EP0042612B1 - Dispositif de changement de la polarisation d'ondes électromagnétiques - Google Patents

Dispositif de changement de la polarisation d'ondes électromagnétiques Download PDF

Info

Publication number
EP0042612B1
EP0042612B1 EP81104793A EP81104793A EP0042612B1 EP 0042612 B1 EP0042612 B1 EP 0042612B1 EP 81104793 A EP81104793 A EP 81104793A EP 81104793 A EP81104793 A EP 81104793A EP 0042612 B1 EP0042612 B1 EP 0042612B1
Authority
EP
European Patent Office
Prior art keywords
lines
meander
another
structures
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104793A
Other languages
German (de)
English (en)
Other versions
EP0042612A1 (fr
Inventor
Erich Dipl.-Ing. Kandler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0042612A1 publication Critical patent/EP0042612A1/fr
Application granted granted Critical
Publication of EP0042612B1 publication Critical patent/EP0042612B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid

Definitions

  • the invention relates to a device for converting electromagnetic waves with a given polarization into those with circular polarization using a plurality of grating structures which are arranged in layers in front of a radiation aperture and which consist of conductors which are in the form of periodic meandering lines which are essentially parallel with respect to their main direction of expansion are trained.
  • radar antennas in particular target follower radar antennas
  • linear polarization since this enables the greatest range to be achieved under normal conditions.
  • rain cloud echo signals which have a spectral distribution similar to that of destination echo signals, cannot be distinguished from "real" destination echo signals.
  • circular polarization With circular polarization, the rain cloud echo signals are strongly attenuated. In general, due to the large level difference, a sufficient distinction between flight destinations and rain clouds is possible.
  • this problem is usually solved in such a way that the linear polarization of the antenna is converted into a circular polarization by a polarization grating, which is integrated in the radome attached in front of the radiation aperture.
  • the object of the invention is to design a device for converting electromagnetic waves with a given polarization into those with circular polarization of the type mentioned in such a way that the ellipticity of the circular polarization generated is considerably reduced over the entire bandwidth compared to the known circular polarization gratings.
  • this object is achieved in that at least one of the lattice structures is designed in such a way that its meandering lines are not all in phase with respect to their geometrical shape, but rather neighboring lines have a phase offset from one another.
  • the middle lattice structure is one whose neighboring meandering lines always have a phase shift
  • the two outer lattice structures are those whose meandering lines are all in phase with one another.
  • the middle lattice structure can be designed as such, the meandering lines of which are all in phase with one another, while the two outer lattice structures are those whose neighboring meandering lines always have a phase shift.
  • the individual lattice structures are advantageously arranged spatially with respect to one another such that the axes of the meandering lines, which are essentially parallel to one another, are offset from one another when viewed from above. This measure increases the bandwidth of the circular polarization grating, in particular at the upper frequency limit.
  • the meandering lines of a lattice structure are advantageously implemented as etched metal strips on a plastic film.
  • insulating layers are inserted between the foils, which e.g. can be formed in the form of a honeycomb structure, but can also consist, for example, of polymethacrylimide rigid foam as real layers of insulating material.
  • the circular polarization grating according to the invention can be used as an aperture cover of an antenna or can be integrated into such a cover (radome). Such an integration into the reflector cover can advantageously be realized in particular in the case of a target follower radar antenna with a reflector mirror.
  • FIG. 1 shows a perspective view of a section of a three-layer circular polarization grating according to the invention.
  • This grid consists of three carrier layers 1, 2 and 3, which are realized by plastic films. Etched meandering metal structures 4 to 10 are provided on these layers 1 and 3, which run parallel with respect to their axes and of which on each layer only a few are shown as an example.
  • the two metal structures 4, 5 and 9, 10 on the two outer carrier layers 1 and 3 are congruent, whereas the metal structures 6, 7 and 8 of the middle carrier layer 2 are offset such that they are approximately in the gaps between the Metal structures 4, 5 and 9, 10 run.
  • a layer 14 or 15 made of insulating material is introduced for spacing, which is preferably designed as a honeycomb structure Metal structures 9 and 10 of the carrier layer 3.
  • the situation is different for the middle carrier layer 2.
  • the individual meandering metal structures 6, 7 and 8 have a geometric phase offset from one another. It is pointed out once again that only a small part of the meandering metal structures is shown for each of the three carrier layers 1, 2 and 3, which in their entirety form a lattice structure per layer. 3 shows a top view of the upper carrier layer 3, onto which, among other things, the meandering metal structures 9 and 10 are applied. It can be seen from this figure that the individual metal structures running parallel to one another have no geometrical phase offset with respect to one another. In the same way, the lower carrier layer 1 is formed with its metal structures 4 and 5.
  • FIG. 4 A top view of a section of the middle carrier layer 2 with its meandering metal structures 6, 7 and 8 is shown in FIG. 4.
  • the length of a meandering period is labeled I.
  • the offset is 1/4.
  • An offset other than 1/4 can also lead to an improvement in the measurement parameter “ellipticity of circular polarization”.
  • FIG. 2 shows a cross-sectional view of the structure of the three-layer meander circular polarization grid according to FIG. 3, have.
  • the interface is designated A-B in Fig. 3.
  • the middle carrier layer 2 on the other hand, has a metal layer 13 with a phase-shifted meandering structure, cf. the meandering lines 6, 7 and 8 in Fig. 4 on.
  • the interface for this is designated in Fig. 4 with C-D.
  • the middle meander line structure can be a geometrically "in-phase” lattice, while the two outer structures each consist of meander lines that are "staggered” in terms of phase.

Landscapes

  • Aerials With Secondary Devices (AREA)

Claims (9)

1. Dispositif pour transformer des ondes électromagnétiques d'une polarisation donnée en ondes électromagnétiques à polarisation circulaire, avec mise en ceuvre de plusieurs structures en forme de grilles (4 à 10) disposées en couches (1, 2, 3) devant une ouverture de rayonnement, et constituées par des conducteurs qui sont réalisés sous la forme de lignes en méandres, périodiques et s'étendant sensiblement parallèlement par rapport à leur direction principale d'extension, caractérisé par le fait qu'au moins l'une des structures en forme de grilles est réalisée de telle manière que ses lignes en méandres (6, 7, 8) ne sont pas toutes, du point de vue de leur allure géométrique, de même phase, mais que par contre des lignes voisines présentent entre elles un déphasage.
2. Dispositif selon la revendication 1, caractérisé par le fait que dans le cas de la mise en oeuvre de trois structures en forme de grilles disposées en couches, la structure médiane en forme de grille est une structure en forme de grille dont les lignes en méandres (6, 7, 8) présentent toujours entre elles un déphasage, et les deux structures extérieures en forme de grilles sont des structures en forme de grilles dont les lignes en méandres (4, 5 et 9, 10) s'étendent en phase entre elles.
3. Dispositif selon la revendication 1, caractérisé par le fait que dans le cas de la mise en oeuvre de trois structures en forme de grilles disposées en couches, la structure médiane en forme de grille est une structure en forme de grille en méandres s'étendent toute en phase entre elles, et les deux structures en forme de grilles extérieures sont des structures en forme de grilles dont les lignes en méandres présentent toujours un déphasage entre elles.
4. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que les différentes structures en forme de grilles sont disposées dans l'espace de telle manière que les axes des lignes en méandres (4, 5 et 6, 7, 8) de deux structures voisines en forme de grilles, qui s'étendent sensiblement parallèlement entre eux, sont décalés entre eux, en vue en plan.
5. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que les lignes en forme de méandres (4 à 10) sont des bandes métalliques obtenues par attaque chimique sur une feuille en matière plastique (1, 2, 3).
6. Dispositif selon la revendication 5, caractérisé par le fait que pour assurer l'écartement entre les feuilles, on prévoit des couches d'une matière isolante (14, 15) qui sont réalisées sous la forme d'une structure en nid d'abeilles ou d'un produit alvéolaire dur.
7. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que dans le cas d'une structure courbe en forme de grille, c'est-à-dire non plane, les mesures prévues dans les revendications 1 à 4 sont, du point de vue de l'allure de la lignes en méandres, rapportées à la projection dans un plan perpendiculaire à l'axe du rayon principal, c'est-à-dire parallèle à l'ouverture du rayonnement.
8. Dispositif selon l'une des revendications précédentes, caractérisé par la mise en oeuvre d'une couverture de l'ouverture d'une antenne.
9. Dispositif selon la revendication 8, caractérisé par le fait que l'antenne est une antenne de radar de poursuite avec un réflecteur et que les structures en forme de grille sont intégrées dans la couverture du réflecteur (Radom).
EP81104793A 1980-06-24 1981-06-22 Dispositif de changement de la polarisation d'ondes électromagnétiques Expired EP0042612B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3023562A DE3023562C2 (de) 1980-06-24 1980-06-24 Einrichtung zur Polarisationsumwandlung elektromagnetischer Wellen
DE3023562 1980-06-24

Publications (2)

Publication Number Publication Date
EP0042612A1 EP0042612A1 (fr) 1981-12-30
EP0042612B1 true EP0042612B1 (fr) 1983-10-12

Family

ID=6105322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104793A Expired EP0042612B1 (fr) 1980-06-24 1981-06-22 Dispositif de changement de la polarisation d'ondes électromagnétiques

Country Status (3)

Country Link
US (1) US4387377A (fr)
EP (1) EP0042612B1 (fr)
DE (1) DE3023562C2 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2514203B1 (fr) * 1981-10-05 1986-04-25 Radant Etudes Filtre adaptatif spatial hyperfrequence pour antenne a polarisation quelconque et son procede de mise en oeuvre
FR2540296A1 (fr) * 1983-01-31 1984-08-03 Thomson Csf Filtre spatial d'ondes electromagnetiques de polarisation circulaire et antenne cassegrain comportant un tel filtre
US4556889A (en) * 1983-09-30 1985-12-03 The Boeing Company Aircraft trailing ball antenna
IT1180117B (it) * 1984-11-08 1987-09-23 Cselt Centro Studi Lab Telecom Struttura per antenna dicroica
US4772890A (en) * 1985-03-05 1988-09-20 Sperry Corporation Multi-band planar antenna array
US4652886A (en) * 1986-03-17 1987-03-24 Gte Government Systems Corporation Multilayer antenna aperture polarizer
US5086301A (en) * 1990-01-10 1992-02-04 Intelsat Polarization converter application for accessing linearly polarized satellites with single- or dual-circularly polarized earth station antennas
US5258768A (en) * 1990-07-26 1993-11-02 Space Systems/Loral, Inc. Dual band frequency reuse antenna
EP0468620B1 (fr) * 1990-07-26 1995-12-27 Space Systems / Loral, Inc. Antenne à double bande avec réutilisation des fréquences
JPH0567912A (ja) * 1991-04-24 1993-03-19 Matsushita Electric Works Ltd 平面アンテナ
JPH0744380B2 (ja) * 1991-12-13 1995-05-15 松下電工株式会社 平面アンテナ
US5576721A (en) * 1993-03-31 1996-11-19 Space Systems/Loral, Inc. Composite multi-beam and shaped beam antenna system
US5467100A (en) * 1993-08-09 1995-11-14 Trw Inc. Slot-coupled fed dual circular polarization TEM mode slot array antenna
US5434587A (en) * 1993-09-10 1995-07-18 Hazeltine Corporation Wide-angle polarizers with refractively reduced internal transmission angles
US5717410A (en) * 1994-05-20 1998-02-10 Mitsubishi Denki Kabushiki Kaisha Omnidirectional slot antenna
US5557292A (en) * 1994-06-22 1996-09-17 Space Systems/Loral, Inc. Multiple band folding antenna
US6006419A (en) * 1998-09-01 1999-12-28 Millitech Corporation Synthetic resin transreflector and method of making same
US6246381B1 (en) * 1999-07-01 2001-06-12 Telaxis Communications Corporation Insert mold process for forming polarizing grid element
US6426722B1 (en) 2000-03-08 2002-07-30 Hrl Laboratories, Llc Polarization converting radio frequency reflecting surface
US6812903B1 (en) * 2000-03-14 2004-11-02 Hrl Laboratories, Llc Radio frequency aperture
US6518931B1 (en) 2000-03-15 2003-02-11 Hrl Laboratories, Llc Vivaldi cloverleaf antenna
US6552696B1 (en) 2000-03-29 2003-04-22 Hrl Laboratories, Llc Electronically tunable reflector
US6483480B1 (en) 2000-03-29 2002-11-19 Hrl Laboratories, Llc Tunable impedance surface
US6538621B1 (en) 2000-03-29 2003-03-25 Hrl Laboratories, Llc Tunable impedance surface
FR2810455A1 (fr) * 2000-06-14 2001-12-21 Thomson Csf Dispositif pour cacher un radar equipant une automobile
US6483481B1 (en) 2000-11-14 2002-11-19 Hrl Laboratories, Llc Textured surface having high electromagnetic impedance in multiple frequency bands
CA2443830A1 (fr) * 2001-04-13 2002-10-24 Comsat Corporation Antenne circulaire plate a double polarisation circulaire utilisant une structure multicouche a polariseur lineaire a meandres
KR20030007949A (ko) * 2001-04-13 2003-01-23 콤샛 코퍼레이션 2층 광대역 지그재그선 편파기
US6670921B2 (en) 2001-07-13 2003-12-30 Hrl Laboratories, Llc Low-cost HDMI-D packaging technique for integrating an efficient reconfigurable antenna array with RF MEMS switches and a high impedance surface
US6545647B1 (en) 2001-07-13 2003-04-08 Hrl Laboratories, Llc Antenna system for communicating simultaneously with a satellite and a terrestrial system
US6739028B2 (en) 2001-07-13 2004-05-25 Hrl Laboratories, Llc Molded high impedance surface and a method of making same
US7298228B2 (en) * 2002-05-15 2007-11-20 Hrl Laboratories, Llc Single-pole multi-throw switch having low parasitic reactance, and an antenna incorporating the same
US7276990B2 (en) * 2002-05-15 2007-10-02 Hrl Laboratories, Llc Single-pole multi-throw switch having low parasitic reactance, and an antenna incorporating the same
US7164387B2 (en) 2003-05-12 2007-01-16 Hrl Laboratories, Llc Compact tunable antenna
US7068234B2 (en) * 2003-05-12 2006-06-27 Hrl Laboratories, Llc Meta-element antenna and array
US7245269B2 (en) * 2003-05-12 2007-07-17 Hrl Laboratories, Llc Adaptive beam forming antenna system using a tunable impedance surface
US7071888B2 (en) * 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
US7253699B2 (en) * 2003-05-12 2007-08-07 Hrl Laboratories, Llc RF MEMS switch with integrated impedance matching structure
US7456803B1 (en) 2003-05-12 2008-11-25 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
US7154451B1 (en) 2004-09-17 2006-12-26 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
US6879298B1 (en) * 2003-10-15 2005-04-12 Harris Corporation Multi-band horn antenna using corrugations having frequency selective surfaces
US20070211403A1 (en) * 2003-12-05 2007-09-13 Hrl Laboratories, Llc Molded high impedance surface
US7307589B1 (en) 2005-12-29 2007-12-11 Hrl Laboratories, Llc Large-scale adaptive surface sensor arrays
US8212739B2 (en) 2007-05-15 2012-07-03 Hrl Laboratories, Llc Multiband tunable impedance surface
US7868829B1 (en) 2008-03-21 2011-01-11 Hrl Laboratories, Llc Reflectarray
US9116302B2 (en) * 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
US8947760B2 (en) 2009-04-23 2015-02-03 Ravenbrick Llc Thermotropic optical shutter incorporating coatable polarizers
US8743000B2 (en) * 2009-07-31 2014-06-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Phase element comprising a stack of alternating conductive patterns and dielectric layers providing phase shift through capacitive and inductive couplings
US9048539B2 (en) 2010-06-24 2015-06-02 Netgear, Inc. Mitigation of undesired electromagnetic radiation using passive elements
US8994609B2 (en) 2011-09-23 2015-03-31 Hrl Laboratories, Llc Conformal surface wave feed
US9466887B2 (en) 2010-11-03 2016-10-11 Hrl Laboratories, Llc Low cost, 2D, electronically-steerable, artificial-impedance-surface antenna
US8436785B1 (en) 2010-11-03 2013-05-07 Hrl Laboratories, Llc Electrically tunable surface impedance structure with suppressed backward wave
US8982011B1 (en) 2011-09-23 2015-03-17 Hrl Laboratories, Llc Conformal antennas for mitigation of structural blockage
GB2517290B (en) * 2013-07-09 2016-12-28 The Sec Dep For Foreign And Commonwealth Affairs Conductive meander-line and patch pattern for a circular polariser
CN104347957B (zh) * 2013-08-01 2018-04-10 深圳光启创新技术有限公司 实现极化转换的超材料和极化器
EP3306747A4 (fr) * 2015-06-03 2019-01-02 Mitsubishi Electric Corporation Antenne cornet
US11122690B2 (en) 2018-12-31 2021-09-14 Hughes Network Systems, Llc Additive manufacturing techniques for meander-line polarizers
US11088456B2 (en) * 2019-08-20 2021-08-10 Bae Systems Information And Electronic Systems Integration Inc. Cavity backed notch antenna with additively manufactured radome

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267480A (en) * 1961-02-23 1966-08-16 Hazeltine Research Inc Polarization converter
US3560984A (en) * 1968-12-11 1971-02-02 Loral Corp Broadband circularly polarized antenna having a continuous rectangular aperture
US3762666A (en) * 1971-06-08 1973-10-02 Us Army Hypervelocity missile design to accomodate seekers
US3754271A (en) * 1972-07-03 1973-08-21 Gte Sylvania Inc Broadband antenna polarizer
US3831176A (en) * 1973-06-04 1974-08-20 Gte Sylvania Inc Partial-radial-line antenna
US3854140A (en) * 1973-07-25 1974-12-10 Itt Circularly polarized phased antenna array
GB1561969A (en) * 1975-11-13 1980-03-05 Marconi Co Ltd Apparatus for producing circularly or eliptically polarised electromagnetic radiation
NL180623C (nl) * 1977-01-12 1987-08-17 Philips Nv Belichter voor een antenne.

Also Published As

Publication number Publication date
US4387377A (en) 1983-06-07
EP0042612A1 (fr) 1981-12-30
DE3023562A1 (de) 1982-01-14
DE3023562C2 (de) 1982-10-28

Similar Documents

Publication Publication Date Title
EP0042612B1 (fr) Dispositif de changement de la polarisation d'ondes électromagnétiques
DE69013839T2 (de) Zwei dielektrische Anpassungsschichten aufweisende Struktur für Radome und Linsen für grosse Einfallswinkel.
DE68910677T2 (de) Mikrostreifenantenne.
DE69109994T2 (de) Mikrowellenplattenantenne, insbesondere für Dopplerradar.
DE3885397T2 (de) Mikrowellenplattenantenne, insbesondere für Dopplerradar.
EP0044502B1 (fr) Dispositif polarisant pour convertir des ondes électromagnétiques polarisées d'une façon linéaire en des ondes électromagnétiques polarisées d'une façon circulaire placé devant une antenne parabolique à réflecteur
DE2808035A1 (de) Polarisator fuer hoechstfrequenzwellen
DE2753180A1 (de) Rundstrahlantenne
DE68910728T2 (de) Streifenleiter Array-Antenne.
DE3042456A1 (de) Antenne mit einer einrichtung zur drehung der polarisationsebene
DE2362913B2 (de) Spiralantenne
DE3217437A1 (de) Mikrowellen-richtantenne aus einer dielektrischen leitung
DE3524503A1 (de) Ebene mikrowellenantenne
DE3027093C2 (de) Umpolarisiereinrichtung zur Erzeugung zirkular polarisierter elektromagnetischer Wellen
DE2925063C2 (de) Radarantenne mit integrierter IFF-Antenne
DE2335792A1 (de) Funknavigations-, insbesondere landesystem
DE2810483C2 (de) Antenne mit einem Schlitze aufweisenden Speisehohlleiter und einer mit diesem einen Winkel einschließenden Strahlerzeile
DE2139216C3 (de) Richtantennenanordnung, bestehend aus einem Hauptreflektorspiegel und zwei Primärstrahlersystemen und Verfahren zur Herstellung einer dielektrischen Reflektorplatte
DE2921856C2 (de) Richtantenne aus zwei eine strahlende Doppelleitung bildenden Streifenleitern und Gruppenantenne unter Verwendung mehrerer derartiger Richtantennen
DE977843C (de) Richtantenne fuer Hochfrequenzwellen
DE69108849T2 (de) Antenne in gedruckter Schaltungstechnik für eine zweifach polarisierte Gruppenantenne.
DE3023561C2 (de) Leitergitterstruktur zur Polarisationsumwandlung elektromagnetischer Wellen
DE19848722B4 (de) Mikrowellen-Reflektorantenne
EP0489934B1 (fr) Antenne plate
DE112018007136B4 (de) Radarvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR GB IT NL

17P Request for examination filed

Effective date: 19811028

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR GB IT LI NL

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840626

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840921

Year of fee payment: 4

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920626

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19930630