EP1432539A2 - Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl - Google Patents

Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl

Info

Publication number
EP1432539A2
EP1432539A2 EP02777034A EP02777034A EP1432539A2 EP 1432539 A2 EP1432539 A2 EP 1432539A2 EP 02777034 A EP02777034 A EP 02777034A EP 02777034 A EP02777034 A EP 02777034A EP 1432539 A2 EP1432539 A2 EP 1432539A2
Authority
EP
European Patent Office
Prior art keywords
mold
casting
copper plate
coolant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02777034A
Other languages
English (en)
French (fr)
Other versions
EP1432539B1 (de
Inventor
Fritz-Peter Pleschiutschnigg
Stephan Feldhaus
Wolfgang Mossner
Werner Rahmfeld
Lothar Parschat
Erwin Wosch
Uwe Kopfstedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10160739A external-priority patent/DE10160739C2/de
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1432539A2 publication Critical patent/EP1432539A2/de
Application granted granted Critical
Publication of EP1432539B1 publication Critical patent/EP1432539B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds

Definitions

  • the invention relates to a method and a device for cooling the copper plates of a continuous casting mold for liquid metals, in particular for liquid steel, with mold coolant guided in cooling channels and during the speed start-up ramp to the target casting speed or exceeding the target casting speed of different copper plates -Target skin temperature.
  • Such continuous casting molds for casting liquid steel are cooled in known methods generally used, in that the mold coolant is kept constant in quantity and temperature regardless of the casting speed when it is fed into the continuous casting mold.
  • the consequence of this procedure is that with increasing casting speed, the thermal load, measured in W / m 2 , and thus also the copper plate skin temperature, and especially when casting at casting speeds of over 4 m / min, rises sharply.
  • This rise in temperature for a given copper plate thickness of, for example, 20 mm between the mold coolant and the hot side leads between when using powdered casting slag Strand shell and mold copper plate on the one hand to different
  • the disturbances occur both with a water flow in the continuous casting mold from bottom to top and from top to bottom.
  • the copper plate skin temperature is lower in the water flow from top to bottom than in the water flow from bottom to top.
  • the invention is based on the object of influencing the copper plate skin temperature, even when the casting speed is changed, in particular at a higher rate, in such a way that surface defects in the strand shell and / or cracks in the copper plate surface do not occur or occur to a significantly reduced extent.
  • the object is achieved according to the invention in that, with a changing casting speed between 1 m / min and a maximum of 12 m / min, the copper plate skin temperature by a quantitative correction of the mold coolant quantity and / or the mold coolant inlet temperature depending on the current casting speed and depending on the copper plate thickness is set to a desired, constant size.
  • the copper plate skin temperature can be favorably selected and kept constant depending on the casting speed even with different copper plate thicknesses.
  • there are constant conditions for the lubrication behavior of casting powder slag which is melted on the casting level from the casting powder used (if casting powder is used).
  • Farther advantages can be achieved with permanent mold copper plates that are no longer used until the copper recrystallizes and therefore become less cracked. Further advantages include improved strand surface quality and casting reliability regardless of the casting speed and the copper plate thickness for selected work windows. This also increases the output.
  • this also makes it possible for the desired, constant copper plate skin temperature to be set constantly in the area of the mold level.
  • the continuous casting mold is oscillated.
  • the method is further designed in such a way that process data and plant data, which are processed in control variables to form an online simulation model, are used to regulate the mold coolant quantity and the mold coolant inlet temperature.
  • the accuracy of the method can be increased even further by using an immediate determination of the copper plate skin temperature in the area of the mold level in addition or as an alternative to the online simulation model.
  • a device for cooling the copper plates of a continuous casting mold, in particular for liquid steel, with cooling channels through which the coolant flows solves the task of selecting the copper plate skin temperature, taking into account the current casting speed, even with copper plates of different thicknesses, and keeping it constant, according to the invention, that at casting speeds of between 1 m / min and a maximum of 12 m / min and copper plate thicknesses of 4 mm to approx. 50 mm, control variables are provided for checking the mold coolant inlet temperature and / or the mold coolant quantity.
  • the copper plate skin temperature on the hot side can be kept much lower than before, and the copper plate is protected in such a way that the recrystallization temperature of the copper is far from being reached. This advantage affects large areas of the casting speed.
  • the mold coolant inlet can be arranged at a distance above the casting level.
  • the continuous casting mold can be oscillated by means of an oscillation device.
  • the amount and the temperature of the mold cooling water is further controlled by a process computer that is supplied with process data and system data for an online simulation model for controlled variables for regulating the mold coolant inlet temperature and / or the mold coolant quantity. controls a three-way valve and a control valve as well as a speed-controlled pump in the mold coolant circuit.
  • this regulation can also be carried out in such a way that, in addition to or instead of the process computer, a device for determining the copper plate skin temperature in the area of the mold level can be used to regulate the mold coolant inlet temperature and / or the mold coolant quantity.
  • a device for determining the copper plate skin temperature in the area of the mold level can be used to regulate the mold coolant inlet temperature and / or the mold coolant quantity.
  • 1A is a block diagram of the cooling circuit of a classic mold
  • 2A is a casting speed profile with heat flow over time
  • Fig. 2D the desired heat profile with regulated copper plate skin temperature
  • Fig. 3 shows a comparison of the prior art with the invention based on the temperature curves over the casting speed, taking into account the coolant flow from top to bottom and from bottom to top in the continuous casting mold.
  • a continuous casting mold 1 into which liquid steel is poured, is cooled in such a way that the mold coolant 2 at the mold coolant inlet 3 into the continuous casting mold 1 in its mold coolant quantity 4 and its mold coolant.
  • Inlet temperature 5 is kept constant regardless of the casting speed 6.
  • This procedure means that as the casting speed 6 increases, the heat load 7 in W / m 2 (see FIG. 2A) and thus also the copper plate ten skin temperature 8 rises and rises sharply, especially when casting, with increasing casting speed 6 of up to 12 m / min.
  • the temperature rise for a given copper plate thickness 9, for example of 20 mm, between the coolant and the hot side leads, in the presence of casting powder slag 10 between the strand shell of the casting strand 11 and the mold copper plate 1.1, on the one hand to different lubricating behavior and heat load 7 and on the other hand to shortened service life of the mold copper plates 1.1 , which is due to the exceeding of the recrystallization temperature 12 of cold-rolled copper (cf. FIG. 3).
  • the disturbances occur both with a water course 13.1 of the mold water 13 in the continuous casting mold 1 from bottom to top and with a water course 13.2 from top to bottom (see FIG. 3).
  • the copper plate skin temperature 8 is set lower in the water course 13.2 from top to bottom than in the water course 13.1 from bottom to top.
  • the continuous casting mold 1 is cooled by an inner coolant circuit 19 and an outer coolant circuit 20.
  • the inner coolant circuit 19 is guided over the heat exchanger 21 in such a way that the amount of permanent mold coolant 4, which is set constant by a pump 22, is also kept constant in its inlet temperature 23 (TJ ⁇ ) regardless of the casting speed 6.
  • a three-way valve 24, a bypass 25 and a control path 26 between a Ti n measuring device for the inlet temperature 23 (T in ) and the three-way valve 24 are used for this purpose.
  • the mold coolant 2 is used as a watercourse
  • the coolant circuit as shown in FIG. 1A is shown in the block diagram, but with increasing casting speed 6 from 1 m / min to a maximum of 12 m / min, the copper plate skin temperature 8 by a quantitative correction of the mold coolant quantity 4 and / or Chill coolant inlet temperature 5 regardless of the casting speed 6 and regardless of the copper plate thickness 9 with a constantly controlled mold coolant inlet temperature 5 is set to a desired, constant copper plate skin temperature 8.
  • the regulation of the mold coolant quantity 4 and the mold coolant inlet temperature 5 can be implemented via a process computer 27 for an online simulation model 27.4 and process data 27.1 of the continuous casting mold 1 with a constant copper plate skin temperature 8 via an inlet speed window 6.2 (see FIG. 3) become.
  • the process computer 27 requires process data 27.1 and system data 27.2 in order to control the mold coolant quantity 4 via a pump station 22.1 and / or control valves 29 and the mold coolant inlet temperature 5 through the three-way valve 24 via control variables 27.3.
  • a pressure expansion tank 30 is located in front of the pump station 22.1.
  • 2A shows a heat flow 17 and a profile 16 of the casting speed 6 over the casting time 18.
  • the graph describes a casting process from the start via a constant inlet speed window 6.2 with subsequent acceleration to a high speed level.
  • 2B shows the prior art.
  • the real copper plate skin temperature 8, designated T cu-re a i increases with the casting speed 6 and deviates from the desired copper plate skin temperature 8, referred to as the copper plate target temperature 8.1, (Tc u -ziei) because the mold
  • the amount of coolant 4 and the mold coolant inlet temperature 5 for cooling the continuous casting mold 1 is kept constant.
  • the real copper plate skin temperature 8 (Tcu-r ea i) by a corresponding quantitative correction of the mold coolant quantity 4 is independent of the casting speed 6 at constant mold coolant inlet temperature 5 with the desired copper plate skin temperature 8, the Copper plate target temperature 8.1 (Tcu-ziei) matched.
  • the copper plate skin temperature 8 (T Cu -re a i) with the copper plate target temperature 8.1 (Tcu-ziei) by the corresponding quantitative setting of the mold coolant quantity 4 and the mold coolant inlet temperature 5 as a function of the profile 16 of the casting speed over the casting time 18 to cover.
  • both influencing variables such as the mold coolant quantity 4 or the coolant speed, which increases the heat transfer, and the mold coolant inlet temperature 5, which increases the potential and thus the heat flow 17
  • the inlet speed windows 6.2 with respect to the casting speed 6 are for one wanted
  • real copper plate skin temperature 8 for a given copper plate thickness 9 is greater than in the case of variation of only one of the two influencing variables.
  • the difference between the known method and the inventive method can be clearly read. It is the mold plate skin temperature 8 depending on the increasing casting speed 6, the max. Is 12 m / min.
  • a horizontal straight line of the recrystallization temperature 12 represents the end of the thermal load on the copper plate made of cold-rolled copper, at which the copper stability and / or its cold rolling structure and thus loses its properties that are important for the casting of liquid steel.
  • the temperature profile 14 in the prior art is described with curve 14.1 (water profile from bottom to top) and curve 14.2 (water profile from top to bottom).
  • the strongly increasing behavior of the copper plate skin temperature 8 in the mold level with increasing casting speed 6 and increasing copper plate thickness 9 can be attributed to the constant amount of mold coolant 4 and the constant mold coolant inlet temperature 5 at the mold coolant inlet 3 during casting.
  • the principle of the invention can also be applied to strip casting devices which are operated at a casting speed of up to 100 m / min. All measures applied to the height of the continuous casting mold 1 are applied to the scope of the twin rollers. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Ein Verfahren und eine Einrichtung zum Kühlen der Kupferplatten (1.1) einer Stranggiesskokille (1) für flüssige Metalle, insbesondere für flüssigen Stahl, mit in Kühlkanälen geführtem Kokillenkühlmittel (2) und während der Temperatur-Anfahrrampe auf Soll-Giessgeschwindigkeit oder Überschreiten der Soll-Giessgeschwindigkeit abweichender Kupferplatten-Hauttemperatur (8) löst die Aufgabe, die Kupferplatten-Haut-temperatur (8) auch bei veränderter, insbesondere höherer Giessgeschwindigkeit, in der Weise zu beeinflussen, dass Oberflächenfehler in der Strangschale und/oder Risse in der Kupferplattenoberfläche nicht oder erheblich vermindert auftreten, indem bei wechselnder Giessgeschwindigkeit (6) zwischen 1 m / min bis maximal 12 m / min die Kupferplatten-Hauttemperatur (8) durch eine quantitative Korrektur der Kokillen-Kühlmittelmenge (4) und/oder der Kokillenkühlmittel-Einlauftemperatur (5) abhängig von der Giessgeschwindigkeit (6) und abhängig von der Kupferplattendicke (9) auf eine gewollte, konstante Grösse eingestellt wird.

Description

Verfahren und Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl, mit in Kühlkanälen geführtem Kokillenkühlmittel und während der Geschwindigkeits-An-fahrrampe auf Soll-Gießgeschwindigkeit oder Überschreiten der Soll-Gießgeschwin-digkeit abweichender Kupferplatten-Soll- Hauttemperatur.
Aus der DE 41 27 333 C2 ist ein Verfahren bekannt, im Bereich der höchsten Temperaturbelastung das Kühlmittel mit Maximalgeschwindigkeit zu leiten. Dadurch wird die Wärmeabfuhr verbessert und die Temperatur der Kokillenplatte verringert. Außerdem wird eine Verkleinerung der Temperaturunterschiede über die Höhe der Kokille und eine daraus folgende Spannungsverminderung und Verlängerung der Standzeit der Kokillenwände angestrebt. Dieses Verfahren berücksichtigt jedoch nicht eine veränderte, insbesondere eine erhöhte sehr hohe Gießgeschwindigkeit.
Derartige Stranggießkokillen zum Gießen von flüssigem Stahl werden bei im allgemeinen angewendeten, bekannten Verfahren gekühlt, indem das Kokillenkühlmittel beim Einlauf in die Stranggießkokille in seiner Menge und seiner Temperatur unabhängig von der Gießgeschwindigkeit konstant gehalten wird. Die Folge dieser Verfahrensweise ist, dass mit steigender Gießgeschwindigkeit die Wärmebelastung , gemessen in W / m2 , und damit auch die Kupferplatten- Hauttemperatur und hier besonders beim Gießen mit Gießgeschwindigkeiten über 4 m / min stark ansteigt. Dieser Temperaturanstieg bei einer vorgegebener Kupferplattendicke von beispielsweise 20 mm zwischen Kokillenkühlmittel und Heißseite führt im Fall des Einsatzes von Gießpulverschlacke zwischen Strangschale und Kokillenkupferplatte zum einen zu unterschiedlichem
Schmierverhalten und unterschiedlicher Wärmebelastung und zum anderen zu verkürzten Standzeiten der Kokillenkupferplatten bedingt durch die Überschreitung der Rekristallisationstemperatur von kaltgewalztem Kupfer.
Diese sich ergebenden Nachteile bei steigender Gießgeschwindigkeit aber auch bei steigender Kupferplattendicke führen zu Störungen des Gießprozesses und / oder zu Oberflächenfehlern in der Strangschale und zu Rissen in der Kupferplattenoberfläche.
Die Störungen treten sowohl bei einem Wasserlauf in der Stranggießkokille von unten nach oben als auch von oben nach unten auf. Es kann aber festgestellt werden, dass beim Wasserlauf von oben nach unten die Kupferplatten- Hauttemperatur sich niedriger einstellt als beim Wasserlauf von unten nach oben.
Der Erfindung liegt die Aufgabe zugrunde, die Kupferplatten-Hauttemperatur auch bei veränderter, insbesondere höherer Gießgeschwindigkeit , in der Weise zu beeinflussen, dass Oberflächenfehler in der Strangschale und / oder Risse in der Kupferplattenoberfläche nicht oder erheblich vermindert auftreten.
Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass bei wechselnder Gießgeschwindigkeit zwischen 1 m / min bis maximal 12 m / min die Kupferplatten-Hauttemperatur durch eine quantitative Korrektur der Kokillen- Kühlmittelmenge und / oder der Kokillenkühlmittel-Einlauftemperatur abhängig von der aktuellen Gießgeschwindigkeit und abhängig von der Kupferplattendik- ke auf eine gewollte, konstante Größe eingestellt wird. Dadurch kann die Kupferplatten-Hauttemperatur abhängig von der Gießgeschwindigkeit auch bei unterschiedlichen Kupferplattendicken günstig ausgewählt und konstant gehalten werden. Außerdem sind konstante Bedingungen für das Schmierverhalten von Gießpulverschlacke, die auf dem Gießspiegel aus dem verwendeten Gießpulver erschmolzen wird (falls Gießpulver zum Einsatz kommt) gegeben. Weiterhin sind Vorteile durch Kokillenkupf erplatten, die nicht mehr bis zur Rekristallisation des Kupfers beansprucht und daher weniger rissig werden, zu erzielen. Weitere Vorteile sind eine verbesserte Strangoberflächenqualität und Gießsicherheit unabhängig von der Gießgeschwindigkeit und der Kupferplattendicke für aus- gewähl-te Arbeitsfenster. Damit wird auch das Ausbringen erhöht.
Vorteilhafterweise ist es dadurch auch möglich, dass die gewollte, konstante Kupferplatten-Hauttemperatur im Gießspiegelbereich konstant eingestellt wird.
Die erläuterten Wirkungen können auch entweder vollständig oder teilweise dann erreicht werden, wenn das Kokillenkühlmittel von oben nach unten oder von unten nach oben durch die Kühlkanäle geführt wird.
Nach weiteren Merkmalen wird die Stranggießkokille oszilliert.
Weitere Vorteile ergeben sich dadurch, dass der Gießstrang bei sich bildender Gießpulverschlacke zusammen vergossen wird.
Das Verfahren ist weiter dahingehend ausgestaltet, dass zum Regeln der Kokillen-Kühlmittelmenge und der Kokillenkühlmittel-Einlauftemperatur Prozess- daten und Anlagen-Daten, die in Regelgrößen zu einem online- Simulationsmodell verarbeitet werden, eingesetzt werden.
Die Genauigkeit des Verfahrens kann noch gesteigert werden, indem eine unmittelbare Bestimmung der Kupferplatten-Hauttemperatur im Gießspiegelbe- reich zusätzlich oder alternativ zum online-Simulationsmodell eingesetzt wird.
Eine Einrichtung zur Kühlung der Kupferplatten einer Stranggießkokille, insbesondere für flüssigen Stahl, mit von Kokiilenkühlmittel durchströmten Kühlkanälen, löst die Aufgabe, die Kupferplatten-Hauttemperatur unter Berücksichti- gung der aktuellen Gießgeschwindigkeit auch bei unterschiedlich dicken Kupferplatten auszuwählen und konstant zu halten, erfindungsgemäß dadurch, dass bei Gießgeschwindigkeiten zwischen 1 m / min bis maximal 12 m / min und Kupferplattendicken von 4 mm bis ca. 50 mm Regelgrößen zur Kontrolle der Kokillenkühlmittel-Einlauftemperatur und / oder der Kokillen- Kühlmittelmenge vorgesehen sind. Dadurch kann die Kupferplatten- Hauttemperatur auf der Heißseite schon bei Gießbeginn wesentlich niedriger als bisher eingehalten werden und die Kupferplatte wird in einer Art geschont, dass die Rekristallisationstemperatur des Kupfers bei weitem nicht erreicht wird. Dieser Vorteil wirkt sich in großen Bereichen der Gießgeschwindigkeit aus.
Nach einer anderen Ausgestaltung kann der Kokillen-Kühlmitteleinlauf beab- standet oberhalb des Gießspiegels angeordnet sein.
Außerdem ist vorteilhaft, wenn die Stranggießkokille mittels einer Oszillationsvorrichtung oszillierbar ist.
Weiterhin dient es der Schonung der Strangschale des Gießstrangs, dass dem Gießstrang beim Gießen Gießpulver zuführbar ist.
Die Menge und die Temperatur des Kokillenkühlwassers wird ferner dadurch kontrolliert, dass ein Prozessrechner, der mit Prozessdaten und Anlagen-Daten für ein online-Simulationsmodell für Regelgrößen zur Regelung der Kokillen- kühlmittel-Einlauftem-peratur und / oder der Kokillen-Kühlmittelmenge versorgt wird, ein Dreiwegeventil und ein Regelventil sowie eine drehzahlgeregelte Pumpe im Kokillen-Kühlmittelkreislauf steuert.
Diese Regelung kann außerdem gemäß einer weiteren Ausgestaltung derart vorgenommen werden, dass zusätzlich oder anstelle des Prozessrechners eine Einrichtung zur Bestimmung der Kupferplatten-Hauttemperatur im Gießspiegelbereich zur Regelung der Kokillenkühlmittel-Einlauftemperatur und / oder der Kokillen-Kühlmittel-menge einsetzbar ist. In der Zeichnung ist ein Ausführungsbeispiel dargestellt, das nachstehend näher erläutert wird.
Es zeigen:
Fig. 1A ein Blockschaltbild des Kühlkreislaufs einer klassischen Kokille,
Fig. 1B das zugehörige Blockschaltbild des Kühlkreislaufs einer sog. ISO-
Kokille gemäß der Erfindung,
Fig. 2A ein Gießgeschwindigkeits-Profil mit Wärmestrom über der Zeit,
Fig. 2B der Wärmeverlauf bei einer herkömmlichen Kühlung,
Fig. 2C der gewollte Wärmeverlauf gemäß der Erfindung,
Fig. 2D der gewollte Wärmeverlauf bei eingeregelter Kupferplatten-Hauttemperatur und
Fig. 3 einen Vergleich des Standes der Technik mit der Erfindung anhand der Temperatur-Kurven über der Gießgeschwindigkeit unter Berücksichtigung des Kühlmittellaufs von oben nach unten und von unten nach oben in der Stranggießkokille.
Gemäß dem Stand der Technik (Fig. 1A) wird eine Stranggießkokille 1 , in die flüssiger Stahl gegossen wird, in der Art gekühlt, dass das Kokillenkühlmittel 2 am Kokillen-Kühlmitteleinlauf 3 in die Stranggießkokille 1 in seiner Kokillen- Kühlmittelmenge 4 und seiner Kokillenkühlmittel-Einlauftemperatur 5 unabhängig von der Gießgeschwindigkeit 6 konstant gehalten wird.
Diese Verfahrensweise bedeutet, dass mit steigender Gießgeschwindigkeit 6 die Wärmebelastung 7 in W / m2 ( vgl. Fig. 2A) und damit auch die Kupferplat- ten-Hauttemperatur 8 ansteigt und besonders beim Gießen mit steigender Gießgeschwindigkeit 6 von bis zu 12 m / min stark ansteigt. Der Temperaturanstieg bei vorgegebener Kupferplattendicke 9, z.B. von 20 mm, zwischen Kühlmittel und Heißseite führt bei Anwesenheit von Gießpulverschlacke 10 zwischen der Strangschale des Gießstrangs 11 und Kokillenkupferplatte 1.1 zum einen zu unterschiedlichem Schmierverhalten und Wärmebelastung 7 und zum anderen zu verkürzten Standzeiten der Kokillen-Kupferplatten 1.1 , was durch die Überschreitung der Rekristallisations-Temperatur 12 von kaltgewalztem Kupfer bedingt ist ( vgl. Fig. 3).
Diese bei steigender Gießgeschwindigkeit 6 und / oder mit steigender Kupferplattendicke 9 sich ergebenden Nachteile führen zu Störungen des Gießprozesses bzw. zu Oberflächenfehlern in der Strangschale und zu Rissen in der Kupferplattenoberfläche.
Die Störungen treten sowohl bei einem Wasserlauf 13.1 des Kokillenwassers 13 in der Stranggießkokille 1 von unten nach oben als auch bei einem Wasserlauf 13.2 von oben nach unten auf (vgl. Fig. 3). Allerdings kann festgestellt werden, dass beim Wasserlauf 13.2 von oben nach unten die Kupferplatten- Hauttemperatur 8 sich niedriger einstellt als beim Wasserlauf 13.1 von unten nach oben.
In Fig.lA (Stand der Technik) ist die Stranggießkokille 1 durch einen inneren Kühlmittelkreislauf 19 und einen äußeren Kühlmittelkreislauf 20 gekühlt. Der äußere Kühlmittelkreislauf 20, der über einen Wärmetauscher 21 läuft, dient zum Kühlen des Kokillenkühlmittels 2 im inneren Kühlmittelkreislauf 19.
Der innere Kühlmittelkreislauf 19 wird derart über den Wärmetauscher 21 geführt, dass die Kokillen-Kühlmittelmenge 4, die über eine Pumpe 22 konstant eingestellt wird, in ihrer Einlauftemperatur 23 (TJΠ) unabhängig von der Gießge- schwindigkeit 6 ebenfalls konstant gehalten wird. Dazu dienen ein Dreiwegeventil 24, ein Bypass 25 und eine Regelstrecke 26 zwischen einer Tin-Messvorrichtung für die Einlauftemperatur 23 (Tin) und dem Dreiwegeventil 24. In der Regel wird das Kokillenkühlmittel 2 als Wasserlauf
13.1 von unten nach oben geführt, bei Dünnstranganlagen auch als Wasserlauf
13.2 von oben nach unten.
Gemäß Fig. 1B ist der Kühlmittelkreislauf wie Fig. 1A im Blockschaltbild dargestellt, wobei jedoch bei steigender Gießgeschwindigkeit 6 von 1 m / min bis maximal 12 m / min die Kupferplatten-Hauttemperatur 8 durch eine quantitative Korrektur der Kokillen-Kühlmittelmenge 4 und / oder der Kokillenkühlmittel- Einlauftemperatur 5 unabhängig von der Gießgeschwindigkeit 6 und unabhängig von der Kupferplattendicke 9 bei konstant geregelter Kokillenkühlmittel- Einlauftemperatur 5 auf eine gewollte, konstante Kupferplatten-Hauttemperatur 8 eingestellt wird. Die Regelung der Kokillen-Kühlmittelmenge 4 und der Kokillenkühlmittel-Einlauftemperatur 5 kann über einen Prozessrechner 27 für ein online-Simulationsmodell 27.4 und Prozessdaten 27.1 der Stranggießkokille 1 bei konstanter Kupferplatten-Hauttemperatur 8 über ein Einlaufgeschwindig- keitsfenster 6.2 (vgl. Fig. 3) verwirklicht werden. Hierzu benötigt der Prozessrechner 27 Prozessdaten 27.1 und Anlagendaten 27.2, um die Kokillen- Kühlmittelmenge 4 über eine Pumpenstation 22.1 und / oder Regelventile 29 und die Kokillenkühlmittel-Einlauftemperatur 5 durch das Dreiwegeventil 24 über Regelgrößen 27.3 zu regeln. Vor der Pumpenstation 22.1 liegt ein Druckausgleichsbehälter 30.
In den Fig. 2A bis 2D werden die verfahrenstechnischen Zusammenhänge er- läutert.
Fig. 2A zeigt einen Wärmestrom 17 und ein Profil 16 der Gießgeschwindigkeit 6 über der Gießzeit 18. Der Graph beschreibt einen Gießverlauf vom Start über ein konstantes Einlauf-Geschwindigkeitsfenster 6.2 mit sich anschließender Beschleunigung auf ein hohes Geschwindigkeitsniveau. Fig. 2B gibt den Stand der Technik wieder. Die reale Kupferplatten- Hauttemperatur 8, mit T cu-reai bezeichnet, steigt mit der Gießgeschwindigkeit 6 und weicht von der gewollten Kupferplatten-Hauttemperatur 8, als Kupferplatten-Zieltemperatur 8.1 bezeichnet, (Tcu-ziei) ab, da die Kokillen-Kühlmittelmenge 4 und die Kokillenkühlmittel-Einlauftemperatur 5 zur Kühlung der Stranggießko- kille 1 konstant gehalten wird.
In Fig. 2C wird die reale Kupferplatten-Hauttemperatur 8 ( Tcu-reai) durch eine entsprechende quantitative Korrektur der Kokillen-Kühlmittelmenge 4 unabhängig von der Gießgeschwindigkeit 6 bei konstanter Kokillenkühlmittel- Einlauf- temperatur 5 mit der gewünschten Kupferplatten-Hauttemperatur 8, der Kupfer- platten-Zieltem-peratur 8.1 (Tcu-ziei) zur Deckung gebracht.
Gemäß Fig. 2D wird die Kupferplatten-Hauttemperatur 8 (TCu-reai) mit der Kupferplatten-Zieltemperatur 8.1 (Tcu-ziei) durch die entsprechende quantitative Ein- Stellung der Kokillen-Kühlmittelmenge 4 und der Kokillenkühlmittel- Einlauftemperatur 5 in Abhängigkeit von dem Profil 16 der Gießgeschwindigkeit über die Gießzeit 18 zur Deckung gebracht. Bei der Variation beider Einflussgrößen, wie der Kokillen-Kühlmittelmenge 4 oder der Kühlmittelgeschwindigkeit, die den Wärmeübergang erhöht, und der Kokillenkühlmittel-Einlauftemperatur 5, die das Potential und damit den Wärmestrom 17 erhöht, sind die Einlaufge- schwindigkeitsfenster 6.2 bezüglich der Gießgeschwindigkeit 6 für eine gewollte, reale Kupferplatten-Hauttemperatur 8 bei einer gegebenen Kupferplattendicke 9 größer als im Fall der Variation von nur einer der beiden Einflussgrößen.
Gemäß Fig. 3 kann der Unterschied des bekannten Verfahrens zum erfindungsgemäßen deutlich abgelesen werden. Es wird die Kokillenplatten- Hauttemperatur 8 in Abhängigkeit von der steigenden Gießgeschwindigkeit 6, die max. 12 m / min beträgt, zugrunde gelegt. Eine horizontal verlaufende Ge- rade der Rekristallisations- Temperatur 12 stellt das Ende der Wärmebelastung der Kupferplatte aus kaltgewalztem Kupfer dar, bei der das Kupfer seine Fe- stigkeit und / oder sein Kaltwalzgefüge und damit seine für das Gießen von flüssigem Stahl wichtigen Eigenschaften verliert. Der Temperaturverlauf 14 im Stand der Technik ist mit der Kurve 14.1 (Wasserverlauf von unten nach oben) und der Kurve 14.2 (Wasserverlauf von oben nach unten), beschrieben. Beide Kurven 14.1 und 14.2 steigen mit wachsender Gießgeschwindigkeit stetig zu höheren Kupferplatten-Hauttemperaturen 8 im Bereich des Gießspiegels an, wobei die Kupferplatten-Hauttemperatur 8 im Fall des Wasserverlaufs 14.1 des Kokillenkühlmittels 13 von unten nach oben früher die Rekristallisations- Temperatur 12 bei einer kritischen Gießgeschwindigkeit 6.1 schneidet als im Fall des Wasserverlaufs 14.2 von oben nach unten.
Das stark ansteigende Verhalten der Kupferplatten-Hauttemperatur 8 im Gießspiegel mit steigender Gießgeschwindigkeit 6 und steigender Kupferplattendik- ke 9 ist auf die im Stand der Technik beim Gießen konstante Kokillen- Kühlmittelmenge 4 und die konstante Kokillenkühlmittel-Einlauftemperatur 5 am Kokillen-Kühlmitteleinlauf 3 zurückzuführen.
Die Kontrolle und Konstanz der Kupferplatten-Hauttemperatur 8 über die Gießgeschwindigkeit 6 ist mit der Kurve 15 dargestellt. Dabei wird deutlich, dass mit steigender Kupferplattendicke 9 die Kupferplatten-Hauttemperatur 8 bei glei- chen Kühlbedingungen, ausgedrückt durch die Kühlmittel-Geschwindigkeit oder die Kokillen-Kühlmittelmenge 4 und als Kokillenkühlmittel-Einlauftemperatur 5, ansteigt. Dasselbe gilt auch für das bekannte Verfahren (vgl. Kurve 13.1 - Wasserverlauf von unten nach oben und Kurve 13.2 - Wasserverlauf von oben nach unten- ).
Das Prinzip der Erfindung kann auch auf Bandgießvorrichtungen, die mit bis zu 100 m / min Gießgeschwindigkeit betrieben werden, angewendet werden. Dabei werden alle auf die Höhe der Stranggießkokille 1 angewendeten Maßnahmen auf den Umfang der Twin-Rollen angewendet. Bezugszeichenliste
1 Stranggießkokille
1.1 Kokillenkupferplatte
2 Kokiilenkühlmittel
3 Kokillen-Kühlmitteleinlauf
4 Kokillen-Kühlmittelmenge
5 Kokillenkühlmittel-Einlauftemperatur
6 Gießgeschwindigkeit
6.1 kritische Gießgeschwindigkeit
6.2 Einlaufgeschwindigkeitsfenster
( mit gleicher Kupferplattentemperatur)
7 Wärmebelastung (W / m2)
8 Kupferplatten-Hauttemperatur
8.1 Kupferplatten-Zieltemperatur
9 Kupferplattendicke
10 Gießpulverschlacke
11 Gießstrang
12 Rekristallisations-Temperatur
13 Kokillenkühlmittel
13.1 Wasserlauf von unten nach oben
13.2 Wasserlauf von oben nach unten
14 Temperaturverlauf im Stand der Technik
14.1 Kurve Kokillenkühlmittel von unten nach oben
14.2 Kurve Kokillenkühlmittel von oben nach unten
15 Kurve
16 Profil der Gießgeschwindigkeit über die Gießzeit
17 Wärmestrom
18 Gießzeit 19 innerer Kühlmittel-Kreislauf
20 äußerer Kühlmittel-Kreislauf
21 Wärmetauscher
22 Pumpe
22.1 Pumpenstation 23 Einlauftemperatur Tn
24 Dreiwegeventil
25 Bypass
26 Regelstrecke
27 Prozessrechner 27.1 Prozessdaten
27.2 Anlagendaten
27.3 Regelgröße
27.4 online-Simulationsmodell
28 Temperaturmessung 29 Regelventil
30 Druckausgleichsbehälter

Claims

Patentansprüche
1. Verfahren zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl, mit in Kühlkanälen geführtem Kokillenkühlmittel und während der Geschwindigkeits- Anfahrrampe auf Soll-Gießgeschwindigkeit oder Überschreiten der Soll- Gießgeschwindigkeit abweichender Kupferplatten-Soll-Hauttemperatur, dadurch gekennzeichnet, dass bei wechselnder Gießgeschwindigkeit zwischen 1 m/ min bis maximal 12 m / min die Kupferplatten-Hauttemperatur durch eine quantitative Korrektur der Kokillen-Kühlmittelmenge und / oder der Kokillenkühl- mittel-Einlauftempe-ratur abhängig von der aktuellen Gießgeschwindig- keit und abhängig von der Kupferplattendicke auf eine gewollte, konstante Größe eingestellt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die gewollte, konstante Kupferplatten-Hauttemperatur (8) im Gießspiegelbereich konstant eingestellt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Kokillenkühlmittel von oben nach unten oder von unten nach oben durch die Kühlkanäle geführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Stranggießkokille oszilliert wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Gießstrang bei sich bildender Gießpulverschlacke zusammen vergossen wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zum Regeln der Kokillen-Kühlmittelmenge und der Kokillenkühlmittel-Einlauftemperatur Prozessdaten und Anlagen-Daten , die in Regelgrößen zu einem online-Simulationsmodell verarbeitet werden, einge- setzt werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine unmittelbare Bestimmung der Kupferplatten-Hauttemperatur im Gießspiegelbereich zusätzlich oder alternativ zum online-
Simulationsmodell eingesetzt wird.
8. Einrichtung zur Kühlung der Kupferplatten einer Stranggießkokille, insbesondere für flüssigen Stahl, mit von Kokillenkühlmittel durchströmten Kühlkanälen, dadurch gekennzeichnet, dass bei Gießgeschwindigkeiten (6) zwischen 1 m / min bis maximal 12 m / min und Kupferplattendicken (9) von 4 mm bis ca. 50 mm Regelgrößen (27.3) zur Kontrolle der Kokillenkühlmittel-Einlauftemperatur (5) und / oder der Kokillen-Kühlmittelmenge (4) vorgesehen sind.
9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Kokillen-Kühlmitteleinlauf (3) beabstandet oberhalb des Gieß- spiegeis angeordnet ist.
10. Einrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Stranggießkokille (1) mittels einer Oszillationsvorrichtung oszillierbar ist.
11. Einrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass dem Gießstrang (11) beim Gießen Gießpulver zuführbar ist.
12. Einrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass ein Prozessrechner (27), der mit Prozessdaten (27.1 ) und Anlagendaten (27.2) für ein online-Simulationsmodell (27.4) für Regelgrößen (27.3) zur Regelung der Kokillenkühlmittel-Einlauftemperatur (5) und / oder der Kokillen-Kühlmittelmenge (4) versorgt wird, ein Dreiwegeventil (24) und ein Regelventil (29) sowie eine drehzahlgeregelte Pumpe (22) im Kokillen-Kühlmittelkreislauf steuert.
13. Einrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass zusätzlich oder anstelle des Prozessrechners (27) eine Einrichtung zur Bestimmung der Kupferplatten-Hauttemperatur (8) im Gießspiegelbereich zur Regelung der Kokillenkühlmittel-Einlauftemperatur (5) und / oder der Kokillen-Kühlmittelmenge (4) einsetzbar ist.
EP02777034A 2001-09-28 2002-09-07 Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl Expired - Lifetime EP1432539B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10148135 2001-09-28
DE10148135 2001-09-28
DE10160739A DE10160739C2 (de) 2001-09-28 2001-12-11 Verfahren und Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
DE10160739 2001-12-11
PCT/EP2002/010030 WO2003028921A2 (de) 2001-09-28 2002-09-07 Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl

Publications (2)

Publication Number Publication Date
EP1432539A2 true EP1432539A2 (de) 2004-06-30
EP1432539B1 EP1432539B1 (de) 2006-05-03

Family

ID=26010255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02777034A Expired - Lifetime EP1432539B1 (de) 2001-09-28 2002-09-07 Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl

Country Status (13)

Country Link
US (1) US20040256078A1 (de)
EP (1) EP1432539B1 (de)
JP (1) JP2005503927A (de)
CN (1) CN1561273A (de)
AT (1) ATE324953T1 (de)
BR (1) BR0212935A (de)
CA (1) CA2460897A1 (de)
DE (1) DE50206693D1 (de)
HU (1) HUP0402138A2 (de)
MX (1) MXPA04002744A (de)
PL (1) PL367404A1 (de)
RU (1) RU2004113105A (de)
WO (1) WO2003028921A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292858C (zh) * 2004-01-17 2007-01-03 宝山钢铁股份有限公司 一种水冷的金属连铸结晶器
DE102009023677A1 (de) * 2009-06-03 2010-12-09 Egon Evertz Kg (Gmbh & Co.) Verfahren zur Regelung der Flüssigkeitskühlung von Stranggießkokillen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151952A (ja) * 1982-03-02 1983-09-09 Kobe Steel Ltd 電磁撹「はん」用鋳型の冷却方法
JPS63104754A (ja) * 1986-10-20 1988-05-10 Mitsubishi Heavy Ind Ltd スプレ冷却モ−ルドの水量調節方法
DE4127333C2 (de) * 1991-08-19 2000-02-24 Schloemann Siemag Ag Stahlstranggießkokille
DE19956577A1 (de) * 1999-11-25 2001-05-31 Sms Demag Ag Verfahren zum Stranggießen von Brammen, insbesondere von Dünnbrammen, sowie eine Vorrichtung zu dessen Durchführung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03028921A2 *

Also Published As

Publication number Publication date
HUP0402138A2 (hu) 2005-02-28
MXPA04002744A (es) 2004-07-29
WO2003028921A2 (de) 2003-04-10
JP2005503927A (ja) 2005-02-10
WO2003028921A3 (de) 2003-10-23
US20040256078A1 (en) 2004-12-23
DE50206693D1 (de) 2006-06-08
RU2004113105A (ru) 2005-05-20
EP1432539B1 (de) 2006-05-03
PL367404A1 (en) 2005-02-21
CA2460897A1 (en) 2003-04-10
ATE324953T1 (de) 2006-06-15
BR0212935A (pt) 2004-10-13
CN1561273A (zh) 2005-01-05

Similar Documents

Publication Publication Date Title
AT408197B (de) Verfahren zum stranggiessen eines metallstranges
EP2346631B1 (de) Verfahren und vorrichtung zur steuerung der erstarrung eines giessstranges in einer stranggiessanlage beim anfahren des giessprozesses
EP0515010B1 (de) Temperaturmessung an einer Brammenkokille
DE102006060673A1 (de) Verfahren und Regelvorrichtung zum Regeln der Wärmeabfuhr einer Seitenplatte einer Kokille
EP1183118B1 (de) Automatisierung einer hochgeschwindigkeits-stranggiessanlage
DE4403049C1 (de) Stranggießanlage und Verfahren zur Erzeugung von Dünnbrammen
EP0943382B1 (de) Verfahren und Vorrichtung zur Kontrolle des Wärmestromes einer Kokille beim Stranggiessen von Brammen
EP3733323B1 (de) Verfahren und stranggiessanlage zum giessen eines giessstrangs
DE102020209794A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
EP0732979B1 (de) Giess-walzanlage für stahlbänder und regelsystem dafür
WO2004048016A2 (de) Verfahren und einrichtung zum stranggiessen von brammen-dünnbrammen-, vorbloco-, vorprofil-, knüppelsträngen und dgl. aus flüssigem metall, insbesondere aus stahlwerkstoff
EP0881018A2 (de) Verfahren und Vorrichtung zum Messen und Regeln von Temperatur und Menge von Kühlwasser für wasserkühlbara Kokillenwände einer Stranggiesskokille
WO2003028921A2 (de) Verfahren und einrichtung zum kühlen der kupferplatten einer stranggiesskokille für flüssige metalle, insbesondere für flüssigen stahl
EP1103323A2 (de) Verfahren und Vorrichtung zum Stranggiessen von Stahl
DE102009048567B4 (de) Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
DE102011075627B4 (de) Sekundärkühleinrichtung zum Kühlen eines Metallstrangs und Verfahren zum Betreiben der Sekundärkühleinrichtung
DE10160739C2 (de) Verfahren und Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
EP1070560B1 (de) Verfahren zum Regeln der Kühlwasser-Durchflussgeschwindigkeit durch Kokillenbreitseiten
EP3173166A1 (de) Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs
EP1313578A1 (de) Gekühlte stranggiesskokille zum giessen von metall
DE102005024843B4 (de) Verfahren zum Regeln der Schmalseitenkonizität einer Plattenkokille
DE19916190C2 (de) Verfahren und Vorrichtung zum Stranggießen von Brammen
DE102018215583A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
AT403351B (de) Verfahren zum stranggiessen eines metallstranges
EP3519124B1 (de) Verfahren zum mehrfachgiessen von metallsträngen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040204

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50206693

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060503

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060907

BERE Be: lapsed

Owner name: SMS DEMAG A.G.

Effective date: 20060930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060907

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120921

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206693

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206693

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401