EP1177274B1 - Verfahren zur kalten herstellung von perlglänzenden tensidzubereitungen - Google Patents

Verfahren zur kalten herstellung von perlglänzenden tensidzubereitungen Download PDF

Info

Publication number
EP1177274B1
EP1177274B1 EP00929458A EP00929458A EP1177274B1 EP 1177274 B1 EP1177274 B1 EP 1177274B1 EP 00929458 A EP00929458 A EP 00929458A EP 00929458 A EP00929458 A EP 00929458A EP 1177274 B1 EP1177274 B1 EP 1177274B1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
fatty
acid
esters
preparations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00929458A
Other languages
English (en)
French (fr)
Other versions
EP1177274A1 (de
EP1177274B8 (de
Inventor
Claus Nieendick
Karl Heinz Schmid
Anke Eggers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1177274A1 publication Critical patent/EP1177274A1/de
Application granted granted Critical
Publication of EP1177274B1 publication Critical patent/EP1177274B1/de
Publication of EP1177274B8 publication Critical patent/EP1177274B8/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0089Pearlescent compositions; Opacifying agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents

Definitions

  • the invention is in the field of pearlescent preparations, especially cosmetics and relates to a process for preparing these agents by the cold route.
  • Pearlescent concentrates in the form of flowable aqueous dispersions are known, for example, from German Patent Applications DE 3843572 A1 and DE 4103551 A1 (Henkel), which contain 15 to 40% by weight pearlescent components, 5 to 55% by weight emulsifiers and 0.1 to 5 or 15 to 40 wt .-% polyols.
  • the pearlescent waxes are acylated polyalkylene glycols, monoalkanolamides, linear, saturated fatty acids or ketosulfones.
  • the two European patents EP 0181773 B1 and EP 0285389 B1 propose shampoo compositions containing surfactants, non-volatile silicones and pearlescent waxes.
  • the subject of European Patent Application EP 0205922 A2 (Henkel) are flowable pearlescent concentrates which contain 5 to 15% by weight of acylated polyglycols, 1 to 6% by weight of fatty acid monoethanolamides and 1 to 5% by weight of nonionic emulsifiers.
  • nonionic, flowable pearlescent dispersions can also be obtained by preparing mixtures of 5 to 30% by weight of acylated polyglycols and 0.1 to 20% by weight of selected nonionic surfactants.
  • European Patent Application EP 0581193 A2 also discloses flowable, preservative-free pearlescent dispersions which contain acylated polyglycol ethers, betaines, anionic surfactants and glycerol.
  • European Patent Application EP 0684302 A1 proposes the use of polyglycerol esters as crystallization auxiliaries for the preparation of pearlescent concentrates.
  • pearlescent waxes have melting points above 80 ° C and therefore can be do not mix cold into aqueous formulations.
  • the skilled person is therefore forced to one Hot process to work, i. melt the waxes and slowly crystallize in the formulation let the fineness of the crystals and thus the brilliance of the pearlescent a Function of the cooling rate is. It is therefore immediately clear that such processes take time and energy are so that there is a desire for a cheaper alternative.
  • pearlescent concentrates which are more or less concentrated surface-active preparations which already contain the pearlescent waxes in finely divided, i.e. pearlescent form and are stabilized by emulsifiers.
  • Such pearlescent concentrates can be processed cold, but the actual problem is thereby not solved, but only shifted to the stage of the manufacturer of these intermediates, as the concentrates in turn, of course, are accessible only by a hot process again.
  • the object of the present invention has therefore been to provide a method available which is the cold incorporation of pearlescent waxes into surfactant preparations - be it Intermediates, such as e.g. Pearlescent concentrates or final formulations, e.g. Shampoos - allowed. At the same time, neither the brilliance of the pearlescence nor the stability was due to the cold process the formulations are adversely affected.
  • the invention relates to a process for the cold preparation of pearlescent surfactant preparations, in which aqueous surfactant solutions are initially introduced and at temperatures in the range from 10 to 45, preferably 15 to 25 ° C mixtures of pearlescent waxes and Polyolestem stirred.
  • the Melting point of pearlescent wax so low that their cold (10 to 25 ° C) incorporation into Surfactant formulations is easily possible.
  • the agents Regardless of whether it is the preparations intermediate products (e.g., pearlescent concentrates) or final formulations for the consumer (e.g., shampoos, dishwashing detergent), the agents have brilliant pearlescence, are storage stable and also allow the incorporation of difficult-to-formulate ingredients, e.g. Silicone oils.
  • the invention includes the recognition that not only pearlescent agents are produced in this way but, depending on the type of wax and the emulsifier, also those which have an intense white turbidity.
  • the surface-active preparations may be intermediates, as pearlescent concentrates or final formulations for the consumer, e.g. Hair shampoos or Dishwashing act.
  • surfactants in the preparations anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants whose proportion of the means depending on whether it is a concentrate or a dilution, in Range of 1 to 35, preferably 5 to 15 or 15 to 40, preferably 25 to 35 wt .-% lie can.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates , Mono- and dialkylsulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarcosinates,
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers, hydroxy mixed ethers, optionally partially oxidized alk (en) yloligoglycosides or glucuronic acid derivatives, fatty acid N-alkylglucamides, protein hydrolysates (in particular vegetable products Wheat base), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides. If the nonionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution.
  • cationic surfactants are quaternary ammonium compounds such as dimethyl distearyl ammonium chloride and ester quats, especially quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • the surfactants mentioned are exclusively known compounds. With regard to the structure and production of these substances, reference may be made to relevant reviews, for example J.Falbe (ed.), “Surfactants in Consumer Products”, Springer Verlag, Berlin, 1987, pp. 54-124 or J. Falbe (ed.), “Catalysts, Surfactants and mineral oil additives ", Thieme Verlag, Stuttgart, 1978, pp. 123-217 .
  • the surface-active preparations may contain other customary auxiliaries and additives, such as, for example, oil bodies, superfatting agents, bodying agents, thickeners, polymers, silicone compounds, fats, waxes, stabilizers, biogenic active substances, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, UV sun protection factors, antioxidants , Hydrotropes, preservatives, insect repellents, self-tanners, solubilizers, perfume oils, dyes and the like.
  • auxiliaries and additives such as, for example, oil bodies, superfatting agents, bodying agents, thickeners, polymers, silicone compounds, fats, waxes, stabilizers, biogenic active substances, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, UV sun protection factors, antioxidants , Hydrotropes, preservatives, insect repellents, self-tanners, solubilizers, perfume oils, dyes and the like.
  • Suitable pearlescing waxes are, for example: alkylene glycol esters, fatty acid alkanolamides, partial glycerides, Esters of polybasic, optionally hydroxysubstituted carboxylic acids, fatty alcohols, Fatty acids, fatty ketones, fatty aldehydes, fatty ethers, fatty carbonates, ring-opening products of olefin epoxides as well as their mixtures.
  • the alkylene glycol esters which form component (a1) are usually mono- and / or diesters of alkylene glycols which follow formula (III) , R 5 CO (OA) n OR 6 (III) in the R 5 CO is a linear or branched, saturated or unsaturated acyl radical having 6 to 22 carbon atoms, R 6 is hydrogen or R 5 CO and A is a linear or branched alkylene radical having 2 to 4 carbon atoms and n is from 1 to 5 stands.
  • Typical examples are mono- and / or diesters of ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol or tetraethylene glycol with fatty acids having 6 to 22, preferably 12 to 18 carbon atoms as: caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid , Myristic, palmitic, palmitic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linolenic, elaeostearic, arachidic, gadoleic, behenic and erucic acids and their technical mixtures. Particularly preferred is the use of ethylene glycol mono- and / or distearate.
  • Fatty acid alkanolamides which are suitable as pearlescent waxes of group (a2), follow the formula (IV), R 7 CO-NR 8 -B -OH (IV) in which R 7 CO is a linear or branched, saturated or unsaturated acyl radical having 6 to 22 carbon atoms, R 8 is hydrogen or an optionally hydroxy-substituted alkyl radical having 1 to 4 carbon atoms and B is a linear or branched alkylene group having 1 to 4 carbon atoms.
  • Typical examples are condensation products of ethanolamine, methylethanolamine, diethanolamine, propanolamine, methylpropanolamine and dipropanolamine and mixtures thereof with caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, Linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures. Particularly preferred is the use of stearic acid ethanolamide.
  • Partial glycerides having pearlescent properties and constituting component (a3) are mono and / or diesters of glycerol with linear, saturated fatty acids, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, behenic acid and their technical properties Mixtures.
  • R 10 and R 11 are independently hydrogen or R 9 CO, x, y and z in total for 0 or for numbers from 1 to 30 and X for an alkali or alkaline earth metal with the proviso is that at least one of the two radicals R 10 and R 11 is hydrogen.
  • Typical examples are lauric acid monoglyceride, lauric acid diglyceride, coconut fatty acid monoglyceride, coconut fatty acid triglyceride, palmitic acid monoglyceride, palmitic acid triglyceride, stearic acid monoglyceride, stearic acid diglyceride, tallow fatty acid monoglyceride, tallow fatty acid diglyceride, behenic acid monoglyceride, baryric acid diglyceride and their technical mixtures which, subordinated to the production process, may still contain small amounts of triglyceride.
  • esters of polyvalent optionally also come polyfunctional, preferably hydroxy-substituted carboxylic acids with fatty alcohols with 6 to 22 carbon atoms in question.
  • metal salts in particular alkali salts, also come in, of monoesters of dicarboxylic acids or of mono- and / or diesters of tricarboxylic acids in Question.
  • Esters of polyfunctional carboxylic acids preferably hydroxycarboxylic acids with partial esters of Polyols and the metal salts of the corresponding half esters can be used.
  • esters are malonic acid, maleic acid, fumaric acid, adipic acid, sebacic acid, Azelaic acid, dodecanedioic acid, phthalic acid, isophthalic acid and especially succinic acid and malic acid, citric acid and especially tartaric acid and mixtures thereof.
  • the fatty alcohols contain from 6 to 22, preferably 12 to 18 and especially 16 to 18 carbon atoms in the alkyl chain.
  • Typical examples are caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, Capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, Stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, Linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, Erucyl alcohol and brassidyl alcohol and their technical mixtures.
  • the esters can be considered full or Partial esters are present, preferably mono- and especially diesters of carboxylic or hydroxycarboxylic acids used.
  • Typical examples are succinic mono- and dilauryl esters, succinic acid mono- and dicetearly esters, succinic mono- and distearyl esters, tartaric mono- and dilauryl esters, tartaric and dicocoalkyl esters, tartaric and dicetearyl tartaric acid, citric acid mono-, di- and tri-lauryl esters, citric acid mono-, di- and tricocoalkyl esters and citric acid mono-, di- and tricetearyl esters and their metal salts, preferably alkali metal salts.
  • pearlescent waxes it is possible to use fatty alcohols and / or fatty acids which follow the formula (VI) , R 12 OH (VI) in which R 12 is a linear, optionally hydroxy-substituted alkyl radical and / or acyl radical having 16 to 48, preferably 18 to 36 carbon atoms.
  • suitable alcohols are cetearyl alcohol, hydroxystearyl alcohol, behenyl alcohol and oxidation products of long-chain paraffins
  • examples of acids are stearic acid, hydroxystearic acid and in particular behenic acid, the latter preferably in a purity above 90% by weight.
  • Oily ketones which are suitable as component (a6) preferably follow the formula (VII) , R 13 -CO-R 14 (VII) in which R 13 and R 14 independently of one another are alkyl and / or alkenyl radicals having 1 to 22 carbon atoms, with the proviso that they have in total at least 24 and preferably 32 to 48 carbon atoms.
  • the ketones may be prepared by methods known in the art, for example by pyrolysis of the corresponding fatty acid magnesium salts.
  • the ketones can be symmetrical or asymmetrical, but the two radicals R 13 and R 14 preferably differ by only one carbon atom and are derived from fatty acids having 16 to 22 carbon atoms. Stearone is characterized by particularly advantageous pearlescing properties.
  • Fettaldehyde suitable as pearlescent waxes (a7) preferably correspond to the formula (VIII), R 15 COH (VIII) in which R 15 CO is a linear or branched acyl radical having 24 to 48, preferably 28 to 32 carbon atoms.
  • pearlescing waxes (a8) are fatty ethers of the formula (IX) R 16 -OR 17 (IX) in which R 16 and R 17 independently of one another are alkyl and / or alkenyl radicals having 1 to 22 carbon atoms, with the proviso that they have in total at least 24 and preferably 32 to 48 carbon atoms.
  • Grease ethers of the type mentioned are usually prepared by acid condensation of the corresponding fatty alcohols.
  • Fatty ethers having particularly advantageous perturbing properties are obtained by condensation of fatty alcohols having 16 to 22 carbon atoms, such as cetyl alcohol, cetearyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, behenyl alcohol and / or erucyl alcohol.
  • fatty carbonates preferably of the formula (X) , R 18 O-CO-OR 19 (X) in which R 18 and R 19 independently of one another are alkyl and / or alkenyl radicals having 1 to 22 carbon atoms, with the proviso that they have in total at least 24 and preferably 32 to 48 carbon atoms.
  • the substances are obtained by, for example, transesterifying dimethyl or diethyl carbonate with the corresponding fatty alcohols in a manner known per se.
  • the fatty carbonates can be symmetrical or asymmetrical.
  • carbonates are used in which R 18 and R 19 are the same and are alkyl radicals having 16 to 22 carbon atoms.
  • Transesterification products of dimethyl or diethyl carbonate with cetyl alcohol, cetearyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, behenyl alcohol and / or erucyl alcohol in the form of their mono- and diesters or their technical mixtures are particularly preferred.
  • the epoxide ring opening products which eventually form group (a10), are known materials commonly prepared by the acid-catalyzed reaction of terminal or internal olefin epoxides with aliphatic alcohols.
  • the reaction products preferably follow the formula (XI), in which R 20 and R 21 are hydrogen or an alkyl radical having 10 to 20 carbon atoms, with the proviso that the sum of the carbon atoms of R 20 and R 21 is in the range of 10 to 20 and R 22 is an alkyl and / or or alkenyl radical having 12 to 22 carbon atoms and / or the radical of a polyol having 2 to 15 carbon atoms and 2 to 10 hydroxyl groups.
  • Typical examples are ring opening products of ⁇ -dodecene epoxide, ⁇ -hexadecene epoxide, ⁇ -octadecene epoxide, ⁇ -eicosenepoxide, ⁇ -docosenepoxide, i-dodecenepoxide, i-hexadecene epoxide, i-octadecene epoxide, i-eicosenepoxide and / or i-docosenepoxide with lauryl alcohol, coconut fatty alcohol , Myristyl alcohol, cetyl alcohol, cetearyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, behenyl alcohol and / or erucyl alcohol.
  • Ring opening products of hexa- and / or octadecene epoxides with fatty alcohols containing 16 to 18 carbon atoms are preferably used.
  • polyols are used for the ring opening instead of the fatty alcohols, these are, for example, the following substances: glycerol; Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol, and polyethylene glycols having an average molecular weight of 100 to 1,000 daltons; technical oligoglycerine blends having an inherent degree of condensation of from 1.5 to 10 such as technical grade diglycerin blends having a diglycerol content of from 40 to 50 weight percent; Methylol compounds, in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol; Niedrigalkylglucoside, in
  • the proportion of pearlescent waxes in the preparations is usually in the range from 5 to 45, preferably 10 to 45 and in particular 25 to 35% by weight.
  • the pearlescence content is, of course, essential in the case of end formulations less and is typically 0.5 to 3 and preferably 1 to 2 wt .-%.
  • Suitable partial glycerides are hydroxystearic hydroxystearic acid diglyceride, isostearic acid, Isostearinklarediglycerid, ⁇ lklaremonaglycerid, oleic acid diglyceride, Ricinolklaremoglycerid, Ricinolklarediglycerid, Linolklaremonoglycerid, Linolklarediglycerid, LinolenTalkremonoglycerid, Linolenchurediglycerid, Erucaklaklamonoglycerid, Erucakladdiglycerid, Weinchurediglycerid, Citronenklamonoglycerid, Citronendiglycerid, ⁇ pfelklamonoglycerid, malic acid diglyceride and technical mixtures thereof, which may contain minor amounts of triglyceride from the manufacturing process.
  • sorbitan sorbitan As sorbitan sorbitan, sorbitan sesquiisostearate, Sorbitan, sorbitan triisostearate, sorbitan monooleate, sorbitan, sorbitan, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat come , Sorbitan monocitrate, sorbitan siccitrate, sorbitan di-citrate, sorbit
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TGI), polyglyceryl-4 isostearates (Isolan® GI 34), polyglyceryl-3 oleates, diisostearoyl polyglyceryl-3 diisostearates (Isolan ® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl -3 distearates (Cremophor® GS 32) and polyglyceryl polyricinoleates (Admul® WOL 1403) polyglyceryl dim
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like, which are optionally reacted with from 1 to 30 mol of ethylene oxide.
  • pearlescent concentrates are produced in the context of the process according to the invention, then this is the case
  • Proportion of polyol esters in the preparations usually in the range of 0.5 to 15, preferably 1 to 10 and in particular 5 to 8 wt .-%, it is final formulations is the polyolester content Of course, much less and is typically 0.1 to 1, and preferably about 0.5 Wt .-%.
  • the content of the polyol ester based on the amount of pearlescent wax is usually in the range of 1 to 15 and preferably 5 to 10 wt .-%.
  • the addition products of ethylene oxide and / or of propylene oxide to fatty alcohols, fatty acids, alkylphenols or castor oil are known, commercially available products. These are mixtures of homologues whose mean degree of alkoxylation corresponds to the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out corresponds.
  • C 12/18 fatty acid mono- and diesters of addition products of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • C 8/18 alkyl mono- and oligoglycosides, their preparation and their use are known in the art.
  • glycoside radical both monoglycosides in which a cyclic sugar residue is glycosidically linked to the fatty alcohol and oligomeric glycosides having a degree of oligomerization of preferably approximately 8 are suitable.
  • the degree of oligomerization is a statistical mean, which is based on a homolog distribution typical for such technical products.
  • zwitterionic surfactants can be used as emulsifiers.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammoniumglycinate, for example Kokosalkyldimethylammoniumglycinat, N-acylaminopropyl-N, N-dimethylammoniumglycinate, for example Kokosacylaminopropyldimethylammoniumglycinat, and 2-alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline each having 8 to 18 carbon atoms in the alkyl or acyl group and the Kokosacylaminoethylhydroxyethylcarboxymethylglycinat.
  • betaines such as the N-alkyl-N, N-dimethylammoniumglycinate, for example Kokosalkyldimethylammoniumglycinat, N-acylaminopropyl-N, N-dimethylammoniumglycinate, for example Kokosacyla
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine .
  • ampholytic surfactants are understood as meaning those surface-active compounds which, apart from a C 8/18 -alkyl or -acyl group in the molecule, contain at least one free amino group and at least one -COOH or -SO 3 H group and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C Atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 12/18 acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the type of Esterquats, preferably methyl-quaternized difatty acid triethanolamine ester salts, more preferably are.
  • the amount used of the polyols is - based on the surfactant preparations - typically in Range of 0.1 to 15 and preferably 0.5 to 5 wt .-%. Be higher amounts of polyol, preferably Glycerol or ethylene glycol used, the concentrates are simultaneously against microbial Infestation stabilized.
  • the preparation of the surface-active preparations is usually carried out by reacting an aqueous surfactant or emulsifier solution, optionally together with other auxiliaries and additives at 10 to 25 ° C, and the mixture of pearlescent wax and polyol ester enters at this temperature, homogenized and crystallize.
  • an aqueous surfactant or emulsifier solution optionally together with other auxiliaries and additives at 10 to 25 ° C
  • the mixture of pearlescent wax and polyol ester enters at this temperature, homogenized and crystallize.
  • a concentrated aqueous (anion) surfactant paste to apply the mixture of pearlescent wax and polyol ester in the cold stir and then diluting the mixture with further water to the desired concentration or mixing in the presence of polymeric hydrophilic thickeners, such as hydroxypropylcelluloses, Xanthan gum or carbomer-type polymers.
  • the Blend of pearlescent wax and polyol ester even in a subset of the aque
  • the preparations were (a) heated to 90 ° C and mixed with 1 g each of the pearlescent waxes V1 to V4 and cooled to ambient temperature within 1 h or (b) at 20 ° C with 1 g of the mixtures 1 to 4. contained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Detergent Compositions (AREA)

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der perlglänzenden Zubereitungen, speziell der Kosmetik und betrifft ein Verfahren zur Herstellung dieser Mittel auf kaltem Wege.
Stand der Technik
Der weich schimmemde Glanz von Perlen hat auf den Menschen schon seit Jahrtausenden eine besondere Faszination ausgeübt. Es ist daher kein Wunder, daß die Hersteller von kosmetischen Zubereitungen versuchen, ihren Produkten ein attraktives, wertvolles und gehaltvolles Erscheinungsbild zu verleihen. Der erste seit dem Mittelalter in der Kosmetik eingesetzte Perlglanz war eine perlglänzende Paste aus natürlichen Fischschuppen. Zu Anfang dieses Jahrhunderts entdeckte man, daß Wismutoxidchloride ebenfalls in der Lage sind, Perlglanz zu erzeugen. Für die moderne Kosmetik sind hingegen Perlglanzwachse, insbesondere vom Typ der Glycolmono- und -difettsäureester von Bedeutung, die überwiegend zur Erzeugung von Perlglanz in Haarshampoos und Duschgelen eingesetzt werden. Eine Übersicht zu modernen, perlglänzenden Formulierungen findet sich von A.Ansmann und R.Kawa in Parf.Kosm. 75, 578 (1994).
Der Stand der Technik kennt eine Vielzahl von Formulierungen, die oberflächenaktiven Mitteln den gewünschten Perlglanz verleihen. So sind beispielsweise aus den beiden deutschen Patentanmeldungen DE 3843572 A1 und DE 4103551 A1 (Henkel) Perlglanzkonzentrate in Form fließfähiger wäßriger Dispersionen bekannt, die 15 bis 40 Gew.-% perlglänzender Komponenten, 5 bis 55 Gew.-% Emulgatoren und 0,1 bis 5 bzw. 15 bis 40 Gew.-% Polyole enthalten. Bei den Perlglanzwachsen handelt es sich um acylierte Polyalkylenglycole, Monoalkanolamide, lineare, gesättigte Fettsäuren oder Ketosulfone. In den beiden Europäischen Patentschriften EP 0181773 B1 und EP 0285389 B1 (Procter & Gamble) werden Shampoozusammensetzungen vorgeschlagen, die Tenside, nicht-flüchtige Silicone und Perlglanzwachse enthalten. Gegenstand der Europäischen Patentanmeldung EP 0205922 A2 (Henkel) sind fließfähige Perlglanzkonzentrate, die 5 bis 15 Gew.-% acylierte Polyglycole, 1 bis 6 Gew.-% Fettsäuremonoethanolamide und 1 bis 5 Gew.-% nichtionische Emulgatoren enthalten. Gemäß der Lehre der Europäischen Patentschrift EP 0569843 B1 (Hoechst) lassen sich nichtionische, fließfähige Perlglanzdispersionen auch erhalten, indem man Mischungen von 5 bis 30 Gew.-% acylierten Polyglycolen und 0,1 bis 20 Gew.-% ausgewählten nichtionischen Tensiden herstellt. Aus der Europäischen Patentanmeldung EP 0581193 A2 (Hoechst) sind femer fließfähige, konservierungsmittelfreie Perlglanzdispersionen bekannt, die acylierte Polyglycolether, Betaine, Aniontenside und Glycerin enthalten. Schließlich wird in der Europäischen Patentanmeldung EP 0684302 A1 (Th.Goldschmidt) die Verwendung von Polyglycerinestem als Kristallisationshilfsmittel für die Herstellung von Perlglanzkonzentraten vorgeschlagen.
Handelsübliche Perlglanzwachse weisen Schmelzpunkte oberhalb von 80 °C auf und lassen sich daher nicht kalt in wäßrige Formulierungen einarbeiten. Der Fachmann ist daher gezwungen nach einem Heißverfahren zu arbeiten, d.h. die Wachse aufzuschmelzen und in der Formulierung langsam auskristallisieren zu lassen, wobei die Feinteiligkeit der Kristalle und damit die Brillanz des Perlglanzes eine Funktion der Abkühlgeschwindigkeit ist. Es ist daher sofort klar, daß solche Verfahren zeit- und energieaufwendig sind, so daß der Wunsch nach einer günstigeren Alternative besteht. In der Regel wird der Fachmann daher auf sogenannte Perlglanzkonzentrate ausweichen, bei denen es sich um mehr oder minder konzentrierte tensidische Zubereitungen handelt, die die Perlglanzwachse bereits in feinverteilter, d.h. perlglanzaktiver Form enthalten und durch Emulgatoren stabilisiert sind. Solche Perlglanzkonzentrate lassen sich zwar kalt weiterverarbeiten, doch wird das eigentliche Problem dadurch nicht gelöst, sondern nur auf die Stufe der Hersteller dieser Zwischenprodukte verlagert, da die Konzentrate ihrerseits natürlich wieder nur durch ein Heißverfahren zugänglich sind.
Die Aufgabe der vorliegenden Erfindung hat daher darin bestanden, ein Verfahren zur Verfügung zu stellen, welches die kalte Einarbeitung von Perlglanzwachsen in tensidische Zubereitungen - seien es Zwischenprodukte, wie z.B. Perlglanzkonzentrate oder Endformulierungen, wie z.B. Shampoos - gestattet. Gleichzeitig sollte durch den Kaltprozeß weder die Brillanz des Perlglanzes noch die Stabilität der Formulierungen negativ beeinflußt werden.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein Verfahren zur kalten Herstellung von perlglänzenden Tensidzubereitungen, bei dem man wäßrige Tensidlösungen vorlegt und bei Temperaturen im Bereich von 10 bis 45, vorzugsweise 15 bis 25 °C Mischungen aus Perlglanzwachsen und Polyolestem einrührt.
Überraschenderweise wurde gefunden, daß schon der Zusatz geringer Mengen von Polyolestem den Schmelzpunkt von Perlglanzwachsen so weit herabsetzt, daß ihre kalte (10 bis 25 °C) Einarbeitung in tensidische Formulierungen problemlos möglich wird. Unabhängig davon, ob es sich bei den Zubereitungen um Zwischenprodukte (z.B. Perlglanzkonzentrate) oder Endformulierungen für den Verbraucher (z.B. Shampoos, Geschirrspülmittel) handelt, weisen die Mittel einen brillanten Perlglanz auf, sind lagerstabil und erlauben auch die Einarbeitung schwierig zu formulierender Inhaltsstoffe, wie z.B. Silicon-öle. Die Erfindung schließt die Erkenntnis ein, daß auf diese Weise nicht nur perlglänzende Mittel hergestellt werden können, sondern - in Abhängigkeit des Wachstyps und des Emulgators - auch solche, die über eine intensive Weißtrübung verfügen.
Tensidische Zubereitungen
Wie schon erläutert, kann es sich bei den tensidischen Zubereitungen sowohl um Zwischenprodukte, als Perlglanzkonzentrate oder Endformulierungen für den Verbraucher, wie z.B. Haarshampoos oder Geschirrspülmittel handeln. Als Tenside können in den Zubereitungen anionische, nichtionische, kationische und/oder amphotere bzw. amphotere oberflächenaktive Stoffe enthalten sein, deren Anteil an den Mitteln in Abhängigkeit davon, ob es sich um ein Konzentrat oder eine Verdünnung handelt, im Bereich von 1 bis 35, vorzugsweise 5 bis 15 bzw. 15 bis 40, vorzugsweise 25 bis 35 Gew.-% liegen kann.
Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Hydroxymischether, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quatemierte Fettsäuretrialkanolaminestersalze.
Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine.
Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Die tensidischen Zubereitungen können weitere übliche Hilfs- und Zusatzstoffe enthalten, wie beispielsweise Ölkörper, Überfettungsmittel, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, UV-Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe und dergleichen.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, Fettsäurealkanolamide, Partialglyceride, Ester von mehrwertigen, gegebenenfalls hydroxysubstituierten Carbonsäuren, Fettalkohole, Fettsäuren, Fettketone, Fettaldehyde, Fettether, Fettcarbonate, Ringöffnungsprodukte von Olefinepoxiden sowie deren Mischungen.
Bei den Alkylenglycolestern, die die Komponente (a1) bilden, handelt es sich üblicherweise um Mono- und/oder Diester von Alkylenglycolen, die der Formel (III) folgen, R5CO(OA)nOR6    (III) in der R5CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff oder R5CO und A für einen linearen oder verzweigten Alkylenrest mit 2 bis 4 Kohlenstoffatomen und n für Zahlen von 1 bis 5 steht. Typische Beispiele sind Mono- und/oder Diester von Ethylenglycol, Propylenglycol, Diethylenglycol, Dipropylenglycol, Triethylenglycol oder Tetraethylenglycol mit Fettsäuren mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen als da sind: Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Besonders bevorzugt ist der Einsatz von Ethylenglycolmono- und/oder -distearat.
Fettsäurealkanolamide, die als Perlglanzwachse der Gruppe (a2) in Frage kommen, folgen der Formel (IV), R7CO-NR8-B-OH   (IV) in der R7CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R8 für Wasserstoff oder einen gegebenenfalls hydroxysubstituierten Alkylrest mit 1 bis 4 Kohlenstoffatomen und B für eine lineare oder verzweigte Alkylengruppe mit 1 bis 4 Kohlenstoffatomen steht. Typische Beispiele sind Kondensationsprodukte von Ethanolamin, Methylethanolamin, Diethanolamin, Propanolamin, Methylpropanolamin und Dipropanolamin sowie deren Mischungen mit Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Besonders bevorzugt ist der Einsatz von Stearinsäureethanolamid.
Partialglyceride, die über Perlglanzeigenschaften verfügen und die Komponente (a3) bilden, stellen Mono und/oder Diester des Glycerins mit linearen, gesättigten Fettsäuren, nämlich beispielsweise Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Behensäure sowie deren technische Mischungen dar. Sie folgen der Formel (V),
Figure 00050001
in der R9CO für einen linearen, gesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R10 und R11 unabhängig voneinander für Wasserstoff oder R9CO, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30 und X für ein Alkali- oder Erdalkalimetall mit der Maßgabe steht, daß mindestens einer der beiden Reste R10 und R11 Wasserstoff darstellt. Typische Beispiele sind Laurinsäuremonoglycerid, Laurinsäurediglycerid, Kokosfettsäuremonoglycerid, Kokosfettsäuretriglycerid, Palmitinsäuremonoglycerid, Palmitinsäuretriglycerid, Stearinsäuremonoglycerid, Stearinsäurediglycerid, Talgfettsäuremonoglycerid, Talgfettsäurediglycerid, Behensäuremonoglycerid, Behensäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können.
Als Perlglanzwachse, die die Komponente (a4) bilden, kommen weiterhin Ester von mehrwertigen, gegebenenfalls polyfunktionellen, vorzugsweise hydroxysubstuierten Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen in Frage. Weiterhin kommen ebenfalls Metallsalze, insbesondere Alkalisalze, von Monoestem der Dicarbonsäuren bzw. von Mono- und/oder Diestem der Tricarbonsäuren in Frage. In einer besonderen Ausführungsform der Erfindung können als Komponente (a4) ebenfalls Ester von polyfunktionellen Carbonsäuren, vorzugsweise Hydroxycarbonsäuren mit Partialestem von Polyolen sowie die Metallsalze der entsprechenden Halbester eingesetzt werden. Als Säurekomponente dieser Ester kommen beispielsweise Malonsäure, Maleinsäure, Fumarsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Dodecandisäure, Phthalsäure, Isophthalsäure und insbesondere Bernsteinsäure sowie Äpfelsäure, Citronensäure und insbesondere Weinsäure und deren Mischungen in Betracht. Die Fettalkohole enthalten 6 bis 22, vorzugsweise 12 bis 18 und insbesondere 16 bis 18 Kohlenstoffatome in der Alkylkette. Typische Beispiele sind Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen. Die Ester können als Voll oder Partialester vorliegen, vorzugsweise werden Mono- und vor allem Diester der Carbon- bzw. Hydroxycarbonsäuren eingesetzt. Typische Beispiele sind Bemsteinsäuremono- und -dilauryl-ester, Bemsteinsäuremono- und -dicetearlyester, Bemsteinsäuremono- und -distearylester, Weinsäuremono- und - dilaurylester, Weinsäuremono- und dikokosalkylester, Weinsäuremono- und -dicetearyl-ester, Citronensäuremono-, -di- und -trilaurylester, Citronensäuremono-, -di- und -trikokosalkylester sowie Citronensäuremono-, -di- und -tricetearylester sowie deren Metallsalze, vorzugsweise Alkalisalze.
Als weitere Gruppe von Perlglanzwachsen (a5) können Fettalkohole und/oder Fettsäuren eingesetzt werden, die der Formel (VI) folgen, R12OH   (VI) in der R12 für einen linearen, gegebenenfalls hydroxysubstituierten Alkylrest und/oder Acylrest mit 16 bis 48, vorzugsweise 18 bis 36 Kohlenstoffatomen steht. Typische Beispiele für geeignete Alkohole sind Cetearylalkohol, Hydroxystearylalkohol, Behenylalkohol sowie Oxidationsprodukte langkettiger Paraffine, als Beispiele für Säuren kommen Stearinsäure, Hydroxystearinsäure sowie insbesondere Behensäure in Frage, letztere vorzugsweise in einer Reinheit oberhalb von 90 Gew.-%.
Fettketone, die als Komponente (a6) in Betracht kommen, folgen vorzugsweise der Formel (VII), R13-CO-R14    (VII) in der R13 und R14 unabhängig voneinander für Alkyl- und/oder Alkenylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß sie in Summe mindestens 24 und vorzugsweise 32 bis 48 Kohlenstoffatome aufweisen. Die Ketone können nach Verfahren des Stands der Technik hergestellt werden, beispielsweise durch Pyrolyse der entsprechenden Fettsäure-Magnesiumsalze. Die Ketone können symmetrisch oder unsymmetrisch aufgebaut sein, vorzugsweise unterscheiden sich die beiden Reste R13 und R14 aber nur um ein Kohlenstoffatom und leiten sich von Fettsäuren mit 16 bis 22 Kohlenstoffatomen ab. Dabei zeichnet sich Stearon durch besonders vorteilhafte Perlglanzeigenschaften aus.
Als Perlglanzwachse geeignete Fettaldehyde (a7) entsprechen vorzugsweise der Formel (VIII), R15COH   (VIII) in der R15CO für einen linearen oder verzweigten Acylrest mit 24 bis 48, vorzugsweise 28 bis 32 Kohlenstoffatomen steht.
Als Perlglanzwachse (a8) kommen femer Fettether vorzugsweise der Formel (IX) in Frage, R16-O-R17    (IX) in der R16 und R17 unabhängig voneinander für Alkyl- und/oder Alkenylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß sie in Summe mindestens 24 und vorzugsweise 32 bis 48 Kohlenstoffatome aufweisen. Fettether der genannten Art werden üblicherweise durch saure Kondensation der entsprechenden Fettalkohole hergestellt. Fettether mit besonders vorteilhaften Pertglanzeigenschaften werden durch Kondensation von Fettalkoholen mit 16 bis 22 Kohlenstoffatomen, wie beispielsweise Cetylalkohol, Cetearylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Behenylalkohol und/oder Erucylalkohol erhalten.
Als Komponente (a9) kommen weiterhin Fettcarbonate vorzugsweise der Formel (X) in Betracht, R18O-CO-OR19    (X) in der R18 und R19 unabhängig voneinander für Alkyl- und/oder Alkenylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß sie in Summe mindestens 24 und vorzugsweise 32 bis 48 Kohlenstoffatome aufweisen. Die Stoffe werden erhalten, indem man beispielsweise Dimethyl- oder Diethylcarbonat mit den entsprechenden Fettalkoholen in an sich bekannter Weise umestert. Demzufolge können die Fettcarbonate symmetrisch oder unsymmetrisch aufgebaut sein. Vorzugsweise werden jedoch Carbonate eingesetzt, in denen R18 und R19 gleich sind und für Alkylreste mit 16 bis 22 Kohlenstoffatomen stehen. Besonders bevorzugt sind Umesterungsprodukte von Dimethyl- bzw. Diethylcarbonat mit Cetylalkohol, Cetearylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Behenylalkohol und/ oder Erucylalkohol in Form ihrer Mono- und Diester bzw. deren technischen Mischungen.
Bei den Epoxidringöffnungsprodukten, die schließlich die Gruppe (a10) bilden, handelt es sich um bekannte Stoffe, die üblicherweise durch säurekatalysierte Umsetzung von endständigen oder innenständigen Olefinepoxiden mit aliphatischen Alkoholen hergestellt werden. Die Reaktionsprodukte folgen vorzugsweise der Formel (XI),
Figure 00080001
in der R20 und R21 für Wasserstoff oder einen Alkylrest mit 10 bis 20 Kohlenstoffatomen steht, mit der Maßgabe, daß die Summe der Kohlenstoffatome von R20 und R21 im Bereich von 10 bis 20 liegt und R22 für einen Alkyl- und/oder Alkenylrest mit 12 bis 22 Kohlenstoffatomen und/oder den Rest eines Polyols mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen steht. Typische Beispiele sind Ringöffnungsprodukte von α-Dodecenepoxid, α-Hexadecenepoxid, α-Octadecenepoxid, α-Eicosenepoxid, α-Docosenepoxid, i-Dodecenepoxid, i-Hexadecenepoxid, i-Octadecenepoxid, i-Eicosenepoxid und/ oder i-Docosenepoxid mit Laurylalkohol, Kokosfettalkohol, Myristylalkohol, Cetylalkohol, Cetearylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Behenylalkohol und/oder Erucylalkohol. Vorzugsweise werden Ringöffnungsprodukte von Hexa- und/oder Octadecenepoxiden mit Fettalkoholen mit 16 bis 18 Kohlenstoffatomen eingesetzt. Werden anstelle der Fettalkohole Polyole für die Ringöffnung eingesetzt, so handelt es sich beispielsweise um folgende Stoffe: Glycerin; Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton; technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%; Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit; Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid; Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit, Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose; Aminozucker, wie beispielsweise Glucamin. Werden im Sinne des erfindungsgemäßen Verfahrens Perlglanzkonzentrate hergestellt, so liegt der Anteil der Perlglanzwachse an den Zubereitungen üblicherweise im Bereich von 5 bis 45, vorzugsweise 10 bis 45 und insbesondere 25 bis 35 Gew.-%, handelt es sich um Endformulierungen ist der Perlglanzgehalt natürlich wesentlich geringer und beträgt typischerweise 0,5 bis 3 und vorzugsweise 1 bis 2 Gew.-%.
Polyolester
Polyolester, die im Sinne der Erfindung zur Absenkung des Schmelzpunktes der Perlglanzwachse eingesetzt werden, können ausgewählt sein aus den folgenden Gruppen von Verbindungen:
  • Figure 00090001
    Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
  • Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
  • Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
  • Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonaglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
    Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
    Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische.
    Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
    Werden im Sinne des erfindungsgemäßen Verfahrens Perlglanzkonzentrate hergestellt, so liegt der Anteil der Polyolester an den Zubereitungen üblicherweise im Bereich von 0,5 bis 15, vorzugsweise 1 bis 10 und insbesondere 5 bis 8 Gew.-%, handelt es sich um Endformulierungen ist der Polyolestergehalt natürlich wesentlich geringer und beträgt typischerweise 0,1 bis 1 und vorzugsweise etwa 0,5 Gew.-%. Als Regel gilt, daß der Gehalt der Polyolester bezogen auf die Menge an Perlglanzwachs üblicherweise im Bereich von 1 bis 15 und vorzugsweise 5 bis 10 Gew.-% liegt.
    Emulgatoren
    Wie schon ausgeführt, können die tensidischen Zubereitungen grundsätzlich alle Typen von Tensiden enthalten; deren Auswahl richtet sich allein nach dem gewünschten Anwendungsprofil für den Endverbrauch. In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei den tendischen Zubereitungen jedoch um Perlglanzkonzentrate, also Zwischenprodukte. Hier ist die Auswahl der Tensidkomponente kritischer, da das anwendungstechnische Anforderungsprofil primär darin besteht, möglichst hohe Mengen des Perlglanzwachses dauerhaft zu stabilisieren und die Viskosität der Mittel dabei so niedrig zu halten, daß sie noch problemlos gepumpt und dosiert werden können. Für diesen Zweck kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
  • Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
  • Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga;
  • Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
  • Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
  • Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
  • Wollwachsalkohole;
  • Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
  • Polyalkylenglycole sowie
  • Glycerincarbonat.
  • Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C12/18-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt. C8/18-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
    Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/18-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12/18-Acylsarcosin.
    Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquatemierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.
    Polyole
    Werden hochkonzentrierte Perlglanzkonzentrate hergestellt, kann es vorteilhaft sein, zur Erniedrigung der Viskosität Polyole mitzuverwenden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
  • Glycerin;
  • Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
  • technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
  • Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
  • Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
  • Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
  • Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
  • Aminozucker, wie beispielsweise Glucamin;
  • Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.
  • Die Einsatzmenge der Polyole liegt - bezogen auf die tensidischen Zubereitungen - typischerweise im Bereich von 0,1 bis 15 und vorzugsweise 0,5 bis 5 Gew.-%. Werden höhere Polyolmengen, vorzugsweise Glycerin oder Ethylenglycol eingesetzt, werden die Konzentrate gleichzeitig gegen mikrobiellen Befall stabilisiert.
    Herstellverfahren
    Üblicherweise erfolgt die Herstellung der tensidischen Zubereitungen, indem man eine wäßrige Tensid- bzw. Emulgatorlösung, gegebenenfalls zusammen mit weiteren Hilfs- und Zusatzstoffen bei 10 bis 25 °C vorlegt, und die Mischung aus Perlglanzwachs und Polyolester bei dieser Temperatur einträgt, homogenisiert und auskristallisieren läßt. Femer ist es möglich, eine konzentrierte wäßrige (Anion)-Tensidpaste vorzulegen, die Mischung aus Perlglanzwachs und Polyolester in der Kälte einzurühren und die Mischung anschließend mit weiterem Wasser auf die gewünschte Konzentration zu verdünnen oder das Vermischen in Gegenwart polymerer hydrophiler Verdickungsmittel, wie etwa Hydroxypropylcellulosen, Xanthan Gum oder Polymeren vom Carbomer-Typ durchzuführen. Schließlich kann die Mischung aus Perlglanzwachs und Polyolester auch schon in einer Teilmenge der wäßrigen Tensidlösung gelöst bzw. dispergiert sein und so mit der Hauptmenge der Zubereitung vermischt werden.
    Beispiele
    Der schmelzpunktsemiedrigende Effekt durch den Zusatz von Polyolestern zu handelsüblichen Perlglanzwachsen wird in Tabelle 1 dargestellt. Verglichen wurden die reinen Wachse und Mischungen aus 90 Gew.-% Wachs und 10 Gew.-% Polyolester. Anschließend wurden Shampoos folgender Zusammensetzung hergestellt: 12 g Kokosfettalkohol+2EO-sulfat-Natriumsalz, 1,5 g Dimethylpolysiloxan, 3 g Kokosalkylglucosid und 1,5 g eines Esterquats (Wasser ad 100 Gew.-%). Die Zubereitungen wurden (a) auf 90 °C erwärmt und mit jeweils 1 g der Perlglanzwachse V1 bis V4 versetzt und innerhalb von 1 h auf Umgebungstemperatur abgekühlt bzw. (b) bei 20 °C mit 1 g der Mischungen 1 bis 4 versetzt. enthielten. Die Feinteiligkeit der Perlglanzkristalle in den Haarshampoos wurde unter dem Mikroskop visuell auf einer Skala von 1 = sehr feine Kristalle bis 5 = grobe Kristalle beurteilt. Die Beurteilung des Perlglanzes erfolgte ebenfalls auf einer Skala von 1 = brillant bis 5 = stumpf. Die Ergebnisse sind ebenfalls in Tabelle 1 enthalten.
    Schmeizpunktserniedrigung von Perlglanzwachsen und Performance in Shampoos (Mengenangaben als Gew.-%)
    Zusammensetzung / Performance V1 V2 V3 V4 1 2 3 4
    Ethylenglycol Distearate 100 - - - 90 - - -
    Glyceryl Stearate - 100 - - - 90
    Distearyl Ether - - 100 - - - 90
    Distearyl Malate - - - 100 - - - 90
    Sorbitan Oleate - - - - 10 - - -
    PEG-3 Trimethylolpropan Distearate - - - - - 10 - -
    Polyglyceryl-2 Dipolyhydroxystearate - - - - - - 10 -
    Polyglycerin-3-Diisostearate - - - - - - - 10
    Schmelzpunkt [°C] 60 58 60 60 45 45 44 44
    Perlglanz in der Formulierung
    - Brillanz 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5
    - Feinteiligkeit 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

    Claims (10)

    1. Verfahren zur kalten Herstellung von perlglänzenden Tensidzubereitungen, bei dem man wäßrige Tensidlösungen vorlegt und bei Temperaturen im Bereich von 10 bis 45 °C Mischungen aus Perlglanzwachsen und Polyolestern einrührt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Zwischenprodukte oder Endformulierungen für den Verbraucher herstellt.
    3. Verfahren nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß man Lösungen von anionischen, nichtionischen, kationischen, amphoteren und/oder zwitterionischen Tensiden einsetzt.
    4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die Tenside - bezogen auf die Zubereitungen - in Mengen von 1 bis 25 Gew.-% (Endformulierung) bzw. 15 bis 40 Gew.-% (Konzentrat) einsetzt.
    5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man Perlglanzwachse einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkylenglycolestem, Fettsäurealkanolamiden, Partialglyceriden, Estern von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren, Fettalkoholen, Fettsäuren, Fettketonen, Fettaldehyden, Fettethem, Fettcarbonaten, Ringöffnungsprodukten von Olefinepoxiden sowie deren Mischungen.
    6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Perlglanzwachse - bezogen auf die tensidischen Zubereitungen - in Mengen von 0,5 bis 3 Gew.-% (Endformulierung) bzw. 5 bis 45 Gew.-% (Konzentrat) einsetzt.
    7. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man Polyolester einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Partialestem von Glycerin und/oder Sorbitan mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid; Partialestem von Polyglycerin, Polyethylenglycol, Trimethylolpropan, Pentaerythrit, Alkylglucosiden sowie Polyglucosiden mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid; Mischestem aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyole sowie deren Gemischen.
    8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die Polyolester - bezogen auf die tensidischen Zubereitungen - in Mengen von 0,1 bis 1 Gew.-% (Endformulierung) bzw. 0,5 bis 15 Gew.-% (Konzentrat) einsetzt.
    9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man zur Herstellung von konzentrierten tensidischen Zubereitungen Emulgatoren mitverwendet, die ausgewählt sind aus der Gruppe, die gebildet wird von Anlagerungsprodukten von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest; Alkylmono- und -oligoglycosiden mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga; Anlagerungsprodukte von 1 bis 15 bzw. 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Mono-, Di- und Trialkylphosphaten sowie Mono-, Di- und/oder Tri-PEG-alkylphosphaten und deren Salze; Wollwachsalkoholen; Polysiloxan-Polyalkyl-Polyether-Copolymeren bzw. entsprechenden Derivaten; Polyalkylenglycolen, Glycerincarbonat, Cocamidopropylbetainen und/oder Esterquats.
    10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man zur Herstellung von konzentrierten tensidischen Zubereitungen Polyole mitverwendet werden.
    EP00929458A 1999-05-07 2000-04-28 Verfahren zur kalten herstellung von perlglänzenden tensidzubereitungen Expired - Lifetime EP1177274B8 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19921187A DE19921187C2 (de) 1999-05-07 1999-05-07 Verfahren zur kalten Herstellung von perlglänzenden Tensidzubereitungen
    DE19921187 1999-05-07
    PCT/EP2000/003853 WO2000068355A1 (de) 1999-05-07 2000-04-28 Verfahren zur kalten herstellung von perlglänzenden tensidzubereitungen

    Publications (3)

    Publication Number Publication Date
    EP1177274A1 EP1177274A1 (de) 2002-02-06
    EP1177274B1 true EP1177274B1 (de) 2005-06-08
    EP1177274B8 EP1177274B8 (de) 2005-08-03

    Family

    ID=7907369

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00929458A Expired - Lifetime EP1177274B8 (de) 1999-05-07 2000-04-28 Verfahren zur kalten herstellung von perlglänzenden tensidzubereitungen

    Country Status (6)

    Country Link
    US (1) US6727217B1 (de)
    EP (1) EP1177274B8 (de)
    JP (1) JP2004506592A (de)
    DE (2) DE19921187C2 (de)
    ES (1) ES2245310T3 (de)
    WO (1) WO2000068355A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102015213478A1 (de) 2015-07-17 2017-01-19 Henkel Ag & Co. Kgaa Stabilisierungsgemisch

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19937298A1 (de) * 1999-08-06 2001-02-22 Cognis Deutschland Gmbh Wäßrige Perlglanzkonzentrate
    DE10025671B4 (de) * 2000-05-24 2006-07-27 Cognis Ip Management Gmbh Emulgatoren
    DE10162026A1 (de) * 2001-12-18 2003-07-03 Cognis Deutschland Gmbh Hochkonzentriert fließfähige Perlglanzkonzentrate
    US7923425B2 (en) * 2006-08-21 2011-04-12 Henkel Ag & Co. Kgaa Low-foaming, acidic low-temperature cleaner and process for cleaning surfaces
    JP2008150308A (ja) * 2006-12-15 2008-07-03 Mitsui Fine Chemicals Inc 毛髪改質剤、毛髪改質剤成分を含有する毛髪化粧料、及び毛髪の改質方法
    EP2119430A4 (de) * 2007-03-12 2013-08-14 Kao Corp Perlende zusammensetzung
    KR101566535B1 (ko) 2009-08-27 2015-11-05 오티씨 게엠베하 진주광택 농축물 및 그 제조방법
    DE102009040454A1 (de) 2009-08-27 2011-03-24 Otc Verwaltungs Gmbh Herstellung von Perlglanzdispersionen
    WO2012177886A2 (en) 2011-06-23 2012-12-27 The Procter & Gamble Company Process of forming crystals for use in a personal care composition
    BR112014029758A2 (pt) 2012-05-30 2017-06-27 Clariant Finance Bvi Ltd composição contendo n-metil-n-acilglucamina
    WO2013178671A2 (de) 2012-05-30 2013-12-05 Clariant International Ltd. Verwendung von n-methyl-n-acylglucaminen als solubilisatoren
    DE102012021647A1 (de) 2012-11-03 2014-05-08 Clariant International Ltd. Wässrige Adjuvant-Zusammensetzungen
    ES2754727T3 (es) * 2013-06-28 2020-04-20 Clariant Int Ltd Uso de N-alquil-N-acilglucaminas especiales en productos de limpieza para la piel
    US9833395B2 (en) * 2013-10-25 2017-12-05 Galaxy Surfactants Ltd. Sustainable cold-dispersible pearlescent concentrate
    DE102014005771A1 (de) 2014-04-23 2015-10-29 Clariant International Ltd. Verwendung von wässrigen driftreduzierenden Zusammensetzungen
    DE102015219608B4 (de) 2015-10-09 2018-05-03 Clariant International Ltd Universelle Pigmentdispersionen auf Basis von N-Alkylglukaminen
    DE102015219651A1 (de) 2015-10-09 2017-04-13 Clariant International Ltd. Zusammensetzungen enthaltend Zuckeramin und Fettsäure
    DE102016207877A1 (de) 2016-05-09 2017-11-09 Clariant International Ltd Stabilisatoren für Silikatfarben

    Family Cites Families (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1165574B (de) 1960-08-08 1964-03-19 Dehydag Gmbh Verfahren zur Herstellung von als Emulgiermittel fuer Salbengrundlagen dienenden Mischestern
    DE2024051C3 (de) 1970-05-16 1986-05-07 Henkel KGaA, 4000 Düsseldorf Verwendung der Veresterungsprodukte von Glycerin-Äthylenoxid-Addukten mit Fettsäuren als Rückfettungsmittel in kosmetischen Zubereitungen
    CA1261276A (en) 1984-11-09 1989-09-26 Mark B. Grote Shampoo compositions
    JPS61268797A (ja) * 1985-05-23 1986-11-28 ライオン株式会社 高濃度真珠様光沢剤分散液の製造方法
    DE3519080A1 (de) 1985-05-28 1986-12-04 Henkel Kgaa Fliessfaehiges perlglanzkonzentrat
    JPH0699275B2 (ja) * 1985-11-05 1994-12-07 株式会社コーセー 非水クレンジング料
    ATE80792T1 (de) 1987-04-01 1992-10-15 Procter & Gamble Shampoo-praeparate.
    US5711899A (en) 1988-12-23 1998-01-27 Henkel Kommanditgesellschaft Auf Aktien Free flowing pearlescent concentrate
    DE3843572A1 (de) 1988-12-23 1990-06-28 Henkel Kgaa Fliessfaehiges perlglanzkonzentrat
    DE4103551A1 (de) * 1991-02-06 1992-08-13 Henkel Kgaa Fliessfaehiges perlglanzkonzentrat
    DE59300931D1 (de) 1992-05-13 1995-12-21 Hoechst Ag Nichtionische, fliessfähige Perlglanzdispersionen.
    DE4224715A1 (de) 1992-07-27 1994-02-03 Hoechst Ag Fließfähige konservierungsmittelfreie Perlglanzdispersionen
    JPH0782140A (ja) * 1993-09-14 1995-03-28 Kao Corp 真珠光沢液体洗浄剤組成物
    ES2141862T3 (es) * 1994-05-28 2000-04-01 Goldschmidt Ag Th Concentrados acuosos fluidos de lustre perlado.
    DE4420516C2 (de) * 1994-06-13 1998-10-22 Henkel Kgaa Polyglycerinpolyhydroxystearate
    US5612655A (en) * 1995-07-06 1997-03-18 Allen Telecom Group, Inc. Filter assembly comprising a plastic resonator support and resonator tuning assembly
    DE19527120A1 (de) * 1995-07-25 1997-01-30 Henkel Kgaa Fließfähiges Perlglanzkonzentrat
    DE19619645A1 (de) * 1996-05-15 1997-11-20 Henkel Kgaa Haarbehandlungsmittel
    DE19622968C2 (de) * 1996-06-07 2000-08-17 Cognis Deutschland Gmbh Wäßrige Perlglanzkonzentrate
    DE19622967C1 (de) * 1996-06-07 1998-01-29 Henkel Kgaa Wäßrige Perlglanzkonzentrate
    DE19641280C2 (de) * 1996-10-07 1999-09-16 Henkel Kgaa Verwendung von Monoglycerid(ether)sulfaten als Perlglanzwachse
    DE19646869C1 (de) * 1996-11-13 1997-12-04 Henkel Kgaa Kosmetische Zubereitungen
    DE19646867C1 (de) * 1996-11-13 1997-12-04 Henkel Kgaa Kosmetische Zubereitungen
    DE19650473C1 (de) * 1996-12-05 1998-04-02 Henkel Kgaa Kosmetische Zubereitungen
    JPH10182343A (ja) * 1996-12-25 1998-07-07 Kao Corp パール光沢組成物およびその製造法
    GB9711685D0 (en) * 1997-06-05 1997-08-06 Procter & Gamble Cosmetic compositions

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102015213478A1 (de) 2015-07-17 2017-01-19 Henkel Ag & Co. Kgaa Stabilisierungsgemisch
    WO2017012727A1 (de) 2015-07-17 2017-01-26 Henkel Ag & Co. Kgaa Stabilisierungsgemisch

    Also Published As

    Publication number Publication date
    ES2245310T3 (es) 2006-01-01
    DE50010521D1 (de) 2005-07-14
    EP1177274A1 (de) 2002-02-06
    DE19921187C2 (de) 2001-06-28
    US6727217B1 (en) 2004-04-27
    WO2000068355A1 (de) 2000-11-16
    DE19921187A1 (de) 2000-11-16
    EP1177274B8 (de) 2005-08-03
    JP2004506592A (ja) 2004-03-04

    Similar Documents

    Publication Publication Date Title
    EP1177274B1 (de) Verfahren zur kalten herstellung von perlglänzenden tensidzubereitungen
    EP1352628B1 (de) Wässrige Perlglanzkonzentrate
    EP1042055A1 (de) Verwendung von cyclischen carbonaten
    EP0910338A1 (de) Kosmetische zubereitungen auf basis von kationischen und nichtionischen tensiden
    EP0910328B1 (de) Wässrige perlglanzkonzentrate
    DE19732708C1 (de) Verwendung von Fettethern
    DE19622967C1 (de) Wäßrige Perlglanzkonzentrate
    DE19937298A1 (de) Wäßrige Perlglanzkonzentrate
    DE19705862C1 (de) Verfahren zur Herstellung tensidischer Perlglanzkonzentrate
    DE19719121C1 (de) Haarbehandlungsmittel
    EP0930356B1 (de) Verfahren zur Herstellung von fliessfähigen Perlglanz- und Trübungsmittelkonzentraten
    DE19725964C1 (de) Wäßrige Perlglanzkonzentrate
    DE19641280C2 (de) Verwendung von Monoglycerid(ether)sulfaten als Perlglanzwachse
    DE10116491A1 (de) Textilavivagemittel
    DE19728084C2 (de) Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen
    DE19724867C1 (de) Verwendung von Emulgatormischungen
    DE19732709C1 (de) Wäßrige Perlglanzkonzentrate
    DE19539090A1 (de) Perlglanzmittel

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20011027

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

    RBV Designated contracting states (corrected)

    Designated state(s): DE ES FR GB IT

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: COGNIS IP MANAGEMENT GMBH

    REF Corresponds to:

    Ref document number: 50010521

    Country of ref document: DE

    Date of ref document: 20050714

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051003

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2245310

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060309

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090428

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20100325

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20100521

    Year of fee payment: 11

    Ref country code: ES

    Payment date: 20100505

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100421

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101103

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110428

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20111230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110502

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110428

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110428

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20130604

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110429