EP1202387B1 - Antenne plate à directivité améliorée - Google Patents

Antenne plate à directivité améliorée Download PDF

Info

Publication number
EP1202387B1
EP1202387B1 EP01124351A EP01124351A EP1202387B1 EP 1202387 B1 EP1202387 B1 EP 1202387B1 EP 01124351 A EP01124351 A EP 01124351A EP 01124351 A EP01124351 A EP 01124351A EP 1202387 B1 EP1202387 B1 EP 1202387B1
Authority
EP
European Patent Office
Prior art keywords
antenna elements
feeder
antenna
columns
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01124351A
Other languages
German (de)
English (en)
Other versions
EP1202387A2 (fr
EP1202387A3 (fr
Inventor
Leila Dr Bekraoui
Thomas Dipl.-Ing. Eibeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technisat Digital GmbH
Original Assignee
Technisat Digital GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technisat Digital GmbH filed Critical Technisat Digital GmbH
Publication of EP1202387A2 publication Critical patent/EP1202387A2/fr
Publication of EP1202387A3 publication Critical patent/EP1202387A3/fr
Application granted granted Critical
Publication of EP1202387B1 publication Critical patent/EP1202387B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array

Definitions

  • the invention relates to a planar antenna according to the preamble of claim 1.
  • Planar antennas of the generic type are, for example known from DE 198 50 895 A1 and US 6,031,491 A.
  • a other planar antenna is also from the published patent application DE 198 55 115 A1 known.
  • the planar antennas are used, for example for receiving satellite broadcast signals in the frequency domain from 10.7 to 12.75 GHz.
  • the planar antennas face the parabolic antennas have a number of advantages; for example they offer less surface for the wind are not as voluminous and find because of their better optical Impressively wider acceptance.
  • known ones Planar antennas versus parabolic mirror LNB antennas some Disadvantages in the electrical characteristics, for example a lower cross polarization decoupling, worse Polar patterns and stronger side lobes.
  • At the in the DE 198 55 115 A1 described improved planar antenna u. a. through a special design of the patch elements of the antenna elements an improved cross polarization decoupling and side lobe suppression achieved.
  • the multi-layer antenna arrangement known from DE 198 55 115 A1 includes, among others, one facing the satellite upper metallic layer, in which patch elements are formed are.
  • the patch elements are from, for example rectangular shape.
  • the level of the patch elements is metallic Conductor tracks formed, the one the antenna elements Form dining feed line network.
  • the individual multilayer antenna elements are in one Layer arranged like a matrix in N columns and M rows, where essentially each of the N columns M antenna elements having.
  • a schematic diagram of the arrangement of the antenna elements is shown in Figure 1. After appropriate alignment on the satellites, the lines run in the azimuth direction and the columns in the direction of elevation.
  • the single ones Antenna elements are preferably both equidistant arranged in the azimuth direction as well as in the elevation direction, the distances in the two directions different could be.
  • the known patch planar antenna arrangement is the different spacing in the two directions of the antenna elements also partly to the different Distances of the feed line networks to the upper level attributed to the patch elements.
  • a planar antenna is, among other things, due to its radiation characteristics labeled, which results from the product the characteristics of the individual antenna element (at Use of the same antenna elements) and a group factor (a function dependent on the solid angle).
  • the total number the antenna elements determines the gain of the antenna, while the number of those arranged in the azimuth or elevation direction Elements the opening angle in the respective direction certainly.
  • the radiation characteristic (radiation diagram) contains zeros and side lobes (maxima), which are brought in by the group factor. It was determined, that for a complete, rectangular matrix, the Attenuation at the first side lobe is approximately 13 dB.
  • this value is too low; it will dampen the first side lobe of at least 20 dB required.
  • Such one Attenuation is at least at those points (solid angles) required a position of the same frequency range working satellites whose broadcasts should not be received.
  • the object of the invention is therefore to make the damping undesirable Signals as well as the suppression of interference signals improve.
  • planar antenna with the features of patent claim 1.
  • the planar antenna has a plurality of antenna elements which are arranged substantially without gaps at the intersection of N columns and M rows, forming an orthogonal matrix.
  • An "essentially gapless" arrangement means an arrangement in which there is generally no vacant crossing point between two antenna elements adjacent in a column or row, but it is nevertheless possible that, within the matrix, due to constructive exceptions (for example the arrangement of a feeding point ) some crossing points are unoccupied.
  • the antenna elements are arranged in a mirror-symmetrical manner with the formation of at least one central column with respect to a line of symmetry running in the direction of the columns.
  • the planar antenna has at least one middle column in the sense of this definition; if the number of columns is even, at least two middle columns.
  • the at least one middle column has a number of M antenna elements.
  • at least the two columns arranged on the outside have a smaller number of antenna elements.
  • the number of antenna elements in each column is not greater than the number of antenna elements in the adjacent column closer to the line of symmetry. This means that the number of antenna elements decreases from the center of the planar antenna to the outside, but several adjacent columns can have the same number of antenna elements.
  • An exception to this basic rule can arise from the aforementioned constructive exception of a feed point in the middle of the matrix of antenna elements if a few antenna elements are omitted at this point.
  • a feed network with a feed point and a branched network of feed lines leading from this feed point to all antenna elements is provided, the network being designed in such a way that there is an essentially equally long route from the feed point to each antenna element.
  • the design of such a feed network could be implemented symmetrically in a relatively simple manner.
  • the network of feed lines is formed by (a) starting from a fictitious rectangular arrangement of N columns with M antenna elements each, (b) constructing a fictitious feed network by (b1) the feed lines for all antenna elements of the N columns and M rows of two antenna elements adjacent to each other in a row or column are combined to form a first group, whereby a feed line branching point is formed, from which feed lines of essentially the same length lead to the antenna elements, (b2) the feed lines of two in each for all first groups Column or row direction adjacent first groups are brought together to form a further group, whereby a further feed line branch point is formed, from which feed lines of essentially the same length lead to the previously formed feed line branch points, (b3) for all white ter groups, this merging is repeated until the feed lines of all antenna elements are brought together at the feed point, (b4) those fictitious arrangement of N * M antenna elements are used to eliminate those antenna elements that are not contained in the planar antenna, (b5) those branches of the fictitious feed lines which lead exclusively
  • the line sections of the fictitious feed network which extend beyond the rhombus-shaped outer contour are additionally replaced in step (c) by approximately equally long line sections within the rhombus-shaped outer contour.
  • the configuration of the feed network according to the invention permits symmetrical feeding, which avoids phase errors and produces a good directional characteristic with low side lobes.
  • "Essentially the same length" feed lines are to be understood in a first approximation as feed lines with the same geometric length. Of course, this should also be understood to mean feed lines which have the same “route length” in such a way that the signals propagating along the line in the preferred frequency range arrive at approximately the same phase position at the feed point.
  • the antenna elements are preferably additionally mirror-symmetrical with respect to one running in the direction of the lines Line of symmetry arranged. This means that near the line of symmetry Arranged middle lines the largest number of antenna elements have and at least the two arranged outside Lines a smaller number of antenna elements exhibit. This creates a planar antenna whose side lobe attenuation is also improved in the column direction, that means that the preferred antenna arrangement has a corresponding one Alignment to the satellite increased side lobe damping both in the azimuth direction and in the direction of the elevation.
  • the dependence of the number of antenna elements in the columns on the distance from the line of symmetry is in any case a monotonically decreasing function, that is to say that the number of antenna elements in a column located further out is not greater than the number of antenna elements in a column lying further inside.
  • the number of antenna elements in each column can in each case be less than the number of antenna elements in the adjacent column closer to the line of symmetry.
  • the number of antenna elements in a column is either equal to the number or a number x less than the number of antenna elements in the adjacent column closer to the line of symmetry.
  • n adjacent columns each have the same number of antenna elements.
  • the number of columns n is therefore equal to 2 * n times the quotient M / x rounded to the next larger whole number.
  • the antenna elements are preferably arranged mirror-symmetrically with respect to a further line of symmetry lying between two middle lines, so that the antenna elements are arranged within a rhombus-shaped outer contour.
  • the antenna elements are arranged equidistantly in each column or each row, the column spacing being able to differ from the row spacing for the reasons mentioned above. It has been shown that an aperture angle between 2 ° and 3 ° can be achieved with such a planar antenna (an aperture angle of less than approximately 3.4 ° is required for direct satellite reception). In addition, such an antenna arrangement showed a side lobe attenuation of at least 25 dB. Finally, the symmetry of the antenna structure allows the antenna to be rotated through 90 °, the rows with the columns being swapped functionally. This antenna arrangement is therefore equally well suited for satellite signals with horizontal and vertical polarization.
  • FIG. 1 shows schematically the known arrangement of antenna elements already described in the introduction.
  • the planar antenna arrangement 1 has a multiplicity of antenna elements 2, which are arranged at intersections of orthogonal rows and columns.
  • the antenna elements are shown as circular spots.
  • the antenna elements can be of any suitable shape, for example the rectangular shape described in the aforementioned publication DE 198 55 115 A1.
  • the group antenna 1 consists of N columns, each with M antenna elements. If the antenna 1 is oriented towards a satellite, the rows extend in the azimuth direction, while the columns are aligned in the direction of the elevation.
  • the antenna elements 2 are arranged equidistantly, the distance d a of the antenna elements 2 in the azimuth direction being different from the distance d e of the antenna elements 2 in the direction of the elevation.
  • FIG. 2 illustrates a basic principle of the arrangement 5 of the antenna elements in the planar antenna according to the invention.
  • the antenna elements are arranged in columns, each column having a predetermined number of antenna elements.
  • the columns are again arranged equidistantly with the distance d a .
  • the two outer columns 3 have a number A of antenna elements.
  • Columns 4 adjacent to the outer columns each comprise B antenna elements.
  • the subsequent columns 5 arranged further inside each have C antenna elements.
  • This symmetry continues inwards, so that a symmetry line 6 extending in the column direction or in the direction of the elevation is formed for the arrangement of the antenna elements.
  • the number A, B, C, ... of the antenna elements in each column increases in the direction of the line of symmetry 6, the number of antenna elements in a column being no greater than the number of antenna elements in a column closer to the line of symmetry 6.
  • FIG. 3 shows a schematic representation of a preferred arrangement of columns 7 of antenna elements, the number of which is distributed symmetrically to the line of symmetry 6.
  • the columns closest to the line of symmetry 6 have a maximum number M of antenna elements.
  • the number of antenna elements then decreases outwards from column to column by x antenna elements in each case.
  • the columns are again arranged equidistantly with the distance d a .
  • Figures 2 and 3 are neither the individual antenna elements their alignment is shown in the row direction. But it should be noted that the neighboring Antenna elements of the neighboring columns (so far present) in approximately the same vertical position (Elevation). In a preferred embodiment the antenna elements are also vertical Direction symmetrically arranged so that there is an orthogonal further line of symmetry between the middle lines or on the middle row.
  • Figure 4 shows such a preferred arrangement of the Antenna elements in which the number M of lines and the Number N of columns are even numbers and the number of Antenna elements from column to column to the outside by each decreases two antenna elements. This results in the Figure 4 shown rhombus shape.
  • Figure 5 illustrates the formation of the feed lines or the symmetrically branching feed line network, for simplification only the feed lines for an excitation direction (e.g. vertical) are.
  • First a fictional arrangement of antenna elements in N columns and M rows where each column has M elements. The inferred from it, Antenna elements left in accordance with the invention are shown shaded in gray, while the later omitted antenna elements of the fictitious arrangement are illustrated by a dotted outline. outgoing of this fictitious overall arrangement of the antenna elements are two in each across the entire matrix Column direction adjacent antenna elements combined, that is, the feed lines of these are combined Antenna elements at a first branch point merged such that the lengths of the two feed lines from this branch point to the antenna elements are the same.
  • Figure 6 shows a single level feeder network for a preferred embodiment of the invention Planar antenna.
  • FIG. 6 shows the preferred embodiment of the feed network for a polarization direction.
  • the feeding point is about in the middle of the symmetrical arrangement, at this point a group of four antenna elements was omitted.
  • On the right side of Figure 6 an enlarged section is shown. In this enlargement are to compensate for the effect of the omitted antenna elements inserted weights 8 illustrated.
  • These weights are called widenings of the Conductor lines of the feed line network visible. they are each formed at the feed line branching points 9, each of which has a direct branch line 10 to those Points 11 leads, at which the fictional complete Feed network each branch to the omitted Group of antenna elements.
  • the widened Conductor tracks 8 start at the respective branch points 9 and extend against the direction of direct branch lines 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Claims (8)

  1. Antenne plane comprenant un certain nombre d'éléments d'antenne (2) placés de manière à former une matrice orthogonale, sensiblement sans vides, à des points d'intersection de N colonnes et M lignes,
       les éléments d'antenne (2) étant répartis de manière à former au moins une colonne centrale symétriquement par rapport à un axe de symétrie (6) s'étendant dans la direction des colonnes,
       la ou chaque colonne centrale présentant M éléments d'antenne et au moins les deux colonnes extérieures présentant un plus petit nombre d'éléments d'antenne, et le nombre d'éléments d'antenne de chaque colonne n'étant pas supérieur au nombre d'éléments d'antenne de la colonne voisine situé plus près de l'axe de symétrie,
       un réseau d'alimentation ayant un point d'alimentation et un réseau ramifié de lignes d'alimentation allant de ce point d'alimentation à tous les éléments d'antenne étant fait de façon qu'il y ait un chemin conducteur sensiblement de même longueur de ce point d'alimentation à chaque élément d'antenne,
       caractérisée par le fait    que N = 2a et M = 2b, a et b étant des nombres entiers supérieurs à 1, et
       que le réseau de lignes d'alimentation est conçu comme un réseau qu'on réalise en
    a) partant d'un système rectangulaire fictif de N colonnes contenant chacune M éléments d'antenne,
    b) construisant un réseau d'alimentation fictif en,
    b1) pour tous les éléments d'antenne des N colonnes et M lignes, groupant en un premier groupe les lignes d'alimentation de deux éléments d'antenne voisins d'une colonne ou d'une ligne, en formant chaque fois un point de branchement de lignes d'alimentation d'où des lignes d'alimentation sensiblement de même longueur vont aux éléments d'antenne,
    b2) pour tous les premiers groupes, groupant en un autre groupe les lignes d'alimentation de deux premiers groupes voisins dans la direction des colonnes ou celle des lignes, en formant chaque fois un autre point de branchement de lignes d'alimentation d'où des lignes d'alimentation sensiblement de même longueur vont aux points de branchement de lignes d'alimentation formés auparavant,
    b3) répétant cette réunion pour tous les autres groupes jusqu'à ce que les lignes d'alimentation de tous les éléments d'antenne soient réunies au point d'alimentation,
    b4) éliminant du système fictif de N*M éléments d'antenne ainsi formé les éléments d'antenne qui ne se trouvent pas dans l'antenne plane,
    b5) éliminant les branches des lignes d'alimentation fictives qui vont exclusivement aux éléments d'antenne éliminés à l'étape b4),
    b6) remplaçant chaque branche éliminée du réseau d'alimentation fictif par un poids (8) simulant l'effet de la branche éliminée, en ajoutant ce poids (8) au point de branchement de lignes d'alimentation (9) du réseau d'alimentation d'où une ligne branchée directe (10) va au point fictif de branchement de lignes d'alimentation (11) où se terminait la branche éliminée, et
    c) formant le réseau de lignes d'alimentation selon le réseau d'alimentation fictif formé à l'étape b).
  2. Antenne plane selon la revendication 1, caractérisée par le fait que les éléments d'antenne sont en plus disposés symétriquement par rapport à un axe de symétrie s'étendant dans la direction des lignes.
  3. Antenne plane selon la revendication 1, caractérisée par le fait que le nombre d'éléments d'antenne de chaque colonne est inférieur au nombre d'éléments d'antenne de la colonne voisine située plus près de l'axe de symétrie.
  4. Antenne plane selon la revendication 1, caractérisée par le fait que les colonnes d'éléments d'antenne sont équidistantes avec une première équidistance (da) et les lignes d'éléments d'antenne sont équidistantes avec une deuxième équidistance (de).
  5. Antenne plane selon la revendication 1, caractérisée par le fait    que le nombre d'éléments d'antenne d'une colonne est soit égal, soit inférieur d'un nombre x, au nombre d'éléments d'antenne de la colonne voisine située plus près de l'axe de symétrie, et
       que n colonnes voisines ont le même nombre d'éléments d'antenne, le nombre N de colonnes étant égal à 2n fois le quotient M/x arrondi au nombre entier supérieur.
  6. Antenne plane selon la revendication 5, caractérisée par le fait que x est un nombre pair.
  7. Antenne plane selon la revendication 6, caractérisée par le fait que les éléments d'antenne sont disposés symétriquement par rapport à un autre axe de symétrie situé entre deux lignes médianes, de sorte que les éléments d'antenne se trouvent à l'intérieur d'un contour extérieur en forme de losange.
  8. Antenne plane selon la revendication 7, caractérisée par le fait que N = M = 32, x = 4 et n = 2.
EP01124351A 2000-10-25 2001-10-23 Antenne plate à directivité améliorée Expired - Lifetime EP1202387B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10052748 2000-10-25
DE10052748A DE10052748A1 (de) 2000-10-25 2000-10-25 Planarantenne mit verbesserter Richtcharakteristik

Publications (3)

Publication Number Publication Date
EP1202387A2 EP1202387A2 (fr) 2002-05-02
EP1202387A3 EP1202387A3 (fr) 2003-05-07
EP1202387B1 true EP1202387B1 (fr) 2004-08-25

Family

ID=7660924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01124351A Expired - Lifetime EP1202387B1 (fr) 2000-10-25 2001-10-23 Antenne plate à directivité améliorée

Country Status (3)

Country Link
EP (1) EP1202387B1 (fr)
AT (1) ATE274756T1 (fr)
DE (2) DE10052748A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008387A1 (de) 2008-02-09 2009-08-27 Symotecs Ag Antennensystem für mobile Satellitenkommunikation
WO2020028363A1 (fr) * 2018-07-31 2020-02-06 Quintel Cayman Limited Élément d'antenne à diamant divisé pour commander un motif d'azimut dans différentes configurations de réseau

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444148B2 (en) 2009-08-06 2016-09-13 Indian Space Research Organisation Of Isro Printed quasi-tapered tape helical array antenna

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686535A (en) * 1984-09-05 1987-08-11 Ball Corporation Microstrip antenna system with fixed beam steering for rotating projectile radar system
JP2920160B2 (ja) * 1994-06-29 1999-07-19 ザ ウィタカー コーポレーション 車輌衝突回避レーダーシステム用平板形マイクロ波アンテナ
FR2757315B1 (fr) * 1996-12-17 1999-03-05 Thomson Csf Antenne reseau imprimee large bande
DE19742090A1 (de) * 1997-09-24 1999-03-25 Bosch Gmbh Robert Ebene Mikrowellenantenne
DE19850895A1 (de) * 1998-11-05 2000-05-11 Pates Tech Patentverwertung Mikrowellenantenne mit optimiertem Kopplungsnetzwerk
DE19855115A1 (de) * 1998-11-30 2000-06-08 Technisat Elektronik Thueringe Mehrlagige Antennenanordnung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008387A1 (de) 2008-02-09 2009-08-27 Symotecs Ag Antennensystem für mobile Satellitenkommunikation
WO2020028363A1 (fr) * 2018-07-31 2020-02-06 Quintel Cayman Limited Élément d'antenne à diamant divisé pour commander un motif d'azimut dans différentes configurations de réseau
US10931032B2 (en) 2018-07-31 2021-02-23 Quintel Cayman Limited Split diamond antenna element for controlling azimuth pattern in different array configurations

Also Published As

Publication number Publication date
ATE274756T1 (de) 2004-09-15
DE50103383D1 (de) 2004-09-30
EP1202387A2 (fr) 2002-05-02
DE10052748A1 (de) 2002-05-29
EP1202387A3 (fr) 2003-05-07

Similar Documents

Publication Publication Date Title
DE60022630T2 (de) Zweitfrequenzantenne, mehrfrequenzantenne, zwei- oder mehrfrequenzantennengruppe
DE3835072C2 (fr)
EP0042612B1 (fr) Dispositif de changement de la polarisation d'ondes électromagnétiques
DE4026432C2 (de) Radialleitungsschlitzantenne
EP1194982B1 (fr) Antenne
DE69730782T2 (de) Planarantenne
EP2929589B1 (fr) Antenne omnidirectionnelle à double polarité
EP3220480B1 (fr) Agencement de rayonnement dipolaire
EP1239543A1 (fr) Antenne plate pour communication mobile via satellites
DE102007047741A1 (de) Speisenetzwerk für eine Gruppenantenne
DE2656729C3 (de) Breitbanddipolantenne
DE19933723A1 (de) Integrierte Satelliten- und terrestrische Antenne
DE3931752A1 (de) Koaxialschlitzantenne des wanderwellenleitungstyps
DE69835944T2 (de) Anordnung mit antenneneinheiten
EP3533110B1 (fr) Cornet d'émission à double polarisation
DE102009019557A1 (de) Verfahren zum Betrieb einer phasengesteuerten Gruppenantenne sowie einer Phasenschieber-Baugruppe und eine zugehörige phasengesteuerte Gruppenantenne
DE10222838A1 (de) Sektorantenne in Hohlleitertechnik
DE1945850A1 (de) Richtantenne
DE60019412T2 (de) Antenne mit vertikaler polarisation
EP1202387B1 (fr) Antenne plate à directivité améliorée
DE2810483C2 (de) Antenne mit einem Schlitze aufweisenden Speisehohlleiter und einer mit diesem einen Winkel einschließenden Strahlerzeile
DE3151028C2 (fr)
DE2608092B2 (de) Vorrichtung zur Auskopplung von Wellentypen bestimmter, für Ablagemessungen geeigneter Ordnung aus einem Hohlleiterabschnitt einer Antennenzuleitung
DE2700325A1 (de) Ungerichtete ukw-breitbandantenne
DE3839945C2 (de) Phasengesteuerte Gruppenantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EIBECK, THOMAS, DIPL.-ING.

Inventor name: BEKRAOUI, LEILA

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030423

R17P Request for examination filed (corrected)

Effective date: 20030410

17Q First examination report despatched

Effective date: 20030606

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISAT DIGITAL GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EIBECK, THOMAS, DIPL.-ING.

Inventor name: BEKRAOUI, LEILA, DR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040825

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040825

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040825

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040825

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50103383

Country of ref document: DE

Date of ref document: 20040930

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041221

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: TECHNISAT DIGITAL G.M.B.H.

Effective date: 20041031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061011

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061012

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061023

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061031

Year of fee payment: 6

BERE Be: lapsed

Owner name: *TECHNISAT DIGITAL G.M.B.H.

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071023

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061016

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031