EP1432539B1 - Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl - Google Patents

Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl Download PDF

Info

Publication number
EP1432539B1
EP1432539B1 EP02777034A EP02777034A EP1432539B1 EP 1432539 B1 EP1432539 B1 EP 1432539B1 EP 02777034 A EP02777034 A EP 02777034A EP 02777034 A EP02777034 A EP 02777034A EP 1432539 B1 EP1432539 B1 EP 1432539B1
Authority
EP
European Patent Office
Prior art keywords
casting
mould
temperature
copper plate
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02777034A
Other languages
English (en)
French (fr)
Other versions
EP1432539A2 (de
Inventor
Fritz-Peter Pleschiutschnigg
Stephan Feldhaus
Wolfgang Mossner
Werner Rahmfeld
Lothar Parschat
Erwin Wosch
Uwe Kopfstedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10160739A external-priority patent/DE10160739C2/de
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1432539A2 publication Critical patent/EP1432539A2/de
Application granted granted Critical
Publication of EP1432539B1 publication Critical patent/EP1432539B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds

Definitions

  • the invention relates to a method and a device for cooling the copper plates of a continuous casting mold for liquid metals, in particular for liquid steel, with chill coolant guided in cooling channels and wherein during the speed ramp to target casting speed or exceeding the target casting speed or one of Kupferplatten- Target skin temperature deviating temperature, the amount or the flow rate of the coolant can be controlled.
  • EP-A-1 103 322 The initially described method and device are known from EP-A-1 103 322 for the control of the internal temperature within the die plate thickness.
  • the method referred to at the outset as known from EP 1 103 323 A2 determines an alternating copper plate temperature and corrects the mold coolant quantity and the actual casting speed by means of a computer.
  • the object of the invention is to propose specifications for a more exact control of the regulation of the controlled variables with regard to the copper plate skin temperature.
  • the stated object is achieved according to the invention in that, with changing casting speed between 1 m / min to a maximum of 12 m / min, the copper plate skin temperature by a quantitative correction of the mold coolant quantity and the mold coolant inlet temperature depending on the actual casting speed and depending on the copper plate thickness is set to a desired, constant size and that for controlling the Kokillen- coolant quantity and the Kokillenkühlstoff inlet temperature process data and system data, which are processed in controlled variables to an online simulation model, are used.
  • the copper plate skin temperature can be selected favorably even at different copper plate thicknesses and kept constant.
  • the described effects can also be achieved either completely or partially when the mold coolant is passed from top to bottom or from bottom to top through the cooling channels.
  • the continuous casting mold is oscillated.
  • the accuracy of the method can be further increased by using an immediate determination of the copper plate skin temperature in the Gblinapt Scheme addition or alternative to the online simulation model.
  • the copper plate skin temperature on the hot side already at the start of casting much lower than previously observed and the copper plate is spared in a way that the recrystallization temperature of the copper is far from reached. This advantage affects large casting speeds.
  • the mold coolant inlet can be arranged at a distance above the casting mirror.
  • the continuous casting mold is oscillated by means of an oscillating device.
  • this regulation can also be carried out in such a way that, in addition to or instead of the process computer, a device is used for determining the copper plate skin temperature in the molten metal region for controlling the mold coolant inlet temperature and / or the mold coolant quantity.
  • a continuous casting mold 1 in which liquid steel is poured, is cooled in such a way that the mold coolant 2 at the mold coolant inlet 3 is introduced into the continuous casting mold 1 in its mold coolant quantity 4 and its mold coolant temperature. Inlet temperature 5 is kept constant regardless of the casting speed 6.
  • the faults occur both from a watercourse 13.1 of the mold water 13 in the continuous casting mold 1 from bottom to top and in a watercourse 13.2 from top to bottom (see FIG. However, it can be noted that the watercourse 13.2 from top to bottom, the copper plate skin temperature 8 is lower than the watercourse 13.1 from bottom to top.
  • the continuous casting mold 1 is cooled by an inner coolant circuit 19 and an outer coolant circuit 20.
  • the outer coolant circuit 20 which runs over a heat exchanger 21, serves to cool the mold coolant 2 in the inner coolant circuit 19.
  • the inner coolant circuit 19 is guided over the heat exchanger 21 in such a way that the mold coolant quantity 4, which is set constant by means of a pump 22, is likewise kept constant in its inlet temperature 23 (T in ) independently of the casting speed 6.
  • the Kokillenkühlstoff 2 is performed as a watercourse 13.1 from bottom to top, in Dünnstranget also as watercourse 13.2 from top to bottom.
  • the coolant circuit in Fig. 1A is shown in block diagram, but with increasing casting speed 6 of 1 m / min to a maximum of 12 m / min, the copper plate skin temperature 8 by a quantitative correction of the mold coolant quantity 4 and 1 or the Kokillenkühlsch inlet temperature 5 regardless of the casting speed 6 and regardless of the copper plate thickness 9 is set at a constant controlled Kokillenkühlstoff inlet temperature 5 to a desired, constant copper plate skin temperature 8.
  • the regulation of the mold coolant quantity 4 and the mold coolant inlet temperature 5 can be achieved via a process computer 27 for an online simulation model 27.4 and process data 27.1 of the continuous casting mold 1 at a constant copper plate skin temperature 8 via an inlet speed window 6.2 (see FIG.
  • the process computer 27 requires process data 27.1 and system data 27.2 in order to control the mold coolant quantity 4 via a pump station 22.1 and / or control valves 29 and the mold coolant inlet temperature 5 through the three-way valve 24 via controlled variables 27.3.
  • a surge tank 30th Before the pump station 22.1 is a surge tank 30th
  • FIGS. 2A to 2D the procedural relationships are explained.
  • Fig. 2A shows a heat flow 17 and a profile 16 of the casting speed 6 over the casting time 18.
  • the graph describes a casting run from the start via a constant run-in speed window 6.2 with subsequent acceleration to a high speed level.
  • Fig. 2B shows the state of the art.
  • the real copper plate skin temperature 8, denoted T Cu-real increases with the casting speed 6 and deviates from the desired copper plate skin temperature 8, referred to as the target copper plate temperature 8.1, (T Cu target ) since the mold coolant quantity is 4 and the mold coolant inlet temperature 5 for cooling the continuous casting mold 1 is kept constant.
  • the real copper plate skin temperature 8 (T Cu-real ) is determined by a corresponding quantitative correction of the mold coolant quantity 4 irrespective of the casting speed 6 at a constant mold coolant inlet temperature 5 having the desired copper plate skin temperature 8, the copper plate target temperature 8.1 (T Cu target ) brought to cover.
  • the copper plate skin temperature 8 (T Cu-real ) with the target copper plate temperature 8.1 (T Cu target ) is determined by the corresponding quantitative adjustment of the mold coolant quantity 4 and the mold coolant inlet temperature 5 as a function of the profile 16 the casting speed 6 over the casting time 18 brought to coincide.
  • the inlet velocity windows 6.2 with respect to the casting speed 6 are for a desired, real copper plate skin temperature 8 at a given copper plate thickness 9 greater than in the case of variation of only one of the two influencing variables.
  • Fig. 3 the difference of the known method for the invention can be clearly read. It is the copper plate skin temperature 8 in response to the increasing casting speed 6, the max. 12 m / min., Based on.
  • a horizontal straight line of the recrystallization temperature 12 represents the end of the heat load of the copper plate made of cold-rolled copper, at which the copper loses its strength and / or cold rolling structure and thus its properties important for the casting of molten steel.
  • the temperature curve 14 in the prior art is described with the curve 14.1 (water flow from bottom to top) and the curve 14.2 (water flow from top to bottom).
  • the strongly increasing behavior of the copper plate skin temperature 8 in the casting mirror with increasing casting speed 6 and increasing copper plate thickness 9 is due to the constant in the prior art casting molds Kokillen- 4 and the constant Kokillenkühtmittet inlet temperature 5 at mold coolant inlet 3.
  • the principle of the invention can also be applied to strip casters operating at up to 100 m / min casting speed. In this case, all measures applied to the height of the continuous casting mold 1 are applied to the circumference of the twin rolls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl, mit in Kühlkanälen geführtem Kokillenkühlmittel und wobei während der Geschwindigkeits-Anfahrrampe auf Soll-Gießgeschwindigkeit oder Überschreiten der Soll-Gießgeschwindigkeit oder einer von Kupferplatten-Soll-Hauttemperatur abweichenden Temperatur, die Menge bzw. die Durchlaufgeschwindigkeit des Kühlmittels geregelt werden.
  • Das eingangs bezeichnete Verfahren und die Einrichtung sind aus der EP-A-1 103 322 für die Kontrolle der inneren Temperatur innerhalb der Kokillenplatten-Dicke bekannt.
  • Aus der DE 41 27 333 C2 ist femer ein Verfahren bekannt, im Bereich der höchsten Temperaturbelastung das Kühlmittel mit Maximalgeschwindigkeit zu leiten. Dadurch wird die Wärmeabfuhr verbessert und die Temperatur der Kokillenplatte verringert. Außerdem wird eine Verkleinerung der Temperaturunterschiede über die Höhe der Kokille und eine daraus folgende Spannungsverminderung und Verlängerung der Standzeit der Kokillenwände angestrebt. Dieses Verfahren berücksichtigt jedoch nicht eine veränderte, insbesondere eine erhöhte sehr hohe Gießgeschwindigkeit.
  • Derartige Stranggießkokillen zum Gießen von flüssigem Stahl werden bei im allgemeinen angewendeten, bekannten Verfahren gekühlt, indem das Kokillenkühlmittel beim Einlauf in die Stranggießkokille in seiner Menge und seine Temperatur unabhängig von der Gießgeschwindigkeit konstant gehalten wird. Die Folge dieser Verfahrensweise ist, dass mit steigender Gießgeschwindigkeit die Wärmebelastung , gemessen in W / m2, und damit auch die Kupferplatten-Hauttemperatur und hier besonders beim Gießen mit Gießgeschwindigkeiten über 4 m / min stark ansteigt. Dieser Temperaturanstieg bei einer vorgegebenen Kupferplattendicke von beispielsweise 20 mm zwischen Kokillenkühlmittel und Heißseite führt im Fall des Einsatzes von Gießpulverschlacke zwischen Strangschale und Kokillenkupferplatte zum einen zu unterschiedlichem Schmierverhalten und unterschiedlicher Wärmebelastung und zum anderen zu verkürzten Standzeiten der Kokillenkupferplatten bedingt durch die Überschreitung der Rekristallisationstemperatur von kaltgewalztem Kupfer.
  • Diese sich ergebenden Nachteile bei steigender Gießgeschwindigkeit, aber auch bei steigender Kupferplattendicke führen zu Störungen des Gießprozesses und / oder zu Oberflächenfehlern in der Strangschale und zu Rissen in der Kupferplattenoberfläche.
  • Die Störungen treten sowohl bei einem Wasserlauf in der Stranggießkokille von unten nach oben als auch von oben nach unten auf. Es kann aber festgestellt werden, dass beim Wasserlauf von oben nach unten die Kupferplatten-Hauttemperatur sich niedriger einstellt als beim Wasserlauf von unten nach oben.
  • Das eingangs als bekannt bezeichnete Verfahren aus der EP 1 103 323 A2 ermittelt eine wechselnde Kupferplattentemperatur und korrigierb die Kokillen-Kühlmittelmenge und die ak-tuelle Gießgeschwindigkeit mittels eines Rechners.
  • Die Vorgehensweise beim Einstellen dieser Größen wird jedoch nicht näher erläutert.
  • Der Erfindung liegt die Aufgabe zugrunde, für das Regeln der Regelgrößen bezüglich der Kupferplatten-Hauttemperatur Vorgaben für ein genaueres Regeln vorzuschlagen.
  • Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass bei wechselnder Gießgeschwindigkeit zwischen 1 m / min bis maximal 12 m / min die Kupferplatten-Hauttemperatur durch eine quantitative Korrektur der Kokillen-Kühlmittelmenge und der Kokillenkühlmittel-Einlauftemperatur abhängig von der aktuellen Gießgeschwindigkeit und abhängig von der Kupferplattendicke auf eine gewollte, konstante Größe eingestellt wird und dass zum Regeln der Kokillen-Kühlmittelmenge und der Kokillenkühlmittel-Einlauftemperatur Prozessdaten und Anlagendaten, die in Regelgrößen zu einem online-Simulationsmodell verarbeitet werden, eingesetzt werden. Dadurch kann die Kupferplatten-Hauttemperatur abhängig von der Gießgeschwindigkeit auch bei unterschiedlichen Kupferplattendicken günstig ausgewählt und konstant gehalten werden. Außerdem sind konstante Bedingungen für das Schmierverhalten von Gießpulverschlacke, die auf dem Gießspiegel aus dem verwendeten Gießpulver erschmolzen wird (falls Gießpulver zum Einsatz kommt) gegeben. Weiterhin sind Vorteile durch Kokillenkupferplatten, die nicht mehr bis zur Rekristallisation des Kupfers beansprucht und daher weniger rissig werden, zu erzielen. Weitere Vorteile sind eine verbesserte Strangoberflächenqualität und Gießsicherheit unabhängig von der Gießgeschwindigkeit und der Kupferplattendicke für ausgewählte Arbeitsfenster. Damit wird auch das Ausbringen erhöht.
  • Vorteilhafterweise ist es dadurch auch möglich, dass die gewollte, konstante Kupferplatten-Hauttemperatur im Gießspiegel konstant eingestellt wird.
  • Die erläuterten Wirkungen können auch entweder vollständig oder teilweise dann erreicht werden, wenn das Kokillenkühlmittel von oben nach unten oder von unten nach oben durch die Kühlkanäle geführt wird.
  • Nach weiteren Merkmalen wird die Stranggießkokille oszilliert.
  • Weitere Vorteile ergeben sich dadurch, dass der Gießstrang bei sich bildender Gießpulverschlacke zusammen vergossen wird.
  • Die Genauigkeit des Verfahrens kann noch gesteigert werden, indem eine unmittelbare Bestimmung der Kupferplatten-Hauttemperatur im Gießspiegelbereich zusätzlich oder altemativ zum online-Simulationsmodell eingesetzt wird.
  • Eine Einrichtung zur Kühlung der Kupferplatten einer Stranggießkokille, insbesondere für flüssigen Stahl, mit in Kühlkanälen geführtem Kokillenkühlmittel, wobei bei von der Soll-Temperatur in Kupferplatten zwischen 4 mm bis ca. 50 mm abweichende Temperaturen ein Rechner und Regelungsmittel für die Menge bzw. die Durchlaufgeschwindigkeit des Kühlmittels vorgesehen sind, löst die Aufgabe, für das Regeln der Regelgrößen bezüglich der Kupferplatten-Hauttemperatur Vorgaben für eine genauere Regelung vorzuschlagen, erfindungsgemäß dadurch, dass ein Prozessrechner, der mit Prozessdaten und Anlagedaten ein online-Simulationsmodell für Regelgrößen zur Regelung der Kokülenkühlmittel-Einlauftemperatur und der Kokillen-Kühlmittelmenge erstellt, ein Dreiwegeventil und ein Regelventil sowie eine drehzahlgeregelte Pumpe im Kokillen-Kühlmittelkreislauf steuert. Dadurch kann die Kupferplatten-Hauttemperatur auf der Heißseite schon bei Gießbeginn wesentlich niedriger als bisher eingehalten werden und die Kupferplatte wird in einer Art geschont, dass die Rekristallisationstemperatur des Kupfers bei weitem nicht erreicht wird. Dieser Vorteil wirkt sich in großen Bereichen der Gießgeschwindigkeit aus.
  • Nach einer anderen Ausgestaltung kann der Kokillen-Kühlmitteleinlauf beabstandet oberhalb des Gießspiegels angeordnet sein.
  • Außerdem ist es vorteilhaft, wenn die Stranggießkokille mittels einer Oszillationsvorrichtung oszilliert ist.
  • Weiterhin dient es der Schonung der Strangschale des Gießstrangs, dass dem Gießstrang beim Gießen Gießpulver zugeführt wird.
  • Diese Regelung kann außerdem gemäß einer weiteren Ausgestaltung derart vorgenommen werden, dass zusätzlich oder anstelle des Prozessrechners eine Einrichtung zur Bestimmung der Kupferplatten-Hauttemperatur im Gießspiegelbereich zur Regelung der Kokillenkühlmittel-Einlauftemperatur und / oder der Kokillen-Kühlmittelmenge eingesetzt ist.
  • In der Zeichnung ist ein Ausführungsbeispiel dargestellt, das nachstehend näher erläutert wird.
  • Es zeigen:
  • Fig. 1A
    ein Blockschaltbild des Kühlkreislaufs einer klassischen Kokille,
    Fig. 1 B
    das zugehörige Blockschaltbild des Kühlkreislaufs einer sog. ISO-Kokille gemäß der Erfindung,
    Fig. 2A
    ein Gießgeschwindigkeits-Profil mit Wärmestrom über der Zeit,
    Fig. 2B
    der Wärmeverlauf bei einer herkömmlichen Kühlung,
    Fig. 2C
    der gewollte Wärmeverlauf gemäß der Erfindung,
    Fig. 2D
    der gewollte Wärmeverlauf bei eingeregelter Kupferplatten-Hauttemperatur und
    Fig. 3
    einen Vergleich des Standes der Technik mit der Erfindung anhand der Temperatur-Kurven über der Gießgeschwindigkeit unter Berücksichtigung des Kühlmittellaufs von oben nach unten und von unten nach oben in der Stranggießkokille.
  • Gemäß dem Stand der Technik (Fig. 1A) wird eine Stranggießkokille 1, in die flüssiger Stahl gegossen wird, in der Art gekühlt, dass das Kokillenkühlmittel 2 am Kokillen-Kühlmitteleinlauf 3 in die Stranggießkokille 1 in seiner Kokillen-Kühlmittelmenge 4 und seiner Kokillenkühlmittel-Einlauftemperatur 5 unabhängig von der Gießgeschwindigkeit 6 konstant gehalten wird.
  • Diese Verfahrensweise bedeutet, dass mit steigender Gießgeschwindigkeit 6 die Wärmebelastung 7 in W / m2 (vgl. Fig. 2A) und damit auch die Kupferplatten-Hauttemperatur 8 ansteigt und besonders beim Gießen mit steigender Gießgeschwindigkeit 6 von bis zu 12 m / min stark ansteigt. Der Temperaturanstieg bei vorgegebener Kupferplattendicke 9, z.B. von 20 mm, zwischen Kühlmittel und Heißseite führt bei Anwesenheit von Gießpulverschlacke 10 zwischen der Strangschale des Gießstrangs 11 und Kokillenkupferplatte 1.1 zum einen zu unterschiedlichem Schmierverhalten und Wärmebelastung 7 und zum anderen zu verkürzten Standzeiten der Kokillenkupferplatten 1.1, was durch die Überschreitung der Rekristallisations-Temperatur 12 von kaltgewalztem Kupfer bedingt ist (vgl. Fig. 3).
  • Diese bei steigender Gießgeschwindigkeit 6 und / oder mit steigender Kupferplattendicke 9 sich ergebenden Nachteile führen zu Störungen des Gießprozesses bzw. zu Oberflächenfehlern in der Strangschale und zu Rissen in der Kupferplattenoberfläche.
  • Die Störungen treten sowohl bei einem Wasserlauf 13.1 des Kokillenwassers 13 in der Stranggießkokille 1 von unten nach oben als auch bei einem Wasserlauf 13.2 von oben nach unten auf (vgl. Fig. 3). Allerdings kann festgestellt werden, dass beim Wasserlauf 13.2 von oben nach unten die Kupferplatten-Hauttemperatur 8 sich niedriger einstellt als beim Wasserlauf 13.1 von unten nach oben.
  • In Fig.1A (Stand der Technik) ist die Stranggießkokille 1 durch einen inneren Kühlmittelkreislauf 19 und einen äußeren Kühlmittel-Kreislauf 20 gekühlt. Der äußere Kühlmittel-Kreislauf 20, der über einen Wärmetauscher 21 läuft, dient zum Kühlen des Kokillenkühlmittels 2 im inneren Kühlmittelkreislauf 19.
  • Der innere Kühlmittel-Kreislauf 19 wird derart über den Wärmetauscher 21 geführt, dass die Kokillen-Kühlmittelmenge 4, die über eine Pumpe 22 konstant eingestellt wird, in ihrer Einlauftemperatur 23 (Tin) unabhängig von der Gießgeschwindigkeit 6 ebenfalls konstant gehalten wird.
  • Dazu dienen ein Dreiwegeventil 24, ein Bypass 25 und eine Regelstrecke 26 zwischen einer Tin-Messvorrichtung für die Einlauftemperatur 23 (Tin) und dem Dreiwegeventil 24. In der Regel wird das Kokillenkühlmittel 2 als Wasserlauf 13.1 von unten nach oben geführt, bei Dünnstranganlagen auch als Wasserlauf 13.2 von oben nach unten.
  • Gemäß Fig. 1B ist der Kühlmittelkreislauf in Fig. 1A im Blockschaltbild dargestellt, wobei jedoch bei steigender Gießgeschwindigkeit 6 von 1 m / min bis maximal 12 m / min die Kupferplatten-Hauttemperatur 8 durch eine quantitative Korrektur der Kokillen-Kühlmittelmenge 4 und 1 oder der Kokillenkühlmittel-Einlauftemperatur 5 unabhängig von der Gießgeschwindigkeit 6 und unabhängig von der Kupferplattendicke 9 bei konstant geregelter Kokillenkühlmittel-Einlauftemperatur 5 auf eine gewollte, konstante Kupferplatten-Hauttemperatur 8 eingestellt wird. Die Regelung der Kokillen-Kühlmittelmenge 4 und der Kokillenkühlmittel-Einlauftemperatur 5 kann über einen Prozessrechner 27 für ein online-Simulationsmodell 27.4 und Prozessdaten 27.1 der Stranggießkokille 1 bei konstanter Kupferplatten-Hauttemperatur 8 über ein Einlaufgeschwindigkeitsfenster 6.2 (vgl. Fig. 3) verwirklicht werden. Hierzu benötigt der Prozessrechner 27 Prozessdaten 27.1 und Anlagendaten 27.2, um die Kokillen-Kühlmittelmenge 4 über eine Pumpenstation 22.1 und / oder Regelventile 29 und die Kokillenkühlmittel-Einlauftemperatur 5 durch das Dreiwegeventil 24 über Regelgrößen 27.3 zu regeln. Vor der Pumpenstation 22.1 liegt ein Druckausgleichsbehälter 30
  • In den Fig. 2A bis 2D werden die verfahrenstechnischen Zusammenhänge erläutert.
  • Fig. 2A zeigt einen Wärmestrom 17 und ein Profil 16 der Gießgeschwindigkeit 6 über der Gießzeit 18. Der Graph beschreibt einen Gießverlauf vom Start über ein konstantes Einlauf-Geschwindigkeitsfenster 6.2 mit sich anschließender Beschleunigung auf ein hohes Geschwindigkeitsniveau.
  • Fig. 2B gibt den Stand der Technik wieder. Die reale Kupferplatten-Hauttemperatur 8, mit T Cu-real bezeichnet, steigt mit der Gießgeschwindigkeit 6 und weicht von der gewollten Kupferplatten-Hauttemperatur 8, als Kupferplatten-Zieltemperatur 8.1 bezeichnet, (TCu-Ziel) ab, da die Kokillen-Kühlmittelmenge 4 und die Kokillenkühlmittel-Einlauftemperatur 5 zur Kühlung der Stranggießkokille 1 konstant gehalten wird.
  • In Fig. 2C wird die reale Kupferplatten-Hauttemperatur 8 (TCu-real) durch eine entsprechende quantitative Korrektur der Kokillen-Kühlmittelmenge 4 unabhängig von der Gießgeschwindigkeit 6 bei konstanter Kokillenkühlmittel- Einlauftemperatur 5 mit der gewünschten Kupferplatten-Hauttemperatur 8, der Kupferplatten-Zieltemperatur 8.1 (TCu-Ziel) zur Deckung gebracht.
  • Gemäß Fig. 2D wird die Kupferplatten-Hauttemperatur 8 (TCu-real) mit der Kupferplatten-Zieltemperatur 8.1 (TCu-Ziel) durch die entsprechende quantitative Einstellung der Kokillen-Kühlmittelmenge 4 und der Kokillenkühlmittel-Einlauftemperatur 5 in Abhängigkeit von dem Profil 16 der Gießgeschwindigkeit 6 über die Gießzeit 18 zur Deckung gebracht. Bei der Variation beider Einflussgrößen, wie der Kokillen-Kühlmittelmenge 4 oder der Kühlmittelgeschwindigkeit, die den Wärmeübergang erhöht, und der Kokillenkühlmittel-Einlauftemperatur 5, die das Potential und damit den Wärmestrom 17 erhöht, sind die Einlaufgeschwindigkeitsfenster 6.2 bezüglich der Gießgeschwindigkeit 6 für eine gewollte, reale Kupferplatten-Hauttemperatur 8 bei einer gegebenen Kupferplattendicke 9 größer als im Fall der Variation von nur einer der beiden Einflussgrößen.
  • Gemäß Fig. 3 kann der Unterschied des bekannten Verfahrens zum erfindungsgemäßen deutlich abgelesen werden. Es wird die Kupferplatten-Hauttemperatur 8 in Abhängigkeit von der steigenden Gießgeschwindigkeit 6, die max. 12 m / min beträgt, zugrunde gelegt. Eine horizontal verlaufende Gerade der Rekristallisations- Temperatur 12 stellt das Ende der Wärmebelastung der Kupferplatte aus kaltgewalztem Kupfer dar, bei der das Kupfer seine Festigkeit und / oder sein Kaltwalzgefüge und damit seine für das Gießen von flüssigem Stahl wichtigen Eigenschaften verliert. Der Temperaturverlauf 14 im Stand der Technik ist mit der Kurve 14.1 (Wasserverlauf von unten nach oben) und der Kurve 14.2 (Wasserverlauf von oben nach unten), beschrieben. Beide Kurven 14.1 und 14.2 steigen mit wachsender Gießgeschwindigkeit 6 stetig zu höheren Kupferplatten-Hauttemperaturen 8 im Bereich des Gießspiegels an, wobei die Kupferplatten-Hauttemperatur 8 im Fall des Wasserverlaufs 14.1 des Kokillenwassers 13 von unten nach oben früher die Rekristallisations-Temperatur 12 bei einer kritischen Gießgeschwindigkeit 6.1 schneidet als im Fall des Wasserverlaufs 14.2 von oben nach unten.
  • Das stark ansteigende Verhalten der Kupferplatten-Hauttemperatur 8 im Gießspiegel mit steigender Gießgeschwindigkeit 6 und steigender Kupferplattendicke 9 ist auf die im Stand der Technik beim Gießen konstante Kokillen-Kühlmittelmenge 4 und die konstante Kokillenkühtmittet-Einlauftemperatur 5 am Kokillen-Kühlmitteleinlauf 3 zurückzuführen.
  • Die Kontrolle und Konstanz der Kupferplatten-Hauttemperatur 8 über die Gießgeschwindigkeit 6 ist mit der Kurve 15 dargestellt. Dabei wird deutlich, dass mit steigender Kupferplattendicke 9 die Kupferplatten-Hauttemperatur 8 bei gleichen Kühlbedingungen, ausgedrückt durch die Kühlmittel-Geschwindigkeit oder die Kokillen-Kühlmittelmenge 4 und als Kokillenkühlmittel-Einlauftemperatur 5, ansteigt. Dasselbe gilt auch für das bekannte Verfahren (vgl. Kurve 13.1 - Wasserverlauf von unten nach oben und Kurve 13.2 - Wasserverlauf von oben nach unten-).
  • Das Prinzip der Erfindung kann auch auf Bandgießvorrichtungen, die mit bis zu 100 m / min Gießgeschwindigkeit betrieben werden, angewendet werden. Dabei werden alle auf die Höhe der Stranggießkokille 1 angewendeten Maßnahmen auf den Umfang der Twin-Rollen angewendet.
  • Bezugszeichenliste
  • 1
    Stranggießkokille
    1.1
    Kokillenkupferplatte
    2
    Kokillenkühlmittel
    3
    Kokillen-Kühlmitteleinlauf
    4
    Kokillen-Kühlmittelmenge
    5
    Kokillenkühlmittel-Einlauftemperatur
    6
    Gießgeschwindigkeit
    6.1
    kritische Gießgeschwindigkeit
    6.2
    Einlaufgeschwindigkeitsfenster
    (mit gleicher Kupferplattentemperatur)
    7
    Wärmebelastung (W / m2)
    8
    Kupferplatten-Hauttemperatur
    8.1
    Kupferplatten-Zieltemperatur
    9
    Kupferplattendicke
    10
    Gießpulverschlacke
    11
    Gießstrang
    12
    Rekristallisations-Temperatur
    13
    Kokillenwasser
    13.1
    Wasserlauf von unten nach oben
    13.2
    Wasserlauf von oben nach unten
    14
    Temperaturverlauf im Stand der Technik
    14.1
    Kurve Kokillenkühlmittel von unten nach oben
    14.2
    Kurve Kokillenkühlmittel von oben nach unten
    15
    Kurve
    16
    Profil der Gießgeschwindigkeit über die Gießzeit
    17
    Wärmestrom
    18
    Gießzeit
    19
    innerer Kühlmittel-Kreislauf
    20
    äußerer Kühlmittel-Kreislauf
    21
    Wärmetauscher
    22
    Pumpe
    22.1
    Pumpenstation
    23
    Einlauftemperatur Tin
    24
    Dreiwegeventil
    25
    Bypass
    26
    Regelstrecke
    27
    Prozessrechner
    27.1
    Prozessdaten
    27.2
    Anlagendaten
    27.3
    Regelgröße
    27.4
    online-Simulationsmodell
    28
    Temperaturmessung
    29
    Regelventil
    30
    Druckausgleichsbehälter

Claims (11)

  1. Verfahren zum Kühlen der Kupferplatten (1.1) einer Stranggießkokille (1) für flüssige Metalle, insbesondere für flüssigen Stahl, mit in Kühlkanälen geführtem Kokillenkühlmittel (2) und wobei während der Geschwindigkeits-Anfahrrampe auf Soll-Gießgeschwindigkeit oder Überschreiten der Soll-Gießgeschwindigkeit oder einer von der Kupferplatten-Soll-Hauttemperatur (8) abweichenden Temperatur die Menge bzw. die Durchlaufgeschwindigkeit des Kühlmittels (2) geregelt werden,
    dadurch gekennzeichnet,
    dass bei wechselnder Gießgeschwindigkeit (6) zwischen 1 m/ min bis maximal 12 m / min die Kupferplatten-Hauttemperatur (8) durch eine quantitative Korrektur der Kokillen-Kühlmittelmenge (4) und der Kokillenkühlmittel-Einlauftemperatur (5) abhängig von der aktuellen Gießgeschwindigkeit (6) und abhängig von der Kupferplattendicke (9) auf eine gewollte, konstante Größe eingestellt wird und dass zum Regeln der Kokillen-Kühlmittelmenge (4) und der Kokillenkühlmittel-Einlauftemperatur (5) Prozessdaten (27.1) und Anlagen-Daten (27.2), die in Regelgrößen zu einem online-Simulationsmodell (27.4) verarbeitet werden, eingesetzt werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die gewollte, konstante Kupferplatten-Hauttemperatur (8) im Gießspiegelbereich konstant eingestellt wird.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Kokillenkühlmittel (2) von oben nach unten oder von unten nach oben durch die Kühlkanäle geführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Stranggießkokille (1) oszilliert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass der Gießstrang (11) bei sich bildender Gießpulverschlacke (10) zusammen vergossen wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass eine unmittelbare Bestimmung der Kupferplatten-Hauttemperatur (8) im Gießspiegelbereich zusätzlich oder alternativ zum online-Simulationsmodell (27.4) eingesetzt wird.
  7. Einrichtung zur Kühlung der Kupferplatten (1.1.) einer Stranggießkokille (1), insbesondere für flüssigen Stahl, mit in Kühlkanälen geführtem Kokillenkühlmittel (2), wobei bei von der Soll-Temperatur in Kupferplatten zwischen 4 mm bis ca. 50 mm abweichende Temperaturen ein Rechner und Regelungsmittel für die Menge bzw. die Durchlaufgeschwindigkeit des Kühlmittels vorgesehen sind,
    dadurch gekennzeichnet,
    dass ein Prozessrechner (27), der mit Prozessdaten (27.1) und Anlagendaten (27.2) ein online-Simulationsmodell (27.4) für Regelgrößen (27.3) zur Regelung der Kokillenkühlmittel-Einlauftemperatur (5) und der Kokillen-Kühlmittelmenge (4) erstellt, ein Dreiwegeventil (24) und ein Regelventil (29) sowie eine drehzahlgeregelte Pumpe (22) im Kokillen-Kühlmittelkreislauf (19; 20) steuert.
  8. Einrichtung nach Anspruch 7,
    dadurch gekennzeichnet,
    dass der Kokillen-Kühlmitteleinlauf (3) beabstandet oberhalb des Gießspiegels angeordnet ist.
  9. Einrichtung nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Stranggießkokille (1) mittels einer Oszillationsvorrichtung oszilliert ist.
  10. Einrichtung nach einem der Ansprüche 7 oder 8,
    dadurch gekennzeichnet,
    dass dem Gießstrang (11) beim Gießen Gießpulver zugeführt wird.
  11. Einrichtung nach einem der Ansprüche 7 bis 10,
    dadurch gekennzeichnet,
    dass zusätzlich oder anstelle des Prozessrechners (27) eine Einrichtung zur Bestimmung der Kupferplatten-Hauttemperatur (8) im Gießspiegelbereich zur Regelung der Kokillenkühlmittel-Einlauftemperatur (5) und / oder der Kokillen-Kühlmittelmenge (4) eingesetzt ist.
EP02777034A 2001-09-28 2002-09-07 Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl Expired - Lifetime EP1432539B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10148135 2001-09-28
DE10148135 2001-09-28
DE10160739 2001-12-11
DE10160739A DE10160739C2 (de) 2001-09-28 2001-12-11 Verfahren und Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
PCT/EP2002/010030 WO2003028921A2 (de) 2001-09-28 2002-09-07 Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl

Publications (2)

Publication Number Publication Date
EP1432539A2 EP1432539A2 (de) 2004-06-30
EP1432539B1 true EP1432539B1 (de) 2006-05-03

Family

ID=26010255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02777034A Expired - Lifetime EP1432539B1 (de) 2001-09-28 2002-09-07 Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl

Country Status (13)

Country Link
US (1) US20040256078A1 (de)
EP (1) EP1432539B1 (de)
JP (1) JP2005503927A (de)
CN (1) CN1561273A (de)
AT (1) ATE324953T1 (de)
BR (1) BR0212935A (de)
CA (1) CA2460897A1 (de)
DE (1) DE50206693D1 (de)
HU (1) HUP0402138A2 (de)
MX (1) MXPA04002744A (de)
PL (1) PL367404A1 (de)
RU (1) RU2004113105A (de)
WO (1) WO2003028921A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292858C (zh) * 2004-01-17 2007-01-03 宝山钢铁股份有限公司 一种水冷的金属连铸结晶器
DE102009023677A1 (de) * 2009-06-03 2010-12-09 Egon Evertz Kg (Gmbh & Co.) Verfahren zur Regelung der Flüssigkeitskühlung von Stranggießkokillen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151952A (ja) * 1982-03-02 1983-09-09 Kobe Steel Ltd 電磁撹「はん」用鋳型の冷却方法
JPS63104754A (ja) * 1986-10-20 1988-05-10 Mitsubishi Heavy Ind Ltd スプレ冷却モ−ルドの水量調節方法
DE4127333C2 (de) * 1991-08-19 2000-02-24 Schloemann Siemag Ag Stahlstranggießkokille
DE19956577A1 (de) * 1999-11-25 2001-05-31 Sms Demag Ag Verfahren zum Stranggießen von Brammen, insbesondere von Dünnbrammen, sowie eine Vorrichtung zu dessen Durchführung

Also Published As

Publication number Publication date
RU2004113105A (ru) 2005-05-20
WO2003028921A3 (de) 2003-10-23
DE50206693D1 (de) 2006-06-08
BR0212935A (pt) 2004-10-13
ATE324953T1 (de) 2006-06-15
CN1561273A (zh) 2005-01-05
US20040256078A1 (en) 2004-12-23
EP1432539A2 (de) 2004-06-30
JP2005503927A (ja) 2005-02-10
MXPA04002744A (es) 2004-07-29
WO2003028921A2 (de) 2003-04-10
CA2460897A1 (en) 2003-04-10
HUP0402138A2 (hu) 2005-02-28
PL367404A1 (en) 2005-02-21

Similar Documents

Publication Publication Date Title
EP2346631B1 (de) Verfahren und vorrichtung zur steuerung der erstarrung eines giessstranges in einer stranggiessanlage beim anfahren des giessprozesses
DE2252722A1 (de) Verfahren und vorrichtung zum direkten kuehlen einer kontinuierlich gewalzten stange
AT408197B (de) Verfahren zum stranggiessen eines metallstranges
EP3184202A1 (de) Verfahren zum stranggiessen eines metallstranges und durch dieses verfahren erhaltener giessstrang
AT409352B (de) Verfahren zum stranggiessen eines metallstranges
DE10027324C2 (de) Verfahren zum Gießen eines metallischen Strangs sowie System hierzu
DE4403049C1 (de) Stranggießanlage und Verfahren zur Erzeugung von Dünnbrammen
WO2016029901A1 (de) Verfahren zum stranggiessen eines metalls, insbesondere eines stahls, und vorrichtung zum stranggiessen
EP1066898B1 (de) Verfahren zur Schmelzenführung in einer Stranggiessmaschine
DE102019208736A1 (de) Verfahren zum Gießen eines Gießstrangs in einer Stranggießanlage
EP3733323B1 (de) Verfahren und stranggiessanlage zum giessen eines giessstrangs
EP0732979B1 (de) Giess-walzanlage für stahlbänder und regelsystem dafür
EP1432539B1 (de) Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl
DE102020209794A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
WO2004048016A2 (de) Verfahren und einrichtung zum stranggiessen von brammen-dünnbrammen-, vorbloco-, vorprofil-, knüppelsträngen und dgl. aus flüssigem metall, insbesondere aus stahlwerkstoff
DE3126385C2 (de) Verfahren zum Stranggießen von Stahlbrammen
EP0741617B1 (de) Stranggiessanlage und verfahren zur erzeugung von rechteck-dünnbrammen
DE102009048567B4 (de) Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
EP3173166A1 (de) Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs
DE10160739C2 (de) Verfahren und Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
DE19916190C2 (de) Verfahren und Vorrichtung zum Stranggießen von Brammen
EP0563786B1 (de) Verfahren zum Giessen von höchstlegierten Stählen auf Kreisbogen-Stranggiessanlagen
EP3519124B1 (de) Verfahren zum mehrfachgiessen von metallsträngen
AT403351B (de) Verfahren zum stranggiessen eines metallstranges
WO2002085555A2 (de) Verfahren und vorrichtung zum stranggiessen von metall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040204

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50206693

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060503

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060907

BERE Be: lapsed

Owner name: SMS DEMAG A.G.

Effective date: 20060930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060907

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120921

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206693

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206693

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401