EP0044502B1 - Dispositif polarisant pour convertir des ondes électromagnétiques polarisées d'une façon linéaire en des ondes électromagnétiques polarisées d'une façon circulaire placé devant une antenne parabolique à réflecteur - Google Patents

Dispositif polarisant pour convertir des ondes électromagnétiques polarisées d'une façon linéaire en des ondes électromagnétiques polarisées d'une façon circulaire placé devant une antenne parabolique à réflecteur Download PDF

Info

Publication number
EP0044502B1
EP0044502B1 EP81105473A EP81105473A EP0044502B1 EP 0044502 B1 EP0044502 B1 EP 0044502B1 EP 81105473 A EP81105473 A EP 81105473A EP 81105473 A EP81105473 A EP 81105473A EP 0044502 B1 EP0044502 B1 EP 0044502B1
Authority
EP
European Patent Office
Prior art keywords
conductors
layer
layers
aperture
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81105473A
Other languages
German (de)
English (en)
Other versions
EP0044502A1 (fr
Inventor
Anton Dipl.-Ing. Brunner
Klaus Dr. Rieskamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0044502A1 publication Critical patent/EP0044502A1/fr
Application granted granted Critical
Publication of EP0044502B1 publication Critical patent/EP0044502B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/12Refracting or diffracting devices, e.g. lens, prism functioning also as polarisation filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave

Definitions

  • the invention relates to a device for converting linearly polarized electromagnetic waves into circularly polarized waves, consisting of a primary radiation detector and a target follower radar antenna arranged in front of the radiating opening of the parabolic reflector and consisting of a primary radiator and a parabolic reflector and integrated into a curved cover (radome) of this opening
  • a device for converting linearly polarized electromagnetic waves into circularly polarized waves consisting of a primary radiation detector and a target follower radar antenna arranged in front of the radiating opening of the parabolic reflector and consisting of a primary radiator and a parabolic reflector and integrated into a curved cover (radome) of this opening
  • a cover (radome) is known from GB-A-1 240 529 for a target follower radar antenna consisting of a primary radiator and a parabolic reflector for the radiating opening of the parabolic reflector, in which a device for converting linearly polarized electromagnetic waves into circularly polarized waves is integrated .
  • This known device consists of a lattice structure with two lattice layers, each of which consists of thin, parallel wires.
  • a Cassegrain antenna with a primary radiator with a sub-reflector consisting of a three-layer grating structure and with a flat main reflector is known.
  • This subreflector has the task, for. B. right-handed circularly polarized waves emanating from the primary radiator to reflect to the main reflector and to let through the waves polarized by the main reflector in a left-handed circular polarization unhindered.
  • This subreflector has a middle layer in the lattice structure, which transmits the waves of a specific linear polarization and reflects waves polarized perpendicular to it.
  • the two outer layers of the grating structure convert circularly polarized waves into linearly polarized waves in one beam passage direction and linearly polarized waves into circularly polarized waves in the opposite beam passage direction.
  • This subreflector accordingly fulfills the function, among other things, of converting the left-hand circularly polarized waves reflected by the main reflector as the radiating opening of the antenna into vertically linearly polarized waves and then converting them back into left-hand circularly polarized waves.
  • the suppression or decoupling of the cross polarization compared to a desired linear polarization is for many applications, e.g. B. also of great importance in order to achieve the necessary accuracy in target radar methods that work with parabolic mirror antennas.
  • gratings with metal strips or wires running perpendicular to the E vector can be used.
  • the cross polarization component running parallel to the wires is reflected and thus suppressed.
  • the degree of suppression of the cross-polarization components is further increased.
  • Such a linear polarization filter also forms the middle layer of the grating structure of the subreflector according to US Pat. No. 3,340,535.
  • the object of the invention is to improve a device of the type mentioned at the outset in such a way that any given linear polarization, that is to say possibly with interfering cross-polarization components, of a target following radar device is converted into a purely circular polarization.
  • the rectilinear conductors of the layer of the lattice structure closest to the radiating opening are inclined by 45 ° with respect to their main direction of expansion with respect to the conductors of the layer or layers further away from the radiating opening, that the conductors in the individual layers of the lattice structure are etched, strip-shaped conductor tracks on one plastic film per layer, and that the specified main directions of expansion of the conductors are related to the projection in a plane perpendicular to the main radiation axis of the target secondary radar antenna.
  • linear polarization filtering For the linearly polarized radiation emanating from the radiating opening of the parabolic reflector and thus from the entire target slave radar antenna, which can have cross-polarization components at various points in this opening, linear polarization filtering is first carried out and then the filtered out ideal linear polarization is converted into radiation with pure circular polarization. In the case of linear polarization filtering, only that radiation component is let through whose E vector is perpendicular to the straight conductors running parallel to one another.
  • the other layers of the lattice structure are arranged one or more layers with rectilinear and parallel conductors, whose main direction of expansion corresponds to that of the conductors of the layer closest to the radiating opening.
  • the invention can e.g. B. apply to a cone-shaped cover of the parabolic reflector.
  • insulating layers are advantageously used which consist of hard foam or are designed as a honeycomb structure.
  • the lattice structure shown in Figures 1 and 2 consists of two layers 1 and 2, which are formed by parallel, straight conductor tracks, and three layers 3, 4 and 5, each of several, in the form of meandering lines parallel to each other 6 exist.
  • the direction of skin expansion of the meandering conductor tracks 6 is inclined by 45 ° with respect to that of the conductor tracks 7 of the layers 1 and 2.
  • the combined grating structure lies in front of the radiation aperture of a target follower radar antenna, which is composed of a primary radiator 8 and a parabolic reflector 9.
  • the primary radiator 8 emits a radiation X in linear polarization with a polarization direction, which is indicated by the arrow 10.
  • Cross-polarization components arise during the reflection at the parabolic reflector 9.
  • Radiation with non-ideal linear polarization then falls on the grating structure in front of the antenna aperture.
  • the first two layers 1 and 2 of this grating structure then effect a linear polarization filtering, so that only the radiation with the polarization indicated by the arrow 10 is passed to the layers 3, 4 and 5 because of the vertical alignment of the conductor tracks 7.
  • the layers 3, 4 and 5 then bring about the conversion of the ideal linear polarization arriving there into a circular polarization, which then no longer has any orthogonal polarization components.
  • FIG. 3 shows a section of the polarization grating according to FIGS. 1 and 2 with five interconnect layers one above the other, which are each produced on a plastic film 11, 12, 13, 14 and 15 by an etching process.
  • a large number of meandering conductor tracks 16 are applied to each of the three plastic films 11, 12 and 13.
  • the two conductor track layers on the plastic films 14 and 15 consist of a large number of rectilinear conductor tracks 17 the foils 11 to 15 can be adhered to, insulating layers 18, 19, 20 and 21 are arranged between these foils, which are advantageously embodied in a honeycomb structure, in particular for reasons of weight saving.
  • the thickness of the entire multilayer grating structure is, for example, half a wavelength.
  • the conductor tracks 16 and 17 correspond to the conductor tracks 6 and 7 in FIG. 1.
  • the meandering conductor tracks 16 have, for example, an amplitude of one eighth wavelength and a spacing of approximately one tenth wavelength.

Landscapes

  • Aerials With Secondary Devices (AREA)

Claims (4)

1. Dispositif placé devant l'ouverture rayonnante du réflecteur parabolique (9) d'une antenne de radar de poursuite, formée d'un élément primaire d'antenne (8) et d'un réflecteur parabolique, et qui est en même temps intégré dans un capot de recouvrement de forme courbe (radôme) de cette ouverture, pour convertir des ondes électromagnétiques polarisées linéairement en ondes polarisées circulairement, constitué d'une structure de réseau à plusieurs couches (1 à 5), formées chacune de minces conducteurs (7, 6), s'étendant parallèlement dans la direction de leur dimension principale, caractérisé en ce que les conducteurs rectilignes (7) de la couche (1) située le plus près de l'ouverture rayonnante de la structure de réseau sont inclinés, par la direction de leur dimension principale, de 45° sur les conducteurs (6) de la couche ou des couches (3 à 5) plus éloignée(s) de l'ouverture rayonnante, que les cpnducteurs dans les différentes couches de la structure de réseau sont des pistes conductrices en forme de ruban, réalisées par gravure sur une feuille de matière plastique (11 à 15) pour chaque couche, et que les directions indiquées des dimensions principales des conducteurs se rapportent à la projection dans un plan perpendiculaire à l'axe de rayonnement principal (X) de l'antenne de radar de poursuite.
2. Dispositif selon la revendication 1, caractérisé par la disposition, entre la couche (1) située le plus près de l'ouverture rayonnante et les autres couches (3 à 5) de la structure de réseau, d'une ou de plusieurs couches (2) avec des conducteurs (7) rectilignes et parallèles, dont la direction de la dimension principale coïncide avec celle des conducteurs de la couche (1) située le plus près de l'ouverture rayonnante.
3. Dispositif selon la revendication 2, caractérisé en ce que, pour maintenir les feuilles (11 à 15) à distance les unes des autres, des couches de matière isolante (18 à 21) en mousse dure ou à structure en nid d'abeilles sont disposées entre les feuilles.
4. Dispositif selon une des revendications précédentes, caractérisé en ce que les conducteurs (6) de la couche (5) située le plus loin de l'ouverture rayonnante et les conducteurs des couches (4, 3) dont les conducteurs présentent la même direction de leur dimension principale que les conducteurs de la couche la plus éloignée de l'ouverture rayonnante, ont la forme de lignes en méandres ou de combinaisons de lignes et de rectangles.
EP81105473A 1980-07-17 1981-07-13 Dispositif polarisant pour convertir des ondes électromagnétiques polarisées d'une façon linéaire en des ondes électromagnétiques polarisées d'une façon circulaire placé devant une antenne parabolique à réflecteur Expired EP0044502B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3027094 1980-07-17
DE19803027094 DE3027094A1 (de) 1980-07-17 1980-07-17 Umpolarisiereinrichtung zur erzeugung zirkular polarisierter elektromagnetischer wellen

Publications (2)

Publication Number Publication Date
EP0044502A1 EP0044502A1 (fr) 1982-01-27
EP0044502B1 true EP0044502B1 (fr) 1985-10-16

Family

ID=6107432

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81105473A Expired EP0044502B1 (fr) 1980-07-17 1981-07-13 Dispositif polarisant pour convertir des ondes électromagnétiques polarisées d'une façon linéaire en des ondes électromagnétiques polarisées d'une façon circulaire placé devant une antenne parabolique à réflecteur

Country Status (3)

Country Link
US (1) US4479128A (fr)
EP (1) EP0044502B1 (fr)
DE (1) DE3027094A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL66327A0 (fr) * 1982-07-15 1982-11-30
FR2540296A1 (fr) * 1983-01-31 1984-08-03 Thomson Csf Filtre spatial d'ondes electromagnetiques de polarisation circulaire et antenne cassegrain comportant un tel filtre
DE3337049A1 (de) * 1983-10-12 1985-05-09 Gesellschaft für Schwerionenforschung mbH, 6100 Darmstadt Feststoff mit besonderen elektrischen eigenschaften und verfahren zur herstellung eines solchen feststoffes
US4565745A (en) * 1984-09-10 1986-01-21 Trw Inc. Metallic stretch fabric
US4786914A (en) * 1985-01-25 1988-11-22 E-Systems, Inc. Meanderline polarization twister
US4698639A (en) * 1986-01-14 1987-10-06 The Singer Company Circularly polarized leaky waveguide doppler antenna
US4901086A (en) * 1987-10-02 1990-02-13 Raytheon Company Lens/polarizer radome
CA1304155C (fr) * 1987-10-02 1992-06-23 Keith C. Smith Lentille-polariseur-radome
US4999639A (en) * 1989-03-03 1991-03-12 Hazeltine Corporation Radome having integral heating and impedance matching elements
FR2664747B1 (fr) * 1990-07-10 1992-11-20 Europ Agence Spatiale Antenne a balayage par variation de frequence.
US5258768A (en) * 1990-07-26 1993-11-02 Space Systems/Loral, Inc. Dual band frequency reuse antenna
US5959594A (en) * 1997-03-04 1999-09-28 Trw Inc. Dual polarization frequency selective medium for diplexing two close bands at an incident angle
KR20040020909A (ko) * 2001-05-31 2004-03-09 인텔스칸 오르빌규태크니 이에이취에프. 마이크로파를 이용한 물질의 적어도 하나의 물리적 변수의측정방법 및 장치
US6946990B2 (en) * 2003-07-23 2005-09-20 The Boeing Company Apparatus and methods for radome depolarization compensation
TWI312592B (en) * 2006-06-30 2009-07-21 Ind Tech Res Inst Antenna structure with antenna radome and method for rising gain thereof
US8081138B2 (en) * 2006-12-01 2011-12-20 Industrial Technology Research Institute Antenna structure with antenna radome and method for rising gain thereof
US9116302B2 (en) * 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
CN101615720B (zh) * 2008-06-27 2014-04-16 财团法人工业技术研究院 天线罩
CA2847185A1 (fr) 2011-09-01 2013-03-07 Ravenbrick, Llc Volet optique thermotrope incorporant des polariseurs pour revetement
CN104347957B (zh) * 2013-08-01 2018-04-10 深圳光启创新技术有限公司 实现极化转换的超材料和极化器
EP3182505A1 (fr) * 2015-12-14 2017-06-21 Terma A/S Antenne radar et système radar
DE102016011652A1 (de) * 2016-09-28 2018-03-29 Diehl Metering Systems Gmbh Anordnung zur Funkübertragung von Verbrauchsdaten und/oder Zustandsdaten
US10547117B1 (en) 2017-12-05 2020-01-28 Unites States Of America As Represented By The Secretary Of The Air Force Millimeter wave, wideband, wide scan phased array architecture for radiating circular polarization at high power levels
US10840573B2 (en) 2017-12-05 2020-11-17 The United States Of America, As Represented By The Secretary Of The Air Force Linear-to-circular polarizers using cascaded sheet impedances and cascaded waveplates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042611A1 (fr) * 1980-06-24 1981-12-30 Siemens Aktiengesellschaft Grille conductrice pour la conversion de la polarisation d'ondes électromagnétiques

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB859528A (en) * 1958-10-15 1961-01-25 Marconi Wireless Telegraph Co Improvements in or relating to circular polarisers for very short radio waves
US2970312A (en) * 1959-09-21 1961-01-31 Robert M Smith Broad band circularly polarized c-band antenna
US3031664A (en) * 1959-10-01 1962-04-24 Marconi Wireless Telegraph Co Polarisation screen and filter for radio waves
US3369980A (en) * 1963-08-15 1968-02-20 Continental Oil Co Production of gaseous unsaturated hydrocarbons
US3340535A (en) * 1964-06-16 1967-09-05 Textron Inc Circular polarization cassegrain antenna
GB1240529A (en) * 1968-08-09 1971-07-28 British Aircraft Corp Ltd Polarisers
US3560984A (en) * 1968-12-11 1971-02-02 Loral Corp Broadband circularly polarized antenna having a continuous rectangular aperture
JPS4934648U (fr) * 1972-06-30 1974-03-27
US3754271A (en) * 1972-07-03 1973-08-21 Gte Sylvania Inc Broadband antenna polarizer
US3831176A (en) * 1973-06-04 1974-08-20 Gte Sylvania Inc Partial-radial-line antenna
GB1561969A (en) * 1975-11-13 1980-03-05 Marconi Co Ltd Apparatus for producing circularly or eliptically polarised electromagnetic radiation
US4127857A (en) * 1977-05-31 1978-11-28 Raytheon Company Radio frequency antenna with combined lens and polarizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042611A1 (fr) * 1980-06-24 1981-12-30 Siemens Aktiengesellschaft Grille conductrice pour la conversion de la polarisation d'ondes électromagnétiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Taschenbuch Elektrotechnik Band 3, Bausteine der Informationstechnik, C. HANSER Verlag, München 1978, Seiten 571-573 *

Also Published As

Publication number Publication date
DE3027094C2 (fr) 1987-03-19
DE3027094A1 (de) 1982-02-04
EP0044502A1 (fr) 1982-01-27
US4479128A (en) 1984-10-23

Similar Documents

Publication Publication Date Title
EP0044502B1 (fr) Dispositif polarisant pour convertir des ondes électromagnétiques polarisées d'une façon linéaire en des ondes électromagnétiques polarisées d'une façon circulaire placé devant une antenne parabolique à réflecteur
EP0042612B1 (fr) Dispositif de changement de la polarisation d'ondes électromagnétiques
DE2808035C3 (de) Polarisator für Höchstfrequenzwellen
DE2139076C2 (de) Polarisationsdrehender Reflektor
EP2622366B1 (fr) Système d'antennes pour capteurs radar
EP0044503B1 (fr) Polariseur pour produire des ondes électromagnétiques polarisées d'une façon circulaire
DE1766002B1 (de) Integriertes radarantennensystem
DE2810483C2 (de) Antenne mit einem Schlitze aufweisenden Speisehohlleiter und einer mit diesem einen Winkel einschließenden Strahlerzeile
DE3048703A1 (de) "quasioptischer frequenzdiplexer"
DE2139216C3 (de) Richtantennenanordnung, bestehend aus einem Hauptreflektorspiegel und zwei Primärstrahlersystemen und Verfahren zur Herstellung einer dielektrischen Reflektorplatte
EP1145368B1 (fr) Antenne plane a double foyer
DE19848722B4 (de) Mikrowellen-Reflektorantenne
DE3023561C2 (de) Leitergitterstruktur zur Polarisationsumwandlung elektromagnetischer Wellen
EP0976173B1 (fr) Antenne a hyperfrequences a reflecteur
EP0022991B1 (fr) Dispositif d'antenne pour le masquage des lobes secondaires d'une antenne principale hautement directive et application à une antenne de radar panoramique
DE2137125C3 (de) Als Primärstrahler in Verbindung mit einem bündelnden Sekundärstrahler verwendeter Mehrwellenhornstrahler mit rechteckigem Querschnitt
DE1065478B (fr)
DE1963036C (de) Reflektorantenne mit Haupt- und Hilfsreflektor
DE1963037C (de) Antenne mit schwenkbarer Rieht charakteristik, bestehend aus einer Pnmorquelle und einem reflektierenden Gitter
DE1927146A1 (de) Rundstrahlantenne
DE102016225909A1 (de) Antenne zum Senden und Empfangen elektromagnetischer Strahlung
DE1100725B (de) Richtantenne fuer sehr kurze elektro-magnetische Wellen
DE3921341A1 (de) Strahler für eine Antenne mit elektronischer Verschwenkung
DE1591062A1 (de) UKW-Antenne
DE2131352B2 (de) Parabolspiegelantenne fuer monopulsradaranlagen mit mitteln zur regenechounterdrueckung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811028

AK Designated contracting states

Designated state(s): BE CH FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR GB IT LI NL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890731

Ref country code: CH

Effective date: 19890731

Ref country code: BE

Effective date: 19890731

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19890731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST