EP1158174B1 - Kreiselpumpe mit Magnetkupplung - Google Patents

Kreiselpumpe mit Magnetkupplung Download PDF

Info

Publication number
EP1158174B1
EP1158174B1 EP01108334A EP01108334A EP1158174B1 EP 1158174 B1 EP1158174 B1 EP 1158174B1 EP 01108334 A EP01108334 A EP 01108334A EP 01108334 A EP01108334 A EP 01108334A EP 1158174 B1 EP1158174 B1 EP 1158174B1
Authority
EP
European Patent Office
Prior art keywords
shaft
rotor
pump
magnetic rotor
bearing housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01108334A
Other languages
English (en)
French (fr)
Other versions
EP1158174A2 (de
EP1158174A3 (de
Inventor
Ulrich Rennett
Manfred Sett
Alfred Mersch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITT Manufacturing Enterprises LLC
Original Assignee
ITT Manufacturing Enterprises LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITT Manufacturing Enterprises LLC filed Critical ITT Manufacturing Enterprises LLC
Priority to EP06015105A priority Critical patent/EP1719914B1/de
Publication of EP1158174A2 publication Critical patent/EP1158174A2/de
Publication of EP1158174A3 publication Critical patent/EP1158174A3/de
Application granted granted Critical
Publication of EP1158174B1 publication Critical patent/EP1158174B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0465Ceramic bearing designs

Definitions

  • the invention relates to a centrifugal pump with a magnetic coupling arranged between the pump shaft and the drive shaft and a split pot in the magnetic gap between the inner magnet rotor of the pump and the outer magnet rotor of the drive shaft, wherein the inner magnet rotor is mounted on a tubular bearing housing in the interior of the split pot through which the fluid flows surrounding the pump impeller shaft having on the side facing away from the pump impeller fastening means for the inner magnet rotor, which is arranged between the bearing housing and the containment shell.
  • a conventional magnetic pump drive is known from DE 37 15 484. Moreover, it is known from EP 0 398 175 to lead a small part of the conveying medium between the stator and the rotor for cooling.
  • magnetic return rotors with radial return vanes are known.
  • the blades serve to generate a flushing or cooling medium flow.
  • These radial blades are arranged on the front side of the magnetic coupling rotor and generate a flow rate in the radial direction by the medium accelerates by centrifugal force to the outer diameter of the rotor and through the Gap between rotor circumference and split pot is promoted. This conveying direction to the outer diameter is contrary to the required flow direction in order to be able to initiate the flushing medium flow directly into the rotor bearing positioned in the center of the rotor.
  • Radial blades generally produce only smaller mass flows at higher pressures, so that only very small amounts of flushing or cooling medium are available and the promotion can be interrupted due to cavitation. When enlarging the radial blades, although more medium is promoted, but the tendency to cavitation also increases. In addition, larger radial blades also require a higher hydraulic power, which is to be classified as a coupling power loss and therefore undesirable.
  • the object of the invention is to improve a centrifugal pump of the type mentioned so that at low hydraulic power loss high rinsing, cooling and lubricating performance and high leakage safety is achieved.
  • annular gap between the bearing portion of the inner magnet rotor and the inner wall of the tubular bearing housing in its radial width is smaller than the annular gap between the inner magnet rotor and the can. This ensures that at a fraction of the plain bearing of the shaft surfaces of the gap in the storage area first come to rest on each other and thus form a Notgleitlager before the surfaces in the region of the annular gap between the containment shell and the outside of the inner magnet rotor are superimposed. This can not lead to a destruction of the split pot and a leak.
  • At least one temperature sensor is arranged to detect an emergency run close to the bearing of the inner magnet rotor.
  • a current consumption sensor is arranged in the supply line of the driving electric motor.
  • the centrifugal pump 1 with magnetic coupling has a rotating in a pump chamber impeller 2, which is fixed to one end of a shaft 3.
  • the shaft 3 carries a shaft sleeve 12, which is supported by two ceramic radial bearings 4, 5 and two ceramic thrust bearings 6, 7, which are fixed to the inner wall of a tubular bearing housing 8.
  • the bearing housing 8 is fixed to the wall 11, which separates the pump chamber 9 from the interior of a split pot 10, which is fixed to the partition wall 11.
  • the shaft 3 carries an inner pot-shaped magnet rotor 14.
  • a circular bottom 16 is integrally formed on the shaft 3 as a fastening means 15, on the outer edge of a tubular coaxial magnetic carrier 17 is formed on the outer edge, on the outside of the output magnets 18 are attached.
  • the bearing housing 8 thus extends coaxially in the magnet rotor 14, wherein between the magnet carrier 17 and the bearing housing 8, an annular space 19 and between the magnet carrier 17 and the gap pot 10 is an annular gap 20.
  • the split pot 10 is surrounded by a drive pot, not shown, which carries the drive magnets inside and is driven by a coaxial shaft of an electric motor.
  • annular coaxial flow channel (annulus) 21 is introduced, which is in the amount of the annulus 19 and is traversed by two to four radial axial blades 22, the magnetic carrier 17 at the bottom of the 16th hold.
  • the blades are formed at regular intervals (angles) on the bottom and magnetic carrier and have an angle of attack of 5 to 15 degrees.
  • the preferably three blades 22 convey the liquid entering through the inlet channels 23 into the crevice interior space from the annular gap 20 into the intermediate space 24 between the bearing housing 8 and the shaft sleeve 12, so that the liquid conveyed through it flows through the radial and axial bearings 4 to 7 to the pumping chamber flow back.
  • the tubular bearing housing 8 forms at the end facing away from the impeller 2 an annular gap 25 with an inner portion of the inner magnet rotor or the fastening means 15.
  • a coaxial ring 26 is fixed, in which the outer thrust bearing 7 is present.
  • the outer side of the ring 26 forms, with the inside of the bearing housing 8, the annular gap 25 whose radial width B1 is less than the radial width B2 of the annular gap 20.
  • a helical coaxial groove 27 is introduced in the region of the gap 25, which in the gap 25 the fluid promotes the space 24.
  • the groove 27 may also be arranged in the outer wall of the magnet rotor or of the ring 26.
  • a temperature sensor 28 is attached, indicating early, when a radial bearing is defective and the surfaces of the Rub gap 25 together.
  • a bearing defect may be indicated by a current sensing sensor 29 located in or on the lead 31 of the electric motor. These sensors are connected to a warning device (horn light, connection to the system monitoring) 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Kreiselpumpe mit einer zwischen Pumpenwelle und Antriebswelle angeordneten Magnetkupplung und mit einem Spalttopf im Magnetspalt zwischen dem inneren Magnetrotor der Pumpe und dem äußeren Magnetrotor der Antriebswelle, wobei im Inneren des von der Förderflüssigkeit durchflossenen Spalttopfes der innere Magnetrotor an einem rohrförmigen Lagergehäuse gelagert ist, das die Pumpenlaufradwelle umgibt, die auf der dem Pumpenlaufrad abgewandten Seite Befestigungsmittel für den inneren Magnetrotor besitzt, der zwischen dem Lagergehäuse und dem Spalttopf angeordnet ist.
  • Ein üblicher magnetischer Pumpenantrieb ist aus der DE 37 15 484 bekannt. Darüber hinaus ist es aus der EP 0 398 175 bekannt, zwischen Stator und Rotor einen geringen Teil des Fördermediums zur Kühlung zu führen.
  • Auch sind Magnetkupplungsrotoren mit radialen Rückschaufelnbekannt. Die Schaufeln dienen der Generierung eines Spül- bzw. Kühlmediumstromes. Diese radialen Schaufeln sind stirnseitig am Magnetkupplungsrotor angeordnet und erzeugen einen Förderstrom in radialer Richtung, indem das Medium durch Fliehkraft zum Außendurchmesser des Rotors hin beschleunigt und durch den Spalt zwischen Rotorumfang und Spalttopf gefördert wird. Diese Förderrichtung zum Außendurchmesser hin ist konträr zu der erforderlichen Fließrichtung, um den Spülmediumstrom unmittelbar in die im Zentrum des Rotors positionierte Rotorlagerung einleiten zu können.
  • Radiale Schaufeln erzeugen im allgemeinen nur kleinere Massenströme bei höheren Drücken, so dass nur recht geringe Mengen Spül- bzw. Kühlmedium zur Verfügung stehen und die Förderung infolge Kavitation unterbrochen werden kann. Bei Vergrößerung der radialen Schaufeln wird zwar mehr Medium gefördert, aber die Kavitationsneigung nimmt auch zu. Darüber hinaus bedingen größere Radialschaufeln auch eine höhere hydraulische Leistung, die als Kupplungsverlustleistung einzustufen und daher unerwünscht ist.
  • Aufgabe der Erfindung ist es eine Kreiselpumpe der eingangs genannten Art so zu verbessern, dass bei geringem hydraulischen Leistungsverlust eine hohe Spül-, Kühl- und Schmierleistung und eine hohe Auslaufsicherheit erzielt wird.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Ringspalt zwischen dem Lagerbereich des inneren Magnetrotors und der Innenwand des rohrförmigen Lagergehäuses in seiner radialen Breite kleiner ist als der Ringspalt zwischen dem inneren Magnetrotor und dem Spaltrohr. Hierdurch wird sichergestellt, dass bei einem Bruch des Gleitlagers der Welle die Flächen des Spaltes im Lagerbereich zuerst aufeinander zu liegen kommen und damit ein Notgleitlager bilden, ehe die Flächen im Bereich des Ringspaltes zwischen Spalttopf und der Außenseite des inneren Magnetrotors aufeinanderliegen. Damit kann es nicht zu einer Zerstörung des Spalttopfes und zu einem Leck kommen.
  • Hierbei ist von Vorteil, wenn zum Erkennen eines Notlaufs nahe der Lager des inneren Magnetrotors mindestens ein Temperatursensor angeordnet ist. Alternativ oder zusätzlich wird vorgeschlagen, dass zum Erkennen eines Notlaufs ein Stromaufnahmesensor in der Zuleitung des antreibenden Elektromotors angeordnet ist.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben. Es zeigen
  • Fig. 1
    einen axialen Schnitt durch den inneren Bereich einer Magnetkupplungskreiselpumpe,
    Fig. 2
    einen vergrößerten Ausschnitt aus Fig. 1,
    Fig. 3
    ein Schaltbild der Sensoren.
  • Die Kreiselpumpe 1 mit Magnetkupplung weist einen in einer Pumpenkammer sich drehendes Laufrad 2 auf, das auf einem Ende einer Welle 3 befestigt ist. Die Welle 3 trägt eine Wellenhülse 12, die durch zwei Keramik-Radiallager 4, 5 und zwei Keramik-Axiallager 6, 7 gelagert ist, die an der Innenwand eines rohrförmigen Lagergehäuses 8 befestigt sind. Das Lagergehäuse 8 ist an der Wand 11 befestigt, die die Pumpenkammer 9 von dem Innenraum eines Spalttopfes 10 trennt, der an der Trennwand 11 befestigt ist. An der dem Pumpenlaufrad 2 abgewandten Ende trägt die Welle 3 einen inneren topfförmigen Magnetrotor 14. Hierzu ist an der Welle 3 als Befestigungsmittel 15 ein kreisförmiger Boden 16 angeformt, an dessen äußeren Rand ein rohrabschnittförmiger zylindrischer koaxialer Magneträger 17 angeformt ist, an dessen Außenseite die Abtriebsmagnete 18 befestigt sind.
  • Das Lagergehäuse 8 erstreckt sich somit koaxial in dem Magnetrotor 14, wobei zwischen dem Magnetträger 17 und dem Lagergehäuse 8 ein Ringraum 19 und zwischen dem Magnetträger 17 und dem Spalttopf 10 ein Ringspalt 20 besteht. Außen ist der Spalttopf 10 von einem nicht dargestellten Antriebstopf umgeben, der innen die Antriebsmagnete trägt und über eine koaxiale Welle von einem Elektromotor angetrieben ist.
  • Innerhalb des rohrförmigen Magnetträgers 17 ist im Boden 16 des inneren Magnetrotors 14 stirnseitig ein insbesondere ringförmiger koaxialer Durchflusskanal (Ringraum) 21 eingebracht, der in Höhe des Ringraums 19 liegt und von zwei bis vier radialen Axialschaufeln 22 durchquert ist, die den Magnetträger 17 am Boden 16 halten. Die Schaufeln sind in regelmäßigen Abständen (Winkeln) am Boden und Magnetträger angeformt und weisen einen Anstellwinkel von 5 bis 15 Grad auf.
  • Die vorzugsweise drei Schaufeln 22 fördern die durch Eintrittskanäle 23 in den Spaltrohrinnenraum eintretende Flüssigkeit aus dem Ringspalt 20 in den Zwischenraum 24 zwischen Lagergehäuse 8 und Wellenhülse 12, so dass die hierdurch geförderte Flüssigkeit durch die Radial- und Axiallager 4 bis 7 hindurchfließt um danach zur Pumpenkammer zurückzufließen.
  • Das rohrförmige Lagergehäuse 8 bildet am vom Laufrad 2 abgewandten stirnseitigen Ende einen Ringspalt 25 mit einem inneren Bereich des inneren Magnetrotors bzw. der Befestigungsmittel 15. Hierbei ist auf der Welle 3 oder auf der Wellenhülse 12 ein koaxialer Ring 26 befestigt, in dem das äußere Axiallager 7 einliegt. Die Außenseite des Ringes 26 bildet mit der Innenseite des Lagergehäuses 8 den Ringspalt 25, dessen radiale Breite B1 geringer ist als die radiale Breite B2 des Ringspaltes 20.
  • In der Innenseite bzw. Innenwand des Lagergehäuses 8 ist im Bereich des Spaltes 25 eine schraubenförmige koaxiale Nut 27 eingebracht, die im Spalt 25 die Flüssigkeit zum Raum 24 fördert. Alternativ oder zusätzlich kann die Nut 27 auch in der Außenwand des Magnetrotors bzw. des Ringes 26 angeordnet sein.
  • Nahe der Lager 4 bis 7 insbesondere auf der Außenseite des rohrförmigen Lagergehäuses 8 ist zu beiden Enden des Lagergehäuses 8 vorzugsweise zumindest an dem dem Laufrad abgewandten Ende des Lagergehäuses 8 ein Temperatursensor 28 befestigt, der frühzeitig anzeigt, wenn ein Radiallager defekt ist und die Flächen des Spaltes 25 aneinander reiben. Stattdessen oder zusätzlich kann ein Lagerdefekt durch einen Stromaufnahmesensor 29 angezeigt werden, der in oder an der Zuleitung 31 des Elektromotors liegt. Diese Sensoren sind mit einer Warneinrichtung (Hupe Leuchte, Verbindung zur Anlagenüberwachung) 30 verbunden.

Claims (3)

  1. Kreiselpumpe mit einer zwischen Pumpenwelle und Antriebswelle angeordneten Magnetkupplung und mit einem Spalttopf (10) im Magnetspalt zwischen dem inneren Magnetrotor (14) der Pumpe und dem äußeren Magnetrotor der Antriebswelle, wobei im Inneren des von der Förderflüssigkeit durchflossenen Spalttopfes (10) der innere Magnetrotor (14) an einem rohrförmigen Lagergehäuse (8) gelagert ist, das die Pumpenlaufradwelle (3) umgibt, die auf der dem Pumpenlaufrad (2) abgewandten Seite Befestigungsmittel (15) für den inneren Magnetrotor (14) besitzt, der zwischen dem Lagergehäuse (8) und dem Spalttopf (10) angeordnet ist, dadurch gekennzeichnet, dass der Ringspalt (25) zwischen dem Lagerbereich des inneren Magnetrotors (14) und der Innenwand des rohrförmigen Lagergehäuses (8) in seiner radialen Breite (B1) kleiner ist als der Ringspalt (20) zwischen dem inneren Magnetrotor (14) und dem Spaltrohr (10).
  2. Kreiselpumpe nach Anspruch 1, dadurch gekennzeichnet, dass zum Erkennen eines Notlaufs nahe der Lager (4 - 7) des inneren Magnetrotors (14) mindestens ein Temperatursensor (28) angeordnet ist.
  3. Kreiselpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zum Erkennen eines Notlaufs ein Stromaufnahmesensor (29) in der Zuleitung (30) des antreibenden Elektromotors angeordnet ist.
EP01108334A 2000-05-22 2001-04-03 Kreiselpumpe mit Magnetkupplung Expired - Lifetime EP1158174B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06015105A EP1719914B1 (de) 2000-05-22 2001-04-03 Kreiselpumpe mit Magnetkupplung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10024953A DE10024953A1 (de) 2000-05-22 2000-05-22 Kreiselpumpe mit Magnetkupplung
DE10024953 2000-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP06015105A Division EP1719914B1 (de) 2000-05-22 2001-04-03 Kreiselpumpe mit Magnetkupplung

Publications (3)

Publication Number Publication Date
EP1158174A2 EP1158174A2 (de) 2001-11-28
EP1158174A3 EP1158174A3 (de) 2005-09-07
EP1158174B1 true EP1158174B1 (de) 2007-03-14

Family

ID=7642885

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01108334A Expired - Lifetime EP1158174B1 (de) 2000-05-22 2001-04-03 Kreiselpumpe mit Magnetkupplung
EP06015105A Expired - Lifetime EP1719914B1 (de) 2000-05-22 2001-04-03 Kreiselpumpe mit Magnetkupplung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06015105A Expired - Lifetime EP1719914B1 (de) 2000-05-22 2001-04-03 Kreiselpumpe mit Magnetkupplung

Country Status (4)

Country Link
US (1) US6554576B2 (de)
EP (2) EP1158174B1 (de)
AT (2) ATE486219T1 (de)
DE (3) DE10024953A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337166B2 (en) * 2001-11-26 2012-12-25 Shurflo, Llc Pump and pump control circuit apparatus and method
DE10221843B4 (de) * 2002-05-16 2004-12-30 Minebea Co., Ltd. Elektromotor zur Verwendung als Pumpenmotor und Pumpe
US8979504B2 (en) * 2009-08-19 2015-03-17 Moog Inc. Magnetic drive pump assembly with integrated motor
DE102009052856B3 (de) * 2009-11-11 2010-09-09 Leistritz Ag Pumpe mit einer Magnetkupplung
US9154012B2 (en) * 2010-03-29 2015-10-06 Ntn Corporation Fluid dynamic bearing device and assembly method for same
CN102465884A (zh) * 2010-11-17 2012-05-23 黄佳华 一种立式磁力驱动料浆泵
DE102011114191A1 (de) 2011-09-22 2013-03-28 Eagleburgmann Germany Gmbh & Co. Kg Spalttopf für eine Magnetkupplung mit verbesserter Fluidströmung
TW201317459A (zh) * 2011-10-26 2013-05-01 Assoma Inc 永磁罐裝泵結構改良
US20140271270A1 (en) * 2013-03-12 2014-09-18 Geotek Energy, Llc Magnetically coupled expander pump with axial flow path
DE102013007849A1 (de) * 2013-05-08 2014-11-13 Ksb Aktiengesellschaft Pumpenanordnung
DE102014006568A1 (de) * 2013-05-08 2014-11-13 Ksb Aktiengesellschaft Pumpenanordnung und Verfahren zum Herstellen eines Spalttopfes der Pumpenanordnung
CN103410739B (zh) * 2013-07-24 2016-09-21 黄佳华 立式液下多组渣浆磁力泵
CN104776033B (zh) * 2014-01-14 2017-09-15 高涵文 一种耐腐蚀抗干磨的磁力泵
US9771938B2 (en) 2014-03-11 2017-09-26 Peopleflo Manufacturing, Inc. Rotary device having a radial magnetic coupling
US9920764B2 (en) 2015-09-30 2018-03-20 Peopleflo Manufacturing, Inc. Pump devices
CN110873061B (zh) * 2018-08-29 2023-08-01 广东德昌电机有限公司 泵体及用于泵体的转子组件的制造方法
DE202019101723U1 (de) * 2019-03-26 2020-06-29 Meßner GmbH & Co. KG Teichpumpe
KR102484602B1 (ko) * 2020-11-23 2023-01-06 주식회사 코아비스 전동식 워터 펌프
DE102020132907A1 (de) 2020-12-10 2022-06-15 Eagleburgmann Germany Gmbh & Co. Kg Magnetkupplung mit verbesserter Kühlung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB922319A (en) * 1960-03-28 1963-03-27 Klaus Franz Centrifugal pump
US3420184A (en) * 1967-05-17 1969-01-07 Julius L Englesberg Pump employing magnetic drive
DE2639540A1 (de) * 1976-09-02 1978-03-09 Grundfos As Gleitlagerhuelse fuer die pumpenwelle von umwaelzpumpen fuer heizungs- und brauchwasseranlagen
DE2752249B2 (de) * 1977-11-23 1979-09-27 Klein, Schanzlin & Becker Ag, 6710 Frankenthal Schutzeinrichtung für Pumpen
JPS6352992U (de) 1986-09-25 1988-04-09
DE8717855U1 (de) * 1987-02-14 1990-09-27 Richter Chemie Technik GmbH, 47906 Kempen Leckanzeigevorrichtung für eine Magnetkreiselpumpe
DE3715484A1 (de) * 1987-05-09 1988-11-17 Klaus Union Armaturen Magnetischer pumpenantrieb
DE3862268D1 (de) * 1987-09-15 1991-05-08 Bieri Pumpenbau Ag Umwaelzpumpe insbesondere fuer warmwasseranlagen.
DE8906020U1 (de) * 1989-05-13 1989-06-29 Rheinhütte GmbH & Co., 6200 Wiesbaden Magnetkupplungspumpe
DE69023317T2 (de) 1989-11-08 1996-04-25 Sanwa Tokushu Seiko Co Magnetisch angetriebene Pumpe.
US5184945A (en) * 1991-12-27 1993-02-09 Assoma, Inc. Bushing structure for using in magnetically driving centrifugal pumps
DE4212982C2 (de) * 1992-04-18 1996-04-11 Lederle Pumpen & Maschf Pumpe für heiße Fördermedien
DE9316897U1 (de) * 1993-11-04 1994-07-28 Renner GmbH, 75433 Maulbronn Magnetpumpe mit Heißlaufschutz
US5944489A (en) * 1996-12-11 1999-08-31 Crane Co. Rotary fluid pump

Also Published As

Publication number Publication date
US20010043865A1 (en) 2001-11-22
DE50115684D1 (de) 2010-12-09
US6554576B2 (en) 2003-04-29
DE10024953A1 (de) 2001-11-29
EP1719914A2 (de) 2006-11-08
EP1158174A2 (de) 2001-11-28
EP1158174A3 (de) 2005-09-07
EP1719914A3 (de) 2006-11-15
ATE356937T1 (de) 2007-04-15
ATE486219T1 (de) 2010-11-15
DE50112181D1 (de) 2007-04-26
EP1719914B1 (de) 2010-10-27

Similar Documents

Publication Publication Date Title
EP1158174B1 (de) Kreiselpumpe mit Magnetkupplung
EP1158173B1 (de) Kreiselpumpe mit Magnetkupplung
EP0520333B1 (de) Pumpenaggregat
EP2054622B1 (de) Förderpumpe
CH668101A5 (de) Magnetisch angetriebene zentrifugalpumpe.
DE2254265A1 (de) Stopfbuechslose chemiekreiselpumpe
EP0112462B1 (de) Sich selbst reinigende Zentrifugalpumpe
CH627236A5 (de)
WO2009077076A1 (de) Rotor für einen spaltrohrmotor
EP0237868A2 (de) Radial- oder Axialkreiselpumpe
DE3637501C2 (de) Axialschubkompensation für Zentrifugalpumpen
DE102007020218A1 (de) Förderpumpe
DE2550844B2 (de) Laufrad
DE3011688A1 (de) Axialschlammpumpe
US3795457A (en) Multistage pitot pump with means for feeding clean fluid to seals
DE10062451A1 (de) Förderpumpe
DE2526164A1 (de) Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
DE2460748B2 (de) Umwaelzpumpe fuer insbesondere heizungs- und brauchwasseranlagen
EP1327781B1 (de) Selbstansaugende Kreiselpumpe
EP0677661B1 (de) Zentrifugalpumpe
DE4239071C2 (de) Tauchpumpenaggregat
EP2582983B1 (de) Doppelflutige kreiselpumpe
DE9116052U1 (de) Pumpe für Flüssigkeiten niedriger Viskosität oder nahe dem Siedepunkt
EP1101944A2 (de) Turbomolekularpumpe
EP0467011B1 (de) Flüssigkeitsringgaspumpe mit Spaltrohrantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 04D 13/06 B

Ipc: 7F 04D 29/04 B

Ipc: 7F 04D 13/02 A

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20050616

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ITT MANUFACTURING ENTERPRISES, INC.

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50112181

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070814

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

26N No opposition filed

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120423

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170426

Year of fee payment: 17

Ref country code: CH

Payment date: 20170427

Year of fee payment: 17

Ref country code: GB

Payment date: 20170427

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170427

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180403

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200429

Year of fee payment: 20

Ref country code: NL

Payment date: 20200426

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200319

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50112181

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210402

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 356937

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210403