EP1187633A1 - Utilisation d'anticorps anti-vegf pour accentuer le rayonnement lors d'une therapie anticancereuse - Google Patents

Utilisation d'anticorps anti-vegf pour accentuer le rayonnement lors d'une therapie anticancereuse

Info

Publication number
EP1187633A1
EP1187633A1 EP00931923A EP00931923A EP1187633A1 EP 1187633 A1 EP1187633 A1 EP 1187633A1 EP 00931923 A EP00931923 A EP 00931923A EP 00931923 A EP00931923 A EP 00931923A EP 1187633 A1 EP1187633 A1 EP 1187633A1
Authority
EP
European Patent Office
Prior art keywords
vegf
cells
tumor
tumors
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00931923A
Other languages
German (de)
English (en)
Other versions
EP1187633A4 (fr
Inventor
Ralph R. Weichselbaum
Donald W. Kufe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chicago
Dana Farber Cancer Institute Inc
Original Assignee
Dana Farber Cancer Institute Inc
Arch Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dana Farber Cancer Institute Inc, Arch Development Corp filed Critical Dana Farber Cancer Institute Inc
Publication of EP1187633A1 publication Critical patent/EP1187633A1/fr
Publication of EP1187633A4 publication Critical patent/EP1187633A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Definitions

  • Tumors influence the surrounding host str ⁇ ma by inducing angiogenesis to supply their oxygen and nutrient needs, allowing them to grow.
  • angiogenesis is tightly associated with Tumors.
  • angiogenesis inhibitors are regulated by the balance between angiogenic nnd anti-ongiogenic fuc or$l ⁇ 2.
  • the induction of angiogenesis by tumor-derived pro-angiogcnic proteins is a discrete component of the malignant phcnotypc. Decreased production of angiogenesis inhibitors or increased
  • ungiogenic peptides can shiA the balance towards u pro-angiogcnic state*, permitting tumor growth.
  • a tumor increases in size, it disrupts its surrounding stro a and recruits still more host blood vessels. This paracrine relationship between a tumor and its blood supply represents a potential point of attack for an itumor therapy.
  • VEGF vascular cndothclial cell growth factor
  • VEGF-induced angiogenesis angiogenic in It is secreted by n wide variety of human tumors, and inhibition of VEGF- induced angiogenesis, either by neutralizing antibodies or a dominant negative soluble receptor,
  • VEGF vascular endothelial growth factor
  • Physiologic regulators of VEGF expression include hypoxia9 ⁇ l0 and cytokines ⁇ .
  • oncogcnic mutations of ras and p53 are associated with increases in intratumoral VEGF levels and a poor
  • the inve ⁇ .ioson provides a method of reducing tumor radio resistance or chemotherapy res.stance in a cancer patient being or to be treated with radiation or chemotherapy, by administering to the patient a substance that inhibits chemotherapy or rad t ation-induced VEGF expression or that blocks VEGF activity in the patient.
  • the substance can be an anti-VEGF antibody, and can be administered (preferably IV) shordy ( M hours) prior to chemotherapy or radiation treatment.
  • preferably is administered intravenously, either prior to, du ⁇ ng, or following radiation or chemotherapy administration.
  • FIGURE 1 VEGF levels in Lewis lung carcinoma in vivo and in vitro.
  • Cs were plated in six-well plates at low density (25% confluence), allowed to attach overnight, and then irradiated with 0, 5, ⁇ vi, or 20 Gy. Conditioned media was collected every 24 hrs, and cells were detached with trypsin and counted. VEGF levels were normalized to the number of cells and reported as total pg VEGF/10 6 cells. No VEGF was detectable in unconditioned media.
  • FIG. 1 VEGF expression in human tumor cell line*.
  • Subconflucnt cells from human tumor cell lines (Seg-1 esophageal adcnocarcinoma, SQ20B squamous cell carcinoma, Ul melanoma, and U87 and T98 glioblastoma) were exposed to 10 Gy of ioni ing radiation.
  • Conditioned media from radiated and unirradiaicd cells was collected 24 hours later.
  • VEGF levels in conditioned media were measured by EL1SA and normalized to cell number.
  • FIGURE 3 Effect of VEGF blockade prior to treatment with ionizing radiation in mouse tumors and human xcnografts. LLC cells (1 x 10 ⁇ ) were injected subcutancously into the hindlimbs of female C57B1 6 mice. SQ20B squamous cell carcinoma cells (5 x 10 6 ) and Scg-1 csophagca! adcnocarcinoma cells (3 xl O 6 ) were injccicd into the hindlimbs of female a l hymic nude mice.
  • Tumors were allowed lo attain a mean size between 350-450 mm -1 (LLC, 442 ⁇ 14 mm 3 ; SQ20B, 372 ⁇ 16 mm 3 ; Scg-1, 407 ⁇ 20 mm 5 ), after which treatment was begun.
  • LLC 350-450 mm -1
  • SQ20B 372 ⁇ 16 mm 3
  • Scg-1 407 ⁇ 20 mm 5
  • mice were administered inirapcritonualry 16 and 3 hrs before the first IR treatment and 3 hours before the second IR treatment (3 doses total); goat anti- mouse VEGF-164 antibody alone administered as described. Untreated controls received nonimmune goal IgG.
  • B Effect of VEGF blockade prior to ionizing radiation in SQ20B xenografts. Mice were treated as follows: IR, 40 Gy administered as four 10 Gy doses on days 0, 1 ,2, and 3; IR (40 Gy) plus monoclonal anti-human VEGF-165 antibody, 10 ⁇ g administered intrapcritoncally two to three hours before each dose of IR; monoclonal anti-human VEGF-165 antibody alone administered identically to the combined treatment group.
  • FIGURE 4 Effect of manipulating VEGF levels in vitro on rR * r ⁇ cdiatcd vascular endothclial cell killing.
  • MTT assays HUVECs were plated in 96-well plates al 1 x 103 cells/well and treated with either differing concentrations of rccombinant human VEGF-165 or monoclonal anti-human VEGF-165 antibody prior to treatment with IR, and abscrbancc readings measured at varying time points after IR (sec Methods).
  • clonogcnic survival assays For clonogcnic survival assays,
  • HUVECs were treated with different concentrations of VEGF or a polyelonal goat anti-VEGF-
  • HUVECs pretreated with a monoclonal anti-VEGF- 165 antibody prior to irradiation.
  • Ionizing radiation induces tumor VEGF production In vivo and in vitro
  • LLC cells (1 x 10*) were injected subcutancously in the hindlimbs of female C57BL/6 mice and allowed to grow to a volume of 510 ⁇ 11 mm'
  • VEGF levels were measured by ELIS ⁇ and normalized to total tumor protein. VEGF levels in extracts from control tumors remained relatively constant (46 to
  • Plasma VEGF levels remained low or undctcctablc in control and irradiated animals (data not shown).
  • VEGF mRNA levels were assessed in the same tumors by
  • VEGF transcripts were induced 3-fold two days after exposure to I (Fi ⁇ ure 1 A). Moreover, VEGF mP: ., levels remained elevated for fourteen days. These f i ndings demonstrate that IR induces VEGF expression in vivo.
  • VEGF levels in LLC-condiiioned media exhibited an IR dose-dependent increase within 24 hours.
  • VEGF expression was also studied in irradiated human tumor cell li nes: Seg-1 (esophageal adenocarcinoma)13 ; SQ20B (a radioresistant squamous cell carcinoma li foi e )14 ; Ul (melanoma); and T98 and U87 (glioblastoma). Under basal conditions, these tumor ceil lines secreted widely differing levels of VEGF, with U87 cells producing the most VEGF and Ul meianoma cells the .east ( Figure 2). All demonstrated an IR-dependem increase in VEGF production within 24 hours of treatment with 10 Gy ( Figure 2). These findings demonstrate that IR induces VEGF expression in diverse tumor cell types.
  • mice bearing LLC tumors (559 ⁇ 51 mm 3 ) were treated with a polyelonal goat antibody directed against recombinant murine VEGF-164 (R & D Systems, 10 ⁇ g qd by intrape ⁇ toneal injection) or with nonimmune goat IgG.
  • tumors from control animals had attained a volume of 2713 * 346 mm 3
  • SQ20B cells (5 x J 0 6 ) were implanted in the hindlimbs of female athymic nude mice and allowed to attain a volume of 372 ⁇ 16 mm 3 (Figure 3B), after which they were treated with IR alone (40 Gy given as four 10 Gy fractions), ami-VEGF antibody alone (10 ⁇ g inlraperitoneally each day for four doses), or combined IR and anti-VEGF antibody (10 ⁇ g antibody administered 3 hours prior lo treatment wilh IR). On day 19, tumors in untreated controls reached a mean volume of 3671 ⁇ 790 mm 3 .
  • Blocking VEGF increases cndothellal cell killing by ionizing radiation
  • IR growth blockade for endothelial cells
  • IR msy disrupt the paracrine relationship between the tumor and its blood supply and emphasizes the potential importance of combining an angiogenesis inhibitor with a DNA damaging agent.
  • IR is a major therapeutic modality that is effective in the treatment of relatively .mall tumors and of large tumors only with considerable toxicity to normal tissues. Depriving the tumor endothelium of VEGF using neutralizing antibodies prior lo IR exposure or pretreating tumor vessels with antiangiogcnic peptides represent strategics to increase the anti-tumor effects of IR with minimal toxicity to normal tissues.
  • Lewis lung carcinoma cells gifts of J. Folkman
  • SQ20B cells were grown as previously described 19.21.22.
  • Hurnan urnbilical vcin endothclial ⁇ ⁇ HUWECs were
  • Tumor volume was determined by direct measurement with calipers and calculated by the formula (length x width x depth 2) and reported as the mean volume ⁇ s.e.m., as previously described 19,21. Tumors were allowed ⁇ Q ⁇ t ⁇ Q ⁇ of m ⁇ QQ ⁇ ⁇
  • mice were divided into experimental groups and treatment begun.
  • Tumors were irradiated using a GE Maxitron X-ray generator operating at 150 kV, 30 mA, using a 1 mm aluminum fil t er at a dose ra t e of 188 cGy/min..
  • Mice were shielded with lead except for the t umor-bearing right hmdlimb. The care and treatment of animals was in accordance with institutional guidelines.
  • mice were chosen from each LLC experimental group such t ha t the overall group mean tumor volume was affected as little as possible and euthanized to ob t ain tumor t issue.
  • Tumor extracts were prepared by homogenizing tumors in RTP A buffer (150 mM Nad, 10 mM Tris, 5 mM EDT ⁇ , Triton -100 0.S%, and dithi 0 threitol 1 ⁇ M, P H 7.5, PMSF 50 ⁇ M, lcupcptin 1 ⁇ g/ml, and apro inin 2 ⁇ g/mi).
  • VEGF levels were measured in tumor extract supernatants by ELISA (R & D Systems), and protein assays were performed by Lowry assay. VEGF levels were normalized to total extract protein concentration and expressed as pg VEGF/mg total extract protein. VEGF levels in tumor cell conditioned media were also measured by ELISA and were normalized to cell number in each well. At least three wells per time point were measured. ⁇ - Ao
  • HUVECs and LCs were plated in EGM-2 media. Eighteen hours after plating, HUVEC media was replaced with media in which the VEGF supplied by the manufacturer was omitted, and a defined amount (0-50 ng/ml) of rccombinant VEGF-165 (R & D Systems, Inc.) had been added. Four hours later, cells were irradiated with doses of 0-900 cGy using , GE Maxitron X-ray generator operating at 250 kV, 26 mA, with a 0.5 mm copper filter at a dose rale r 1 18 cGy/min.
  • HUVECs were plated in serum-free EGM-2 containing 5 ng ml VEGF-165. Four hours before irradiation, polyelonal antibodies to human VEGF-165 (R & D Systems, Inc.) were added to the media. Media was replaced with serum- containing media 48 hours after IR and the cells incubated for colony counting.
  • PB VEGF PB VEGF (pg)
  • Tumor volume (% untreated control volume for untreated controls)
  • RNA was isolated from cultured cells and tumor tissue using the ⁇ uanidinc thiocyanate method23 utilizing Trizol Ls (Lifc ⁇ ⁇ 25 ⁇ g ⁇ ⁇ ⁇ ⁇ . ⁇
  • HUVECs were plated (1 x 10 1 cells/well in 96 well plates) in EGM-2 media and allowed to attach overnight. Media was replaced with EGM-2 media containing different concentrations of recombinant human vmV- 165 (R & D Systems, Inc.).
  • concentration of VEGF-165 was kept constant and varying concentrations of either a neutralizing polyelonal or monoclonal anti-human VEGF-165 antibody (R & D Systems, Inc.) were added prior to treatment with IR. 72 or 96 hours after IR, cells were pulsed with 3-[4. 5-
  • VEGF VascuJar cndotheJiaJ ⁇ factor.
  • Angiostatin a novel angiogenesis inhibitor that mediates the suppression of melas i ascs by a Lewis lung carcinoma. Cell 79, 315-328 (1994).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne la découverte que l'expression de VEGF était induite par l'exposition de tumeurs à un rayonnement ionisant (IR) in vitro et in vivo. Le traitement de souris atteintes de tumeurs avec un anticorps neutralisant anti-VEGF avant exposition à un rayonnement est associé à plus d'effets additifs antitumoraux.
EP00931923A 1999-04-08 2000-04-07 Utilisation d'anticorps anti-vegf pour accentuer le rayonnement lors d'une therapie anticancereuse Withdrawn EP1187633A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12871399P 1999-04-08 1999-04-08
US128713P 1999-04-08
PCT/US2000/009255 WO2000061186A1 (fr) 1999-04-08 2000-04-07 Utilisation d'anticorps anti-vegf pour accentuer le rayonnement lors d'une therapie anticancereuse

Publications (2)

Publication Number Publication Date
EP1187633A1 true EP1187633A1 (fr) 2002-03-20
EP1187633A4 EP1187633A4 (fr) 2005-05-11

Family

ID=22436614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00931923A Withdrawn EP1187633A4 (fr) 1999-04-08 2000-04-07 Utilisation d'anticorps anti-vegf pour accentuer le rayonnement lors d'une therapie anticancereuse

Country Status (3)

Country Link
EP (1) EP1187633A4 (fr)
AU (1) AU4972900A (fr)
WO (1) WO2000061186A1 (fr)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223724B1 (en) 1999-02-08 2007-05-29 Human Genome Sciences, Inc. Use of vascular endothelial growth factor to treat photoreceptor cells
NZ518077A (en) 2000-08-04 2003-11-28 Human Genome Sciences Inc Biologically active fragments, analogues and derivatives of VEGF-2 for the treatment of peripheral artery diseases such as critical limb ischemia and coronary disease
ATE470676T1 (de) 2001-04-13 2010-06-15 Human Genome Sciences Inc Anti-vegf-2 antikörper
US7696320B2 (en) 2004-08-24 2010-04-13 Domantis Limited Ligands that have binding specificity for VEGF and/or EGFR and methods of use therefor
DE60313339T2 (de) 2002-07-31 2008-01-03 Critical Outcome Technologies, Inc. Protein tyrosin kinase inhibitoren
CA2542007C (fr) 2002-10-09 2010-06-29 Wayne R. Danter Inhibiteurs de proteine tyrosine kinase
PL1761515T3 (pl) 2003-12-20 2009-04-30 Merck Patent Gmbh 2-(hetero-)arylo podstawione pochodne tetrahydrochinoliny
US8362075B2 (en) 2005-05-17 2013-01-29 Merck Sharp & Dohme Corp. Cyclohexyl sulphones for treatment of cancer
DE102005061840A1 (de) 2005-12-23 2007-06-28 Merck Patent Gmbh Triazolderivate
GB0603041D0 (en) 2006-02-15 2006-03-29 Angeletti P Ist Richerche Bio Therapeutic compounds
JP2009531463A (ja) * 2006-03-29 2009-09-03 ジェネンテック・インコーポレーテッド 腫瘍の診断と治療
CA2664113C (fr) 2006-09-22 2013-05-28 Merck & Co., Inc. Utilisation de la platencine et de la platensimycine en tant qu'inhibiteurs de la synthese des acides gras pour traiter l'obesite, lediabete et le cancer
US20110218176A1 (en) 2006-11-01 2011-09-08 Barbara Brooke Jennings-Spring Compounds, methods, and treatments for abnormal signaling pathways for prenatal and postnatal development
PL2805945T3 (pl) 2007-01-10 2019-09-30 Msd Italia S.R.L. Indazole podstawione grupą amidową jako inhibitory polimerazy poli(adp-rybozy) - (parp)
KR101514853B1 (ko) 2007-03-01 2015-04-24 노파르티스 아게 Pim 키나제 억제제 및 이들의 사용 방법
DE102007013854A1 (de) 2007-03-20 2008-09-25 Merck Patent Gmbh Tetrahydrochinoline
DE102007013855A1 (de) 2007-03-20 2008-09-25 Merck Patent Gmbh Substituierte Tetrahydrochinoline
DE102007013856A1 (de) 2007-03-20 2008-09-25 Merck Patent Gmbh Substituierte Tetrahydropyrrolochinoline
ES2452349T3 (es) 2007-05-21 2014-04-01 Novartis Ag Inhibidores de CSF-1R, composiciones, y métodos de uso
WO2009002495A1 (fr) 2007-06-27 2008-12-31 Merck & Co., Inc. Dérivés de 4-carboxybenzylamino utilisés en tant qu'inhibiteurs de l'histone désacétylase
DE102007047735A1 (de) 2007-10-05 2009-04-09 Merck Patent Gmbh Thiazolderivate
DE102007047737A1 (de) 2007-10-05 2009-04-30 Merck Patent Gmbh Piperidin- und Piperazinderivate
DE102007047738A1 (de) 2007-10-05 2009-04-09 Merck Patent Gmbh Imidazolderivate
DE102007049451A1 (de) 2007-10-16 2009-04-23 Merck Patent Gmbh 5-Cyano-thienopyridine
KR101595238B1 (ko) 2007-12-21 2016-02-18 리간드 파마슈티칼스 인코포레이티드 선택적 안드로겐 수용체 조절제(sarm) 및 이의 용도
CA2710039C (fr) 2007-12-26 2018-07-03 Critical Outcome Technologies, Inc. Semicarbazones, thiosemicarnazones et composes associes, et methodes de traitement du cancer
DE102008017853A1 (de) 2008-04-09 2009-10-15 Merck Patent Gmbh Thienopyrimidine
CA2875549A1 (fr) 2008-04-15 2009-10-22 Pharmacyclics, Inc. Inhibiteurs selectifs de l'histone desacetylase
CA2730890C (fr) 2008-07-17 2018-05-15 Critical Outcome Technologies Inc. Composes inhibiteurs et procedes de traitement du cancer
DE102008059578A1 (de) 2008-11-28 2010-06-10 Merck Patent Gmbh Benzo-Naphtyridin Verbindungen
WO2010114780A1 (fr) 2009-04-01 2010-10-07 Merck Sharp & Dohme Corp. Inhibiteurs de l'activité akt
CA2757415C (fr) 2009-04-02 2018-02-06 Merck Patent Gmbh Inhibiteurs de l'autotaxine
KR20120027192A (ko) 2009-04-02 2012-03-21 메르크 파텐트 게엠베하 오토탁신 저해제로서의 헤테로시클릭 화합물
EP2414330B1 (fr) 2009-04-02 2013-05-01 Merck Patent GmbH Dérivés de pipéridine et de pyrazine comme inhibiteurs de l'autotaxine
US8765747B2 (en) 2009-06-12 2014-07-01 Dana-Farber Cancer Institute, Inc. Fused 2-aminothiazole compounds
DE102009033392A1 (de) 2009-07-16 2011-01-20 Merck Patent Gmbh Heterocyclische Verbindungen als Autotaxin-Inhibitoren II
DE102009049211A1 (de) 2009-10-13 2011-04-28 Merck Patent Gmbh Sulfoxide
UA109417C2 (uk) 2009-10-14 2015-08-25 Мерк Шарп Енд Доме Корп. ЗАМІЩЕНІ ПІПЕРИДИНИ, ЯКІ ПІДВИЩУЮТЬ АКТИВНІСТЬ p53, І ЇХ ЗАСТОСУВАННЯ
JP5827627B2 (ja) 2009-11-07 2015-12-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung TGF−β受容体キナーゼ阻害剤としてのヘテロアリールアミノキノリン
US9180127B2 (en) 2009-12-29 2015-11-10 Dana-Farber Cancer Institute, Inc. Type II Raf kinase inhibitors
SG182803A1 (en) 2010-02-05 2012-09-27 Merck Patent Gmbh Hetaryl-[1,8]naphthyridine derivatives
US8815893B2 (en) 2010-02-22 2014-08-26 Merck Patent Gmbh Hetarylaminonaphthyridines
CN102803227B (zh) 2010-03-16 2016-01-20 默克专利有限公司 吗啉基喹唑啉
US8987275B2 (en) 2010-03-16 2015-03-24 Dana-Farber Cancer Institute, Inc. Indazole compounds and their uses
WO2011116867A1 (fr) 2010-03-26 2011-09-29 Merck Patent Gmbh Benzonaphthyridinamines en tant qu'inhibiteurs d'autotaxine
CA2794952C (fr) 2010-04-01 2018-05-15 Critical Outcome Technologies Inc. Composes et methodes pour le traitement du vih
US8999957B2 (en) 2010-06-24 2015-04-07 Merck Sharp & Dohme Corp. Heterocyclic compounds as ERK inhibitors
SG186855A1 (en) 2010-06-28 2013-02-28 Merck Patent Gmbh 2,4- diaryl - substituted [1,8] naphthyridines as kinase inhibitors for use against cancer
DE102010025786A1 (de) 2010-07-01 2012-01-05 Merck Patent Gmbh Pyrazolochinoline
MX2012014537A (es) 2010-07-05 2013-02-21 Merck Patent Gmbh Derivados de bipiridilo utiles para el tratamiento de enfermedades inducidas por cinasa.
US8518907B2 (en) 2010-08-02 2013-08-27 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of catenin (cadherin-associated protein), beta 1 (CTNNB1) gene expression using short interfering nucleic acid (siNA)
EP4079856A1 (fr) 2010-08-17 2022-10-26 Sirna Therapeutics, Inc. Inhibition médiée par des arn interférents de l'expression génique du virus de l'hépatite b (vhb) à l'aide de petits acides nucléiques interférents (pani)
EP2608669B1 (fr) 2010-08-23 2016-06-22 Merck Sharp & Dohme Corp. Nouveaux dérivés de pyrazolo[1,5-a]pyrimidine utilisés comme inhibiteurs de mtor
DE102010035744A1 (de) 2010-08-28 2012-03-01 Merck Patent Gmbh Imidazolonylchinoline
US8946216B2 (en) 2010-09-01 2015-02-03 Merck Sharp & Dohme Corp. Indazole derivatives useful as ERK inhibitors
CA2809892C (fr) 2010-09-02 2019-05-28 Merck Patent Gmbh Derives de pyrazolopyridinone en tant qu'antagonistes de recepteur de lpa
US9242981B2 (en) 2010-09-16 2016-01-26 Merck Sharp & Dohme Corp. Fused pyrazole derivatives as novel ERK inhibitors
WO2012058210A1 (fr) 2010-10-29 2012-05-03 Merck Sharp & Dohme Corp. INHIBITION FACILITÉE PAR L'INTERFÉRENCE D'ARN DE L'EXPRESSION D'UN GÈNE AU MOYEN D'ACIDES NUCLÉIQUES INTERFÉRENTS COURTS (siNA)
WO2012087772A1 (fr) 2010-12-21 2012-06-28 Schering Corporation Dérivés d'indazole utiles en tant qu'inhibiteurs de erk
MX2013010163A (es) 2011-03-09 2013-10-30 Merck Patent Gmbh Derivados de pirido[2,3-b] pirazina y sus usos terapeuticos.
CA2833009A1 (fr) 2011-04-21 2012-10-26 Merck Sharp & Dohme Corp. Inhibiteurs du recepteur du facteur de croissance 1 analogue a l'insuline
EP3925962A1 (fr) 2011-05-31 2021-12-22 Rakovina Therapeutics Inc. Inhibiteurs tricycliques de poly(adp-ribose)polymérase
US9023865B2 (en) 2011-10-27 2015-05-05 Merck Sharp & Dohme Corp. Compounds that are ERK inhibitors
WO2013074986A1 (fr) 2011-11-17 2013-05-23 Dana-Farber Cancer Institute, Inc. Inhibiteurs de la kinase c-jun-n-terminale (jnk)
DE102011118830A1 (de) 2011-11-18 2013-05-23 Merck Patent Gmbh Morpholinylbenzotriazine
WO2013165816A2 (fr) 2012-05-02 2013-11-07 Merck Sharp & Dohme Corp. Compositions de petit acide nucléique interférent (sina)
MX2015004041A (es) 2012-09-28 2015-07-06 Merck Sharp & Dohme Compuestos novedosos que son inhibidores de erk.
WO2014063068A1 (fr) 2012-10-18 2014-04-24 Dana-Farber Cancer Institute, Inc. Inhibiteurs de cycline-dépendante kinase 7 (cdk7)
WO2014063061A1 (fr) 2012-10-19 2014-04-24 Dana-Farber Cancer Institute, Inc. Petites molécules marquées de façon hydrophobe en tant qu'inducteurs de la dégradation de protéine
US10000483B2 (en) 2012-10-19 2018-06-19 Dana-Farber Cancer Institute, Inc. Bone marrow on X chromosome kinase (BMX) inhibitors and uses thereof
CA2892361A1 (fr) 2012-11-28 2014-06-05 Merck Sharp & Dohme Corp. Utilisation d'un inhibiteur wee1 pour traiter un cancer caracterise par de faibles niveaux d'expression de proteines tyrosine et threonine kinases 1 (pkmyt1) associee a la membrane
RU2690663C2 (ru) 2012-12-20 2019-06-05 Мерк Шарп И Доум Корп. Замещенные имидазопиридины в качестве ингибиторов hdm2
WO2014120748A1 (fr) 2013-01-30 2014-08-07 Merck Sharp & Dohme Corp. Purines 2,6,7,8-substituées utilisées en tant qu'inhibiteurs de hdm2
DE102013008118A1 (de) 2013-05-11 2014-11-13 Merck Patent Gmbh Arylchinazoline
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
CA2927917C (fr) 2013-10-18 2022-08-09 Syros Pharmaceuticals, Inc. Composes heteroaromatiques utiles pour le traitement des maladies proliferatives
WO2015164614A1 (fr) 2014-04-23 2015-10-29 Dana-Farber Cancer Institute, Inc. Inhibiteurs de janus kinase et leurs utilisations
US9862688B2 (en) 2014-04-23 2018-01-09 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged janus kinase inhibitors and uses thereof
JO3589B1 (ar) 2014-08-06 2020-07-05 Novartis Ag مثبطات كيناز البروتين c وطرق استخداماتها
WO2016105528A2 (fr) 2014-12-23 2016-06-30 Dana-Farber Cancer Institute, Inc. Inhibiteurs de la kinase cycline-dépendante 7 (cdk7)
EP3273966B1 (fr) 2015-03-27 2023-05-03 Dana-Farber Cancer Institute, Inc. Inhibiteurs de kinases cycline-dépendantes
CA2986441A1 (fr) 2015-06-12 2016-12-15 Dana-Farber Cancer Institute, Inc. Therapie d'association utilisant des inhibiteurs de transcription et des inhibiteurs de kinases
EP3347018B1 (fr) 2015-09-09 2021-09-01 Dana-Farber Cancer Institute, Inc. Inhibiteurs de kinases cycline-dépendantes
EP3475275B1 (fr) 2016-06-23 2024-04-10 Merck Sharp & Dohme LLC 5-trifluorométhyl-oxadiazoles substitués en 3-aryle et hétéroaryle en tant qu'inhibiteurs de l'histone désacétylase 6 (hdac6)
JOP20190055A1 (ar) 2016-09-26 2019-03-24 Merck Sharp & Dohme أجسام مضادة ضد cd27
SG11201908813QA (en) 2017-04-13 2019-10-30 Aduro Biotech Holdings Europe B V Anti-sirp alpha antibodies
EP3706742B1 (fr) 2017-11-08 2023-03-15 Merck Sharp & Dohme LLC Inhibiteurs de prmt5
WO2019148412A1 (fr) 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anticorps bispécifiques anti-pd-1/lag3
WO2020033282A1 (fr) 2018-08-07 2020-02-13 Merck Sharp & Dohme Corp. Inhibiteurs de prmt5
EP3833667B1 (fr) 2018-08-07 2024-03-13 Merck Sharp & Dohme LLC Inhibiteurs de prmt5
CN115087638B (zh) 2019-12-17 2023-11-24 默沙东公司 Prmt5抑制剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GORSKI D H ET AL: "Blockade of the Vascular Endothelial Growth Factor Stress Response Increases the Antitumor Effects of Ionizing Radiation" CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, BALTIMORE, MD, US, vol. 59, 15 July 1999 (1999-07-15), pages 3374-3378, XP002256383 ISSN: 0008-5472 *
LEE C G ET AL: "The effect of combined anti-VEGF mAb and radiation vs. radiation alone or anti-VEGF mAb alone on human tumor xenografts" PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING, vol. 40, March 1999 (1999-03), page 200, XP001204640 & 90TH ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH; PHILADELPHIA, PENNSYLVANIA, USA; APRIL 10-14, 1999 ISSN: 0197-016X *
See also references of WO0061186A1 *

Also Published As

Publication number Publication date
WO2000061186A1 (fr) 2000-10-19
AU4972900A (en) 2000-11-14
EP1187633A4 (fr) 2005-05-11

Similar Documents

Publication Publication Date Title
EP1187633A1 (fr) Utilisation d'anticorps anti-vegf pour accentuer le rayonnement lors d'une therapie anticancereuse
RU2294761C2 (ru) Лечение резистентных опухолей человека антагонистами рецепторов фактора роста эпидермиса
JP7342701B2 (ja) 癌の治療及び/又は予防用医薬組成物
Gorski et al. Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation
Crane Jr et al. Inhibition of murine osteogenic sarcomas by treatment with type I or type II interferon
EA023148B1 (ru) Композиции на основе антагонистов pd-1 и их применение
CA2752890C (fr) Procede pour empecher et traiter une hyperpermeabilite
JP4076230B2 (ja) 癌の治療
KR20160093012A (ko) 암 치료를 위한 체크포인트 억제제 및 치료제의 배합물
AU2016294602A1 (en) Compositions and methods for treating peritoneal cancers
CN113018438B (zh) Cxcr2抑制剂在制备治疗鼻咽癌的药物中的用途
KR20230065977A (ko) 암 치료를 위한 인터페론-기반 방법 및 약제학적 조합
Qin et al. Treatment of liver metastases of human colon cancers in nude mice with somatostatin analogue RC‐160
WO2012108782A1 (fr) Anticorps stoppant ou ralentissant la croissance d'une tumeur (et variantes)
WO2020118096A1 (fr) Activité anticancéreuse de dérivés de l'adamantane
CN111419832B (zh) 药物组合物及其在制备治疗肿瘤药物中的用途
Dong et al. Suppression of tumorigenicity and metastasis in murine UV-2237 fibrosarcoma cells by infection with a retroviral vector harboring the interferon-beta gene
WO2021182572A1 (fr) Médicament pour le traitement et/ou la prévention du cancer
Amagase et al. Epidermal growth factor receptor‐mediated selective cytotoxicity of antitumor agents toward human xenografts and murine syngeneic solid tumors
AU2007240946A1 (en) Treatment of melanoma
CN112569360A (zh) 一种基于阻断pd-1/pd-l1的抗肿瘤药物组合物及其应用
Amagase et al. Epidermal Growth Factor Prolongs Survival Time of Tumor‐bearing Mice
JPH01126558A (ja) 抗体依存性細胞性細胞毒性の測定方法
AU2021100601A4 (en) A Pharmaceutical Composition for Treating Cancer Constructed by PD-L1 Antibody and Nintedanib
KR102373965B1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질을 포함하는 방사선 치료 증진용 약학적 조성물

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

A4 Supplementary search report drawn up and despatched

Effective date: 20050401

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THE UNIVERSITY OF CHICAGO

Owner name: DANA-FARBER CANCER INSTITUTE, INC.

17Q First examination report despatched

Effective date: 20060512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090514