EP1188816A1 - Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen - Google Patents

Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen Download PDF

Info

Publication number
EP1188816A1
EP1188816A1 EP01121509A EP01121509A EP1188816A1 EP 1188816 A1 EP1188816 A1 EP 1188816A1 EP 01121509 A EP01121509 A EP 01121509A EP 01121509 A EP01121509 A EP 01121509A EP 1188816 A1 EP1188816 A1 EP 1188816A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
acid
alcohol
weight
fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01121509A
Other languages
English (en)
French (fr)
Other versions
EP1188816B1 (de
Inventor
Rainer Dr. Eskuchen
Ditmar Kischkel
Manfred Dr. Weuthen
Michael Dr. Köhler
Werner Leinemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1188816A1 publication Critical patent/EP1188816A1/de
Application granted granted Critical
Publication of EP1188816B1 publication Critical patent/EP1188816B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • C11D1/8255Mixtures of compounds all of which are non-ionic containing a combination of compounds differently alcoxylised or with differently alkylated chains
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D1/721End blocked ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups

Definitions

  • the invention relates to detergents and cleaning agents which have a surfactant system based on alkyl and / or Contain alkenyl oligoglycosides and fatty alcohols, and its use for Increase washing performance at low temperatures.
  • alkyl and / or alkenyl oligoglycosides are used in small amounts in the form of aqueous pastes or as granules with a fatty alcohol content below 1.5% for the formulation of washing and Detergents used.
  • a fatty alcohol content below 1.5% for the formulation of washing and Detergents used.
  • EP 0 301 298 A1 (Henkel) describes a process for the preparation of alkyl and / or alkenyl oligoglycosides, the excess fatty alcohol being distilled off to values below 0.5% by weight, preferably 3 to 5% by weight.
  • the reaction product is processed into an easy-to-use 60% paste by adding water.
  • products from these alkyl and / or alkenyl oligoglycoside mixtures are described which, on the one hand, are completely free of fatty alcohol, ie less than 0.5% by weight of fatty alcohol, but also 0.5 to 5, preferably 2.5 to 4,% by weight % Fatty alcohol contained.
  • the present application describes washing and cleaning agents based on a surfactant system consisting of alkyl and / or alkenyl oligoglycoside and fatty alcohol, in which the fatty alcohol content was set in such a way that the washing performance is optimized low washing temperatures, preferably below 40 ° C.
  • the fatty alcohol content (component b) is preferably 8 to 32% by weight, preferably 10 to 30 % By weight, in particular 11 to 25% by weight, based on the active substance alkyl and / or alkenyl oligoglycoside.
  • the water content of the mixture of components a and b is optionally at most 2% by weight, preferably 0.1 to 1.5% by weight.
  • Alkyl and / or alkenyl oligoglycosides which follow the formula (I) are preferably used to prepare the agents according to the invention, R 1 O- [G] p in which R 1 is a branched and unbranched alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They are preferably produced by reacting glucose or dextrose monohydrate and fatty alcohol in the presence of catalysts.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligo glucosides.
  • the index number p in the general formula (I) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • the alkyl or alkenyl radical R 1 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capro alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 1 can also be derived from primary alcohols having 12 to 22, preferably 12 to 18, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and their technical mixtures, which can be obtained as described above.
  • Alkyl oligoglucosides based on hardened C 12/14 coconut alcohol with a DP of 1 to 3 are preferred.
  • Another embodiment describes surfactant systems in detergents and cleaning agents, characterized in that fatty alcohol of the formula (II), R 1 OH are included, wherein R 1 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, and the hydrocarbon radicals already described for R 1 are to be included. It is therefore preferred that the surfactant mixture according to the invention contains alkyl and / or alkenyl oligoglycoside and fatty alcohol with the same carbon chain cut. Depending on the process, the fatty alcohol can be introduced into the compositions via the alkyl and / or alkenyl oligoglycosides used, or in a separate form.
  • Agents are furthermore preferred, characterized in that fatty alcohols of the formula (II) and / or fatty alcohols with alkyl and / or alkenyl radicals R 2 different from R 1 are present.
  • the agents can therefore contain fatty alcohols, the C chain cut of which corresponds to that of the alkyl and / or alkenyl oligoglycosides.
  • B have been introduced due to the process or separately.
  • any fatty alcohols R 2 OH different from R 1 OH which, in turn, have been introduced via the alkyl and / or alkenyl oligoglycosides or can be added separately.
  • Mixtures of different fatty alcohols (R 1 and R 2 ) are also possible in the surfactant system. It is also pointed out that the alkyl and / or alkenyl oligoglycosides can be freed from the fatty alcohol produced by distillation (depletion) and subsequently topped up with another fatty alcohol.
  • R 2 stands for an aliphatic, linear or branched hydrocarbon radical with 4 to 22 carbon atoms and 0 and / or 1, 2 or 3 double bonds.
  • Typical examples are capronic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolenyl alcohol, linolenyl alcohol, linoleyl alcohol, linoleyl alcohol Technical mixtures which are obtained, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • Technical fatty alcohols with 12 to 18 carbon
  • the alkenyl radical R 2 can be derived from primary unsaturated alcohols.
  • unsaturated alcohols are undecen-1-ol, laurolein alcohol, myristoline alcohol, palmitolein alcohol, petroselaidinal alcohol, oleyl alcohol, elaidyl alcohol, ricinol alcohol, linoleyl alcohol, linolenyl alcohol, gadoleyl alcohol, arachidone alcohol, eruca alcohol, palmoleyl alcohol, brassoleyl alcohol, brassol alcohol alcohol, brassidyl alcohol, brassoleyl alcohol, brassidyl alcohol, brassoleyl alcohol, brassidyl alcohol, brassol alcohol alcohol, brassidyl alcohol and brassidyl alcohol and saturated fatty alcohols which were obtained by the processes described in EP 0724 555 B1 .
  • evaporators are considered that take this into account, but preferably thin-film evaporators, falling-film evaporators or short-path evaporators and - if necessary - any combination of these components.
  • the depletion can then take place in a manner known per se, for example at temperatures in the range from 110 to 160 ° C. and reduced pressures from 0.1 to 10 mbar.
  • detergents and cleaning agents are preferred, characterized in that the mixture of components a and b does not exceed 2% by weight, preferably 0.1 to 1.5% by weight, in particular 0.2 to 1.2% by weight Contains% water.
  • Mixtures with viscosities in the range from 10 to 1000, preferably 50 to 600 [mPas, 110 ° C.] are further preferred.
  • Mixtures which are bleached at temperatures of 60 to 150 ° C., preferably 80 to 110 ° C. are also preferred.
  • Mixtures of a and b which combine all of these features are particularly preferably used.
  • the viscosity is determined with a rotary viscometer (e.g. Rheomat 115, DIN 145). It is a measuring system with an internally rotating and an outer, fixed cylinder.
  • the washing and cleaning agents contain alkoxylated alkanols, which are added as a mixture with components a and b, or else separately to the agents can.
  • the alkoxylated alkanols introduced via the mixture can differ from the distinguish separately added.
  • alkoxylated alkanols of the formula (III) as a rheology-modifying agent is preferred.
  • Typical examples are fatty alcohol polyethylene glycol / polypropylene glycol ether of the formula (III) or fatty alcohol polypropylene glycol / polyethylene glycol ether of the formula (IV).
  • fatty alcohol polyethylene glycol / polypropylene glycol ethers of the formula (III), which are optionally end-capped, are used as rheology-modifying agents, R 3 O (CH 2 CH 2 O) n [CH 2 (CH 3 ) CHO] m R 4 used, in which R 3 is an alkyl and / or alkylene radical having 8 to 22 C atoms, R 4 is H or an alkyl radical having 1 to 8 C atoms, n is a number from 1 to 40, preferably 1 to 30 , in particular 1 to 15, and m represents 0 or a number from 1 to 10.
  • R 3 is an aliphatic, saturated, straight-chain or branched alkyl radical having 8 to 16 carbon atoms
  • n is a number from 1 to 10
  • m represents 0
  • R 4 represents hydrogen.
  • These are addition products of 1 to 10 moles of ethylene oxide with monofunctional alcohols.
  • the alcohols described above, such as fatty alcohols, oxo alcohols and Guerbet alcohols, are suitable as alcohols. Of such alcohol ethoxylates, those are also suitable which have a narrow homolog distribution.
  • R 3 is an aliphatic, saturated, straight-chain or branched alkyl radical having 8 to 16 carbon atoms
  • n is a number from 2 to 7
  • m is a number of 3 to 7
  • R 4 represents hydrogen.
  • the washing and cleaning agents contain further alcohols and / or alkylene oxides, preferably ethanol, n-butanol, n-propanol, isopropanol and mono-, Oligo- and poly-glycols based on ethylene, propylene, butylene, especially 1,2-propanediol and 1,3-propanediol, and their methyl, ethyl and butyl ethers.
  • alcohols and / or alkylene oxides preferably ethanol, n-butanol, n-propanol, isopropanol and mono-, Oligo- and poly-glycols based on ethylene, propylene, butylene, especially 1,2-propanediol and 1,3-propanediol, and their methyl, ethyl and butyl ethers.
  • detergents and cleaning agents characterized in that they contain further nonionic surfactants selected from the group formed by alkyl and / or alkenyl oligoglycosides (different from those according to the invention), further alkoxylated alkanols, hydroxy mixed ethers, fatty acid lower alkyl esters and amine oxides.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, Fatty acid polyglycol ester, fatty acid amide polyglycol ether, fatty amine polyglycol ether, alkoxylated triglycerides, mixed ethers or mixed formals, alk (en) yl oligoglycosides, fatty acid N-alkylglucamides, Protein hydrolysates (especially vegetable products based on wheat), polyol fatty acid esters, Sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants Containing polyglycol ether chains these can be conventional, but preferably one have narrow homolog distribution.
  • Alkyl and / or Alkenyl oligoglycosides (different from those according to the invention), further alkoxylated alkanols, Hydroxy mixed ether, fatty acid lower alkyl esters and amine oxides used.
  • Hydroxy mixed ethers are known nonionic surfactants with an asymmetrical ether structure and polyalkylene glycol components, which can be obtained, for example, by subjecting olefin epoxides to a ring opening reaction with fatty alcohol polyglycol ethers.
  • HME Hydroxy mixed ethers
  • Corresponding products and their use in the field of cleaning hard surfaces is, for example, the subject of the European patent EP-B1 0693049 and the international patent application WO 94/22800 (Olin) and the documents mentioned therein.
  • R 7 represents a linear or branched alkyl radical having 2 to 18, preferably 10 to 16 carbon atoms
  • R 2 represents hydrogen or a linear or branched alkyl radical having 2 to 18 carbon atoms
  • R 3 represents hydrogen or methyl
  • R 10 represents a linear or branched, alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms
  • e represents numbers from 1 to 50, preferably 2 to 25 and in particular 5 to 15, with the proviso that the sum of the carbon atoms in the radicals R 7 and R 8 is at least 4 and preferably 12 to 18.
  • the HME ring opening products can be either internal olefins (R 8 not equal to hydrogen) or terminal olefins (R 8 equal to hydrogen), the latter being preferred in view of the easier preparation and the more advantageous application properties.
  • the polar part of the molecule can be a polyethylene glycol (PE) or a polypropylene glycol chain (PP); Mixed chains of PE and PP units, whether in statistical or block distribution, are also suitable.
  • Typical examples are ring opening products of 1,2-hexenepoxide, 2,3-hexenepoxide, 1,2-octene epoxide, 2,3-octene epoxide, 3,4-octene epoxide, 1,2-decene epoxide, 2,3-decene epoxide, 3,4 -Decenepoxid, 4,5-Decenepoxid, 1,2-Dodecenepoxid, 2,3-Dodecenepoxid, 3,4-Dode-Cenepoxid, 4,5-Dodecenepoxid, 5,6-Dodecenepoxid, 1,2-Tetradecenepoxid, 2,3 -Tetradecenepoxid, 3,4-Tetradecenepoxid, 4,5-Tetradecenepoxid, 5,6-Tetradecenepoxid, 6,7-Tetradecenepoxid, 1,2-Hexa-decenepoxid,
  • Suitable alkoxylated fatty acid lower alkyl esters are surfactants of the formula (VI) R 11 CO (OCH 2 CHR 12 ) s OR 13 in which R 11 CO stands for a linear or branched, saturated and / or unsaturated acyl radical with 6 to 22 carbon atoms, R 12 for hydrogen or methyl, R 13 for linear or branched alkyl radicals with 1 to 4 carbon atoms and s for numbers from 1 to 20 stands.
  • Typical examples are the formal insert products of an average of 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide in the methyl, ethyl, propyl, isopropyl, butyl and tert-butyl esters of caproic acid, caprylic acid, 2 -Ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid, and technical grade mixtures and erucas.
  • the products are usually prepared by inserting the alkylene oxides into the carbonyl ester bond in the presence of special catalysts, such as, for example, calcined hydrotalcite. Conversion products of an average of 5 to 10 moles of ethylene oxide into the ester linkage of technical coconut fatty acid methyl esters are particularly preferred.
  • the preparation of the amine oxides of the formula (VII) is based on tertiary fatty amines which have at least one long alkyl radical and is oxidized in the presence of hydrogen peroxide.
  • R 16 represents a linear or branched alkyl radical having 6 to 22, preferably 12 to 18 carbon atoms
  • R 14 and R 15 independently of one another are R 16 or, if appropriate hydroxy-substituted alkyl radical having 1 to 4 carbon atoms.
  • Amine oxides of the formula (VII) are preferably used in which R 16 and R 14 are C 12/14 and C 12/18 cocoalkyl radicals and R 15 is a methyl or a hydroxyethyl radical. Also preferred are amine oxides of the formula (VII) in which R 16 is a C 12/14 or C 12/18 cocoalkyl radical and R 14 and R 15 are methyl or hydroxyethyl.
  • alkylamido amine oxides of the formula (VIII), the alkylamido radical R 23 CONH being obtained by the reaction of linear or branched carboxylic acids, preferably having 6 to 22, preferably having 12 to 18, carbon atoms, in particular from C 12/14 or C 12/18 - fatty acids with amines.
  • R 24 represents a linear or branched alkylene group having 2 to 6, preferably 2 to 4 carbon atoms and R 14 and R 15 have the meaning given in formula (VII) .
  • detergents and cleaning agents characterized in that they contain anionic surfactants selected from the group consisting of alkyl and / or alkenyl sulfates, alkyl ether sulfates, alkyl benzene sulfonates, soaps, monoglyceride (ether) sulfates and alkane sulfonates.
  • anionic surfactants selected from the group consisting of alkyl and / or alkenyl sulfates, alkyl ether sulfates, alkyl benzene sulfonates, soaps, monoglyceride (ether) sulfates and alkane sulfonates.
  • anionic surfactants are soaps, alkylbenzene sulfonates, secondary alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerin ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl and / or alkenyl sulfates, alkyl ether sulfates, glycerin ether sulfates, mono ether sulfate sulfate, hydroxymischogether sulfate, fatty acid ether sulfate sulfates, Mono- and dialkylsulfosuccinates, mono- and dialkylsulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarc
  • anionic surfactants are alkyl and / or alkenyl sulfates, alkyl ether sulfates, alkylbenzenesulfonates, monoglyceride (ether) sulfates and secondary alkane sulfonates, in particular fatty alcohol sulfates, fatty alcohol ether sulfates, secondary alkane sulfonates and linear alkyl benzene sulfonates.
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary alcohols which follow the formula (IX) R 40 O-SO 3 X in which R 40 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, aryl selenyl alcohol, elaidyl alcohol, Behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained from high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
  • Alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts are particularly preferred.
  • ether sulfates are known anionic surfactants which are produced on an industrial scale by SO 3 - or chlorosulfonic acid (CSA) sulfation of fatty alcohol or oxo alcohol polyglycol ethers and subsequent neutralization.
  • SO 3 - or chlorosulfonic acid (CSA) sulfation of fatty alcohol or oxo alcohol polyglycol ethers and subsequent neutralization.
  • ether sulfates are suitable which follow the formula (X) R 17 O- (CH 2 CH 2 O) a SO 3 X in which R 17 represents a linear or branched alkyl and / or alkenyl radical with 6 to 22 carbon atoms, a for numbers from 1 to 10 and X for an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Typical examples are the sulfates of addition products with an average of 1 to 10 and in particular 2 to 5 moles of ethylene oxide with caprone alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, aryl alcohol alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, oleyl alcohol, o
  • the ether sulfates can have both a conventional and a narrow homolog distribution. It is particularly preferred to use ether sulfates based on adducts of an average of 2 to 3 mol ethylene oxide with technical C 12/14 or C 12/18 coconut fatty alcohol fractions in the form of their sodium and / or magnesium salts.
  • Alkylbenzenesulfonates preferably follow the formula (XI) , R 18 -Ph-SO 3 X in which R 18 represents a branched but preferably linear alkyl radical having 10 to 18 carbon atoms, Ph a phenyl radical and X an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • R 18 represents a branched but preferably linear alkyl radical having 10 to 18 carbon atoms
  • Ph a phenyl radical
  • X an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and their technical mixtures in the form of the sodium salts are preferably used
  • Monoglyceride sulfates and monoglyceride ether sulfates are known anionic surfactants which can be obtained by the relevant methods of preparative organic chemistry.
  • the usual starting point for their preparation is triglycerides, which, if appropriate, are transesterified to the monoglycerides after ethoxylation and subsequently sulfated and neutralized. It is also possible to react the partial glycerides with suitable sulfating agents, preferably gaseous sulfur trioxide or chlorosulfonic acid [cf. EP 0561825 B1, EP 0561999 B1 (Henkel)].
  • the neutralized substances can be subjected to ultrafiltration in order to reduce the electrolyte content to a desired level [DE 4204700 A1 (Henkel)].
  • Overviews of the chemistry of the monoglyceride sulfates are, for example, by AK Biswas et al. in J.Am.Oil.Chem.Soc. 37 , 171 (1960) and FU Ahmed J.Am.Oil.Chem.Soc. 67 , 8 (1990) .
  • the monoglyceride (ether) sulfates to be used in accordance with the invention follow the formula (XI), in which R 19 CO stands for a linear or branched acyl radical with 6 to 22 carbon atoms, c, d and e in total for 0 or for numbers from 1 to 30, preferably 2 to 10, and X stands for an alkali or alkaline earth metal.
  • Typical examples of monoglyceride (ether) sulfates suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride as well as their ethylene oxide adducts or their formulated with sulfuric acid trioxide.
  • Monoglyceride sulfates of the formula (XII) are preferably used, in which R 19 CO represents a linear acyl radical having 8 to 18 carbon atoms.
  • Alkane sulfonates are taken to mean compounds of the formula (XIII) .
  • R 20 and R 21 represent alkyl radicals, where R 20 and R 21 together should not have more than 50 carbon atoms.
  • soaps are to be understood as meaning fatty acid salts of the formula (XIV) R 41 CO-OX in which R 41 CO represents a linear or branched, saturated or unsaturated acyl radical having 6 to 22 and preferably 12 to 18 carbon atoms and X represents alkali metal and / or alkaline earth metal, ammonium, alkylammonium or alkanolammonium.
  • Typical examples are the sodium, potassium, magnesium, ammonium and triethanolammonium salts of caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaoleic acid, petoleic acid, linoleic acid, petoleic acid, linoleic acid, linoleic acid, petol acid Linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • coconut or palm kernel fatty acid is preferably used in the form of its sodium or potassium salts.
  • detergents and cleaning agents are described, characterized in that they contain cationic, amphoteric or zitterionic surfactants selected from the group formed by esterquats , alkyl betaines, amidoamine betaines and imidazolinium betaines.
  • cationic surfactants are, in particular, tetraalkylammonium compounds, such as, for example, dimethyldistearylammonium chloride or hydroxyethyl hydroxycetyldimmonium chloride (Dehyquart E) or esterquats .
  • quaternized fatty acid triethanolamine ester salts of the formula (XV) in which R 44 CO is an acyl radical having 6 to 22 carbon atoms, R 45 and R 46 independently of one another are hydrogen or R 14 CO, R 15 is an alkyl radical having 1 to 4 carbon atoms or a (CH 2 CH 2 O) m4 H- Group, m1, m2 and m3 in total for 0 or numbers from 1 to 12, m4 for numbers from 1 to 12 and Y for halide, alkyl sulfate or alkyl phosphate.
  • R 44 CO is an acyl radical having 6 to 22 carbon atoms
  • R 45 and R 46 independently of one another are hydrogen or R 14 CO
  • R 15 is an alkyl radical having 1 to 4 carbon atoms or a (CH 2 CH 2 O) m4 H- Group, m1, m2 and m3 in total for 0 or numbers from 1 to 12, m4 for numbers from 1 to 12 and Y for halide, al
  • ester quats which can be used in the context of the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachic acid, behenic acid and erucic acid and their technical mixtures, such as they occur, for example, in the pressure splitting of natural fats and oils.
  • Technical C 12/18 coconut fatty acids and in particular partially hardened C 16/18 tallow or palm fatty acids as well as high elaidic acid C 16/18 fatty acid cuts are preferably used.
  • the fatty acids and the triethanolamine can be used in a molar ratio of 1.1: 1 to 3: 1 to produce the quaternized esters.
  • an application ratio of 1.2: 1 to 2.2: 1, preferably 1.5: 1 to 1.9: 1 has proven to be particularly advantageous.
  • the preferred ester quats are technical mixtures of mono-, di- and triesters with an average degree of esterification of 1.5 to 1.9 and are derived from technical C 16/18 - tallow or. Palm fatty acid (iodine number 0 to 40).
  • quaternized fatty acid triethanolamine ester salts of the formula (VIII) have proven particularly advantageous, in which R 44 CO for an acyl radical with 16 to 18 carbon atoms, R 45 for R 45 CO, R 46 for hydrogen, R 17 for a methyl group, m1 , m2 and m3 stands for 0 and Y for methyl sulfate.
  • quaternized ester salts of fatty acids with diethanolalkylamines of the formula (XVI) are also suitable as esterquats, in which R 48 CO for an acyl radical with 6 to 22 carbon atoms, R 49 for hydrogen or R 48 CO, R 50 and R 51 independently of one another for alkyl radicals with 1 to 4 carbon atoms, m5 and m6 in total for 0 or numbers from 1 to 12 and Y again represents halide, alkyl sulfate or alkyl phosphate.
  • ester salts of fatty acids with 1,2-dihydroxypropyl dialkylamines of the formula (XVII) should be mentioned as a further group of suitable ester quats, in the R 52 CO for an acyl radical with 6 to 22 carbon atoms, R 53 for hydrogen or R 52 CO, R 54 , R 55 and R 56 independently of one another for alkyl radicals with 1 to 4 carbon atoms, m7 and m8 in total for 0 or numbers from 1 to 12 and X again represents halide, alkyl sulfate or alkyl phosphate.
  • suitable ester quats are substances in which the ester bond is replaced by an amide bond and which preferably follow the formula (XVIII) based on diethylenetriamine, in which R 57 CO represents an acyl radical with 6 to 22 carbon atoms, R 58 for hydrogen or R 57 CO, R 59 and R 60 independently of one another for alkyl radicals with 1 to 4 carbon atoms and Y again for halide, alkyl sulfate or alkyl phosphate.
  • Such amide ester quats are available on the market, for example, under the Incroquat® (Croda) brand.
  • alkyl betaines examples include alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • alkyl betaines are the carboxyalkylation products of secondary and in particular tertiary amines which follow the formula (XII) in which R 31 for alkyl and / or alkenyl radicals with 6 to 22 carbon atoms, R 32 for hydrogen or alkyl radicals with 1 to 4 carbon atoms, R 33 for alkyl radicals with 1 to 4 carbon atoms, q1 for numbers from 1 to 6 and Z for a Alkali and / or alkaline earth metal or ammonium.
  • Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyldimethylamine, decyldimethylamine, dodecylmethylamine, dodecyldimethylamine, Dodecylethylmethylamin, C 12/14 -Kokosalkyldimethylamin, myristyldimethylamine, cetyldimethylamine, stearyldimethylamine, Stearylethylmethyl-amine, oleyl dimethyl amine, C 16/18 tallow alkyl dimethyl amine and technical mixtures thereof.
  • Carboxyalkylation products of amidoamines which follow the formula (XX) are also suitable, in which R 34 CO for an aliphatic acyl radical with 6 to 22 carbon atoms and 0 or 1 to 3 double bonds, R 35 for hydrogen or alkyl radicals with 1 to 4 carbon atoms, R 36 for alkyl radicals with 1 to 4 carbon atoms, q2 for numbers from 1 to 6, q3 for numbers from 1 to 3 and Z again represents an alkali and / or alkaline earth metal or ammonium.
  • Typical examples are reaction products of fatty acids with 6 to 22 carbon atoms, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, gadoleic acid and arachic acid, arachic acid and their technical mixtures, with N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-diethylaminoethylamine and N, N-diethylamino propylamine, which are condensed with sodium chloroacetate. It is preferred to use a condensation product of C 8/18 coconut fatty acid N, N-dimethylaminopropylamide with sodium chloroacetate.
  • Imidazolinium betaines are also suitable. These substances are also known substances which can be obtained, for example, by cyclizing condensation of 1 or 2 moles of fatty acid with polyhydric amines such as, for example, aminoethylethanolamine (AEEA) or diethylene triamine.
  • polyhydric amines such as, for example, aminoethylethanolamine (AEEA) or diethylene triamine.
  • AEEA aminoethylethanolamine
  • the corresponding carboxyalkylation products are mixtures of different open-chain betaines.
  • Typical examples are condensation products of the above-mentioned fatty acids with AEEA, preferably imidazolines based on lauric acid or again C 12/14 coconut fatty acid, which are subsequently betainized with sodium chloroacetate.
  • the detergents can be anionic, nonionic and / or amphoteric or zwitterionic Surfactants in amounts of 0.5 to 50, preferably 5 to 25 and in particular 10 to 20 wt .-% - based on the detergent - included.
  • the detergents and cleaning agents contain 0.5 to 25% by weight, preferably 1 to 15% by weight, in particular 2 to 10% by weight, of alkyl and / or alkenyl oligoglycosides, based on the active substance of the formulation.
  • Another object of the invention is the use of the mixture of components a and b in washing and cleaning agents to increase the washing performance at low temperatures, preferably at 30 to 40 ° C.
  • the detergents and cleaning agents can be in various dosage forms. The use of components a and b in detergents and cleaning agents which are in the form of tablets, powders, liquids or gels is preferred.
  • the washing and cleaning agents can be prepared by spray drying and the addition of a liquid or solid fatty alcohol-containing alkyl and / or alkenyl oligoglycoside in the preparation, but also by spray mixing processes and direct addition of the liquid or solid mixture.
  • the fatty alcohol can be introduced separately into the detergent and cleaning agent. Furthermore, all known processes for the production of detergents and cleaning agents are possible.
  • the detergents and cleaning agents according to the invention can also contain additional inorganic and organic builder substances, for example in amounts of 10 to 50 and preferably 15 to 35 % By weight, based on the composition, mainly as inorganic builder substances Zeolite crystalline layered silicates, amorphous silicates and - where permissible - also phosphates, e.g. Tripolyphosphate are used.
  • the amount of co-builder is based on the preferred amounts to be counted against zeolite and phosphates.
  • the fine crystalline, synthetic and bound water-containing zeolite which is frequently used as a detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • a cocrystallized sodium / potassium aluminum silicate made of zeolite A and zeolite X, which as VEGOBOND AX® (commercial product from Condea Augusta SpA) is commercially available.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its manufacture.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP 0164514 A1 .
  • Preferred crystalline phyllosilicates of the formula given are those in which M is sodium and x is 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 .yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO 91/08171 .
  • Further suitable layered silicates are known, for example, from patent applications DE 2334899 A1, EP 0026529 A1 and DE 3526405 A1 . Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here.
  • small amounts of iron can be incorporated into the crystal lattice of the layered silicates according to the above formulas.
  • the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na + and Ca 2+ .
  • the amount of water of hydration is usually in the range of 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful layer silicates are known, for example, from US 3,966,629, US 4,062,647, EP 0026529 A1 and EP 0028432 A1 .
  • Layer silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates with a modulus Na 2 O: SiO 2 from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which are delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE 4400024 A1 .
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the sodium salts of orthophosphates, pyrophosphates and in particular are particularly suitable the tripolyphosphate.
  • Their content is generally not more than 25% by weight, preferably not more than 20 wt .-%, each based on the finished agent.
  • tripolyphosphates in particular, even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances to a synergistic Improve secondary washing ability.
  • Examples of useful organic scaffolding substances that can be used as co-builders are polycarboxylic acids which can be used in the form of their sodium salts, such as citric acid, adipic acid, Succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, as well as mixtures from these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, Succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these. The acids too in itself can be used.
  • the acids typically have also the property of an acidifying component and thus also serve to adjust one lower and milder pH of detergents or cleaning agents.
  • an acidifying component typically be Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures of to call this.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 can be used.
  • a preferred dextrin is described in British patent application GB 9419091 A1 ,
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 and EP 0542496 A1 as well as from international patent applications WO 92/18542, WO 93/08251, WO 93/16110, WO 94 / 28030, WO 95/07303, WO 95/12619 and WO 95/20608 are known.
  • An oxidized oligosaccharide according to German patent application DE 19600018 A1 is also suitable .
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Also particularly preferred in this context are glycerol disuccinates and glycerol trisuccinates , as described, for example, in US Pat. Nos. 4,524,009, 4,639,325, in European patent application EP 0150930 A1 and in Japanese patent application JP 93/339896 . Suitable amounts for use in zeolite-containing and / or silicate-containing formulations are from 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or salts thereof, which may also be in lactone form and which have at least 4 carbon atoms and at least one hydroxyl group and a maximum contain two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029 .
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrene sulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • the relative molecular weight, based on free acids, is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured in each case against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually subsequently mixed into one or more basic granules.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE 4300772 A1, as salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or as DE 4221381 C2 as monomer salts of acrylic acid and the 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and which preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances. Polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1 .
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the agents can also contain components that make the oil and fat washable made of textiles.
  • the preferred oil and fat dissolving components include for example with nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose a proportion of methoxyl groups from 15 to 30 wt .-% and of hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic cellulose ether, and those from the prior art Technically known polymers of phthalic acid and / or terephthalic acid or their Derivatives, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these. Particularly preferred of these are the sulfonated derivatives of phthalic acid and terephthalic acid polymers.
  • bleaching agents that can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 5 to 35% by weight and in particular up to 30% by weight, advantageously using perborate monohydrate or percarbonate.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetyloxy, 2,5-diacetyloxy, 2,5-ethylene glycol 2,5-dihydrofuran and the enol esters known from German
  • hydrophilically substituted acylacetals known from German patent application DE 19616769 A1 and the acyl lactams described in German patent application DE 19616770 and international patent application WO 95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 4443177 A1 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446982 B1 and EP 0453 003 B1 can also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include in particular the manganese, iron, cobalt, ruthenium or molybdenum-salt complexes known from German patent application DE 19529905 A1 and their N-analog compounds known from German patent application DE 19620267 A1, which are known from German Patent application DE 19536082 A1 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium, described in German patent application DE 19605688 A1 and copper complexes with nitrogen-containing tripod ligands that from German patent application DE known cobalt 19620411 A1, iron-, copper- and ruthenium-ammine complexes, the manganese, copper described in the German patent application DE 4416438 A1 and cobalt complexes , the cobalt complexes described in European patent application EP 0272030 A1, which are known from the European patent application EP 0693550 A1 manganese
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
  • hydrolases such as proteases, Esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases carry in the Laundry for removing stains, such as stains containing protein, fat or starch, and Graying at. Cellulases and
  • proteases of the subtilisin type and in particular proteases obtained from Bacillus lentus be used.
  • Enzyme mixtures for example of protease and amylase or Protease and lipase or lipolytic enzymes or protease and cellulase or from Cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and Cellulase, but especially protease- and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytically active Enzymes are the well-known cutinases. Peroxidases or oxidases have also been found in some cases proven suitable.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, Pullulanases and pectinases.
  • Cellobiohydrolases are preferably used as cellulases, Endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures of used this. Because the different cellulase types are characterized by their CMCase and Avicelase activities can differentiate, the desired by specific mixtures of the cellulases Activities can be discontinued.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances around them protect against premature decomposition.
  • the percentage of enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the agents can contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyrobic acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
  • Graying inhibitors have the task of removing the dirt detached from the fibers in the liquor to keep suspended and thus prevent the dirt from re-opening.
  • water soluble Colloids mostly of an organic nature are suitable, for example the water-soluble salts polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids Starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose.
  • Farther soluble starch preparations and starch products other than those mentioned above can be used, e.g. degraded starch, aldehyde starches, etc.
  • Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, Hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, Methyl carboxymethyl cellulose and mixtures thereof, and polyvinyl pyrrolidone, for example in quantities from 0.1 to 5% by weight, based on the composition.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the morpholino- Group carry a diethanolamino group, a methylamino group, anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl). Mixtures of the aforementioned brighteners can also be used.
  • Uniformly white granules are obtained if, in addition to the usual brighteners, the agents are present in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3% by weight, and also in small amounts, for example Contain 10 -6 to 10 -3 wt .-%, preferably by 10 -5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product from Ciba-Geigy).
  • Suitable soil-repellants are substances which preferably Contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio Ethylene terephthalate to polyethylene glycol terephthalate can range from 50:50 to 90:10.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range of 750 to 5000, i.e. the degree of ethoxylation of the polymers containing polyethylene glycol groups can be approx. 15 up to 100.
  • the polymers have an average molecular weight of about 5000 to 200,000 and can have a block, but preferably a random structure.
  • Preferred polymers are those with molar ratios of ethylene terephthalate / polyethylene glycol terephthalate from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Also preferred are those polymers which have linking polyethylene glycol units with a molecular weight of 750 to 5000, preferably from 1000 to about 3000 and a molecular weight of the polymer of about 10,000 to about 50,000. Examples of commercially available polymers are the Milease® products T (ICI) or Repelotex® SRP 3 (Rhône-Poulenc).
  • Wax-like compounds can be used as defoamers. Such are called “waxy” Compounds understood that have a melting point at atmospheric pressure above 25 ° C. (Room temperature), preferably above 50 ° C and in particular above 70 ° C.
  • the wax-like defoamer substances are practically insoluble in water, i.e. at 20 ° C they show a solubility of less than 0.1% by weight in 100 g of water.
  • Suitable waxy Compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic acid esters of one and polyhydric alcohols and paraffin waxes or mixtures thereof.
  • the silicone compounds known for this purpose can also be used.
  • Suitable paraffin waxes are generally a complex mixture of substances without a sharp melting point. For characterization, one usually determines its melting range by differential thermal analysis (DTA), as described in "The Analyst” 87 (1962), 420 , and / or its solidification point , This is the temperature at which the paraffin changes from the liquid to the solid state by slow cooling. Paraffins which are completely liquid at room temperature, that is to say those having a solidification point below 25 ° C., cannot be used according to the invention.
  • the soft waxes which have a melting point in the range from 35 to 50 ° C., preferably include the group of petrolates and their hydrogenation products.
  • solid hydrocarbons with melting points between 63 and 79 ° C which are separated from the highly viscous, paraffin-containing lubricating oil distillates during the dewaxing.
  • These petrolates are mixtures of microcrystalline waxes and high-melting n-paraffins.
  • the paraffin wax mixtures known from EP 0309931 A1 of, for example, 26% by weight to 49% by weight of microcrystalline paraffin wax with a solidification point of 62 ° C.
  • paraffin waxes which can be used according to the invention, this liquid fraction is as low as possible and is preferably absent entirely.
  • Particularly preferred paraffin wax mixtures at 30 ° C have a liquid content of less than 10% by weight, in particular from 2% by weight to 5% by weight, at 40 ° C a liquid content of less than 30% by weight, preferably 5 % By weight to 25% by weight and in particular from 5% by weight to 15% by weight, at 60 ° C. a liquid fraction of 30% by weight to 60% by weight, in particular 40% by weight % to 55% by weight, at 80 ° C a liquid content of 80% by weight to 100% by weight, and at 90 ° C a liquid content of 100% by weight.
  • the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is still below 85 ° C. in particularly preferred paraffin wax mixtures, in particular at 75 ° C. to 82 ° C.
  • the paraffin waxes can be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
  • Suitable bisamides as defoamers are those which differ from saturated fatty acids with 12 to 22, preferably derived from 14 to 18 carbon atoms and from alkylenediamines with 2 to 7 carbon atoms.
  • suitable Fatty acids are lauric, myristic, stearic, arachic and behenic acid and mixtures thereof as they are from natural fats or hardened oils, such as tallow or hydrogenated palm oil are.
  • Suitable diamines are, for example, ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, Pentamethylenediamine, hexamethylenediamine, p-phenylenediamine and toluenediamine.
  • Diamines are ethylenediamine and hexamethylenediamine.
  • Bisamides are particularly preferred Bismyristoylethylenediamine, bispalmitoylethylenediamine, bisstearoylethylenediamine and mixtures thereof and the corresponding derivatives of hexamethylenediamine.
  • Suitable carboxylic acid esters as defoamers are derived from carboxylic acids with 12 to 28 carbon atoms.
  • these are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
  • the alcohol part of the carboxylic acid ester contains a mono- or polyhydric alcohol with 1 to 28 carbon atoms in the hydrocarbon chain.
  • suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut alcohol, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol as well as ethylene glycol, glycerin, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
  • Preferred esters are those of ethylene glycol, glycerol and sorbitan, the acid part of the ester being selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • Suitable esters of polyvalent alcohols include xylitol monopalmitate, Pentarythritmonostearat, glycerol monostearate, ethylene glycol and sorbitan, sorbitan, sorbitan Sorbitandilaurat, sorbitan, sorbitan dioleate, and also mixed tallowalkyl and diesters.
  • Glycerol esters which can be used are the mono-, di- or triesters of glycerol and the carboxylic acids mentioned, the mono- or diesters being preferred.
  • Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glycerol distearate are examples of this.
  • suitable natural esters as defoamers are beeswax, which mainly consists of the esters CH 3 (CH 2 ) 24 COO (CH 2 ) 27 CH 3 and CH 3 (CH 2 ) 26 COO (CH 2 ) 25 CH 3
  • carnauba wax which is a mixture of carnauba acid alkyl esters, often in combination with small amounts of free carnauba acid, other long-chain acids, high-molecular alcohols and hydrocarbons.
  • Suitable carboxylic acids as a further defoamer compound are in particular behenic acid, stearic acid, Oleic acid, palmitic acid, myristic acid and lauric acid and their mixtures, as made up natural fats or optionally hardened oils, such as tallow or hydrogenated palm oil are.
  • Saturated fatty acids with 12 to 22, in particular 18 to 22, carbon atoms are preferred.
  • the corresponding fatty alcohols of the same C chain length can be used.
  • Dialkyl ethers may also be present as defoamers.
  • the ethers can be asymmetric or be constructed symmetrically, i.e. two identical or different alkyl chains, preferably contain from 8 to 18 carbon atoms.
  • Typical examples are di-n-octyl ether, di-i-octyl ether and di-n-stearyl ether, particularly suitable are dialkyl ethers which have a melting point above Have 25 ° C, especially above 40 ° C.
  • Suitable defoamer compounds are fatty ketones, which can be obtained by the relevant methods of preparative organic chemistry. For their preparation, one starts, for example, from carboxylic acid magnesium salts which are pyrolyzed at temperatures above 300 ° C. with the elimination of carbon dioxide and water, for example according to the German laid-open specification DE 2553900 OS .
  • Suitable fat ketones are those which are prepared by pyrolysis of the magnesium salts of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, petroselinic acid, arachic acid, gadoleic acid, behenic acid or erucic acid.
  • Suitable defoamers are fatty acid polyethylene glycol esters, which are preferably basic homogeneously catalyzed addition of ethylene oxide to fatty acids can be obtained. Especially done the addition of ethylene oxide to the fatty acids in the presence of alkanolamines as catalysts.
  • alkanolamines especially triethanolamine, leads to an extremely selective ethoxylation of fatty acids, especially when it comes to low ethoxylated compounds manufacture.
  • the paraffin waxes described are particularly preferably used alone as wax-like defoamers or in a mixture with one of the other wax-like defoamers, the proportion of paraffin waxes in the mixture preferably making up more than 50% by weight, based on the wax-like defoamer mixture.
  • the paraffin waxes can be applied to carriers if necessary. All known inorganic and / or organic carrier materials are suitable as carrier materials. Examples of typical inorganic carrier materials are alkali carbonates, aluminosilicates, water-soluble layer silicates, alkali silicates, alkali sulfates, for example sodium sulfate, and alkali phosphates.
  • the alkali silicates are preferably a compound with a molar ratio of alkali oxide to SiO 2 of 1: 1.5 to 1: 3.5.
  • the use of such silicates results in particularly good grain properties, in particular high abrasion stability and nevertheless high dissolution rate in water.
  • the aluminosilicates referred to as carrier material include in particular the zeolites, for example zeolite NaA and NaX.
  • the compounds referred to as water-soluble layered silicates include, for example, amorphous or crystalline water glass. Silicates which are commercially available under the name Aerosil® or Sipernat® can also be used.
  • suitable organic carrier materials are film-forming polymers, for example polyvinyl alcohols, polyvinyl pyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
  • Usable cellulose ethers are, in particular, alkali carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose and so-called cellulose mixed ethers, such as, for example, methyl hydroxyethyl cellulose and methyl hydroxypropyl cellulose, and mixtures thereof.
  • Particularly suitable mixtures are composed of sodium carboxymethyl cellulose and methyl cellulose, the carboxymethyl cellulose usually having a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methyl cellulose having a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
  • the mixtures preferably contain alkali carboxymethyl cellulose and nonionic cellulose ethers in weight ratios from 80:20 to 40:60, in particular from 75:25 to 50:50.
  • native starch which is composed of amylose and amylopectin. Starch is referred to as native starch as it is available as an extract from natural sources, for example from rice, potatoes, corn and wheat.
  • Carrier materials which can be used individually or more than one of the abovementioned compounds, in particular selected from the group of alkali metal carbonates, alkali metal sulfates, alkali metal phosphates, zeolites, water-soluble sheet silicates, alkali metal silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
  • alkali carbonates in particular sodium carbonate, alkali silicates, in particular sodium silicate, alkali sulfates, in particular sodium sulfate and zeolites are particularly suitable.
  • Suitable silicones are conventional organopolysiloxanes, which can have a content of finely divided silica, which in turn can also be silanized. Such organopolysiloxanes are described, for example, in European patent application EP 0496510 A1 . Polydiorganosiloxanes and in particular polydimethylsiloxanes, which are known from the prior art, are particularly preferred. Suitable polydiorganosiloxanes have an almost linear chain and have a degree of oligomerization of 40 to 1500. Examples of suitable substituents are methyl, ethyl, propyl, isobutyl, tert. Butyl and phenyl.
  • silicones in general and the polydiorganosiloxanes in particular contain finely divided silica, which can also be silanated.
  • Silicic acid-containing dimethylpolysiloxanes are particularly suitable for the purposes of the present invention.
  • the polydiorganosiloxanes advantageously have a Brookfield viscosity at 25 ° C.
  • silicones in the range from 5000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
  • the silicones are preferably used in the form of their aqueous emulsions. As a rule, the silicone is added to the water initially introduced with stirring. If desired, thickeners such as are known from the prior art can be added to increase the viscosity of the aqueous silicone emulsions.
  • nonionic cellulose ethers such as methyl cellulose, ethyl cellulose and mixed ethers such as methyl hydroxyoxy cellulose, methyl hydroxypropyl cellulose, methyl hydroxybutyl cellulose and anionic carboxy cellulose types such as the carboxymethyl cellulose sodium salt (abbreviation CMC) are particularly preferred.
  • Particularly suitable thickeners are mixtures of CMC to nonionic cellulose ethers in a weight ratio of 80:20 to 40:60, in particular 75:25 to 60:40.
  • aqueous silicone solutions are given starch which is accessible from natural sources, for example from rice, potatoes, corn and wheat.
  • the starch is advantageously present in amounts of 0.1 to 50% by weight, based on the silicone emulsion, and in particular in a mixture with the already described thickener mixtures of sodium carboxymethyl cellulose and a nonionic cellulose ether in the amounts already mentioned.
  • the procedure is expediently such that the thickeners which may be present are allowed to swell in water before the silicones are added.
  • the silicones are expediently incorporated with the aid of effective stirring and mixing devices.
  • the solid preparations can further contain disintegrants or disintegrants.
  • Well-known disintegration aids are, for example, carbonate / citric acid systems, although other organic acids can also be used.
  • Swelling disintegration aids are, for example, synthetic polymers such as optionally crosslinked polyvinylpyrrolidone (PVP) or natural polymers or modified natural products such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • PVP polyvinylpyrrolidone
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention. Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, formally speaking, is a ⁇ -1,4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant.
  • Pure cellulose which is free of cellulose derivatives is particularly preferably used as the cellulose-based disintegrant.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component. This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • microcrystalline celluloses which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, into granules with an average particle size of 200 ⁇ m.
  • the disintegrants can be macroscopically homogeneously distributed in the shaped body, but microscopically they form zones of increased concentration due to the manufacturing process.
  • Disintegrants which can be present within the meaning of the invention, such as, for example, collidone, alginic acid and its alkali metal salts, amorphous or also partially crystalline sheet silicates (bentonites), polyacrylates, polyethylene glycols are, for example, the publications WO 98/40462 (Rettenmaier), WO 98/55583 and WO 98/55590 (Unilever) and WO 98/40463, DE 19709991 and DE 19710254 (Henkel) can be found. Reference is expressly made to the teaching of these writings.
  • the moldings can contain the disintegrants in amounts of 0.1 to 25, preferably 1 to 20 and in particular 5 to 15% by weight, based on the moldings.
  • fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, Linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, Benzyl formate, ethyl methylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and Benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, Hydroxycitronellal, Lilial and Bourgeonal, to the ketones e.g.
  • the hydrocarbons mainly include terpenes such as Lime and pinene.
  • terpenes such as Lime and pinene.
  • perfume oils can also be natural Fragrance mixtures contain, as are available from plant sources, e.g. Pine, Citrus, Jasmine, patchouly, rose or ylang-ylang oil.
  • muscatel sage oil
  • Chamomile oil clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, Olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and Sandalwood oil.
  • the fragrances can be incorporated directly into the agents according to the invention, but they can also be advantageous to apply the fragrances on carriers, which the perfume adheres to the laundry intensify and ensure a long-lasting fragrance of the textiles through a slower fragrance release.
  • Cyclodextrins for example, have proven successful as such carrier materials, the cyclodextrin-perfume complexes can also be coated with other auxiliaries.
  • Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses, which have no outstanding builder properties, or mixtures of these;
  • alkali carbonate and / or amorphous alkali silicate especially sodium silicate with a molar ratio Na 2 O: SiO 2 of 1: 1 to 1: 4.5, preferably of 1: 2 to 1: 3.5, are used.
  • the content of sodium carbonate in the final preparations is preferably up to 40% by weight, advantageously between 2 and 35% by weight.
  • the content of sodium silicate in the agents (without special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • Sodium sulfate for example, may also be present as a filler or filler in amounts of 0 to 10, in particular 1 to 5,% by weight, based on the agent.
  • test fabrics from the Krefeld laundry research (WFK) in Krefeld with various types of soiling are used (Table 1). 2 test fabrics each are attached to a terry towel
  • test fabrics and 3.5 kg of clean accompanying laundry are washed with a Miele W 918 in a color wash program at 30 and 60 ° C, and with a dosage of 75 g / powder per wash cycle.
  • water water hardness 16 ° d
  • the washing result of the detergents according to the invention was determined using a triple determination in different machines of the same type.
  • test specimens are detached from the carrier cloth and ironed.
  • the reflectance of the tissue is measured with a Minolta Cromameter in Y xy mode. In this way, two measurement values were first generated per cycle and tissue (flap 1 + 2). The resulting mean value corresponds to the result of a simple determination. Three of these simple determinations were averaged for the final result (see Table 3).
  • Table 2 below compares the formulations of two comparative tests (V1 and V2) of a formulation (B) according to the invention. All data are to be understood as% by weight and are calculated as active substance.
  • the comparison of the washing results shows that the use of the surfactant systems according to the invention (B) results in improved washing performance.
  • a significant improvement in washing performance can be seen e.g. for soiling with lipstick at washing temperatures of 30 °.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Erfindung betrifft Wasch- und Reinigungsmitteln, die ein Tensidsystem auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen enthalten, sowie dessen Verwendung zur Steigerung der Waschleistung bei niedrigen Temperaturen.

Description

Gebiet der Erfindung
Die Erfindung betrifft Wasch- und Reinigungsmitteln, die ein Tensidsystem auf Basis von Alkyl-und/oder Alkenyloligoglycosiden und Fettalkoholen enthalten, sowie dessen Verwendung zur Steigerung der Waschleistung bei niedrigen Temperaturen.
Stand der Technik
Bisher werden Alkyl- und/oder Alkenyloligoglycoside in geringen Mengen in Form von wässrigen Pasten oder als Granulate mit einem Fettalkoholgehalt unter 1,5% zur Formulierung von Wasch- und Reinigungsmitteln eingesetzt. Um den herstellungsbedingten Überschuß an Fettalkohol auf einen Gehalt von 1,5 Gew.% zu senken, muß der Alkohol abdestilliert werden.
Die internationale Anmeldung WO 94/28006 (Henkel) offenbart nichtionische Emulgatoren mit einem Gehalt von 25 bis 40 Gew.% Alkyl- und/oder Alkenyloligoglycosiden und 75 bis 60 Gew.% Fettalkoholen insbesondere für den Einsatz in Haar- und Körperpflegemittel.
In der EP 0 301 298 A1 (Henkel) wird ein Verfahren zur Herstellung von Alkyl- und/oder Alkenyloligoglycosiden beschrieben, wobei der überschüssige Fettalkohol auf Werte von unterhalb 0,5 Gew.%, vorzugsweise 3 bis 5 Gew.% abdestilliert wird. Das Reaktionsprodukt wird durch Zusatz von Wasser in eine leicht handhabbare 60%ige Paste verarbeitet. Weiterhin werden Erzeugnisse aus diesen Alkyl-und/oder Alkenyloligoglycosid-Gemischen beschrieben, die zum einen vollständig von Fettalkohol befreit sind, d.h. weniger als 0,5 Gew.% Fettalkohol, aber auch 0,5 bis 5, vorzugsweise 2,5 bis 4 Gew.% Fettlalkohol enthalten.
Die vorliegenden Anmeldung beschreibt im Gegensatz zum Stand der Technik Wasch- und Reinigungsmittel auf Basis eines Tensidsystems aus Alkyl- und/oder Alkenyloligoglycosid und Fettalkohol, in denen der Fettalkoholgehalt so eingestellt wurde, das sich eine Optimierung der Waschleistung besonders bei niedrigen Waschtemperaturen, bevorzugt unter 40°C ergibt.
Beschreibung der Erfindung
Der Gegenstand des Hauptanspruches lautet folglich,
  • Wasch- und Reinigungsmittel enthaltend ein Tensidsystem, wobei dieses Tensidsystem aufgebaut ist aus mindestens zwei Komponenten
  • a. Alkyl- und/oder Alkenyloligoglycoside und
  • b. Fettalkohol,
  •    dadurch gekennzeichnet, dass Komponente b in Mengen von 5 bis 35 Gew.% - bezogen auf Aktivsubstanz Alkyl- und/oder Alkenyloligoglycosid ― enthalten ist.
    Der Fettalkoholgehalt (Komponente b) beträgt vorzugsweise 8 bis 32 Gew.%, bevorzugt 10 bis 30 Gew.%, insbesondere 11 bis 25 Gew.% -- bezogen auf Aktivsubstanz Alkyl- und/oder Alkenyloligoglycosid. Der Wassergehalt der Mischung aus den Komponenten a und b beträgt gegebenenfalls maximal 2 Gew.%, vorzugsweise 0,1 bis 1,5 Gew.%.
    Alkyl- und/oder Alkenyloligoglycoside
    Zur Herstellung der erfindungsgemäßen Mittel werden bevorzugt Alkyl- und/oder Alkenyloligoglycoside eingesetzt, die der Formel (I) folgen, R1O-[G]p in der R1 für einen verzweigten und unverzweigten Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie werden vorzugsweise durch Reaktion von Glucose bzw. Dextrose-Monohydrat und Fettalkohol in Gegenwart von Katalysatoren hergestellt.
    Dabei können sie nach einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP A1 0301298, WO 90/03977 und auf "Alkyl Polyglycosides, Technology, Properties and Applications" (K. Hill, VCH 1997) verwiesen.
    Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP), d.h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem
    mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,5 liegt.
    Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R1 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
    Fettalkohole
    Eine weitere Ausführungsform beschreibt Tensidsysteme in Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, dass Fettalkohol der Formel (II), R1OH enthalten sind, wobei R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen steht, und die bereits für R1 beschriebenen Kohlenwasserstoffreste einzubeziehen sind. Es ist also bevorzugt das die erfindungsgemäße Tensidmischung Alkyl- und/oder Alkenyloligoglycosid und Fettalkohol mit gleichen C-Kettenschnitt enthält. Dabei kann der Fettalkohol verfahrensbedingt über das eingesetzte Alkyl- und/oder Alkenyloligoglycoside, oder in seperater Form in die Mittel eingebracht werden.
    Bevorzugt sind weiterhin Mittel, dadurch gekennzeichnet, dass Fettalkohole der Formel (II) und/oder Fettalkohole mit von R1 verschieden Alkyl- und/oder Alkenylresten R2 enthalten sind. Die Mittel können also Fettalkohole enthalten, deren C-Kettenschnitt dem der Alkyl- und/oder Alkenyloligoglycoside entspricht, die also z. B verfahrensbedingt oder separat eingebracht worden sind. Es können aber auch beliebige von R1OH unterschiedliche Fettalkohole R2OH eingesetzt werden, die wiederrum verfahrensdingt schon über die Alkyl- und/oder Alkenyloligoglycoside eingetragen, oder separat zugesetzt werden können. Auch sind Mischungen verschiedener Fettalkohole (R1 und R2) im Tensidsystem möglich. Es wird auch daraufhingewiesen, das die Alkyl- und/oder Alkenyloligoglycoside destillativ von dem herstellungsbedingten Fettalkohol befreit werden können (Abreicherung) und nachträglich mit einem anderen Fettalkohol aufgestockt werden.
    Im folgenden steht R2 für einen aliphatischen, linearen oder verzweigten Kohlenwasserstoffrest mit 4 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen. Typische Beispiele sind Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettalkohol. Besonders bevorzugt sind lineare Fettalkohole mit 12 bis 16 Kohlenstoffatomen, insbesondere mit 12 bis 14 Kohlenstoffatomen.
    Der Alkenylrest R2 kann sich von primären ungesättigten Alkoholen ableiten. Typische Beispiele ungesättigter Alkohole sind Undecen-1-ol, Lauroleinalkohol, Myristoleinalkohol, Palmitoleinalkohol, Petroselaidinalkohol, Oleylalkohol, Elaidylalkohol, Ricinolalkohol, Linoleylalkohol, Linolenylalkohol, Gadoleylalkohol, Arachidonalkohol, Erucaalkohol, Brassidylalkohol, Palmoleylalkohol, Petroselinylalkohol, Arachylalkohol, sowie deren Mischungen und Gemischen aus ungesättigten und gesättigten Fettalkohlen, die durch die in der EP 0724 555 B1 beschriebenen Verfahren erhalten wurden.
    Weiterhin bevorzugt sind Mischungen aus gesättigten und ungesättigten Fettalkoholen auf pflanzlicher Basis, die im Wesentlichen, d.h. mindestens zu 10 Gew.-% ungesättigt sind, und Jodzahlen von 20 bis 130, vorzugsweise 20 bis 110, insbesondere 20 bis 85 und einen Konjugengehalt kleiner 4,5 Gew.-%, vorzugsweise 6 Gew.-% aufweisen.
    Abreicherung
    Bisher wurden niedrige Fettalkoholgehalte in den Alkyl- und/oder Alkenyloligoglycosid-Mischungen angestrebt. Um dies zu erreichen, muß mit hohem Energieeinsatz verdampft werden, das aus ökonomischen Gründen negativ für das Verfahren zu bewerten ist. Des weiteren muß man berücksichtigen, dass die Glykoside temperaturempfindlich sind, also eine schonende und damit technisch aufwendige Abtrennung erforderlich wäre. Somit zeigen höhere Fettalkoholgehalte einen ökonomischen Vorteil.
    Die Abreicherung auf den erfindungsgemäßen Gehalt an Alkoholen ist aus technischer Sicht unter Berücksichtigung der bekannt geringen Temperaturbelastbarkeit von Zuckertensiden (Gefahr der Karamelisierung) durchzuführen. Dazu kommen alle Verdampfertypen in Betracht, die diesem Umstand Rechnung tragen, vorzugsweise jedoch Dünnschichtverdampfer, Fallfilmverdampfer oder Kurzwegverdampfer sowie ― falls erforderlich ― beliebige Kombinationen dieser Bauteile. Die Abreicherung kann dann in an sich bekannter Weise beispielsweise bei Temperaturen im Bereich von 110 bis 160 °C und verminderten Drücken von 0,1 bis 10 mbar erfolgen.
    In einer weiteren Ausführungsform sind Wasch- und Reinigungsmittel bevorzugt, dadurch gekennzeichnet, dass die Mischung aus den Komponenten a und b maximal 2 Gew.%, vorzugsweise 0,1 bis 1,5 Gew.%, insbesondere 0,2 bis 1,2 Gew.% Wasser enthält. Weiterhin bevorzugt sind dabei Mischungen mit Viskositäten im Bereich von 10 bis 1000, vorzugsweise 50 bis 600 [mPa s, 110°C]. Ebenfalls bevorzugt sind Mischungen, die bei Temperaturen von 60 bis 150°C, vorzugsweise 80 bis 110°C gebleicht werden. Besonders bevorzugt werden Mischungen aus a und b eingesetzt, die alle diese Merkmale in sich vereinigen.
    Die Viskosität wird mit einem Rotationsviskosimeter (z.B. Rheomat 115, DIN 145) bestimmt. Es handelt sich dabei um ein Meß-System mit innen rotierendem und äußeren, feststehenden Zylinder.
    In einer bevorzugten Ausführungsform enthalten die Wasch- und Reinigungsmittel alkoxylierte Alkanole, die als Mischung mit den Komponenten a und b, oder aber auch separat den Mitteln zugesetzt werden können. Dabei können sich die über die Mischung eingebrachten alkoxylierten Alkanole von den separat zugesetzten unterscheiden.
    Alkoxylierte Alkanole
    Bevorzugt ist der Einsatz von alkoxylierten Alkanolen der Formel (III) als Rheologie-modifizierendes Mittel. Typische Beispiele hierfür sind Fettalkoholpolyethylenglykol/polypropylenglykolether der Formel (III) bzw. Fettalkoholpolypropylenglykol/polyethylenglykolether der Formel (IV).
    Fettalkoholpolyethylenglykol/polypropylenglykolether
    In einer bevorzugten Ausführungsform werden als Rheologie-modifizierendes Mittel Fettalkoholpolyethylenglykol/polypropylenglykolether der Formel (III), die gegebenenfalls endgruppenverschlossen sind, R3O(CH2CH2O)n[CH2(CH3)CHO]mR4 eingesetzt, in der R3 für einen Alkyl- und/oder Alkylenrest mit 8 bis 22 C-Atomen, R4 für H oder einen Alkylrest mit 1 bis 8 C-Atomen, n für eine Zahl von 1 bis 40, vorzugsweise 1 bis 30, insbesondere 1 bis 15, und m für 0 oder eine Zahl von 1 bis 10 steht.
    Fettalkoholpolypropylenglykol/polyethylenglykolether
    Ebenso bevorzugt werden Fettalkoholpolypropylenglykol/polyethylenglykolether der Formel (IV), die gegebenenfalls endgruppenverschlossen sind, R5O[CH2(CH3)CHO]q(CH2CH2O)rR6 in der R5 für einen Alkyl- und/oder Alkylenrest mit 8 bis 22 C-Atomen, R6 für H oder einen Alkylrest mit 1 bis 8 C-Atomen, q für eine Zahl von 1 bis 5 und r für eine Zahl von 0 bis 15 steht, als Rheologiemodifizeirendes Mittel eingesetzt.
    Einer bevorzugten Ausführungsform entsprechend werdem im erfindungsgemäßen Verfahren Fettalkoholpolyethylenglykol/polypropylenglykolether der Formel (III), in der R3 für einen aliphatischen, gesättigten, geradkettigen oder verzweigten Alkylrest mit 8 bis 16 C-Atomen, n für eine Zahl von 1 bis 10, und m für 0 und R4 für Wasserstoff steht. Es handelt sich hierbei um Anlagerungsprodukte von 1 bis 10 Mol Ethylenoxid an monofunktionelle Alkohole. Als Alkohole sind die oben beschriebenen Alkohole wie Fettalkohole, Oxoalkohole und Guerbetalkohole geeignet.
    Auch geeignet sind von solchen Alkoholethoxylaten solche, die eine eingeengte Homologenverteilung aufweisen.
    Weitere geeignete Vertreter von nichtendgruppenverschlossenen Vertretern sind solche der Formel (III), in der R3 für einen aliphatischen, gesättigten, geradkettigen oder verzweigten Alkylrest mit 8 bis 16 C-Atomen, n für eine Zahl von 2 bis 7, m für eine Zahl von 3 bis 7 und R4 für Wasserstoff steht. Es handelt sich hierbei um Anlagerungsprodukte von zunächst mit 2 bis 7 Mol Ethylenoxid und dann mit 3 bis 7 Mol Propylenoxid alkoxylierten monofunktionellen Alkohole der schon beschriebenen Art.
    Weitere Alkohole und Alkylenoxide
    Einer weiteren Ausführungsform zufolge, enthalten die Wasch- und Reinigungsmittel weitere Alkohole und/oder Alkylenoxiden, vorzugsweise Ethanol, n-Butanol, n-Propanol, iso-Propanol sowie Mono-, Oligo- und Poly-Glycole auf Basis von Ethylen-, Propylen-, Butylen-, insbesondere 1,2-Propandiol und 1,3-Propandiol, und deren Methyl-, Ethyl und Butylethern.
    Bevorzugt sind außerdem Wasch- und Reinigungsmittel, dadurch gekennzeichnet, dass weitere nichtionische Tenside enthalten sind, ausgewählt aus der Gruppe, die gebildet wird von Alkyl-und/oder Alkenyloligoglycosiden (unterschiedlich von den erfindungsgemäßen), weiteren alkoxylierten Alkanolen, Hydroxymischethern, Fettsäureniedrigalkylester und Aminoxiden.
    Nichtionische Tenside
    Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglycosiden (unterschiedlich von den erfindungsgemäßen), weiteren alkoxylierten Alkanolen, Hydroxymischethem, Fettsäureniedrigalkylester und Aminoxiden eingesetzt.
    Hydroxymischether
    Hydroxymischether (HME) stellen bekannte nichtionische Tenside mit unsymmetrischer Etherstruktur und Polyalkylenglycolanteilen dar, welche man beispielsweise erhält, indem man Olefinepoxide mit Fettalkoholpolyglycolethern einer Ringöffnungsreaktion unterwirft. Entsprechende Produkte und deren Einsatz im Bereich der Reinigung harter Oberflächen ist beispielsweise Gegenstand der europäischen Patentschrift EP-B1 0693049 sowie der internationalen Patentanmeldung WO 94/22800 (Olin) sowie der dort genannten Schriften. Typischerweise folgende Hydroxymischether der allgemeinen Formel (V),
    Figure 00080001
    in der R7 für einen linearen oder verzweigten Alkylrest mit 2 bis 18, vorzugsweise 10 bis 16 Kohlenstoffatomen, R2 für Wasserstoff oder einen linearen oder verzweigten Alkylrest mit 2 bis 18 Kohlenstoffatomen, R3 für Wasserstoff oder Methyl, R10 für einen linearen oder verzweigten, Alkyl-und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und e für Zahlen von 1 bis 50, vorzugsweise 2 bis 25 und insbesondere 5 bis 15 steht, mit der Maßgabe, daß die Summe der Kohlenstoffatome in den Resten R7 und R8 mindestens 4 und vorzugsweise 12 bis 18 beträgt. Wie aus der Formel hervorgeht, können die HME Ringöffnungsprodukte sowohl von innenständigen Olefinen (R8 ungleich Wasserstoff) oder endständigen Olefinen (R8 gleich Wasserstoff) sein, wobei letztere im Hinblick auf die leichtere Herstellung und die vorteilhafteren anwendungstechnischen Eigenschaften bevorzugt sind. Gleichfalls kann der polare Teil des Moleküls eine Polyethylenglycol- (PE) oder eine Polypropylenglycolkette (PP) sein; ebenfalls geeignet sind gemischte Ketten von PE- und PP-Einheiten, sei es in statistischer oder Blockverteilung. Typische Beispiele sind Ringöffnungsprodukte von 1,2-Hexenepoxid, 2,3-Hexenepoxid, 1,2-Octenepoxid, 2,3-Ocetenepoxid, 3,4-Octenepoxid, 1,2-Decenepoxid, 2,3-Decenepoxid, 3,4-Decenepoxid, 4,5-Decenepoxid, 1,2-Dodecenepoxid, 2,3-Dodecenepoxid, 3,4-Dode-cenepoxid, 4,5-Dodecenepoxid, 5,6-Dodecenepoxid, 1,2-Tetradecenepoxid, 2,3-Tetradecenepoxid, 3,4-Tetradecenepoxid, 4,5-Tetradecenepoxid, 5,6-Tetradecenepoxid, 6,7-Tetradecenepoxid, 1,2-Hexa-decenepoxid, 2,3-Hexadecenepoxid, 3,4-Hexadecenepoxid, 4,5-Hexadecenepoxid, 5,6-Hexadecen-epoxid, 6,7-Hexadecenepoxid, 7,8-Hexadecenepoxid, 1,2-Octadecenepoxid, 2,3-Octadecenepoxid, 3,4-Octadecenepoxid, 4,5-Octadecenepoxid, 5,6-Octadecenepoxid, 6,7-Octadecenepoxid, 7,8-Octade-cenepoxid und 8,9-Octadecenepoxid sowie deren Gemische mit Anlagerungsprodukten von durch-schnittlich 1 bis 50, vorzugsweise 2 bis 25 und insbesondere 5 bis 15 Mol Ethylenoxid und/oder 1 bis 10, vorzugsweise 2 bis 8 und insbesondere 3 bis 5 Mol Propylenoxid an gesättigte und/oder ungesättigte primäre Alkohole mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, wie z.B. Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen.
    Alkoxylierte Fettsäureniedrigalkylester
    Als alkoxylierte Fettsäureniedrigalkylester kommen Tenside der Formel (VI) in Betracht, R11CO(OCH2CHR12)sOR13 in der R11CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R12 für Wasserstoff oder Methyl, R13 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und s für Zahlen von 1 bis 20 steht. Typische Beispiele sind die formalen Einschubprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Propylenoxid in die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl- und tert.-Butylester von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Üblicherweise erfolgt die Herstellung der Produkte durch Insertion der Alkylenoxide in die Carbonylesterbindung in Gegenwart spezieller Katalysatoren, wie z.B. calcinierter Hydrotalcit. Besonders bevorzugt sind Umsetzungsprodukte von durchschnittlich 5 bis 10 Mol Ethylenoxid in die Esterbindung von technischen Kokosfettsäuremethylestern.
    Aminoxide
    Als Aminoxide können Verbindungen der Formel (VII) und/oder eingesetzt werden.
    Figure 00090001
    Figure 00090002
    Bei der Herstellung der Aminoxide der Formel (VII) geht man von tertiären Fettaminen aus, die mindestens einen langen Alkylrest aufweisen, und oxidiert sie in Gegenwart von Wasserstoffperoxid. Bei den im Sinne der Erfindung in Betracht kommenden Aminoxiden der Formel (VII), steht R16 für einen linearen oder verzweigten Alkylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, sowie R14 und R15 unabhängig voneinander für R16 oder einen gegebenenfalls hydroxysubstituierten Alkylrest mit 1 bis 4 Kohlenstoffatomen. Vorzugsweise werden Aminoxide der Formel (VII) eingesetzt, in der R16 und R14 für C12/14- bzw. C12/18-Kokosalkylreste stehen und R15 einen Methyl- oder einen Hydroxyethylrest bedeutet. Ebenfalls bevorzugt sind Aminoxide der Formel (VII), in denen R16 für einen C12/14- bzw. C12/18- Kokosalkylrest steht und R14 und R15 die Bedeutung eines Methyl- oder Hydroxyethylrestes haben.
    Weitere geeignete Aminoxide sind Alkylamido-aminoxide der Formel (VIII), wobei der Alkylamido-Rest R23CONH durch die Reaktion von linearen oder verzweigten Carbonsäuren, vorzugsweise mit 6 bis 22, bevorzugt mit 12 bis 18 Kohlenstoffatomen, insbesondere aus C12/14- bzw. C12/18- Fettsäuren mit Aminen entsteht. Dabei stellt R24 eine linerare oder verzweigte Alkylengruppe dar mit 2 bis 6, vorzugsweise 2 bis 4 Kohlenstoffatomen und R14 und R15 haben die in Formel (VII) angegebene Bedeutung.
    Außerdem bevorzugt sind Wasch- und Reinigungsmittel, dadurch gekennzeichnet, dass anionische Tenside enthalten sind, ausgewählt aus der Gruppe, die gebildet wird von Alkyl- und/oder Alkenylsulfaten, Alkylethersulfaten, Alkylbenzolsulfonate, Seifen, Monoglycerid(ether)sulfate und Alkansulfonaten.
    Anionische Tenside
    Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, sekundäre Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkyl- und/oder Alkenylsulfate, Alkylethersulfate, Glycerinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofem die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
    Vorzugsweise sind als anionische Tenside Alkyl- und/oder Alkenylsulfate, Alkylethersulfate, Alkylbenzolsulfonate, Monoglycerid(ether)sulfate und sekundäre Alkansulfonate, insbesondere Fettalkoholsulfate, Fettalkoholethersulfate, sekundäre Alkansulfonate und lineare Alkylbenzolsulfonate.
    Alkyl- und/oder Alkenylsulfate
    Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer Alkohole zu verstehen, die der Formel (IX) folgen, R40O-SO3X in der R40 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht.
    Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelenschen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talgfettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze.
    Alkylethersulfate
    Alkylethersulfate ("Ethersulfate") stellen bekannte anionische Tenside dar, die großtechnisch durch SO3- oder Chlorsulfonsäure (CSA)-Sulfatierung von Fettalkohol- oder Oxoalkoholpolyglycolethern und nachfolgende Neutralisation hergestellt werden. Im Sinne der Erfindung kommen Ethersulfate in Betracht, die der Formel (X) folgen, R17O-(CH2CH2O)aSO3X in der R17 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, a für Zahlen von 1 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele sind die Sulfate von Anlagerungsprodukten von durchschnittlich 1 bis 10 und insbesondere 2 bis 5 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen in Form ihrer Natrium- und/oder Magnesiumsalze. Die Ethersulfate können dabei sowohl eine konventionelle als auch eine eingeengte Homologenverteilung aufweisen. Besonders bevorzugt ist der Einsatz von Ethersulfaten auf Basis von Addukten von durchschnittlich 2 bis 3 Mol Ethylenoxid an technische C12/14- bzw. C12/18- Kokosfettalkoholfraktionen in Form ihrer Natrium- und/oder Magnesiumsalze.
    Alkylbenzolsulfonate
    Alkylbenzolsulfonate folgen vorzugsweise der Formel (XI), R18-Ph-SO3X in der R18 für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen, Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Vorzugsweise werden Dodecylbenzolsulfonate, Tetradecylbenzolsulfonate, Hexadecylbenzolsulfonate sowie deren technische Gemische in Form der Natriumsalze eingesetzt.
    Monoglycerid(ether)sulfate
    Monoglyceridsulfate und Monoglyceridethersulfate stellen bekannte anionische Tenside dar, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Üblicherweise geht man zu ihrer Herstellung von Triglyceriden aus, die gegebenenfalls nach Ethoxylierung zu den Monoglyceriden umgeestert und nachfolgend sulfatiert und neutralisiert werden. Gleichfalls ist es möglich, die Partialglyceride mit geeigneten Sulfatierungsmitteln, vorzugsweise gasförmiges Schwefeltrioxid oder Chlorsulfonsäure umzusetzen [vgl. EP 0561825 B1, EP 0561999 B1 (Henkel)]. Die neutralisierten Stoffe können ― falls gewünscht ― einer Ultrafiltration unterworfen werden, um den Elektrolytgehalt auf ein gewünschtes Maß zu vermindern [DE 4204700 A1 (Henkel)]. Übersichten zur Chemie der Monoglyceridsulfate sind beispielsweise von A. K. Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F. U. Ahmed J.Am.Oil.Chem.Soc. 67, 8 (1990) erschienen. Die im Sinne der Erfindung einzusetzenden Monoglycerid(ether)sulfate folgen der Formel (XI),
    Figure 00130001
    in der R19CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, c, d und e in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (XII) eingesetzt, in der R19CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht.
    Sekundäre Alkansulfonate
    Unter Alkansulfonate versteht man Verbindungen der Formel (XIII).
    Figure 00130002
    R20 und R21 stehen für Alkylreste, wobei R20 und R21 zusammen nicht mehr als 50 Kohlenstoffatome haben sollen.
    Seifen
    Unter Seifen sind schließlich Fettsäuresalze der Formel (XIV) zu verstehen, R41CO-OX in der R41CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 und vorzugsweise 12 bis 18 Kohlenstoffatomen und X für Alkali- und/oder Erdalkali, Ammonium, Alkylammonium oder Alkanolammonium steht. Typische Beispiele sind die Natrium-, Kalium-, Magnesium-, Ammonium- und Triethanolammoniumsalze der Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Kokos- oder Palmkernfettsäure in Form ihrer Natrium- oder Kaliumsalze eingesetzt.
    In einer weiteren Ausführungsform sind Wasch- und Reinigungsmittel beschrieben, dadurch gekennzeichnet, dass kationische, amphotere bzw. zitterionische Tenside enthalten sind, ausgewählt aus der Gruppe, die gebildet wird von Esterquats, Alkylbetainen, Amidoaminbetainen und Imidazoliniumbetainen.
    Kationische Tenside
    Typische Beispiele für kationische Tenside sind insbesondere Tetraalkylammoniumverbindungen, wie beispielsweise Dimethyldistearylammoniumchlorid oder Hydroxyethyl Hydroxycetyl Dimmonium Chloride (Dehyquart E) oder aber Esterquats. Hierbei handelt es sich beispielsweise um quaternierte Fettsäuretriethanolaminestersalze der Formel (XV),
    Figure 00140001
    in der R44CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R45 und R46 unabhängig voneinander für Wasserstoff oder R14CO, R15 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH2O)m4H-Gruppe, m1, m2 und m3 in Summe für 0 oder Zahlen von 1 bis 12, m4 für Zahlen von 1 bis 12 und Y für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische C12/18-Kokosfettsäuren und insbesondere teilgehärtete C16/18-Talg- bzw. Palmfettsäuren sowie elaidinsäurereiche C16/18-Fettsäureschnitte eingesetzt. Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestern mit einem durchschnittlichen Veresterungsgrad von 1,5 bis 1,9 dar und leiten sich von technischer C16/18- Talg-bzw. Palmfettsäure (lodzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quaternierte Fettsäuretriethanolaminestersalze der Formel (VIII) als besonders vorteilhaft erwiesen, in der R44CO für einen Acylrest mit 16 bis 18 Kohlenstoffatomen, R45 für R45CO, R46 für Wasserstoff, R17 für eine Methylgruppe, m1, m2 und m3 für 0 und Y für Methylsulfat steht.
    Neben den quaternierten Fettsäuretriethanolaminestersalzen kommen als Esterquats ferner auch quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (XVI) in Betracht,
    Figure 00150001
    in der R48CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R49 für Wasserstoff oder R48CO, R50 und R51 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m5 und m6 in Summe für 0 oder Zahlen von 1 bis 12 und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht.
    Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen der Formel (XVII) zu nennen,
    Figure 00150002
    in der R52CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R53 für Wasserstoff oder R52CO, R54, R55 und R56 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m7 und m8 in Summe für 0 oder Zahlen von 1 bis 12 und X wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht.
    Schließlich kommen als Esterquats noch Stoffe in Frage, bei denen die Ester- durch eine Amidbindung ersetzt ist und die vorzugsweise basierend auf Diethylentriamin der Formel (XVIII) folgen,
    Figure 00150003
    in der R57CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R58 für Wasserstoff oder R57CO, R59 und R60 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht. Derartige Amidesterquats sind beispielsweise unter der Marke Incroquat® (Croda) im Markt erhältlich.
    Amphothere bzw. zwitterionische Tenside
    Beispiele für geeignete amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Beispiele für geeignete Alkylbetaine stellen die Carboxyalkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (XII) folgen,
    Figure 00160001
    in der R31 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R32 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R33 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, q1 für Zahlen von 1 bis 6 und Z für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, Decyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethylmethylamin, C12/14-Kokosalkyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethylamin, Stearylethylmethyl-amin, Oleyldimethylamin, C16/18-Talgalkyldimethylamin sowie deren technische Gemische.
    Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (XX) folgen,
    Figure 00160002
    in der R34CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, R35 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R36 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, q2 für Zahlen von 1 bis 6, q3 für Zahlen von 1 bis 3 und Z wieder für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, namentlich Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Gemische, mit N,N-Dimethylaminoethylamin, N,N-Dimethylaminopropylamin, N,N-Diethylaminoethylamin und N,N-Diethyl-aminopropylamin, die mit Natriumchloracetat kondensiert werden. Bevorzugt ist der Einsatz eines Kondensationsproduktes von C8/18-Kokosfettsäure-N,N-dime-thylaminopropylamid mit Natriumchloracetat.
    Weiterhin kommen auch Imidazoliniumbetaine in Betracht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fettsäure mit mehrwertigen Aminen wie beispielsweise Aminoethylethanolamin (AEEA) oder Diethylentriamin erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offenkettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum C12/14-Kokosfettsäure, die anschließend mit Natriumchloracetat betainisiert werden.
    Die Waschmittel können die anionischen, nichtionischen und/oder amphoteren bzw. zwitterionischen Tenside in Mengen von 0,5 bis 50, vorzugsweise 5 bis 25 und insbesondere 10 bis 20 Gew.-%-bezogen auf die Waschmittel - enthalten.
    Die Wasch- und Reinigungsmittel enthalten 0,5 bis 25 Gew.%, vorzugsweise 1 bis 15 Gew.%, insbesondere 2 bis 10 Gew.% Alkyl- und/oder Alkenyloligoglycoside ― bezogen auf Aktivsubstanz der Formulierung.
    Ein weiterer Gegenstand der Erfindung ist die Verwendung der Mischung der Komponenten a und b in Wasch- und Reinigungsmitteln zur Steigerung der Waschleistung bei niederigen Temperaturen, vorzugsweise bei 30 bis 40°C. Die Wasch- und Reinigungsmittel können in verschiedenen Darreichungsformen vorliegen.
    Bevorzugt ist dabei die Verwendung der Komponenten a und b in Wasch- und Reinigungsmittel, die in Form von Tabletten, Pulvern, Flüssigkeiten oder Gelen vorliegen.
    Die Wasch- und Reinigungsmittel können durch Sprühtrocknung und Zusatz eines flüssigen oder festen Fettalkohol-haltigen Alkyl- und/oder Alkenyloligoglycosids in der Aufbereitung hergestellt werden, aber auch durch Sprühmischprozesse und direkter Zugabe der flüssigen oder festen Mischung. Wie bereits beschrieben kann u.a. der Fettalkohol separat in das Wasch- und Reinigungsmittel eingebracht werden. Weiterhin sind alle bekannten Verfahren zur Herstellung der Wasch- und Reinigungsmittel möglich.
    Weitere Waschmittelzusatzstoffe Builder
    Die erfindungsgemäßen Wasch- und Reinigungsmittelkönnen des weiteren zusätzliche anorganische und organische Buildersubstanzen beispielsweise in Mengen von 10 bis 50 und vorzugsweise 15 bis 35 Gew.-% - bezogen auf die Mittel - enthalten, wobei als anorganische Buildersubstanzen hauptsächlich Zeolithe kristalline Schichtsilicate, amorphe Silicate und ― soweit zulässig ― auch Phosphate, wie z.B. Tripolyphosphat zum Einsatz kommen. Die Menge an Co-Builder ist dabei auf die bevorzugten Mengen an Zeolith und Phosphaten anzurechnen.
    Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
    Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β-als auch δ-Natriumdisilicate Na2Si2O5·yH2O bevorzugt, wobei β-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 2334899 A1, EP 0026529 A1 und DE 3526405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln (OH)4Si8-yAly(MgxAl4-x)O20   Montmorrilonit (OH)4Si8-yAly(Mg6-zLiz)O20   Hectorit (OH)4Si8-yAly(Mg6-z Alz)O20   Saponit mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Calciumionen und stark färbenden Eisenionen sind.
    Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE 4400024 A1 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate.
    Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
    Co-Builder
    Brauchbare organische Gerüstsubstanzen, die als Co-Builder in Frage kommen, sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
    Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2 000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE 19600018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
    Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
    Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5 000 bis 200 000, vorzugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Polystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granulare Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE 4300772 A1 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 4221381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 4303320 A1 und DE 4417734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
    Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
    Öl- und fettlösende Stoffe
    Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit aus Textilien positiv beeinflussen. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
    Bleichmittel und Bleichaktivatoren
    Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 35 Gew.-% und insbesondere bis 30 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
    Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 19616693 A1 und DE 19616767 A1 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0525239 A1 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Penta-acetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldungen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 19616769 A1 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE 19616770 sowie der internationalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE 4443177 A1 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0446982 B1 und EP 0453 003 B1 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 19529905 A1 bekannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 19620267 A1 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 19536082 A1 bekannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 19605688 A1 beschriebenen Mangan-, Eisen-, Kobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium-und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 19620411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe, die in der deutschen Patentanmeldung DE 4416438 A1 beschriebenen Mangan-, Kupfer- und Kobalt-Komplexe, die in der europäischen Patentanmeldung EP 0272030 A1 beschriebenen Kobalt-Komplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kupfer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490 A1 und EP 0544519 A1 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 19613103 A1 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
    Enzyme und Enzymstabilisatoren
    Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
    Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
    Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
    Vergrauungsinhibitoren
    Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
    Optische Aufheller
    Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vorzugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).
    Polymere
    Als schmutzabweisende Polymere ("soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d.h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen.
    Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylenglycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiterhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhône-Poulenc).
    Entschäumer
    Als Entschäumer können wachsartige Verbindungen eingesetzt werden. Als "wachsartig" werden solche Verbindungen verstanden, die einen Schmelzpunkt bei Atmosphärendruck über 25 °C (Raumtemperatur), vorzugsweise über 50 °C und insbesondere über 70 °C aufweisen. Die wachsartigen Entschäumersubstanzen sind in Wasser praktisch nicht löslich, d.h. bei 20 °C weisen sie in 100 g Wasser eine Löslichkeit unter 0,1 Gew.-% auf. Prinzipiell können alle aus dem Stand der Technik bekannten wachsartigen Entschäumersubstanzen enthalten sein. Geeignete wachsartige Verbindungen sind beispielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkoholen sowie Paraffinwachse oder Mischungen derselben. Alternativ können natürlich auch die für diesen Zweck bekannten Silikonverbindungen eingesetzt werden.
    Geeignete Paraffinwachse stellen im allgemeinen ein komplexes Stoffgemisch ohne scharfen Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch Differential-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Abkühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25 °C, erfindungsgemäß nicht brauchbar. Zu den Weichwachsen, die einen Schmelzpunkt im Bereich von 35 bis 50 °C aufweisen, zählen vorzugsweise der Gruppe der Petrolate und deren Hydrierprodukte. Sie setzen sich aus mikrokristallinen Paraffinen und bis zu 70 Gew.-% Öl zusammen, besitzen eine salbenartige bis plastisch feste Konsistenz und stellen bitumenfreie Rückstände aus der Erdölverarbeitung dar. Besonders bevorzugt sind Destillationsrückstände (Petrolatumstock) bestimmter paraffinbasischer und gemischtbasischer Rohöle, die zu Vaseline weiterverarbeitet werden. Vorzugsweise handelt es sich weiterhin um aus Destillationsrückständen paraffin- und gemischtbasyischer Rohöle und Zylinderöldestillate mittels Lösungsmittel abgeschiedene bitumenfreie, ölartige bis feste Kohlenwasserstoffe. Sie sind von halbfester, zügiger, klebriger bis plastisch-fester Konsistenz und besitzen Schmelzpunkte zwischen 50 und 70 °C. Diese Petrolate stellen die wichtigste Ausgangsbasis für die Herstellung von Mikrowachsen dar. Weiterhin geeignet sind die aus hochviskosen, paraffinhaltigen Schmieröldestillaten bei der Entparaffinierung abgeschiedenen festen Kohlenwasserstoffen mit Schmelzpunkten zwischen 63 und 79 °C. Bei diesen Petrolaten handelt es sich um Gemische aus mikrokristallinen Wachsen und hochschmelzenden n-Paraffinen. Eingesetzt werden können beispielsweise die aus EP 0309931 A1 bekannten Paraffinwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit einem Erstarrungspunkt von 62 °C bis 90 °C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstarrungspunkt von 42 °C bis 56 °C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungspunkt von 35 °C bis 40 °C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im Bereich von 30 °C bis 90 °C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest erscheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können. Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt dieser Flüssiganteil so niedrig wie möglich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30 °C einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40 °C einen Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von 5 Gew.-% bis 15 Gew.-%, bei 60 °C einen Flüssiganteil von 30 Gew.-% bis 60 Gew.-%, insbesondere von 40 Gew.-% bis 55 Gew.-%, bei 80 °C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei 90 °C einen Flüssiganteil von 100 Gew.-% auf. Die Temperatur, bei der ein Flüssiganteil von 100 Gew.-% des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch unter 85 °C, insbesondere bei 75 °C bis 82 °C. Bei den Paraffinwachsen kann es sich um Petrolatum, mikrokristalline Wachse bzw. hydrierte oder partiell hydrierte Paraffinwachse handeln.
    Geeignete Bisamide als Entschäumer sind solche, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeignete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Geeignete Diamine sind beispielsweise Ethylendiamin, 1,3-Propylendiamin, Tetramethylendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevorzugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind Bismyristoylethylendiamin, Bispalmitoylethylendiamin, Bisstearoylethylendiamin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins.
    Geeignete Carbonsäureester als Entschäumer leiten sich von Carbonsäuren mit 12 bis 28 Kohlenstoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stearinsäure, Hydroxystearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurinsäure. Der Alkoholteil des Carbonsäureesters enthält einen ein- oder mehrwertigen Alkohol mit 1 bis 28 Kohlenstoffatomen in der Kohlenwasserstoffkette. Beispiele von geeigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol, 12-Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Polyvinylalkohol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevorzugte Ester sind solche von Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure, Stearinsäure, Ölsäure, Palmitinsäure oder Myristinsäure ausgewählt wird. In Frage kommende Ester mehrwertiger Alkohole sind beispielsweise Xylitmonopalmitat, Pentarythritmonostearat, Glycerin-monostearat, Ethylenglykolmonostearat und Sorbitanmonostearat, Sorbitanpalmitat, Sorbitanmonolaurat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkylsorbitanmono- und -diester. Brauchbare Glycerinester sind die Mono-, Di- oder Triester von Glycerin und genannten Carbonsäuren, wobei die Mono- oder Dieester bevorzugt sind. Glycerinmonostearat, Glycerinmonooleat, Glycerinmonopalmitat, Glycerinmonobehenat und Glycerindistearat sind Beispiele hierfür. Beispiele für geeignete natürliche Ester als Entschäumer sind Bienenwachs, das hauptsächlich aus den Estern CH3(CH2)24COO(CH2)27CH3 und CH3(CH2)26COO(CH2)25CH3 besteht, und Carnaubawachs, das ein Gemisch von Carnaubasäurealkylestern, oft in Kombination mit geringen Anteilen freier Carnaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlenwasserstoffen, ist.
    Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbesondere Behensäure, Stearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 18 bis 22 C-Atomen. In gleicher Weise können die entsprechenden Fettalkohole gleicher C-Kettenlänge eingesetzt werden.
    Weiterhin können zusätzlich Dialkylether als Entschäumer enthalten sein. Die Ether können asymmetrisch oder aber symmetrisch aufgebaut sein, d.h. zwei gleiche oder verschiedene Alkylketten, vorzugsweise mit 8 bis 18 Kohlenstoffatomen enthalten. Typische Beispiele sind Di-n-octylether, Di-i-octylether und Di-n-stearylether, insbesondere geeignet sind Dialkylether, die einen Schmelzpunkt über 25 °C, insbesondere über 40 °C aufweisen.
    Weitere geeignete Entschäumerverbindungen sind Fettketone, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Zu ihrer Herstellung geht man beispielsweise von Carbonsäuremagnesiumsalzen aus, die bei Temperaturen oberhalb von 300 °C unter Abspaltung von Kohlendioxid und Wasser pyrolysiert werden, beispielsweise gemäß der deutschen Offenlegungsschrift DE 2553900 OS. Geeignete Fettketone sind solche, die durch Pyrolyse der Magnesiumsalze von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure hergestellt werden.
    Weitere geeignete Entschäumer sind Fettsäurepolyethylenglykolester, die vorzugsweise durch basisch homogen katalysierte Anlagerung von Ethylenoxid an Fettsäuren erhalten werden. Insbesondere erfolgt die Anlagerung von Ethylenoxid an die Fettsäuren in Gegenwart von Alkanolaminen als Katalysatoren. Der Einsatz von Alkanolaminen, speziell Triethanolamin, führt zu einer äußerst selektiven Ethoxylierung der Fettsäuren, insbesondere dann, wenn es darum geht, niedrig ethoxylierte Verbindungen herzustellen. Innerhalb der Gruppe der Fettsäurepolyethylenglykolester werden solche bevorzugt, die einen Schmelzpunkt über 25 °C, insbesondere über 40 °C aufweisen .
    Innerhalb der Gruppe der wachsartigen Entschäumer werden besonders bevorzugt die beschriebenen Paraffinwachse alleine als wachsartige Entschäumer eingesetzt oder in Mischung mit einem der anderen wachsartigen Entschäumer, wobei der Anteil der Paraffinwachse in der Mischung vorzugsweise über 50 Gew.-% - bezogen auf wachsartige Entschäumermischung - ausmacht. Die Paraffinwachse können bei Bedarf auf Träger aufgebracht sein. Als Trägermaterial sind alle bekannten anorganischen und/oder organischen Trägermaterialien geeignet. Beispiele für typische anorganische Trägermaterialien sind Alkalicarbonate, Alumosilicate, wasserlösliche Schichtsilicate, Alkalisilicate, Alkalisulfate, beispielsweise Natriumsulfat, und Alkaliphosphate. Bei den Alkalisilicaten handelt es sich vorzugsweise um eine Verbindung mit einem Molverhältnis Alkalioxid zu SiO2 von 1 : 1,5 bis 1 : 3,5. Die Verwendung derartiger Silicate resultiert in besonders guten Korneigenschaften, insbesondere hoher Abriebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial bezeichneten Alumosilicaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX. Zu den als wasserlöslichen Schichtsilicaten bezeichneten Verbindungen gehören beispielsweise amorphes oder kristallines Wasserglas. Weiterhin können Silicate Verwendung finden, welche unter der Bezeichnung Aerosil® oder Sipernat® im Handel sind. Als organische Trägermaterialien kommen zum Beispiel filmbildende Polymere, beispielsweise Polyvinylalkohole, Polyvinylpyrrolidone, Poly-(meth)acrylate, Polycarboxylate, Cellulosederivate und Stärke in Frage. Brauchbare Celluloseether sind insbesondere Alkalicarboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und sogenannte Cellulosemischether, wie zum Beispiel Methylhydroxyethylcellulose und Methylhydroxypropylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carboxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose üblicherweise einen Substitutionsgrad von 0,5 bis 0,8 Carboxymethylgruppen pro Anhydroglukoseeinheit und die Methylcellulose einen Substitutionsgrad von 1,2 bis 2 Methylgruppen pro Anhydroglukoseeinheit aufweist. Die Gemische enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtionischen Celluloseether in Gewichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 : 50. Als Träger ist auch native Stärke geeignet, die aus Amylose und Amylopectin aufgebaut ist. Als native Stärke wird Stärke bezeichnet, wie sie als Extrakt aus natürlichen Quellen zugänglich ist, beispielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und damit leicht zugänglich. Als Trägermaterialien können einzeln oder mehrere der vorstehend genannten Verbindungen eingesetzt werden, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alkalisulfate, Alkaliphosphate, Zeolithe, wasserlösliche Schichtsilicate, Alkalisilicate, Polycarboxylate, Celluloseether, Polyacrylat/Polymethacrylat und Stärke. Besonders geeignet sind Mischungen von Alkalicarbonaten, insbesondere Natriumcarbonat, Alkalisilicaten, insbesondere Natriumsilicat, Alkalisulfaten, insbesondere Natriumsulfat und Zeolithen.
    Geeignete Silicone sind übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kieselsäure, die wiederum auch silaniert sein kann, aufweisen können. Derartige Organopolysiloxane sind beispielsweise in der Europäischen Patentanmeldung EP 0496510 A1 beschrieben. Besonders bevorzugt sind Polydiorganosiloxane und insbesondere Polydimethylsiloxane, die aus dem Stand der Technik bekannt sind. Geeignete Polydiorganosiloxane weisen eine nahezu lineare Kette auf und weisen einen Oligomerisierungsgrad von 40 bis 1500 auf. Beispiele für geeignete Substituenten sind Methyl, Ethyl, Propyl, Isobutyl, tert. Butyl und Phenyl. Weiterhin geeignet sind amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. In der Regel enthalten die Silicone im allgemeinen und die Polydiorganosiloxane im besonderen feinteilige Kieselsäure, die auch silaniert sein kann. Insbesondere geeignet sind im Sinne der vorliegenden Erfindung kieselsäurehaltige Dimethylpolysiloxane. Vorteilhafterweise haben die Polydiorganosiloxane eine Viskosität nach Brookfield bei 25 °C (Spindel 1, 10 Upm) im Bereich von 5000 mPas bis 30 000 mPas, insbesondere von 15 000 bis 25 000 mPas. Vorzugsweise werden die Silicone in Form ihrer wäßrigen Emulsionen eingesetzt. In der Regel gibt man das Silicon zu vorgelegtem Wasser unter Rühren. Falls gewünscht kann man zur Erhöhung der Viskosität der wäßrigen Siliconemulsionen Verdickungsmittel, wie sie aus dem Stand der Technik bekannt sind, zugeben. Diese können anorganischer und/oder organischer Natur sein, besonders bevorzugt werden nichtionische Celluloseether wie Methylcellulose, Ethylcellulose und Mischether wie Methylhydoxyethylcellulose, Methylhydroxypropylcellulose, Methylhydroxybutylcellulose sowie anionische Carboxycellulose-Typen wie das Carboxymethylcellulose-Natriumsalz (Abkürzung CMC). Insbsonders geeignete Verdicker sind Mischungen von CMC zu nicht-ionischen Celluloseethern im Gewichtsverhältnis 80 : 20 bis 40 : 60, insbesondere 75 : 25 bis 60 : 40. In der Regel und besonders bei Zugabe der beschriebenen Verdickermischungen empfehlen sich Einsatzkonzentrationen von cirka 0,5 bis 10, insbesondere von 2,0 bis 6 Gew.-% - berechnet als Verdickermischung und bezogen auf wäßrige Siliconemulsion. Die Gehalt an Siliconen der beschriebenen Art in den wäßrigen Emulsionen liegt vorteilhafterweise im Bereich von 5 bis 50 Gew.-%, insbesondere von 20 bis 40 Gew.-% - berechnet als Silicone und bezogen auf wäßrige Siliconemulsion. Nach einer weiteren vorteilhaften Ausgestaltung erhalten die wäßrigen Siliconlösungen als Verdicker Stärke, die aus natürlichen Quellen zugänglich ist, beispielsweise aus Reis, Kartoffeln, Mais und Weizen. Die Stärke ist vorteilhafterweise in Mengen von 0,1 bis zu 50 Gew.-% - bezogen auf Silicon-Emulsion - enthalten und insbesondere in Mischung mit den schon beschriebenen Verdickermischungen aus Natrium-Carboxymethylcellulose und einem nichtionischen Celluloseether in den schon genannten Mengen. Zur Herstellung der wäßrigen Siliconemulsionen geht man zweckmäßigerweise so vor, daß man die gegebenenfalls vorhandenen Verdickungsmittel in Wasser vorquellen läßt, bevor die Zugabe der Silicone erfolgt. Das Einarbeiten der Silicone erfolgt zweckmäßigerweise mit Hilfe wirksamer Rühr- und Mischungsvorrichtungen.
    Sprengmittel
    Die festen Zubereitungen können des weiteren Spreng- oder Desintegrationsmittel enthalten. Hierunter sind Stoffe zu verstehen, die den Formkörpern zugegeben werden, um deren Zerfall beim Inkontaktbringen mit Wasser zu beschleunigen. Übersichten hierzu finden sich z.B. in J.Pharm.Sci. 61 (1972), Römpp Chemilexikon, 9. Auflage, Band 6, S. 4440 sowie und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184). Diese Stoffe vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie gegebenenfalls quervernetztes Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate. Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxylgruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulosederivate einsetzen. In die Gruppe der Cellulosederivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Sprengmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind. Die Sprengmittel können im Formkörper makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch gesehen bilden sie jedoch herstellungsbedingt Zonen erhöhter Konzentration. Sprengmittel, die im Sinne der Erfindung zugegen sein können, wie z.B. Kollidon, Alginsäure und deren Alkalisalze, amorphe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyacrylate, Polyethylenglycole sind beispielsweise den Druckschriften WO 98/40462 (Rettenmaier), WO 98/55583 und WO 98/55590 (Unilever) und WO 98/40463, DE 19709991 und DE 19710254 (Henkel) zu entnehmen. Auf die Lehre dieser Schriften wird ausdrücklich Bezug genommen. Die Formkörper können die Sprengmittel in Mengen von 0,1 bis 25, vorzugsweise 1 bis 20 und insbesondere 5 bis 15 Gew.-% - bezogen auf die Formkörper enthalten.
    Duftstoffe
    Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-ÖI. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
    Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
    Anorganische Salze
    Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate, Carbonate, amorphe Silicate, normale Wassergläser, welche keine herausragenden Buildereigenschaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und/oder amorphes Alkalisilicat, vor allem Natriumsilicat mit einem molaren Verhältnis Na2O : SiO2 von 1 : 1 bis 1 : 4,5, vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt an Natriumcarbonat in den Endzubereitungen beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.-%. Der Gehalt der Mittel an Natriumsilicat (ohne besondere Buildereigenschaften) beträgt im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 1 und 8 Gew.-%. Als Füll- bzw. Stellmittel kann ferner beispielsweise Natriumsulfat in Mengen von 0 bis 10, insbesondere 1 bis 5 Gew.-%-bezogen auf Mittel - enthalten sein.
    Beispiele
    Vorbereitung:
  • Herstellung der Rezepturen in Pulverform erfolgt durch Verbringen der Flüssigkeiten (Fettalkohol/ Alkyl-und/oder Alkenyloligoglycosid) in einem Lödigemischer auf feste Buildersubstanzen. TAED und Perborat werden allerdings erst nach verbringen der Flüssigkeiten untergemischt.
  • Der Mischansatz wird über einen Probenteiler auf Probemengen von 75g geteilt. (75g entsprechen der Dosierung für einen Waschzyklus)
  • Zur Bestimmung der Waschleistung werden Testgewebe der Wäschereiforschung Krefeld (WFK) in Krefeld mit verschiedenen Anschmutzungen eingesetzt (Tabelle 1). Je 2 Testgewebe werden auf einem Frotteetuch befestigt
    Figure 00340001
    Testbedingungen:
    Die Testgewebe und 3,5 kg saubere Begleitwäsche werden mit einer Miele W 918 im Buntwaschprogramm bei 30 und 60°C, und einer Dosierung von 75 g/ Pulver pro Waschzyklus gewaschen. Durch Zudosieren von Wasser (Wasserhärte 16°d) über eine Wasseruhr zur automatisch in die Maschine gepumpte Wassermenge, wurde auf eine Gesamtwassermenge von 17 I eingestellt.
    Das Waschergebnis der erfindungsgemäßen Waschmittel wurde anhand einer 3-fach-Bestimmung in verschiedenen Maschine des gleichen Typs ermittelt.
    Auswertung:
    Nach durchlaufenem Waschzyklus werden die Prüflinge vom Trägertuch gelöst und gemangelt.
    Die Remission des Gewebes wird mit einem Minolta Cromameter im Y xy Modus gemessen. Pro Zyklus und Gewebe wurden so zunächst zwei Meßwerte generiert ( Lappen 1+2) der resultierende Mittelwert entspricht dem Ergebnis einer Einfachbestimmung. Drei dieser Einfachbestimmungen wurden zum Endergebnis gemittelt (siehe Tabelle 3).
    In der folgenden Tabelle 2 sind die Rezepturen von zwei Vergleichsversuchen (V1 und V2) einer erfindungsgemäßen Rezeptur (B) gegenübergestellt. Alle Angaben sind als Gew.% zu verstehen und sind als Aktivsubstanz berechnet.
    Figure 00350001
    Waschergebnis 60°C % Remission Waschergebnis 30°C % Remission
    V1 V2 B Δ* Δ+ V1 V2 B
    WFK 20 C 81,8 81,6 82,6 1,0 1,2 51,7 52,1 56,5 9,3 8,4
    WFK 30 C 72,5 72,9 74,3 2,5 1,9 62,0 64,0 68,4 10,3 6,9
    WFK 10 D 81,0 80,9 82,1 1,4 1,5 75,0 71,7 75,6 0,8 5,4
    WFK 20 D 84,9 84,7 84,6 - - 81,5 82,0 83,4 2,3 1,7
    WFK 30 D 80,3 79,5 80,1 - - 76,6 76,9 78,9 3,0 2,6
    WFK 10 LS 83,9 84,4 85,0 1,3 0,7 65,4 64,1 72,4 10,7 12,9
    WFK 20 LS 84,5 84,4 84,7 - - 69,7 70,6 78,4 12,5 11,0
    WFK 10 MU 83,5 83,2 83,0 - - 78,2 75,9 78,5 0,4 3,4
    WFK 20 MU 84,3 84,1 84,1 - - 81,9 81,5 83,3 1,7 1,8
    Der Vergleich der Waschergebnisse zeigt, dass der Einsatz der erfindungsgemäßen Tensidsysteme (B) eine verbesserte Waschleistung ergibt. Bevorzugt ist der Einsatz dieser Tensidsysteme in Wasch-und Reinigungsmittel bei einer Einstztemperatur von 30°C. Es ergeben sich Verbesserungen in der Waschleistung von bis zu 12,9%. Besonders vorteilhaft wirken die erfindungsgemäßen Wasch- und Reinigungsmittel zur Entfernung von Schmutz/Hautfett und Wollfett aus Baumwolle- und Polyester-und der Mischgewebe. Eine deutliche Verbesserung der Waschleistung zeigt sich z.B. bei Anschmutzungen durch Lippenstift bei Waschtemperaturen von 30°.

    Claims (13)

    1. Wasch- und Reinigungsmittel enthaltend ein Tensidsystem, wobei dieses Tensidsystem aufgebaut ist aus mindestens zwei Komponenten
      a. Alkyl- und/oder Alkenyloligoglycoside und
      b. Fettalkohol,
      dadurch gekennzeichnet, dass Komponente b in Mengen von 5 bis 35 Gew.% - bezogen auf Aktivsubstanz Alkyl- und/oder Alkenyloligoglycoside ― enthalten ist.
    2. Wasch- und Reinigungsmittel nach Anspruch 1, dadurch gekennzeichnet, dass Alkyl- und/oder Alkenyloligoglycoside der Formel (I), R1O-[G]p wobei R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht, enthalten sind.
    3. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 und/oder 2, dadurch gekennzeichnet, dass Fettalkohol der Formel (II) enthalten ist, R1-OH wobei R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen steht.
    4. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Fettalkohole der Formel (II) und/oder Fettalkohole mit von R1 verschiedenen Alkyl- und/oder Alkenylresten (R2) enthalten sind.
    5. Wasch- und Reinigungsmittelnach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mischung aus den Komponenten a und b maximal 2 Gew.% Wasser enthält.
    6. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Fettalkoholpolyethylenglykol/polypropylenglykolethers der Formel (III), R3O(CH2CH2O)n[CH2(CH3)CHO]mR4 wobei R3 für einen Alkyl- und/oder Alkylenrest mit 8 bis 22 C-Atomen, R4 für H oder einen Alkylrest mit 1 bis 8 C-Atomen, n für eine Zahl von 1 bis 40, vorzugsweise 1 bis 30, insbesondere 1 bis 15, und m für 0 oder eine Zahl von 1 bis 10 steht, und/oder ein
      Fettalkoholpolypropylenglykol/polyethylenglykolether der Formel (IV), R5O[CH2(CH3)CHO]q(CH2CH2O)rR6 wobei R5 für einen Alkyl- und/oder Alkylenrest mit 8 bis 22 C-Atomen, R6 für H oder einen Alkylrest mit 1 bis 8 C-Atomen, q für eine Zahl von 1 bis 5 und r für eine Zahl von 0 bis 15 steht, enthalten sind.
    7. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass weitere Alkohole und/oder Alkylenoxiden, vorzugsweise Ethanol, n-Butanol, n-Propanol, iso-Propanol sowie Mono-, Oligo- und Poly-Glycole auf Basis von Ethylen-, Propylen-, Butylen- , insbesondere 1,2-Propandiol und 1,3-Propandiol, und deren Methyl-, Ethyl und Butylethern, enthalten sind.
    8. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass weitere nichtionische Tenside enthalten sind, ausgewählt aus der Gruppe, die gebildet wird von Alkyl- und/oder Alkenyloligoglycosiden (unterschiedlich von den erfindungsgemäßen), weiteren alkoxylierten Alkanolen, Hydroxymischethern, Fettsäureniedrigalkylester und Aminoxiden
    9. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass anionische Tenside enthalten sind, ausgewählt aus der Gruppe, die gebildet wird von Alkyl-und/oder Alkenylsulfaten, Alkylethersulfaten, Alkylbenzolsulfonate, Seifen, Monoglycerid(ether)sulfate und Alkansulfonaten.
    10. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass kationische, amphotere bzw. zitterionische Tenside enthalten sind, ausgewählt aus der Gruppe, die gebildet wird von Esterquats, Alkylbetainen, Amidoaminbetainen und Imidazoliniumbetainen.
    11. Wasch- und Reinigungsmittel enhaltend 0,5 bis 25 Gew.%, vorzugsweise 1 bis 15 Gew.%, insbesondere 2 bis 10 Gew.% Alkyl- und/oder Alkenyloligoglycoside ― bezogen auf Aktivsubstanz der Formulierung.
    12. Verwendung der Mischung der Komponenten a und b in Wasch- und Reinigungsmitteln nach einem der Ansprüche 1 bis 11, zur Steigerung der Waschleistung bei niederigen Temperaturen, vorzugsweise bei 30 bis 40°C.
    13. Verwendung der Mischung der Komponenten a und b nach einem der Ansprüche 1 bis 11 in Wasch- und Reinigungsmittel in Form von Tabletten, Pulvern, Flüssigkeiten und Gelen.
    EP01121509A 2000-09-19 2001-09-08 Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen Expired - Lifetime EP1188816B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10046251 2000-09-19
    DE10046251A DE10046251A1 (de) 2000-09-19 2000-09-19 Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen

    Publications (2)

    Publication Number Publication Date
    EP1188816A1 true EP1188816A1 (de) 2002-03-20
    EP1188816B1 EP1188816B1 (de) 2004-09-08

    Family

    ID=7656730

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01121509A Expired - Lifetime EP1188816B1 (de) 2000-09-19 2001-09-08 Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen

    Country Status (4)

    Country Link
    US (1) US6723135B2 (de)
    EP (1) EP1188816B1 (de)
    DE (2) DE10046251A1 (de)
    ES (1) ES2225371T3 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6723135B2 (en) * 2000-09-19 2004-04-20 Cognis Deutschland Gmbh & Co. Kg Laundry detergents and cleaning products based on alkyl and/or alkenyl oligoglycosides and fatty alcohols

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10046250A1 (de) * 2000-09-19 2002-03-28 Cognis Deutschland Gmbh Verfahren zur Herstellung von hellfarbigen Alkyl-und/oder Alkenyloligoglycosid-Mischungen und deren Verwendung in Wasch-, Spül-und Reinigungsmittel
    US20040214737A1 (en) * 2003-04-25 2004-10-28 John Billman Foamy composition for pretreatment of stains on fabrics
    EP1754778A1 (de) * 2005-08-19 2007-02-21 The Procter and Gamble Company Waschmittelzusammensetzung in Festform enthaltend ein anionisches Tensid-System aus Alkylbenzolsulphonat und ein Chelant-System
    US7964551B2 (en) * 2006-03-31 2011-06-21 Isp Investments Inc. Cleaning tablet
    EP3458561B1 (de) 2016-05-17 2020-10-14 Unilever PLC Flüssige waschmittelzusammensetzungen

    Citations (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0301298A1 (de) * 1987-07-18 1989-02-01 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von Alkylglykosiden
    JPH02206695A (ja) * 1989-02-03 1990-08-16 Kao Corp 洗浄剤組成物
    EP0491532A1 (de) * 1990-12-18 1992-06-24 Unilever Plc Reinigungsmittel
    WO1994028006A1 (de) * 1993-05-21 1994-12-08 Henkel Kommanditgesellschaft Auf Aktien Nichtionische emulgatoren
    JPH08319496A (ja) * 1995-03-22 1996-12-03 New Japan Chem Co Ltd 洗浄剤組成物
    WO1997032967A1 (en) * 1996-03-06 1997-09-12 Colgate-Palmolive Company Liquid crystal detergent compositions
    US5670471A (en) * 1993-11-19 1997-09-23 Societe D'exploitation De Produits Pour Les Industries Chimiques, S.E.P.P.I.C. Concentrate comprising alkylglycoside mixture and fatty alcohol and corresponding methods of use
    WO1998039408A1 (de) * 1997-03-03 1998-09-11 Henkel Kommanditgesellschaft Auf Aktien Geformte syndetmasse
    WO1998040460A1 (de) * 1997-03-12 1998-09-17 Cognis Deutschland Gmbh Verfahren zur herstellung neutraler zuckertensidgranulate
    WO2001030792A1 (de) * 1999-10-27 2001-05-03 Cognis Deutschland Gmbh & Co. Kg Verfahren zur herstellung von festen zuckertensiden
    WO2001081529A1 (de) * 2000-04-19 2001-11-01 Cognis Deutschland Gmbh & Co. Kg Verfahren zur herstellung von waschmittelgranulaten

    Family Cites Families (75)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE309931C (de)
    ZA734721B (en) 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
    GB1455873A (en) 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
    DE2553900A1 (de) 1975-12-01 1977-06-08 Konrad Ruckstuhl Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen
    DE3069768D1 (en) 1979-09-29 1985-01-17 Procter & Gamble Ltd Detergent compositions
    DE3066202D1 (en) 1979-11-03 1984-02-23 Procter & Gamble Granular laundry compositions
    CA1238917A (en) 1984-01-31 1988-07-05 Vivian B. Valenty Detergent builder
    US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
    DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
    US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
    DE3526405A1 (de) 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
    FR2597473B1 (fr) 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
    GB8629837D0 (en) 1986-12-13 1987-01-21 Interox Chemicals Ltd Bleach activation
    DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
    DE3732947A1 (de) 1987-09-30 1989-04-13 Henkel Kgaa Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel
    US5576425A (en) 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
    DE3833780A1 (de) 1988-10-05 1990-04-12 Henkel Kgaa Verfahren zur direkten herstellung von alkylglykosiden
    GB8908416D0 (en) 1989-04-13 1989-06-01 Unilever Plc Bleach activation
    DK0427349T3 (da) 1989-11-10 1995-11-20 Tno Fremgangsmåde til fremstilling af polydicarboxysaccharider, og erstatninger for phosphater i detergenter baseret på polydicarboxsaccharider
    YU221490A (sh) 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
    GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
    US5041232A (en) 1990-03-16 1991-08-20 Lever Brothers Company, Division Of Conopco, Inc. Sulfonimines as bleach catalysts
    US5047163A (en) 1990-03-16 1991-09-10 Lever Brothers Company, Division Of Conopco, Inc. Activation of bleach precursors with sulfonimines
    DE69125309T2 (de) 1990-05-21 1997-07-03 Unilever Nv Bleichmittelaktivierung
    IT1249883B (it) 1990-08-13 1995-03-30 Ferruzzi Ricerca & Tec Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti
    ATE124667T1 (de) 1990-12-01 1995-07-15 Henkel Kgaa Verfahren zur hydrothermalen herstellung von kristallinem natriumdisilikat.
    DE4038477A1 (de) 1990-12-03 1992-06-04 Henkel Kgaa Verfahren zur kontinuierlichen herstellung von partialglyceridsulfaten
    DE4038478A1 (de) 1990-12-03 1992-06-04 Henkel Kgaa Verfahren zur herstellung von partialglyceridsulfaten
    GB9101606D0 (en) 1991-01-24 1991-03-06 Dow Corning Sa Detergent foam control agents
    IT1245063B (it) 1991-04-12 1994-09-13 Ferruzzi Ricerca & Tec Procedimento per l'ossidazione di carboidrati
    DE69126778T2 (de) 1991-07-31 1998-01-02 Ausimont Spa Verfahren zur Erhöhung der Bleichwirksamkeit eines inorganischen Persalzes
    DE4134914A1 (de) 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
    ATE166362T1 (de) 1991-11-14 1998-06-15 Procter & Gamble C6/c2-c3 oxidierte stärke als waschmittelbestandteil
    CA2083661A1 (en) 1991-11-26 1993-05-27 Rudolf J. Martens Detergent bleach compositions
    US5194416A (en) 1991-11-26 1993-03-16 Lever Brothers Company, Division Of Conopco, Inc. Manganese catalyst for activating hydrogen peroxide bleaching
    GB9127060D0 (en) 1991-12-20 1992-02-19 Unilever Plc Bleach activation
    CA2085642A1 (en) 1991-12-20 1993-06-21 Ronald Hage Bleach activation
    DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
    DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
    DE4204700A1 (de) 1992-02-17 1993-08-19 Henkel Kgaa Verfahren zur abtrennung anorganischer salze
    ES2120500T3 (es) 1992-05-08 1998-11-01 Buckman Labor Inc 4'-metoxiacetofenonas halogenadas como microbicidas y conservantes.
    JPH05339896A (ja) 1992-06-03 1993-12-21 Arakawa Chem Ind Co Ltd 紙用サイズ剤および紙サイジング方法
    DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
    DE4303320C2 (de) 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
    US5576281A (en) 1993-04-05 1996-11-19 Olin Corporation Biogradable low foaming surfactants as a rinse aid for autodish applications
    ATE182617T1 (de) 1993-05-20 1999-08-15 Procter & Gamble Bleichmittelzusammensetzungen enthaltend n- acylcaprolactam aktivatoren
    CN1065563C (zh) 1993-05-20 2001-05-09 普罗格特-甘布尔公司 用于手洗或其它低水洗涤体系的包括n-酰基己内酰胺的漂白组合物
    EP0699189B1 (de) 1993-05-20 1998-07-29 The Procter & Gamble Company Bleichmittel, welche einen substituierten benzoyl caprolactam bleichaktivator enthalten
    DE4317519A1 (de) 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
    US5405413A (en) 1993-06-24 1995-04-11 The Procter & Gamble Co. Bleaching compounds comprising acyl valerolactam bleach activators
    NL194919C (nl) 1993-09-07 2003-07-04 Tno Werkwijze voor het oxideren van koolhydraten.
    DE4335781C2 (de) 1993-10-20 1998-02-19 Henkel Kgaa Fettalkohole auf pflanzlicher Basis und Verfahren zu Ihrer Herstellung
    DE4400024A1 (de) 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
    DE4402851A1 (de) 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
    DE4416438A1 (de) 1994-05-10 1995-11-16 Basf Ag Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren
    DE4417734A1 (de) 1994-05-20 1995-11-23 Degussa Polycarboxylate
    EP0693550B1 (de) 1994-07-21 2004-06-16 Ciba SC Holding AG Bleichmittelzusammensetzung für Gewebe
    GB9419091D0 (en) 1994-09-22 1994-11-09 Cerestar Holding Bv Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process
    DE4443177A1 (de) 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen
    DE19529905A1 (de) 1995-08-15 1997-02-20 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
    DE19536082A1 (de) 1995-09-28 1997-04-03 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
    US5795978A (en) * 1995-11-15 1998-08-18 Henkel Kommanditgesellschaft Auf Aktien Emulsifiers
    US5981452A (en) * 1995-12-04 1999-11-09 Henkel Kommanditgesellschaft Auf Aktien Syndet soaps comprising alkyl and/or alkenyl oligoglycosides
    DE19600018A1 (de) 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
    DE19605688A1 (de) 1996-02-16 1997-08-21 Henkel Kgaa Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen
    DE19613103A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen
    DE19620411A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen
    DE19616769A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel
    DE19616693A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel
    DE19616770A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel
    DE19616767A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Bleichaktivatoren für Wasch- und Reinigungsmittel
    DE19620267A1 (de) 1996-05-20 1997-11-27 Henkel Kgaa Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen
    DE19709991C2 (de) 1997-03-11 1999-12-23 Rettenmaier & Soehne Gmbh & Co Waschmittelpreßling und Verfahren zu seiner Herstellung
    DE19710254A1 (de) 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
    DE10046251A1 (de) * 2000-09-19 2002-03-28 Cognis Deutschland Gmbh Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen

    Patent Citations (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0301298A1 (de) * 1987-07-18 1989-02-01 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von Alkylglykosiden
    JPH02206695A (ja) * 1989-02-03 1990-08-16 Kao Corp 洗浄剤組成物
    EP0491532A1 (de) * 1990-12-18 1992-06-24 Unilever Plc Reinigungsmittel
    WO1994028006A1 (de) * 1993-05-21 1994-12-08 Henkel Kommanditgesellschaft Auf Aktien Nichtionische emulgatoren
    US5670471A (en) * 1993-11-19 1997-09-23 Societe D'exploitation De Produits Pour Les Industries Chimiques, S.E.P.P.I.C. Concentrate comprising alkylglycoside mixture and fatty alcohol and corresponding methods of use
    JPH08319496A (ja) * 1995-03-22 1996-12-03 New Japan Chem Co Ltd 洗浄剤組成物
    WO1997032967A1 (en) * 1996-03-06 1997-09-12 Colgate-Palmolive Company Liquid crystal detergent compositions
    WO1998039408A1 (de) * 1997-03-03 1998-09-11 Henkel Kommanditgesellschaft Auf Aktien Geformte syndetmasse
    WO1998040460A1 (de) * 1997-03-12 1998-09-17 Cognis Deutschland Gmbh Verfahren zur herstellung neutraler zuckertensidgranulate
    WO2001030792A1 (de) * 1999-10-27 2001-05-03 Cognis Deutschland Gmbh & Co. Kg Verfahren zur herstellung von festen zuckertensiden
    WO2001081529A1 (de) * 2000-04-19 2001-11-01 Cognis Deutschland Gmbh & Co. Kg Verfahren zur herstellung von waschmittelgranulaten

    Non-Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Title
    "VERDICKUNGSMITTEL FUER ALKYLGLUCOSIDHALTIGE TENSIDFORMULIERUNGEN", RESEARCH DISCLOSURE, KENNETH MASON PUBLICATIONS, HAMPSHIRE, GB, no. 395, 1 March 1997 (1997-03-01), pages 189 - 190, XP000698580, ISSN: 0374-4353 *
    CHEMICAL ABSTRACTS, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, vol. 114, no. 4, 28 January 1991 (1991-01-28), XP000213191, ISSN: 0009-2258 *
    PATENT ABSTRACTS OF JAPAN vol. 1997, no. 04 30 April 1997 (1997-04-30) *

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6723135B2 (en) * 2000-09-19 2004-04-20 Cognis Deutschland Gmbh & Co. Kg Laundry detergents and cleaning products based on alkyl and/or alkenyl oligoglycosides and fatty alcohols

    Also Published As

    Publication number Publication date
    EP1188816B1 (de) 2004-09-08
    US6723135B2 (en) 2004-04-20
    DE10046251A1 (de) 2002-03-28
    US20020058602A1 (en) 2002-05-16
    ES2225371T3 (es) 2005-03-16
    DE50103521D1 (de) 2004-10-14

    Similar Documents

    Publication Publication Date Title
    EP1240290B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
    EP1240287B1 (de) Waschmitteltabletten
    EP1240289A1 (de) Feste waschmittel
    EP1106675A2 (de) Verwendung von Partialglyceridpolyglycolethern
    EP1257627A1 (de) Tensidmischung mit fettalkoholalkoxylaten aus pflanzlichen rohstoffen
    WO2001079401A1 (de) Wasch- und reinigungsmittel
    EP1186649A1 (de) Waschmitteltabletten
    EP1188816B1 (de) Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen
    EP1188819A1 (de) Waschmitteltabletten
    WO2001027238A1 (de) Waschmitteltabletten
    EP1240288A1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
    EP1212400B1 (de) Waschmitteltabletten
    EP1274828B1 (de) Verfahren zur herstellung von waschmittelgranulaten
    EP1375633B1 (de) Waschmittel mit Polymeren
    EP1212401B1 (de) Waschmitteltabletten
    DE10002010A1 (de) Tablettensprengmittel
    EP1228180A1 (de) Entschäumergranulate
    EP1205536A2 (de) Verwendung von Tensidgemischen
    EP1249489A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
    DE10002008A1 (de) Verfahren zur Herstellung von Tablettensprengmitteln
    EP1207193A1 (de) Verwendung von Tensidgemischen zur Herstellung von Wasch- und Reinigungsmitteln
    WO2001027237A1 (de) Waschmitteltabletten
    EP1090982A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
    WO2001027231A1 (de) Waschmittel
    WO2001034757A1 (de) Formkörper mit verbesserter wasserlöslichkeit

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010908

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT SE

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

    17Q First examination report despatched

    Effective date: 20020805

    AKX Designation fees paid

    Free format text: DE ES FR GB IT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50103521

    Country of ref document: DE

    Date of ref document: 20041014

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041208

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050124

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2225371

    Country of ref document: ES

    Kind code of ref document: T3

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050609

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20090514 AND 20090520

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150930

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150928

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20150925

    Year of fee payment: 15

    Ref country code: DE

    Payment date: 20151130

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20151027

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50103521

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160908

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160908

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160930

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160908

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160909

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20181126