußen in der Aktivierung der Oberfläche hervorbringt. Letzteres ist bei Oberflächenentladungen nicht der Fall. Zudem kommen die Filamente bei Oberflächenentladungen mit der Oberfläche in Kontakt, was eine Feinstreinigung der Oberfläche ermöglicht.In the described discharge arrangement of the "disc jet", the concentric lower mass ring 16 forces filaments of discharges expelled from the nozzle opening 14 to ignite on the underside of the plate, ie on the underside of the casing 9, which is widened in the manner of a plate and faces the workpiece. In free operation, that is to say without a workpiece under the source, that is to say the nozzle opening 14, a discharge can thus ignite, which after acts on the principle of a repeater. In the latter principle, the discharge between the upper ground ring 20 and the high-voltage electrode 7, or the plasma of this discharge, generates a further discharge in the area of the lower ground ring 16 and is therefore repeated in the figurative sense. The filaments of the discharges in the area of the lower mass ring 16 can come into direct contact with the surface to be treated. Such surface discharges are more efficient than remote plasmas. The reactive species in the plasma react to a large extent on their way to the workpiece surface with remote plasmas, which results in great efficiency losses in the activation of the surface. The latter is not the case with surface discharges. In addition, the filaments come into contact with the surface in the event of surface discharges, which enables the surface to be finely cleaned.

Eine Ausführungsform des erfindungsgemäßen Verfahrens nutzt ein DBD-Remote Plasma als Zündquelle und projiziert ihr Potential auf die nichtleitende Oberfläche des Werkstücks. Da das nichtleitende Werkstück somit indirekt zu einem Gegenpotential, auch Floating Potential genannt, für den unteren Massering 16 wird, kommt es zwischen der Tellerunterseite und dem nichtleitenden Werkstück zur Ausbildung von tangierenden Filamenten einer Entladung. Je nach Abstand zwischen Tellerunterseite und Werkstück bildet sich somit, unterstützt vom Staudruck des kontinuierlich strömenden Prozessgases, eine über die Oberfläche der Tellerunterseite (Tellerfläche) weitgehend homogene Plasmaentladung aus.One embodiment of the method according to the invention uses a DBD remote plasma as an ignition source and projects its potential onto the non-conductive surface of the workpiece. Since the non-conductive workpiece thus indirectly becomes a counter potential, also called floating potential, for the lower ground ring 16, tangential filaments of a discharge develop between the underside of the plate and the non-conductive workpiece. Depending on the distance between the underside of the plate and the workpiece, a largely homogeneous plasma discharge is formed over the surface of the underside of the plate (plate surface), supported by the back pressure of the continuously flowing process gas.

In Figur 2 ist die stiftförmige Elektrode 7 der Plasmadüse aus Figur 1 als Detaildarstellung gezeigt. Die dargestellte Stiftelektrode 7 ist radialsymmetrisch ausgebildet. An ihrer, der Spitze 30 der Stiftelektrode 7 abgewandten Elektrodenbasis 31 weist die Stiftelektrode 7 Nuten 32 auf, die zur Fixierung der Stiftelektrode 7 in der Ummantelung 9 der Plasmadüse dienen. Weiter sind im Bereich der Elektrodenbasis 31 Gasdurchführungen 25 radialsymmetrisch innerhalb der Stiftelektrode 7 angeordnet. Diese bilden die Einlassöffnung der Plasmadüse für das Prozessgas aus.In Figure 2 the pin-shaped electrode 7 of the plasma nozzle is off Figure 1 shown as a detailed representation. The illustrated pin electrode 7 is designed to be radially symmetrical. On its electrode base 31 facing away from the tip 30 of the pin electrode 7, the pin electrode 7 has grooves 32, which serve to fix the pin electrode 7 in the casing 9 of the plasma nozzle. Furthermore, gas feedthroughs 25 are arranged radially symmetrically within the pin electrode 7 in the region of the electrode base 31. These form the inlet opening of the plasma nozzle for the process gas.

In den Figuren 3a bis c ist die erfindungsgemäße Plasmadüse aus Figur 1 während ihres Betriebes in verschiedenen Betriebsmodi dargestellt. Aufgrund der Elektrodenkonfiguration mit einer Hochspannungselektrode und zwei Gegenelektroden, nämlich dem oberen und dem unteren Massering, kann der "Disk-Jet" in drei verschiedenen Modi betrieben werden. In den Figuren 3a bis c sind die drei Modi dargestellt. Die elektrische Kontaktierung ist jeweils schaltplanartig eingezeichnet.In the Figures 3a to c the plasma nozzle according to the invention is off Figure 1 shown in different operating modes during operation. Due to the electrode configuration with a high voltage electrode and two counter electrodes, namely the upper and the lower ground ring, the "Disk-Jet" can be operated in three different modes. In the Figures 3a to c the three modes are shown. The electrical contact is shown in the form of a circuit diagram.

Legt man bei einer an eine Hochspannungsquelle angeschlossener Hochspannungselektrode die Masse lediglich an den oberen Massering an, erhält man eine reine DBD-Jet-Entladung deren Plasmastrahl 40 in Figur 3a (Betriebsmodus "DBD-Jet") gezeigt ist. Dieser Plasmastrahl 40 weist eine Länge bis 50 mm bei den Prozessgasen Argon, Helium oder Luft auf.If, with a high-voltage electrode connected to a high-voltage source, the ground is only applied to the upper ground ring, a pure DBD jet discharge is obtained with its plasma jet 40 in Figure 3a ("DBD-Jet" operating mode) is shown. This plasma jet 40 has a length of up to 50 mm for the process gases argon, helium or air.

Wird hingegen, wie in Figur 3b, nur der untere Massering mit Masse kontaktiert, d.h. geerdet, so erhält man Entladungs- bzw. Plasmafilamente 41 als Plasmastrahl, die direkt von der Hochspannungselektrode auf den unteren Massering zünden. Die Plasmafilamente 41 gleiten in diesem Modus über die Tellerfläche der Elektrode. Eine deutliche Interaktion der Entladungsfilamente 41 mit der Werkstückoberfläche ist dadurch möglich. Realisierbare Entladungsabstände zum zu behandelnden Werkstück liegen je nach Prozessgas zwischen 1 mm bei Luft als Prozessgas und 3 mm bei Argon oder Helium als Prozessgas.On the other hand, as in Figure 3b If only the lower ground ring is in contact with ground, that is to say grounded, then discharge or plasma filaments 41 are obtained as a plasma jet which ignite directly from the high-voltage electrode onto the lower ground ring. In this mode, the plasma filaments 41 slide over the plate surface of the electrode. A clear interaction of the discharge filaments 41 with the workpiece surface is thereby possible. Realizable discharge distances to the workpiece to be treated are between 1 mm for air as the process gas and 3 mm for argon or helium as the process gas, depending on the process gas.

Der effektivste Modus ist in Figur 3c dargestellt (Betriebsmodus "Disc-Jet"). Dabei sind beide Masseringe elektrisch mit Masse kontaktiert. Wie beschrieben fungiert der untere Massering dabei als "Repeater". Das zwischen Hochspannungselektrode und oberem Massering generierte Remoteplasma wird aus der Düsenöffnung als Plasmastrahl ausgeblasen und bietet mit seinem Floating Potential dem unteren Massering ein Gegenpotential. Entladungsfilamente 42 einer Entladung zünden an die Tellerunterseite, welche das Dielektrikum für den unteren Massering darstellt. Auf diese Weise sind Gleitentladungen bei Entladungsabständen zum Werkstück zur Düsenöffnung von 3 mm bei Luft als Prozessgas bis zu 20 mm bei Argon oder Helium als Prozessgas möglich. Die Entladungsfilamente 42 interagieren sowohl chemisch als auch physikalisch mit der zu behandelnden Oberfläche und bewirken sowohl eine Oberflächenaktivierung/ bzw. -funktionalisierung als auch eine Feinstreinigung von beliebig dicken, nichtleitenden Werkstücken auf dem Niveau von direkt agierenden dielektrisch behinderten Entladungen.The most effective mode is in Figure 3c shown ("Disc-Jet" operating mode). Both earth rings are electrically connected to earth. As described, the lower ground ring acts as a "repeater". The remote plasma generated between the high-voltage electrode and the upper ground ring is blown out of the nozzle opening as a plasma jet and, with its floating potential, offers the lower ground ring a counterpotential. Discharge filaments 42 of a discharge ignite on the underside of the plate, which represents the dielectric for the lower ground ring. In this way, sliding discharges are possible with discharge distances from the workpiece to the nozzle opening of 3 mm with air as the process gas and up to 20 mm with argon or helium as the process gas. The discharge filaments interact both chemically and physically with the surface to be treated and cause surface activation / functionalization as well as ultra-fine cleaning of non-conductive workpieces of any thickness at the level of directly acting dielectrically impeded discharges.

Der "Disc-Jet" ist basierend auf seiner Bauform einfach in bestehende Prozesse integrierbar und aufgrund seiner Effektivität auch unter Industriebedingungen einsetzbar. Sowohl auf flächigem Platten-/Folienmaterial, als auch auf komplizierten Werkstückgeometrien oder Hinterschneidungen ist ein Plasma unter Verwendung des "Disc-Jet" optimal zu applizieren.Based on its design, the "Disc-Jet" can be easily integrated into existing processes and, thanks to its effectiveness, can also be used under industrial conditions. A plasma can be optimally applied using the "Disc-Jet" both on flat plate / foil material and on complex workpiece geometries or undercuts.

In den Figuren 4a und b sind Qualitätsparameter von Arbeitsergebnissen bei der Oberflächenbehandlung von Werkstücken in Abhänggigkeit von Betriebsparametern des erfindungsgemäßen Verfahrens in jeweils einer Balkendiagrammdarstellung im Vergleich gezeigt. Figur 4a zeigt die Abhebefestigkeit von wasserbasierenden Lacken auf PVC im Vergleich bei der Oberflächenbehandlung im Betriebsmodus "DBD-Jet" und "Disc-Jet" mit Prozessgas Argon.In the Figures 4a and b Quality parameters of work results in the surface treatment of workpieces as a function of operating parameters of the method according to the invention are shown in comparison in each case in a bar diagram. Figure 4a shows the peeling resistance of water-based paints on PVC in comparison with surface treatment in the "DBD-Jet" and "Disc-Jet" operating modes with argon process gas.

Vergleiche zwischen dem "Disc-Jet" Modus und einem baugleichen DBD-Jet Modus (d.h. der untere Massering wurde weggelassen bzw. nicht auf Masse gelegt, d.h. nicht elektrisch mit Erdpotential verbunden) haben gezeigt, dass der "Disc-Jet" beispielsweise bis zu 100% bessere Ergebnisse in der Haftfestigkeit von wasserbasierenden Lacken (der sogenannten adhesive pull strength [MPa]) auf Polyvinylchlorid (PVC) und Polypropylen (PP) erreicht. In Figur 4a sind die Oberflächenbehandlungsergebnisse der beiden Betriebsmodi bei unterschiedlichen Prozessgeschwindigkeiten gegenübergestellt. Das Prozessgas ist Argon. Bei geringen Behandlungsgeschwindigkeiten zeigen sich keine signifikanten Unterschiede in der Haftfestigkeit der Lackschicht. Ab 4 meter/min bis hin zu 32 meter/min zeigt sich eine drastische Abnahme der Behandlungsergebnisse des DBD-Jet Modus, wohingegen der Disc-Jet Modus signifikant bessere Ergebnisse in der Haftfestigkeit des Lackes zeigt. Seine Vorteile zeigen sich somit insbesondere bei hohen Behandlungsgeschwindigkeiten, die besonders für die Industrie eine hohe Relevanz besitzen. Die Entladung des "Disc-Jet" hat Gleitentladungscharakter und kann im freien Betrieb, d.h. ohne dass sich ein Werkstück unter der Quelle befindet, mit Entladungsabständen zwischen Düsenöffnung und Werkstückoberfläche bis zu 20 mm realisiert werden. Somit ist eine hohe Spaltgängigkeit, d.h. Eindringtiefe in Oberflächenspalten, auf Basis direkter Entladungen realisiert, was eine effiziente Behandlung von profilierten bzw. strukturierten Oberflächen oder auch Werkstücken mit größeren Form- oder Lagetoleranzen ermöglicht.Comparisons between the "Disc-Jet" mode and a structurally identical DBD-Jet mode (ie the lower ground ring was omitted or not connected to ground, ie not electrically connected to ground potential) have shown that the "Disc-Jet" can for example be up to 100% better results achieved in the adhesive strength of water-based paints (the so-called adhesive pull strength [MPa]) on polyvinyl chloride (PVC) and polypropylene (PP). In Figure 4a the surface treatment results of the two operating modes at different process speeds are compared. The process gas is argon. At low treatment speeds, there are no significant differences in the adhesive strength of the lacquer layer. From 4 meters / min up to 32 meters / min there is a drastic decrease in the treatment results of the DBD-Jet mode, whereas the Disc-Jet mode shows significantly better results in terms of the adhesive strength of the paint. Its advantages are particularly evident at high treatment speeds, which are particularly relevant for industry. The discharge of the "Disc-Jet" has the character of a sliding discharge and can be realized in free operation, ie without a workpiece under the source, with discharge distances of up to 20 mm between the nozzle opening and the workpiece surface. A high level of clearance, ie penetration depth in surface gaps, is thus achieved on the basis of direct discharges, which enables the efficient treatment of profiled or structured surfaces or also workpieces with greater shape or position tolerances.

In Figur 4b sind Ergebnisse der Abhebefestigkeit von wasserbasierenden Lacken auf PVC bei einer Oberflächenbehandlung mit einer erfindungsgemäßen Plasmadüse im Disc-Jet Modus mit zwei verschiedenen Prozessgasen, nämlich Argon und Luft, gegenübergestellt. Behandelt wurden Profile auf PVC Basis, welche nach der Behandlung mit wasserbasierendem Lack lackiert wurden. Die Verwendung von Argon als auch Luft ermöglicht mit sämtlichen Behandlungsgeschwindigkeiten eine deutliche Optimierung bis 300% der Abhebefestigkeiten des Lackes im Vergleich zu unbehandelten Oberflächen.In Figure 4b results of the lift-off resistance of water-based paints on PVC in a surface treatment with a plasma nozzle according to the invention in disc-jet mode with two different process gases, namely argon and air, are compared. Profiles based on PVC were treated, which after treatment with water-based paint were painted. The use of argon as well as air enables a significant optimization of up to 300% of the lift-off strength of the paint compared to untreated surfaces at all treatment speeds.

In Fig. 5a bis c sind photographische Aufnahmen des Plasmastrahls einer erfindungsgemäßen Plasmadüse im Betriebsmodus "Disc-Jet" gezeigt.In Figures 5a to c photographic recordings of the plasma jet of a plasma nozzle according to the invention are shown in the "Disc-Jet" operating mode.

Figur 5a zeigt die flächige Ausbildung der Gleitentladung des "Disc-Jet" auf einer Werkstückoberfläche. Der Entladungsabstand ist bei den durchgeführten Versuchen gemäß den Figuren 4 für die flächige Behandlung konstant 3 mm. Es ist deutlich eine flächige Entladung über die Werkstückoberfläche zu erkennen. Figure 5a shows the two-dimensional formation of the sliding discharge of the "disc jet" on a workpiece surface. In the tests carried out, the discharge distance is in accordance with Figures 4 constant 3 mm for flat treatment. A flat discharge over the workpiece surface can be clearly seen.

Figur 5b zeigt die Entladungscharakteristik des "Disk-Jet" im freien Betrieb (Entladung ohne Werkstück). Die Filamente treten aus der Mündung der Düsenöffnung aus und zünden nach einer gewissen Strecke wieder hoch zur Tellerfläche des "Disk-Jet". Je nachdem wie nah das Werkstück zur Quellenunterseite, d.h. der Düsenöffnung, hindurchgefahren wird, gleiten die Filamente über die Oberfläche des Werkstücks und formen eine flächige Entladung aus, die sich mit Verringerung des Abstands an die Größe der Tellerfläche anpasst. Figure 5b shows the discharge characteristics of the "Disk-Jet" in free operation (discharge without workpiece). The filaments emerge from the mouth of the nozzle opening and after a certain distance ignite again up to the plate surface of the "disk jet". Depending on how close the workpiece is to the underside of the source, ie the nozzle opening, the filaments slide over the surface of the workpiece and form a flat discharge that adapts to the size of the plate surface as the distance decreases.

Figur 5c zeigt den Einsatz des "Disc-Jet" auf einem Kunststoffprofil mit einer 10 mm tiefen Längsnut mit Hinterschneidung. Auch hier sieht man den Plasmastrahl als Plasmabündel aus der Düsenmündung heraustreten. Dieses Bündel bildet auf dem Boden der Längs-Nut einen großen Fußpunkt aus, von dem aus Filamente zur Tellerfläche des "Disc-Jets" zünden. Figure 5c shows the use of the "Disc-Jet" on a plastic profile with a 10 mm deep longitudinal groove with an undercut. Here, too, the plasma jet can be seen emerging from the nozzle mouth as a plasma bundle. This bundle forms a large base point on the bottom of the longitudinal groove, from which filaments ignite to the plate surface of the "disc jet".

Selbstverständlich ist die Erfindung nicht auf die dargestellten Ausführungsformen beschränkt. Die vorstehende Beschreibung ist daher nicht als beschränkend, sondern als erläuternd anzusehen. Die nachfolgenden Ansprüche sind so zu verstehen, dass ein genanntes Merkmal in zumindest einer Ausführungsform der Erfindung vorhanden ist. Dies schließt die Anwesenheit weiterer Merkmale nicht aus. Sofern die Ansprüche und die vorstehende Beschreibung "erste" und "zweite" Ausführungsformen definieren, so dient diese Bezeichnung der Unterscheidung zweier gleichartiger Ausführungsformen, ohne eine Rangfolge festzulegen. Die Erfindung ist durch die Ansprüche definiert.Of course, the invention is not restricted to the embodiments shown. The above description is therefore not to be regarded as restrictive, but rather as explanatory. The following claims are to be understood in such a way that a named feature is present in at least one embodiment of the invention. This does not exclude the presence of further features. If the claims and the above description define "first" and "second" embodiments, this designation serves to distinguish between two similar embodiments without defining a priority. The invention is defined by the claims.

Claims (15)

  1. Plasma nozzle (1) for generating a plasma jet (5) comprising at least one electrode (7),
    a sheathing (9) concentrically surrounding the electrode (7), wherein a discharge chamber (11) is formed between the electrode (7) and the sheathing (9), and wherein the discharge chamber (11) has an inlet opening (12) for a process gas and a nozzle opening (14) for emergence of the plasma jet (5) and the sheathing (9) contains or consists of a dielectric,
    a first counter-electrode (20) surrounding the discharge chamber (11) in a ring-shaped fashion in a first longitudinal section,
    wherein the first counter-electrode (20) is electrically insulated from the electrode (7) by the sheathing (9), and
    a second counter-electrode (16) is furthermore present, which surrounds the discharge chamber (11) in a ring-shaped fashion in a second longitudinal section,
    characterized in that the second counter-electrode (16) has a ring surface (18) widened in a plate-shaped fashion.
  2. Plasma nozzle (1) according to claim 1, wherein the second counter-electrode (16) is arranged concentrically to the nozzle opening (14).
  3. Plasma nozzle (1) according to claim 1 or 2, wherein the surface normal of the ring surface (18), widened in a plate-shaped fashion, of the second counter-electrode (16) runs approximately parallel to the exit direction of the producible plasma jet.
  4. Plasma nozzle (1) according to any of claims 1 to 3, wherein the ring surface (18) is covered by the sheathing (9).
  5. Plasma nozzle (1) according to any of claims 1 to 4, wherein the electrode (7) is coated with a dielectric, in particular a dielectric containing or consisting of polytetrafluoroethylene.
  6. Plasma nozzle (1) according to any of claims 1 to 5, wherein the inlet opening (12) is formed by at least one gas passage (25) in the electrode (7).
  7. Plasma nozzle (1) according to claim 6, wherein the gas passages (25) are arranged in the electrode (7) in a radially symmetrical fashion.
  8. Plasma nozzle (1) according to any of claims 1 to 7, wherein the first counter-electrode (20) and the second counter-electrode (16) can be connected to different electric potentials.
  9. Plasma nozzle (1) according to any of claims 1 to 8, wherein a plasma nozzle housing (29) is provided, wherein the counter-electrodes (16, 20) are fixed between the sheathing (9) and the plasma nozzle housing (29) by means of a sealing compound (27).
  10. Method for using a plasma nozzle (1) according to any of claims 1 to 9, comprising the method steps of
    supplying a process gas having a flow through the inlet opening (12) into a discharge chamber (11), and
    generating an electric potential difference between an electrode (7) arranged in the discharge chamber (11) and a second counter-electrode (16) so that a plasma is formed in the discharge chamber (11) by igniting dielectrically hindered discharges in the process gas in the discharge chamber (11), and
    generating a plasma jet (5) from plasma expelled from the nozzle opening (14) by the flow,
    characterized in that
    the second counter-electrode (16) has a ring surface (18) which is widened in a plate-shaped fashion.
  11. Method according to claim 10, wherein the plasma jet (5) acts on a surface of a workpiece (3).
  12. Method according to any of claims 10 or 11, wherein furthermore a first counter-electrode is present, wherein the first counter-electrode (20) is at a ground potential and the second counter-electrode (16) is at a floating potential.
  13. Method according to any of claims 10 or 11, wherein furthermore a first counter-electrode is present, wherein the second counter-electrode (16) is at a ground potential and the first counter-electrode (20) is at a floating potential.
  14. Method according to any of claims 10 or 11, wherein furthermore a first counter electrode is present, wherein the first counter-electrode (20) and the second counter-electrode (16) are at a ground potential.
  15. Method according to any of claims 10 to 12, wherein the process gas is selected from argon and/or helium and/or ambient air.
EP17712057.3A 2016-03-16 2017-03-15 Plasma nozzle and method of using the plasma nozzle Active EP3430864B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16160623 2016-03-16
DE102016209097.6A DE102016209097A1 (en) 2016-03-16 2016-05-25 plasma nozzle
PCT/EP2017/056052 WO2017157975A1 (en) 2016-03-16 2017-03-15 Plasma nozzle

Publications (2)

Publication Number Publication Date
EP3430864A1 EP3430864A1 (en) 2019-01-23
EP3430864B1 true EP3430864B1 (en) 2021-11-17

Family

ID=59751555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17712057.3A Active EP3430864B1 (en) 2016-03-16 2017-03-15 Plasma nozzle and method of using the plasma nozzle

Country Status (5)

Country Link
EP (1) EP3430864B1 (en)
CN (1) CN108781498B (en)
DE (1) DE102016209097A1 (en)
DK (1) DK3430864T3 (en)
WO (1) WO2017157975A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108566714A (en) * 2018-06-09 2018-09-21 贵州电网有限责任公司 A kind of plasma jet device
WO2023034209A1 (en) * 2021-09-01 2023-03-09 Lam Research Corporation Electrode-dielectric nozzle for plasma processing
CN115501361A (en) * 2022-10-14 2022-12-23 嘉兴和禹净化科技有限公司 Hydroxyl plasma generator and disinfection and purification equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207475A (en) * 2006-01-31 2007-08-16 Ibaraki Univ Portable type atmospheric pressure plasma generating device
CN201528464U (en) * 2009-09-18 2010-07-14 中国科学院等离子体物理研究所 Novel atmospheric pressure jet flow cold plasma generator
KR20140101235A (en) * 2013-02-08 2014-08-19 한국기계연구원 Jet type plasma generator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961772A (en) 1997-01-23 1999-10-05 The Regents Of The University Of California Atmospheric-pressure plasma jet
DE29911974U1 (en) * 1999-07-09 2000-11-23 Agrodyn Hochspannungstechnik G Plasma nozzle
DE29921694U1 (en) 1999-12-09 2001-04-19 Agrodyn Hochspannungstechnik G Plasma nozzle
KR20030091438A (en) * 2002-05-28 2003-12-03 (주)플라젠 Plasma spray and its application method in surface treatment
JP4447469B2 (en) * 2002-12-27 2010-04-07 株式会社日立国際電気 Plasma generator, ozone generator, substrate processing apparatus, and semiconductor device manufacturing method
EP1689216A1 (en) * 2005-02-04 2006-08-09 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Atmospheric-pressure plasma jet
DE102008028167A1 (en) * 2008-06-12 2009-12-31 Maschinenfabrik Reinhausen Gmbh Plasma jet production device for treatment or activation of through holes of e.g. printed circuit boards, has auxiliary electrode spaced from receiver, where side of receiver is turned away from front side opening of tube
DE102009028462A1 (en) * 2009-08-11 2011-03-24 Leibniz-Institut für Plasmaforschung und Technologie e.V. Apparatus and method for the treatment of living cells by means of a plasma
DE102010011132A1 (en) * 2010-03-11 2011-09-15 Reinhausen Plasma Gmbh Method and arrangement for the plasma treatment of a gas stream
CN201957326U (en) * 2010-12-01 2011-08-31 航天环境工程有限公司 Direct-current plasma generator capable of realizing automatic regulation of gas
KR101453856B1 (en) * 2013-03-04 2014-10-22 한국기계연구원 Jet type plasma generator with curved-shaped driving electrode
CN103237404A (en) * 2013-05-14 2013-08-07 哈尔滨工业大学 Air plasma generating device in coaxial discharging mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207475A (en) * 2006-01-31 2007-08-16 Ibaraki Univ Portable type atmospheric pressure plasma generating device
CN201528464U (en) * 2009-09-18 2010-07-14 中国科学院等离子体物理研究所 Novel atmospheric pressure jet flow cold plasma generator
KR20140101235A (en) * 2013-02-08 2014-08-19 한국기계연구원 Jet type plasma generator

Also Published As

Publication number Publication date
CN108781498A (en) 2018-11-09
DE102016209097A1 (en) 2017-09-21
DK3430864T3 (en) 2022-02-21
CN108781498B (en) 2021-07-23
EP3430864A1 (en) 2019-01-23
WO2017157975A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
EP1902156B1 (en) Method for treating plasma and/or covering plasma of workpieces under continuous atmospheric pressure
EP1230414B1 (en) Method and device for plasma coating surfaces
DE10145131B4 (en) Device for generating an active gas jet
EP1858056A1 (en) Plasma method for treating the surface of workpieces
EP3430864B1 (en) Plasma nozzle and method of using the plasma nozzle
EP2130414B1 (en) Device and method for generating a plasma beam
EP2054166B1 (en) Method and device for producing a coating
DE112017001370T5 (en) Plasma generating device
EP3077122B1 (en) Compressed air treatment chamber
WO2008061602A1 (en) Method and device for producing a plasma, and applications of the plasma
DE102013004514B3 (en) Electrode device for a plasma discharge with a sliding arc
WO2005099320A2 (en) Method and device for producing low-pressure plasma and the use thereof
DE10116502B4 (en) Method and device for forming a plasma jet
DE19702124A1 (en) Workpiece surface cleaning, activating, wetting and/or coating
DE10223865B4 (en) Process for the plasma coating of workpieces
EP1080250A1 (en) Device and method for treating electroconductive endless material
DE10322696B3 (en) Plasma-assisted treatment of given substrate surface area, e.g. for structurizing or coating metal, alloy, semiconductor, insulator or dielectric, uses insulator with opening, to form discharge gap, between electrode and substrate
DE102020132851B3 (en) ION MOBILITY SPECTROMETER AND METHOD OF OPERATING AN ION MOBILITY SPECTROMETER
DE102008028166B4 (en) Apparatus for generating a plasma jet
DE19648999C2 (en) Device for cleaning, coating and / or activating plastic surfaces
DE10320805A1 (en) Device for processing cylindrical substrates, such as wires and cables, comprises a process chamber, and a dielectric barrier arranged between an electrode and a lead functioning as the counter electrode
EP1371271B1 (en) Plasma installation and method for producing a functional coating
DE102008028167A1 (en) Plasma jet production device for treatment or activation of through holes of e.g. printed circuit boards, has auxiliary electrode spaced from receiver, where side of receiver is turned away from front side opening of tube
WO2011141184A1 (en) Plasma generator and method for generating and using an ionised gas
DE1928617A1 (en) Method and device for ionizing a gas in a supersonic flow

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OCHS, CHRISTIAN

Inventor name: BELLMANN, MARTIN

Inventor name: HARMS, MARCUS

Inventor name: VIOEL, WOLFGANG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210705

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012037

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1449103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012037

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 7

Ref country code: DK

Payment date: 20230323

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1449103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230320

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170315