EP1183118A1 - Automatisierung einer hochgeschwindigkeits-stranggiessanlage - Google Patents

Automatisierung einer hochgeschwindigkeits-stranggiessanlage

Info

Publication number
EP1183118A1
EP1183118A1 EP00942018A EP00942018A EP1183118A1 EP 1183118 A1 EP1183118 A1 EP 1183118A1 EP 00942018 A EP00942018 A EP 00942018A EP 00942018 A EP00942018 A EP 00942018A EP 1183118 A1 EP1183118 A1 EP 1183118A1
Authority
EP
European Patent Office
Prior art keywords
casting
measurement
speed
distributor
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00942018A
Other languages
English (en)
French (fr)
Other versions
EP1183118B1 (de
Inventor
Fritz-Peter Pleschiutschnigg
Stephan Feldhaus
Lothar Parschat
Michael Vonderbank
Thomas Ulke
Robert Victor Kowalewski
Rolf-Peter Heidemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Schloemann Siemag AG
Schloemann Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Schloemann Siemag AG, Schloemann Siemag AG filed Critical SMS Schloemann Siemag AG
Publication of EP1183118A1 publication Critical patent/EP1183118A1/de
Application granted granted Critical
Publication of EP1183118B1 publication Critical patent/EP1183118B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • This automation must be traced back in its external operating language to a simple functional language that is easy to understand by the operating personnel.
  • the degree of automation which in its operating language only knows the choice of the casting speed and the control of the narrow side heat flows on the operator (NO) or drive (ND) side, should allow the possibility of an autopilot to drive if certain preconditions like
  • Figure 1 shows this relationship and shows that at high casting speeds, when using casting powder and a certain casting speed of z. B.> 4.5 m / min the mold load remains almost constant and the strand shell load decreases sharply.
  • the reason for this is a constant slag lubrication film at high casting speeds and thus a constant heat transfer, but a shorter dwell time of the strand shell in the mold in proportion to the increase in casting speed.
  • the picture makes it clear that with increasing casting speed the mold load no longer rises and the strand shell load becomes lower, which reduces the risk of cracking but also the strand shell z. 8. becomes thinner and hotter at the end of the mold.
  • FIG. 2 shows the relationships between cast slag film
  • Strand shell temperature e.g. B. at the mold exit
  • strand shell thickness and shrinkage
  • Mold and strand shell loading or shrinkage max. Mold skin temperature in the mold level and thus the mold life in relation to the recrystallization temperature, which leads to the softening of the cold-rolled copper.
  • the object of the invention is to enable automation of the continuous casting process on the basis of an online 'data acquisition, which in addition to a Semi-automatic, ie the control of narrow side conicity and casting speed, also a fully automatic, auto-pilot driving style
  • Figure 1 The mold and strand shell loading depending on the casting speed
  • the thermal load on the copper plate in the mold level and the service life of the copper plates are relativized at the recrystallization temperature of the cold-rolled copper plate.
  • Figure 3 shows a) a slab mold (1) with (1.1) and without pouring funnel and in its conicity and adjustable narrow sides (1.2) as well as immersion spout (1.4) and casting powder, b) the mold load, expressed as MW / m2 for broad sides (WL ) and (WF) as well as for the narrow sides (ND) and (NO) over the casting time and c) the ratio of the heat flows from broad sides to narrow sides, expressed as NO / WL, NO / WF and ND / WL, NO / WF, the Describe the course of the heat flows more easily and make their correction easier via the conicity adjustment during casting.
  • Figure 4 represents casting situations A, B, C using a) the heat flows, expressed as MW / ml, or b) the ratio of the heat flows ND / WF, ND / WL and NO / WF, NO / WL, which is a correction experienced by adjusting the narrow sides in their taper from position 0 to position 1.
  • Figure 5 shows the temperature profile of melts in the distributor over a casting time of one hour.
  • Figure 6 shows the casting window, formed between the steel temperature in the distributor and the casting speed, with the exemplary temperature profiles of different melts.
  • Figure 7 represents the data acquisition and the control loop in the area of
  • FIG. 3 consists of the sub-figures a), b) and c).
  • FIG. 3 a) schematically represents a slab or bloom block (1), each consisting of two individual narrow sides (1.2), which on the operating side (1.2.1) (NO) and drive side (1.2.2) (ND) with adjusting cylinders (1.2.3) and two broad sides (1.3), the rear side (1.3.1) (WF) and the loose side (1.3.2) (WL).
  • the mold (1) can also advantageously be provided with a pouring funnel (1.1).
  • the liquid steel (1.4) is poured through the immersion spout (1.5) under the bath level (1.7.2) into the mold when casting powder (1.6) is used to form pourable slag (1.6.1) and a pouring slag film between the mold (1) and the strand shell (1.7.1), which is used for lubrication and heat flow control.
  • Figure 3 b) and c) show the specific heat flow in MW / 2 of the broad side WF, WL (1.3.2) and the narrow sides NO (1.2.1), NO (1.2.2) in the normal, inconspicuous casting process, the casting time from start to time tx, when the steel is in temperature equilibrium with the distributor.
  • the narrow side streams have to show a ratio to the broad sides of ⁇ 1 via the conicity of the narrow sides, which must be kept constant over the casting time.
  • Figure 5 shows the temperature profile of numerous melts over a period of approximately 1 hour in the distributor. It can be seen that, for example, in these pans with a melt content of approx. 180 t, the steel temperature drops by approx. 5 ° C./hour. This drop in the steel temperature in the distributor can be kept relatively low and depends essentially on that
  • the absolute temperature at which the steel enters the distributor is specified by the continuous casting operation, is set by the steelworks and depends on, for example
  • Figure 6 shows the casting window formed by the steel temperature in the distributor and the maximum possible casting speed.
  • the pouring window (4) is formed by an upper (3.2) and lower (3.1) temperature limit. Furthermore, in addition to the steel temperature in the mold (3.3), the range of the liquidus temperature (3.4) of z. B. Low carbon steel grades are shown. The steel temperature in the mold increases with a constant steel temperature in the distributor inlet with a larger distributor volume, improved distributor insulation,
  • the diagram in FIG. 6 shows three melts with different distributor temperatures and thus different maximum possible casting speeds, but for example the same temperature loss of 5 ° C./hour.
  • the steel temperature in the distributor is 1,560 ° C at the start of the melt and 1,555 ° C at the end of the pour, which allows a maximum casting speed of 5.0 m / min and 5.85 m / min at the end of the pour.
  • the temperature is 1,550 ° C and allows a casting speed of 7.2 m / min and at the end of casting with a temperature of 1,545 ° C a casting speed of> 8 m / min.
  • the speed of max. 8 m / min can be reached when a temperature of approx. 1,548 ° C is reached.
  • Figure 7 shows the structure of a semi-automatic or fully automatic / auto-pilot for casting a high-speed system.
  • the system consists of the steel pan (5), a distributor (6) with a stopper or slide closure (6.1) as well as a discontinuous or continuous temperature measurement in the distributor, a continuous caster with an oscillating mold (1) and adjustable narrow sides (12) and pull-out rollers (6.3 ), which are driven by a motor (6.3.1) and feed the strand at a controlled casting speed (1.8).
  • the fully automatic system corrects the conicity settings of each individual narrow side on the basis of the heat flow conditions between narrow sides and broad sides outside of a narrow side / broad side ratio of, for example
  • the invention makes reproducible operation of the continuous caster possible with maximum possible productivity while avoiding breakthroughs and controlled strand quality.
  • Case 1 with a melt that leads to a steel temperature in the distributor of 1,570 ° C at the start of casting and 1,565 ° C at the end of casting and a casting speed of 4.0 and max. Allows 4.5 m / min
  • Case 2 with a melt that leads to a steel temperature in the distributor of 1,560 ° C at the start of casting and 1,560 ° C at the end of casting and a casting speed of 5.0 and max. 5.85 m / min

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Devices For Molds (AREA)

Abstract

Verfahren zum automatischen Betreiben einer Hochgeschwindigkeits- Stranggiessanlage, bei dem die Stopfen- oder Schieberbewegung, die Veränderung der Badspiegelhöhe, die Wärmeströme durch die Kokillenwände, die Temperatur des flüssigen Metalls und die Abzugsgeschwindigkeit über die Giesszeit gemessen, einem Rechner zugeführt und mit vorgegebenen Grenzwerten für eine automatische Betriebsweise verglichen werden.

Description

Automatisierung einer Hochgeschwindigkeits-Stranggießanlage
Besonders beim Betreiben von Hochgeschwindigkeitsanlagen für Brammen und hier besonders im Verbund mit Walzwerksanlagen ist es von Bedeutung, die Stranggießanlage bei einer hohen und kontrollierten Geschwindigkeit sicher betreiben zu können.
Diese Notwendigkeit der Gießsicherheit besonders bei hohen Gießgeschwindigkeiten bis zu 10 m/min macht es erforderlich, die Kontrolle von zahlreichen Prozeßdaten, die komplex untereinander verzahnt sind, mit Hilfe einer Automatisierung vorzunehmen.
Diese Automatisierung muß in ihrer äußeren Bedienungssprache auf eine einfache Funktionssprache, die vom Bedienpersonal gut überschaubar ist, zurückgeführt werden.
Weiterhin sollte der Grad der Automatisierung, der in seiner Bedienungssprache nur noch die Wahl der Gießgeschwindigkeit und die Kontrolle der Schmal- seitenwärmeströme auf der Operator (NO)- bzw. Drive (ND)-Seite kennt, die Möglichkeit der Fahrweise eines Autopiloten zulassen, wenn bestimmte Vorbedingungen wie
eine kontrollierte Stahltemperatur im Verteiler, ein guter oxidischer Reinheitsgrad des Stahles, ein ruhiger Gießspiegel sowie ein konstanter und gleicher Wärmestrom der Breitseiten
gegeben sind. Als Stand der Technik ist das Messen der Wärmeströme aller vier Cu-Platten einer Brammenkokille (DE 4117073) bekannt, jedoch ist in dieser Patentschrift kein Stand der Technik in Abhängigkeit von der Gießgeschwindigkeit offenbart. So nimmt z. B. eine Geschwindigkeitserhöhung einen geringem Einfluß auf die Kokillenbelastung, ausgedrückt als MW/m2 und einen starken Einfluß auf die Strangschalenbelastung ausgedrückt als MWh/m2.
Figur 1 stellt diesen Zusammenhang dar und läßt erkennen, daß bei hohen Gießgeschwindigkeiten, bei Einsatz von Gießpulver und einer bestimmten Gießgeschwindigkeit von z. B. > 4,5 m/min die Kokillenbelastung nahezu konstant bleibt und die Strangschalenbelastung stark abnimmt. Der Grund hierfür ist ein bei hohen Gießgeschwindigkeiten konstanter Schlackenschmierfilm und damit konstanter Wärmedurchgang, aber eine proportional zur Gießgeschwin- digkeitssteigerung geringer werdende Verweiizeit der Strangschale in der Kokille. Das Bild macht deutlich, daß mit steigender Gießgeschwindigkeit die Kokillenbelastung nicht mehr ansteigt und die Strangschalenbelastung geringer wird, womit die Gefahr einer Rißbildung abnimmt aber auch die Strangschale z. 8. am Ende der Kokille dünner und heißer wird.
In Figur 2 werden die Zusammenhänge dargestellt zwischen Gießschlackenfilm,
Strangschalentemperatur, z. B. am Kokillenaustritt, Strangschalendicke und Schrumpf,
Kokillen- und Strangschalenbelastung bzw. Schrumpf, max. Kokillenhauttemperatur im Gießspiegel und damit der Kokillenstandzeit in Relation zur Rekristallisationstemperatur, die zur Erweichung des kaltgewalzten Kupfers führt.
Aufgabe der Erfindung ist es, eine Automatisierung des Stranggießprozesses auf der Basis einer Online'-Datenerfassung zu ermöglichen, die sowohl neben einer Halbautomatik, d. h. der Steuerung von Schmalseitenkonizitäten und Gießgeschwindigkeit, auch eine Vollautomatik, Auto-Pilot-Fahrweise
zuläßt unter der Berücksichtigung und in Funktion der Stahltemperatur im Verteiler und unter der Voraussetzung eines kontrollierten
Reinheitsgrades, Gießspiegels und Breitseitenwärmestroms.
Diese Aufgabe wird gelöst durch die Merkmale des Verfahrensanspruchs 1 bzw. dem Vorrichtungsanspruch mit ihren Unteransprüchen zur Ausgestaltung der Erfindung.
Die Figuren diesen beispielhaft zur Veranschaulichung der Erfindung und werden nachfolgend beschrieben. Es zeigen:
Figur 1 : Die Kokillen- und Strangschalenbelastung in Abhängigkeit von der Gießgeschwindigkeit
Figur 2: Die Zusammenhänge zwischen der Gießgeschwindigkeit und
- Schlackenfilmdicken,
- Strangschalentemperatur, Schrumpf sowie Strangschalendicke am Ausgang der Kokille,
- Kokillen- und Strangschalenbelastung sowie Schrumpf,
- Temperaturbelastung der Kupferplatte im Gießspiegel sowie die Standzeit der Cu-Platten relativiert an der Rekristallisationstemperatur der kaltgewalzten Kupferplatte.
Die Figuren 1 und 2 sind bereits im Bereich der Aufgabenstellung im Detail beschrieben worden und dienen zum besseren Verständnis der nun folgenden Beschreibung, die für einen normalen Techniker nicht als selbstverständlich anzusehen ist und damit eine Erfindungshöhe aufweist.
Figur 3: stellt a) eine Brammenkokille (1) mit (1.1) und ohne Eingießtrichter und in ihrer Konizität und verstellbaren Schmalseiten (1.2) sowie Tauchausguß (1.4) und Gießpulver, b) die Kokillenbelastung, ausgedrückt als MW/m2 für Breitseiten (WL) und (WF) sowie für die Schmalseiten (ND) und (NO) über die Gießzeit und c) das Verhältnis der Wärmeströme von Breitseiten zu Schmalseiten, ausgedrückt als NO/WL, NO/WF und ND/WL, NO/WF, die den Verlauf der Wärmeströme einfacher beschreiben und ihre Korrektur über die Konizitätsanstellung während des Gießems leichter gestalten, dar.
Figur 4: stellt Gießsituationen A, B, C mit Hilfe a) der Wärmeströme, ausgedrückt als MW/ml, bzw. b) des Verhältnisses der Wärmeströme ND/WF, ND/WL und NO/WF, NO/WL, die eine Korrektur durch Verstellung der Schmalseiten in ihrer Konizität von der Position 0 zu der Position 1 erfahren, dar.
Figur 5: stellt den Temperaturverlauf von Schmelzen im Verteiler über eine Gießzeit von einer Stunde dar.
Figur 6: stellt das Gießfenster, gebildet zwischen der Stahltemperatur im Verteiler und der Gießgeschwindigkeit, mit den beispielhaften Temperaturverläufen unterschiedlicher Schmelzen dar. Figur 7: stellt die Datenerfassung und den Regelkreis im Bereich der
Stranggießmaschine mit den Eingaben an Grenzwerten für die Steuerung und Regelung der Schmalseitenkonizitäten und der max. Gießgeschwindigkeit in Funktion von der Stahltemperatur im Verteiler dar.
Figur 3 besteht aus den Teilfiguren a), b) und c). Die Figur 3 a) stellt schematisch eine Brammen- oder Vorblockkokille (1), bestehend aus je zwei einzelnen Schmalseiten (1.2), die auf der Bedienseite (1.2.1) (NO) und Antriebsseite (1.2.2) (ND) mit Anstellzylindern (1.2.3) versehen sind, und je zwei Breitseiten (1.3), der Rückseite (1.3.1) (WF) und der Losseite (1.3.2) (WL).
Die Kokille (1) kann weiterhin vorteilhafterweise mit einem Gießtrichter (1.1) versehen sein. Der flüssige Stahl (1.4) wird durch den Tauchausguß (1.5) unter dem Badspiegel (1.7.2) in die Kokille bei Einsatz von Gießpulver (1.6) unter Bildung von Gießschlacke (1.6.1) und einem Gießschlackenfilm zwischen Kokille (1) und Strangschale (1.7.1), der zur Schmierung und zur Wärmestromkontrolle dient, geleitet.
Figur 3 b) und c) zeigen den spezifischen Wärmestromverlauf in MW/2 der Breitseite WF, WL (1.3.2) und der Schmalseiten NO (1.2.1), NO (1.2.2) im normalen, unauffälligen Gießprozeß, wobei die Gießzeit vom Start bis zur Zeit tx, bei der der Stahl sich im Temperaturgleichgewicht mit dem Verteiler befindet. Die Schmalseitenströme haben über die Konizitätsanstellung der Schmalseiten ein Verhältnis zu den Breitseiten von < 1 aufzuzeigen, das über die Gießzeit konstant zu halten ist.
Unterschiedliche über den Strangumfang ausgebildete Schlackenfilme, besonders zwischen Breit- und Schmalseiten, unterschiedliche Gießgeschwindigkeiten, unterschiedliche Stahltemperaturen, ungleichförmige Strömungsverhältnisse in der linken und rechten Hälfte der Kokille, ein Auslenken der Bramme aus der Strangmittenachse in Gießrichtung können zu Abweichungen in der spezifischen Wärmeabfuhr führen.
Diese Abweichungen werden in Figur 4 an drei typischen Fällen A, B und C (Figur 4)) anhand der spezifischen Wärmeströme, ausgedrückt als MW/m2 in Figur 4 b). und als Wärmestromverhältnis Schmalseite/Breitseiten (N/W) in Figur 4 c) dargestellt.
Im Fall A weicht der Wärmestrom der Schmalseite auf der Antriebsseite (ND) (1.2.2) von dem der Schmalseite auf der Dickenseite (NO) (1.2.1) durch einen zu geringen Wärmestrom ab. Durch eine größere Anstellung der Konizität auf der ND-Schmalseite von Position 0 zu Position 1 wird der Wärmestrom dem der (NO)-Schmalseite angepaßt.
Im Fall B sind die Wärmeströme beider Schmalseiten im Vergleich zu den Breitseiten zu hoch. Durch eine Rücknahme der Konizitätsanstellung beider Schmalseiten von der Position 0 zur Position 1 werden die Wärmeströme in das korrekte Verhältnis zu den Breitseiten gesetzt.
Im Fall C sind die Wärmeströme der Schmalseiten zu gering und können durch eine gleichzeitige Vergrößerung der Schmalseitenkonizitäten von Position 0 auf Position 1 auf ihren relativ zur den Breitseiten richtigen Wert gebracht werden.
Figur 5 gibt den Temperaturverlauf von zahlreichen Schmelzen über die Zeit von ca. 1 Stunde im Verteiler wieder. Es ist zu erkennen, daß beispielsweise bei diesen Pfannen mit einem Schmelzeninhalt von ca. 180 t die Stahltemperatur um ca. 5 °C/Stunde fällt. Dieser Abfall der Stahltemperatur im Verteiler kann relativ gering gehalten werden und hängt im wesentlichen ab von der
Verweilzeit des Stahles im Verteiler, d. h. von der Gießleistung und der Isolation des Verteilers. Die absolute Temperatur, mit der der Stahl im Verteiler einläuft, ist vom Stranggießbetrieb vorgegeben, wird vom Stahlwerk eingestellt und hängt ab von beispielsweise
Pfannenlaufzeiten,
Pfannenalter und
Pfannenmauerung,
die häufig durch eine unkontrollierte Verfahrweise zu Abweichungen von der Soll-Temperatur führen.
Figur 6 stellt das Gießfenster gebildet von der Stahltemperatur im Verteiler und der maximal möglichen Gießgeschwindigkeit dar.
Das Gießfenster (4) wird von einer oberen (3.2) und unteren (3.1) Temperaturgrenze gebildet. Des weiteren sind neben der Stahltemperatur in der Kokille (3.3) der Bereich der Liquidus-Temperatur (3.4) von z. B. Low Carbon- Stahlgüten dargestellt. Die Stahltemperatur in der Kokille steigt an bei konstanter Stahltemperatur im Verteilereinlauf mit größerem Verteilervolumen, verbesserter Verteilerisolation,
Einsatz einer elektromagnetischen Bremse in der Kokille.
Das Diagramm in Figur 6 stellt drei Schmelzen mit unterschiedlichen Verteilertemperaturen und damit unterschiedlichen maximal möglichen Gießgeschwindigkeiten, aber beispielsweise gleichem Temperaturverlust von 5 °C/Stunde dar.
Diese drei Fälle im Gießfenster (4) stellen sich im einzelnen wie folgt dar.
Im Fall (4.1) beträgt die Stahltemperatur bei Gießbeginn 1. 570 °C und erlaubt eine maximale Gießgeschwindigkeit (1.8) von 4,0 m/min, und nach 1 Stunde Gießzeit am Ende der Pfannengießzeit erlaubt die Stahltemperatur von 1.565 °C eine maximale Gießgeschwindigkeit von 4,5 m/min.
Im Fall (4.2) beträgt die Stahltemperatur im Verteiler bei Gießbeginn der Schmelze 1.560 °C und bei Gießende 1.555 °C, die eine maximale Gießgeschwindigkeit von 5,0 m/min und bei Gießende 5,85 m/min erlaubt.
Im Fall (4.3) beträgt die Temperatur 1.550 °C und erlaubt eine Gießgeschwindigkeit von 7,2 m/min und bei Gießende mit einer Temperatur von 1.545 °C eine Gießgeschwindigkeit von > 8 m/min. Die Geschwindigkeit von max. 8 m/min kann bei Erreichen einer Temperatur von ca. 1.548 °C angefahren werden.
Figur 7 stellt den Aufbau einer Halbautomatik bzw. einer Vollautomatik/Auto- Pilot zum Gießen einer Hochgeschwindigkeitsanlage dar.
Die Anlage besteht aus der Stahlpfanne (5), einem Verteiler (6) mit einem Stopfen oder Schieberverschluß (6.1) sowie einer diskontinuierlichen oder kontinuierlichen Temperaturmessung im Verteiler, einer Stranggießanlage mit oszillierender Kokille (1) und anstellbaren Schmalseiten (12) sowie Ausziehrollen (6.3), die mit einem Motor (6.3.1) angetrieben werden und den Strang mit kontrollierter Gießgeschwindigkeit (1.8) ausfördem.
Folgende Datenerfassung ist für die vollautomatische Fahrweise/Auto-Pilot notwendig:
Temperaturmessung des Stahles im Verteiler (6.2) in °C,
Stopfenbewegung oder Schieberbewegung (6. 1. 1 ) in dy/dt,
Wärmestrommessung der Breitseiten (7) in MW/m2,
Wärmestrommessung der Schmalseiten (8) in MW/m2,
Stopfenbewegung,
Gießspiegelbewegung (9) in dx/dt und
Ist-Gießgeschwindigkeit (1.8) in m/min. Diese Daten werden in einem online-Rechner (10) mit Grenzdaten verglichen. Unter Vorbedingungen wie
einer Stopfenbewegung von dy/dt von + 0, d. h. ein 'clean steel', der zu keiner wesentlichen oxidischen Ablagerung im SEN sowie zu keiner Stopfen- und SEN-Erosion führt, einem konstanten Wärmestrom, in den Breitseiten bei konstanter Gießgeschwindigkeit mit einer Toleranz von max. 0, 1 MW/m2 über die Gießzeit und zueinander, einer Gießspiegelbewegung von max. ± 5 mm über eine Gießzeit von 60 sec, einem Wärmestromverhältnis der Schmalseiten zu den Breitseiten von > 0,9 und < 0,4
kann die Bedienoberfläche {~\ ~ ) in Form eines 'Joysticks', der die vier Funktionen
+/- Gießgeschwindigkeit und
+/- Taper für die einzelnen Schmalseiten
aufweist und eine Halbautomatik darstellt, auf eine Vollautomatik oder den Status eines Auto-Piloten betriebssicher und damit durchbruchann (< 0,5 %) umgestellt werden.
Die Vollautomatik korrigiert mit dem Gießen die Konizitätsanstellungen jeder einzelnen Schmalseite auf Basis der Wärmestromverhältnisse zwischen Schmalseiten und Breitseiten außerhalb eines Schmalseiten-/Breitseiten- Verhältnisses von beispielsweise
0,8 > N_> 0,5 W und fährt die maximal mögliche Gießgeschwindigkeit, die aufgrund der Stahltemperatur im Verteiler und der aufgestellten Funktion möglich ist, automatisch ein.
Die Erfindung macht eine reproduzierenden Betrieb der Stranggießanlage bei maximal möglicher Produktivität unter Vermeidung von Durchbrüchen und kontrollierter Strangqualität möglich.
Bezugszeichenliste
(1) Brammenkokille mit Oszillation
(1.1) Trichter
(1.2) Kokillenschmalseiten
(1.2.1 ) Schmalseite auf der Operator-Seite (NO)
(1.2.2) Schmalseite auf der Antriebsseite (ND)
(1.2.3) Anstellzy linder
(1.3) Breitseiten
(1.3.1 ) Breitseite fixiert oder Rückseite, WF
(1.3.2) Breitseite Losseite oder Rückseite, WL
(1.4) flüssiger Stahl
(1.5) Tauchausguß, SEN
(1.6) Gießpulver
(1.6.1.1) Gießschlackenfilm zwischen Kokille und Strangschale
(1.7) Strang
(1.7.1) Strangschale
(1.7.2) Gießspiegel
(1.8) Gießgeschwindigkeit, Vc
(1.8.1 ) Gießzeitpunkt tx, nach der die Stahltemperatur sich im Gleichgewicht mit dem Verteiler befindet
(3) obere Temperaturgrenze (3.1) untere Temperaturgrenze
(3.3) Stahltemperatur in der Kokille
(3.4) Bereich der Liquidus-Temperatur von 'low carbon'-Stahlgüten
(3.5) Ursachen eines Anstiegs der Stahltemperatur in der Kokille bei kontrollierter Temperatur des Stahles im Verteilereinlauf
(4) Gießfenster mit drei Schmelzen unterschiedlicher Temperaturen im Verteiler und gleichem Temperaturverlust von 5 "C/Stunde im Gießfenster Stahltemperatur/Gießgeschwindigkeit
(4.1) Fall 1 mit einer Schmelze, die zu einer Stahltemperatur im Verteiler von 1.570 °C bei Gießbeginn und 1.565 °C bei Gießende führt und eine Gießgeschwindigkeit von 4,0 und max. 4,5 m/min zuläßt (4.2) Fall 2 mit einer Schmelze, die zu einer Stahltemperatur im Verteiler von 1.560 °C bei Gießbeginn und 1.560 °C bei Gießende führt und eine Gießgeschwindigkeit von 5,0 und max. 5,85 m/min zuläßt
(4.3) Fall 3 mit einer Schmelze, die zu einer Stahltemperatur im Verteiler von 1.500 °C bei Gießbeginn und 1.545 "C bei Gießende führt und eine Gießgeschwindigkeit von 7,0 und > 8,0 m/min zuläßt
(5) Stahlpfanne
(6) Verteiler
(6.1 ) Stopfen- oder Schieberverschluß (6.1.1 ) Stopfen- oder Schieberbewegung
(6.2) diskontinuierliche oder kontinuierliche Temperaturmessung des Stahles im Verteiler
(6.3) angetriebene Ausziehrollen (6.3.1 ) Antriebsmotor
(7) Wärmestrommessung in MW/m2 der Breitseiten
(7.1) Breitseiten der Rückseite, fixierte Seite WF
(7.2) Breitseiten der Losseite, WL
(8) Wärmestrommessung in MW/m2 der Schmalseiten
(8.1) Wärmestrommessung der Operator-Seite (NO)
(8.2) Wärmestrommessung der Antriebsseite (ND)
(8.3) Wärmestromverhältnis Schmalseite/Breitseiten
(8.3.1 ) Wärmestromverhältnis Operator-Schmalseite/Breitseiten (NO, NO)
(WL WF)
(8.3.2) Wärmestromverhältnis Antriebsschmalseite/Breitseiten (ND. NO)
(WL WF)
(9) Gießspiegelbewegung in dx/dt (1 0) Online-Rechner
(1 0. 1) Grenzwerte
(11 ) Bedienoberfläche 'Joystick'
(11.1) Vollautomatik/Auto-Pilot-Status
(11.2) Alarm für Übernahme in Halbautomatik

Claims

Patentansprüche
1. Verfahren zum automatischen Betreiben einer Hochgeschwindigkeit- Brammenanlage von maximal 10 m/min mit einer oszillierenden Kokille, einem Tauchausguß oder einer Düse mit und ohne Gießpulver, mit folgenden Merkmalen:
- Messung der Stopfen- oder Schieberbewegung online über die Gießzeit,
- Messung der Veränderungen in der Badspiegelbewegung online in mm/min,
- Messung der Breitseiten-Wärmeströme online,
- Messung der Schmalseiten-Wärmeströme online in MW/m2 über die Gießzeit,
- Messung der Stahltemperatur im Verteiler über die Gießzeit,
- Messung der Ist-Geschwindigkeit in m/min online über die Gießzeit,
- Vergleich der Veränderungen pro Zeiteinheit der Stopfen und Badspiegelbewegung und der Breitseiten-Wärmeströme online mit vorgegebenen Grenzwerten als Kriterium für eine automatische Betriebsweise,
- Vergleich der Wärmestrom-Verhältnisse von jeder einzelnen Schmalseite/Breitseite für einen Abgleich der Schmalseiten-Kupferplattenkonizität zueinander sowie für eine Korrektur in Relation zu den Breitseiten-Wärmeströmen,
- Vergleich der Stahltemperatur im Verteiler mit der dazu in Funktion stehenden maximalen Gießgeschwindigkeit für einen entsprechenden Abgleich der Ist-Gießgeschwindigkeit.
2. Verfahren nach Anspruch 1 , wobei die Automatisierung in den Status einer Vollautomatisierung/Auto-Pilot- Fahrweise umgeschaltet werden kann und die bei Überschreitung von Grenzwerten einen Alarm auslöst und sich in eine Halbautomatik zurückschalten läßt.
3. Verfahren nach Anspruch 1 und 2, wobei das Kriterium
- Stahltemperatur im Verteiler in Funktion von der maximal möglichen Gießgeschwindigkeit für jede Stahlgruppe wie beispielsweise 'Iow carbon', 'medium carbon', 'high carbon' festgelegt wird.
4. Vorrichtung zum automatischen Betreiben einer Hochgeschwindigkeits- Brammenanlage von maximal 10 m/min und einer oszillierenden Kokille (1), eines Tauchausgusses (1.5) oder einer Düse mit und ohne Gießpulver (1.6), die aus folgenden Elementen besteht:
- einer Brammenkokiile, bestehend aus zwei Breitseiten (1.3) und zwei Schmalseiten (1.2), die mit Hilfe von Anstellzylindem (1.2.3) in ihrer Konizität während des Gießens kontrollierbar sind,
- einer Messung der Stopfen- oder Schieberbewegung (6. 1. 1),
- einer Messung der Badspiegelbewegung (9),
- einer Messung der Breitseiten-Wärmeströme von Festseite (7.1) und Losseite (7.2),
- einer Messung der Schmalseiten-Wärmeströme (8) von der Bediener- Seite (8. 1) und der Antriebsseite (8.2),
- einer Messung der Stahltemperatur im Verteiler (6.2) mit Hilfe einer diskontinuierlichen oder kontinuierlichen Meßvorrichtung,
- einer Messung der Ist-Gießgeschwindigkeit (1.8) der Bramme bzw. des Stranges (1.7),
- Festlegung von Grenzwerten (10.1 ) als Kriterien von
- Veränderung der Stopfenbewegung (6.1.1 )vonmax±2mm/Zeiteinheit
- Veränderung der Badspiegelbewegung (9) von ± 5 mm/Zeiteinheit
- Veränderung der Breitseitenströme (7) von ± 0, 1 0 MW/m2 absolut und relativ zueinander
- Wärmestromverhältnis (8.3) der Schmalseiten zu den Breitseiten 0,9 > NO, ND > 0.4 W' W um einen Automatikbetrieb sicherstellen zu können.
- Erstellung der Wärmestromverhältnisse (8.3) der Bediener-Schmalseite (8.3.1) und der Antriebsseite (8.3.2) und deren Korrektur mit Hilfe der Anstellung der Schmalseitenkonizitäten (1.2. 1) und (1.2.2) mit Hilfe der Anstellzylinder (1.2.3), so daß die Wärmestromverhältnisse (8.3) sich im Bereich
0, 8 > NO, ND > 0, 6 W' W bewegen und diese Korrektur vorzugsweise automatisch in Schritten von beispielsweise jeweils 0,1 mm/ Verstellaktion vorgenommen wird.
- Anfahren der maximal zulässigen Gießgeschwindigkeit in Funktion zur Stahltemperatur entsprechend dem Gießfenster (4).
5. Vorrichtung nach Anspruch 4, wobei die Halbautomatik mit der Bedienoberfläche 'Joystick' (11) und den Funktionen Wahl der Gießgeschwindigkeit (1.8) und Steuerung der Wärmestromverhältnisse (8.3) über die Korrektur der Schmalseitenanstellungen (1.2) in eine Voliautomatik/Auto-Pilot-Status (11.1) umgeschaltet werden kann und bei Überschreiten von Grenzwerten (10.1) ein Alarm (11.2) ausgelöst wird und in die Halbautomatik (11) zurückgeschaltet wird.
6. Vorrichtung nach Anspruch 5, wobei das Gießfenster (4) sich entsprechend der Stahlgüten-Gruppen und den eingesetzten Gießpulvem ändert.
EP00942018A 1999-06-07 2000-06-07 Automatisierung einer hochgeschwindigkeits-stranggiessanlage Expired - Lifetime EP1183118B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19925713 1999-06-07
DE19925713 1999-06-07
PCT/EP2000/005216 WO2000074878A1 (de) 1999-06-07 2000-06-07 Automatisierung einer hochgeschwindigkeits-stranggiessanlage

Publications (2)

Publication Number Publication Date
EP1183118A1 true EP1183118A1 (de) 2002-03-06
EP1183118B1 EP1183118B1 (de) 2003-01-02

Family

ID=7910298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00942018A Expired - Lifetime EP1183118B1 (de) 1999-06-07 2000-06-07 Automatisierung einer hochgeschwindigkeits-stranggiessanlage

Country Status (12)

Country Link
US (2) US6793006B1 (de)
EP (1) EP1183118B1 (de)
JP (1) JP2003501265A (de)
KR (1) KR100752693B1 (de)
CN (1) CN1200788C (de)
AT (1) ATE230318T1 (de)
CA (1) CA2375133A1 (de)
DE (2) DE10027324C2 (de)
ES (1) ES2192532T3 (de)
MX (1) MXPA01012413A (de)
TW (1) TW469187B (de)
WO (1) WO2000074878A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027324C2 (de) * 1999-06-07 2003-04-10 Sms Demag Ag Verfahren zum Gießen eines metallischen Strangs sowie System hierzu
DE50009703D1 (de) * 1999-07-06 2005-04-14 Sms Demag Ag Verfahren zur Schmelzenführung in einer Stranggiessmaschine
KR100782828B1 (ko) * 2005-12-29 2007-12-06 삼성전자주식회사 디지털 기기에서 알림 메시지를 표시하는 방법 및 상기 알림 메시지 표시 제어 장치
DE102006060673A1 (de) * 2006-11-02 2008-05-08 Sms Demag Ag Verfahren und Regelvorrichtung zum Regeln der Wärmeabfuhr einer Seitenplatte einer Kokille
EP2025432B2 (de) * 2007-07-27 2017-08-30 Concast Ag Verfahren zur Erzeugung von Stahl-Langprodukten durch Stranggiessen und Walzen
US20100058321A1 (en) * 2008-09-04 2010-03-04 Anderson Greg L Approach for deploying software to network devices
KR101193885B1 (ko) 2010-09-29 2012-10-26 현대제철 주식회사 조질압연공정의 운전 제어 장치
DE102014112206A1 (de) * 2014-08-26 2016-03-03 Peter Valentin Verfahren zum Stranggießen eines Metalls, insbesondere eines Stahls, und Vorrichtung zum Stranggießen
CN106141132A (zh) * 2015-03-31 2016-11-23 新日铁住金工程技术株式会社 铸坯的制造方法及连续铸造装置
AT519154B1 (de) * 2016-09-26 2019-12-15 Primetals Technologies Austria GmbH Regelung der Schmalseitenkonizität einer Stranggusskokille
CN106734202A (zh) * 2016-12-27 2017-05-31 中冶连铸技术工程有限责任公司 棒线材和窄带轧制生产线及其生产方法
CN108031809B (zh) * 2017-12-07 2020-05-22 中国重型机械研究院股份公司 一种结晶器电动调宽装置窄边锥度控制方法
CN111822689B (zh) * 2020-07-27 2021-08-31 宝武集团马钢轨交材料科技有限公司 一种高品质钢连铸吹氩塞棒、塞棒吹氩系统及吹氩方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3478808A (en) * 1964-10-08 1969-11-18 Bunker Ramo Method of continuously casting steel
DE2440273C2 (de) * 1974-08-20 1976-09-30 Mannesmann Ag Verfahren zur regelung des stranggiessprozesses beim vergiessen von stahl, sowie anordnung zur durchfuehrung des verfahrens
JPS52148435A (en) * 1976-06-04 1977-12-09 Ishikawajima Harima Heavy Ind Adjusting method of taper in mould for coninuous casting and its device
JPS6054138B2 (ja) * 1981-01-08 1985-11-28 新日本製鐵株式会社 連続鋳造鋳型における鋳造鋼の介在物検出方法
JPS58145344A (ja) * 1982-02-24 1983-08-30 Kawasaki Steel Corp 連続鋳造における鋳型短辺のテ−パ量制御方法
JPH0747199B2 (ja) * 1985-06-04 1995-05-24 住友金属工業株式会社 連続鋳造方法およびその鋳型
JPH01162553A (ja) * 1987-12-18 1989-06-27 Sumitomo Metal Ind Ltd 連続鋳造機溶鋼レベル制御の異常監視装置
AT389251B (de) * 1987-12-23 1989-11-10 Voest Alpine Ind Anlagen Kuehlung einer stranggiesskokille
DE4117073A1 (de) * 1991-05-22 1992-11-26 Mannesmann Ag Temperaturmessung brammenkokille
JP3035688B2 (ja) * 1993-12-24 2000-04-24 トピー工業株式会社 連続鋳造におけるブレークアウト予知システム
DE4404148A1 (de) * 1994-02-10 1995-08-17 Inteco Int Techn Beratung Verfahren und Vorrichtung zum Herstellen von Gußsträngen aus Metallen durch Stranggießen
DE19508476A1 (de) * 1995-03-09 1996-09-12 Siemens Ag Leitsystem für eine Anlage der Grundstoff- oder der verarbeitenden Industrie o. ä.
DE19639297C2 (de) * 1996-09-25 2000-02-03 Schloemann Siemag Ag Verfahren und Vorrichtung für Hochgeschwindigkeits-Stranggießanlagen mit einer Strangdickenreduktion während der Erstarrung
US6125916A (en) * 1996-11-12 2000-10-03 Giovanni Arvedi Apparatus for the high-speed continuous casting of good quality thin steel slabs
CA2273330A1 (en) * 1996-11-28 1998-06-04 Siemens Aktiengesellschaft Process for parametering a fuzzy automaton that compares a measurement system to a pattern signal
JPH10249492A (ja) * 1997-03-11 1998-09-22 Nippon Steel Corp 鋼の連続鋳造用鋳型
DE19725433C1 (de) * 1997-06-16 1999-01-21 Schloemann Siemag Ag Verfahren und Vorrichtung zur Durchbruchfrüherkennung beim Stranggießen von Stahl mit einer oszillierenden Kokille
DE10027324C2 (de) * 1999-06-07 2003-04-10 Sms Demag Ag Verfahren zum Gießen eines metallischen Strangs sowie System hierzu
DE50009703D1 (de) * 1999-07-06 2005-04-14 Sms Demag Ag Verfahren zur Schmelzenführung in einer Stranggiessmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0074878A1 *

Also Published As

Publication number Publication date
KR100752693B1 (ko) 2007-08-29
EP1183118B1 (de) 2003-01-02
CN1368908A (zh) 2002-09-11
US20040244941A1 (en) 2004-12-09
DE10027324C2 (de) 2003-04-10
MXPA01012413A (es) 2004-09-10
TW469187B (en) 2001-12-21
DE10027324A1 (de) 2001-03-08
US6854507B2 (en) 2005-02-15
US6793006B1 (en) 2004-09-21
DE50001011D1 (de) 2003-02-06
CA2375133A1 (en) 2000-12-14
ATE230318T1 (de) 2003-01-15
WO2000074878A1 (de) 2000-12-14
JP2003501265A (ja) 2003-01-14
CN1200788C (zh) 2005-05-11
ES2192532T3 (es) 2003-10-16
KR20020026448A (ko) 2002-04-10

Similar Documents

Publication Publication Date Title
EP1183118B1 (de) Automatisierung einer hochgeschwindigkeits-stranggiessanlage
AT408197B (de) Verfahren zum stranggiessen eines metallstranges
DE10033307C2 (de) Verfahren und Einrichtung zum Gießen eines metallischen Endlosstranges
DE19809807A1 (de) Anstellverfahren für ein Rollensegment einer Stranggießanlage
AT391643B (de) Verfahren zum angiessen metallischer schmelze in mehrere stranggiesskokillen und vorrichtung zur durchfuehrung desselben
CH671535A5 (de)
EP1066898B1 (de) Verfahren zur Schmelzenführung in einer Stranggiessmaschine
DE4403049C1 (de) Stranggießanlage und Verfahren zur Erzeugung von Dünnbrammen
DE2814600A1 (de) Verfahren und vorrichtung zum stahlstranggiessen
WO2003051558A2 (de) MAULWEITENREGELUNG AN SEGMENTEN FÜR STRANGGIEssANLAGEN
EP3733323B1 (de) Verfahren und stranggiessanlage zum giessen eines giessstrangs
EP2025432B1 (de) Verfahren zur Erzeugung von Stahl-Langprodukten durch Stranggiessen und Walzen
EP1550523A1 (de) Diversifizierte Regelung der Sekundärkühlung einer Stranggiessanlage
EP0116030B1 (de) Verfahren zum Überwachen einer Bogenstranggiessanlage
DE19639299A1 (de) Verfahren und Vorrichtung zur Herstellung eines Vielant- oder Profil-Formats in einer Stranggießanlage
DE3009697C2 (de)
AT403351B (de) Verfahren zum stranggiessen eines metallstranges
CH646352A5 (en) Apparatus for regulating the secondary cooling in a continuous-casting installation with batchwise smelt supply via a tundish
EP1432539B1 (de) Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl
DE3001275C2 (de) Anordnung zum Steuern der Kühlwasserzufuhr zu Gußsträngen in einer Stranggießanlage
EP0234491A2 (de) Verfahren zur Beendigung des Giessbetriebes einer Stahlbandgiessanlage
DE10204064A1 (de) Maulweitenregelung an Segmenten für Stranggießanlagen
EP1337366A2 (de) Verfahren und vorrichtung zur kontrolle der stahltemperatur vom giessspiegel einer stranggiessanlage bis zum ofenabstich
DE3915619A1 (de) Verfahren zum erzielen einer temperatur einer metallschmelze
DE10160739C2 (de) Verfahren und Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

REF Corresponds to:

Ref document number: 230318

Country of ref document: AT

Date of ref document: 20030115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: 20030102:NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50001011

Country of ref document: DE

Date of ref document: 20030206

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030402

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030607

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1183118E

Country of ref document: IE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2192532

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: *SMS SCHLOEMANN-SIEMAG A.G.

Effective date: 20030630

26N No opposition filed

Effective date: 20031003

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 11

Ref country code: IT

Payment date: 20101122

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110607

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110607

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 230318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50001011

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110607