EP2054622B1 - Förderpumpe - Google Patents
Förderpumpe Download PDFInfo
- Publication number
- EP2054622B1 EP2054622B1 EP07786115A EP07786115A EP2054622B1 EP 2054622 B1 EP2054622 B1 EP 2054622B1 EP 07786115 A EP07786115 A EP 07786115A EP 07786115 A EP07786115 A EP 07786115A EP 2054622 B1 EP2054622 B1 EP 2054622B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- feed
- pump
- pump according
- radial wheel
- feed pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims abstract description 14
- 238000007789 sealing Methods 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 9
- 230000001154 acute effect Effects 0.000 claims 1
- 238000010327 methods by industry Methods 0.000 claims 1
- 238000005496 tempering Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/06—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
- F04B15/08—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0066—Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
- F04D29/2205—Conventional flow pattern
- F04D29/2222—Construction and assembly
- F04D29/2227—Construction and assembly for special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
- F04D29/2238—Special flow patterns
- F04D29/225—Channel wheels, e.g. one blade or one flow channel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/605—Mounting; Assembling; Disassembling specially adapted for liquid pumps
Definitions
- the invention relates to a feed pump with a variable speed drive for a metered flow rate delivery, wherein the feed pump is designed as a single-stage centrifugal pump in a impeller space of a pump housing without a sealing gap rotationally arranged radial centrifugal type for conveying a fluid between a pump inlet and a pump outlet.
- the drive motor has a PEEK split tube inside which a rotor protected by a stainless steel coating is located. Ceramic bearings of the pump shaft and the drive rotor are lubricated by a partial flow of the pumped liquid taken from the pump housing.
- the open impeller has a diameter between 1 and 2 inches and the impeller driving rotor of the roller bearing DC motor has a diameter between 1.5 and 2 inches.
- the single-stage pumping device with the open impeller should reach maximum speeds of up to 60,000 rpm.
- Suction nozzle, discharge nozzle and a downstream of the impeller type of spiral space are arranged in an outer pump housing part, while an inner pump housing part has the cantilevered impeller and a mounting for a variable speed DC canned motor as a drive motor.
- a metering pump is realized as centrifugal centrifugal type, which is designed for continuous operation in a partial load operating point field. Its flow limits are in the range of 0 ml / min to 3600 ml / min at delivery height limits of 20 m to 300 m.
- the impeller rotates without contact within an impeller space and a return flow within the wheel sidewalls is permitted. This ensures a wear-free operation of the impeller.
- the centrifugal pump is designed for an extreme part-load operation, whereby small amounts are conveyed pulsation-free.
- the diameter of the impeller space is at most 4% larger than an outer diameter of a radial wheel arranged therein and the impeller space is provided with one or more, acute-angled or tangential to Radialradaußen pressmesser arranged pump outlet channels.
- the delivery of the centrifugal pump results from a proportion of static pressure, which builds up due to the centrifugal force within the impeller space and a dynamic proportion in the form of the dynamic pressure, which occurs at the transition from the impeller space to the pump outlet in the form of a Druckstutzen- or outlet channel.
- the dynamic pressure component at the outlet opening from the impeller space corresponds to a maximum.
- the addition of the centrifugal delivery head component and the delivery head component due to the back pressure to a total delivery head of the pump results in the high pressure factor for this type of pump.
- a sealing of the impeller space relative to the atmosphere or the tempering takes place with one or more shaft seals between a housing wall of the impeller space and a rotary Radialrad- or a shaft part penetrating them.
- These can be known shaft seals or low-friction mechanical seals.
- Such seals can be dispensed with if a hermetically sealed, magnetically coupled drive transmits a torque to the radial wheel. This can also be designed as a tear-resistant hysteresis coupling.
- Next can be connected to the radial wheel an electric, pneumatic or hydraulic drive.
- Such a drive motor is attached to the pump or Temperiergephase and connected via a guided through this housing shaft with the radial wheel.
- the arranged in the drive motor bearing the rotor shaft can be found in a conventional manner at the same time as storage of the pump shaft and the radial wheel use.
- the feed pump is connected to a control device, which is connected to an internal or external volume flow measurement and independent of a back pressure of a system with the drive motor generates an adjustable constant volume flow.
- a control device With the control device, a variable speed range of the drive motor with a quantity factor up to the value 5000 is generated in the switching or control range between minimum and maximum delivery. And in the speed range of the drive motor from 0 to 35000 revolutions / min is a centrifugal pump delivery pressure between 0 to 300 bar.
- centrifugal pump operating data are only possible due to the contrary to all known design rules interpretation of radial wheel and housing of the pump unit for an extreme permanent part-load operation.
- the pump unit, drive motor, switching or control device and associated electronic operating, measuring and control elements are combined to form an assembly-capable module.
- Fig. 1 is a delivery pump in a single-stage design shown.
- a radial wheel 2 centrifugal type is arranged to rotate.
- the radial wheel 2 has delivery channels 3 and is centrally through a pump inlet 4 flows.
- the radial wheel 2 is connected to transmit power to a variable speed drive 5 and has an outer diameter D LA , which may be up to 50 mm.
- the radial wheel rotates in an impeller space 6, the inner diameter D LRI is designed to be only 4% larger than the outer diameter D LA of the radial wheel 2.
- the area of the pump inlet 4 is defined by a contact surface 12 located in the immediate vicinity of the pump interior, against which a line to be connected for a delivery fluid bears sealingly.
- An analogous training is on the - here below the drawing plane, only partially visible as a semicircle - pump outlet 13 is present.
- External temperature control for example, coolant
- Coolant are fed through the optional axial or radial ports 14, 15 the temperature control chambers 7.1 to 7.3 and derived.
- Pump unit and drive motor 5 are combined to form a structural unit and held in a support member 16.
- the support element 16 provides the prerequisite for the modular design or installation in an existing system.
- Fig. 3 shows a perspective view of a radial wheel 2.
- the radial wheel 2 is designed disc-shaped and provided in this example with a hub 2.1. Within the hub 2.1 is a force-transmitted connection with the shaft 10, not shown here of the drive 5. Within the radial wheel 2, four conveyor channels 3 are arranged. In addition, a plurality of conveying recesses 18 are arranged on the impeller periphery 17, which are designed in the form of blind holes. With the help of these delivery wells, the pressure coefficient of the centrifugal impeller is significantly improved.
- the pressure and suction side shrouds 19, 20 a plurality of radially extending conveyor grooves 21.
- the feed grooves 21 also improve the pressure digit of one Fig. 1 in an impeller room 6 built-in impeller.
- the impeller in the axial direction penetrating compensation bores 22 serve to equalize pressure within the pump housing and at the same time as an assembly aid in the preparation of a connection to the drive.
- Fig. 4 shows a section through an impeller 2. It can be seen that here only a total of four conveyor channels 3 are used. Their diameter is adjusted so that they do not intersect an adjacent conveyor channel in the region of the impeller inlet 23. Thus, the maintenance of a defined impeller inlet diameter is guaranteed.
- the depth T of the conveying recesses 18 is selected as a function of the desired residual volume of a fully assembled pump.
- any other shape such as grooves, slots or the like, find application, with which in the range of the impeller outer diameter, an energy transfer is possible.
- Fig. 5 shows a cross section through the feed pump. Due to the generous temperature control room 7.2, which is in operative connection with the other temperature control room, a permanent extreme partial load operation is guaranteed.
- the non-contact arrangement of the impeller within the impeller space avoids sealingly abutting friction surfaces. This measure prevents the generation of mechanical frictional heat, prevents fretting and consequent contamination of a pumped liquid with abraded particles and improves reliability through significantly extended periods of use. In addition, the cleanability counteracting sealing gaps are avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Eye Examination Apparatus (AREA)
- Fluid-Driven Valves (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
Description
- Die Erfindung betrifft eine Förderpumpe mit einem drehzahlveränderbaren Antrieb für eine dosierende Fördermengenabgabe, wobei die Förderpumpe als einstufige Kreiselpumpe mit in einem Laufradraum eines Pumpengehäuses ohne Dichtspalt rotierend angeordneten Radialrad zentrifugaler Bauart zur Förderung eines Fluids zwischen einem Pumpeneinlass und einem Pumpenauslass ausgebildet ist.
- Im Bereich der Forschungs- und Entwicklungsprozesse der chemischen und pharmazeutischen Industrie besteht die Forderung nach immer schnelleren Entwicklungen zu geringeren Kosten. In der Produktion solcher Stoffe werden flexiblere, kleinere und umweltschonendere Prozesse verlangt. Dies führt zum Einsatz verfahrenstechnischer Komponenten, die teilweise mit sehr kleinen Füllvolumina und kontinuierlichem Stofffluss betrieben werden. Aufgrund der Forderung eines flexiblen Einsatzes solcher Anlagen, ist eine gute Spülbarkeit der gesamten Anlage mit den darin montierten Aggregaten mit Hilfe von besonderen Spülmedien notwendig.
- Solche Anlagen erfordern einen präzisen, konstanten, frei einstellbaren und pulsationsfreien Volumenstrom von flüssigen Stoffen. Für hochpräzise kontinuierliche Volumenströme im Bereich von null Millilitern pro Minute bis zu einer dreistelligen Anzahl von Litern pro Stunde werden Verdrängerpumpen in Form von Mikrozahnring- und Zahnradpumpen sowie in Form von Membran- und Kolbenpumpen verwendet. Nachteil solcher Verdrängerpumpen sind die mangelhafte Zuverlässigkeit infolge Reibung zwischen den relativ zueinander bewegten, abzudichtenden Bauteilen und deren pulsierender Förderstrom. Ein dadurch bedingter Wartungsaufwand und die Kosten für Verschleißteile sowie für deren Wechsel behindern schnelle Forschungs- und Entwicklungsarbeiten und stören einen Produktionsprozess empfindlich.
- Durch die
WO 2005/052365 A2 ist eine als Spaltrohrmotorpumpe ausgebildete Kreiselpumpe zur Umwälzung superkritischer Kohlenwasserstoffe bekannt. Der Antriebsmotor verfügt über ein Spaltrohr aus PEEK, innerhalb dessen ein mit einem Edelstahlüberzug geschützter Rotor angeordnet ist. Keramische Lager der Pumpenwelle und des Antriebsrotors werden von einem dem Pumpengehäuse entnommenen Teilstrom der Förderflüssigkeit geschmiert. Das offen ausgebildete Laufrad hat einen Durchmesser zwischen 1 und 2 Zoll und der das Laufrad antreibende Rotor des wälzgelagerten Gleichstrommotors hat einen Durchmesser zwischen 1,5 und 2 Zoll. Die einstufige Pumpeinrichtung mit dem offenen Laufrad soll maximale Drehzahlen bis zu 60.000 U/min erreichen. Saugstutzen, Druckstutzen und eine dem Laufrad nachgeordnete Art von Spiralraum sind in einem äußeren Pumpengehäuseteil angeordnet, während ein inneres Pumpengehäuseteil das fliegend gelagerte Laufrad und eine Befestigung für einen drehzahlregelbaren Gleichstrom-Spaltrohrmotor als Antriebsmotor aufweist. - Die Druckschrift
GB2187232A - Nachteilig bei dieser Spaltrohrmotorkonstruktion ist die Vielzahl von Spalten, die aufgrund der komplexen Strömungsführung zwischen Pumpe und Spaltrohrmotor die Reinigung der Pumpe stark behindern. Da ein Teil der Förderflüssigkeit permanent den Motor und dessen Spaltraum durchströmt, entsteht durch die Reibungswärme der Wälzlager sowie die Verlustwärme des Spaltrohrmotors ein unzulässig hoher Wärmeeintrag in die Förderflüssigkeit.
- Der Erfindung liegt das Problem zugrunde, zur Förderung und Dosierung von flüssigen Stoffen im Milliliter-Bereich von chemischen, pharmazeutischen und/oder kosmetischen Komponenten eine Pumpeneinheit zu entwickeln, deren Fördermenge pulsationsfrei und präzise einstellbar über einen großen Bereich für unterschiedliche Fördermedien mit unterschiedlichen Eigenschaften variabel ist und für schnelle Produktwechsel die Pumpe leicht zu reinigen ist.
- Die Lösung des Problems erfolgt mit den Merkmalen von Anspruch 1. Damit ist eine Dosierpumpe als Kreiselpumpe zentrifugaler Bauart verwirklicht, die für einen Dauerbetrieb in einem Teillast-Betriebspunktefeld ausgelegt ist. Dessen Fördermengengrenzen liegen im Bereich von 0 ml/min bis 3600 ml/min bei Förderhöhengrenzen von 20 m bis 300 m. Das Laufrad rotiert innerhalb eines Laufradraumes berührungsfrei und eine Rückströmung innerhalb der Radseitenräume wird zugelassen. Dies gewährleistet einen verschleißfreien Betrieb des Laufrades. Und im völligen Gegensatz zu allen geltenden Kreiselpumpen-Auslegebestimmungen ist die Kreiselpumpe für einen extremen Teillastbetrieb ausgelegt, wodurch kleine Mengen pulsationsfrei gefördert werden.
- Der Durchmesser des Laufradraumes ist maximal 4 % größer ausgebildet als ein Außendurchmesser eines darin angeordneten Radialrades und der Laufradraum ist mit einem oder mehreren, spitzwinklig oder tangential zum Radialradaußendurchmesser angeordneten Pumpenauslasskanälen versehen. Infolgedessen ergibt sich die Förderhöhe der Kreiselpumpe aus einem Anteil von statischen Druck, der sich infolge der Zentrifugalkraft innerhalb des Laufradraumes aufbaut sowie einem dynamischen Anteil in Form des Staudrucks, der sich am Übergang vom Laufradraum zum Pumpenauslass in Form eines Druckstutzen- oder Austrittskanals einstellt. Die Staudruckkomponente an der Austrittsöffnung aus dem Laufradraum entspricht einem Maximum. Aus der Addition der zentrifugalen Förderhöhenkomponente und der durch den Staudruck bedingten Förderhöhenkomponente zu einer Gesamtförderhöhe der Pumpe, ergibt sich die für diese Pumpenbauart hohe Druckziffer.
- Im völligen Gegensatz hierzu sind herkömmliche Kreiselpumpen ausgelegt, bei denen sich der Druckaufbau überwiegend durch eine Geschwindigkeitsverzögerung infolge einer Vergrößerung des dem Laufrad nachgeordneten Strömungsraumes in Fließrichtung ergibt.
- Um bei einer Reinigung der Förderpumpe oder einer Umstellung auf andere Fördermittel mit minimalen Verlusten an wertvollen Fördermitteln auszukommen, weist das Pumpengehäuse mit einem darin angeordneten Radialrad im Bereich zwischen einem Pumpeneintritt und einem Pumpenaustritt, deren Querschnittsflächen durch Anlageflächen von daran anzuschließenden Leitungen definiert sind, ein Restvolumen gleich oder kleiner 50 Milliliter auf. Bei einem Chargen- oder Produktwechsel ergibt sich ein minimaler Verlust bei schnellerer Reinigbarkeit der Pumpe.
- Für die Förderung der unterschiedlichen Fördermittel ist das Pumpengehäuse mit einer Temperiereinrichtung versehen. Somit ist eine einfache Temperaturanpassung möglich. Dabei kann die Temperiereinrichtung als ein Wärmetauscher ausgebildet sein, der die fluidberührten Teile des Pumpengehäuse ganz oder teilweise umgibt. Dazu durchdringen flüssigkeitsdichte Verbindungen die Temperiereinrichtung und stellen eine fluidführende Verbindung zwischen einer Anlage und dem Laufradraum her. In Abhängigkeit von der Temperatur des Förderfluids ist das Pumpengehäuse innerhalb der Temperiereinrichtung angeordnet, um das Förderfluid zu kühlen oder zu heizen.
- Das Radialrad weist mindestens zwei Förderkanäle auf und am Radialradaußendurchmesser sind mehrere Fördervertiefungen angeordnet. Diese am Radialrad angeordnete Fördervertiefungen sind als Sackbohrungen, Taschen oder zahnförmige Ausnehmungen gestaltet. Die Förderkanäle sind als offene Vertiefungen in Form von Schaufelkanälen, Nuten oder Rillen ausgebildet. Bei einer Ausbildung des Radialrades als ein geschlossenes Laufrad kann eine saug- und/oder druckseitige Deckscheibe an sich bekannte Fördernuten aufweisen.
- Beim Radialrad ist die Anzahl und die Anordnung von den Eintrittsöffnungen der Förderkanälen so gewählt, dass sie einen Radialradeintrittsdurchmesser nicht vergrößern. Somit wird bei den kleinen Abmessungen eine maximale Fläche am Laufrad für die Erzeugung der Zentrifugalkräfte erlangt.
- Eine Abdichtung des Laufradraumes gegenüber der Atmosphäre oder der Temperiereinrichtung erfolgt mit einer oder mehreren Wellendichtungen zwischen einer Gehäusewand vom Laufradraum und einem diese durchdringenden rotierenden Radialrad- oder einem Wellenteil. Dies können bekannte Wellendichtringe oder reibungsarme Gleitringdichtungen sein. Auf solche Dichtungen kann verzichtet werden, wenn ein hermetisch dichter, magnetgekuppelter Antrieb ein Drehmoment auf das Radialrad überträgt. Dieser kann auch als eine abreißsichere Hysterese-Kupplung ausgebildet sein. Weiter kann mit dem Radialrad ein elektrischer, pneumatischer oder hydraulischer Antrieb verbunden sein. Ein solcher Antriebsmotor ist am Pumpen- oder Temperiergehäuse befestigt und über eine durch dieses Gehäuse geführte Welle mit dem Radialrad verbunden. Die im Antriebsmotor angeordnete Lagerung der Rotorwelle kann in an sich bekannter Weise zugleich als Lagerung der Pumpenwelle und des Radialrades Verwendung finden.
- Zusätzlich kann eine Wärmesperre zwischen Antriebsmotor und dem Temperiergehäuse und/oder Pumpengehäuse angeordnet sein, wobei der Antriebsmotor über eine durchgeführte Welle mit dem Radialrad verbunden ist. Verbindungszonen zwischen den Teilen des Pumpengehäuses und dem Temperiergehäuse sind rotationssymmetrisch gestaltet und gegeneinander abgedichtet. Dies ermöglicht eine verbesserte Abdichtung, die bei der Förderung von Kleinstmengen von gefährlicher oder kostbarer Fluide in Form von flüssigen Chemikalien und/oder Lösungen wichtig ist. Durch den regelbaren Antrieb der für einen Dauerbetrieb im extremen Teillastbereich ausgelegten Kreiselpumpe ist eine gleichmäßige pulsationsfreie einstellbare Förderung von Kleinstmengen solcher Fluide möglich.
- Weiterhin ist die Förderpumpe mit einer Regeleinrichtung verbunden, wobei diese mit einer internen oder externen Volumenstrommessung verbunden ist und unabhängig von einem Gegendruck einer Anlage mit dem Antriebsmotor einen einstellbaren konstanten Volumenstrom erzeugt. Mit der Regeleinrichtung wird im Schalt- oder Regelbereich zwischen minimaler und maximaler Fördermenge ein veränderbarer Drehzahlbereich des Antriebsmotors mit einem Mengenfaktor bis zum Wert 5000 erzeugt. Und im Drehzahlbereich des Antriebsmotors von 0 bis 35000 Umdrehungen/min liegt ein Kreiselpumpen-Förderdruck zwischen 0 bis 300 Bar. Solche Kreiselpumpenbetriebsdaten sind nur aufgrund der entgegen allen bekannten Auslegeregeln erfolgten Auslegung von Radialrad und Gehäuse der Pumpeneinheit für einen extremen dauerhaften Teillastbetrieb möglich. Für einfache Einbaumöglichkeiten sind Pumpeneinheit, Antriebsmotor, Schalt- oder Regeleinrichtung und damit verbundene elektronische Bedien-, Mess- und Steuerungselemente zu einem montagefähigen Modul zusammengefasst.
- Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen die
- Fig. 1
- eine Förderpumpe im Längsschnitt,
- Fig. 2
- eine perspektivische Ansicht auf die Pumpeneinheit, die
- Fig. 3
- eine perspektivische Ansicht auf ein Laufrad, die
- Fig. 4
- ein Laufrad im Schnitt und die
- Fig. 5
- einen Querschnitt durch die Förderpumpe
- In
Fig. 1 ist eine Förderpumpe in einstufiger Bauweise dargestellt. Im Pumpengehäuse 1 ist ein Radialrad 2 zentrifugaler Bauart rotierend angeordnet. Das Radialrad 2 verfügt über Förderkanäle 3 und wird durch einen Pumpeneinlass 4 mittig angeströmt. Das Radialrad 2 ist mit einem drehzahlregelbaren Antrieb 5 kräfteübertragend verbunden und weist einen Außendurchmesser DLA auf, der bis zu 50 mm betragen kann. Das Radialrad rotiert in einem Laufradraum 6, dessen Innendurchmesser DLRI nur maximal 4% größer ausgebildet ist als der Außendurchmesser DLA des Radialrades 2. - Das Pumpengehäuse 1 ist mit einer Temperiereinrichtung 7 versehen, die in diesem Ausführungsbeispiel in das Pumpengehäuse integriert ist. Es sind auch andere Bauformen möglich. Kühlräume 7.1 bis 7.3 umgeben den Laufradraum 6 und auch ein an das Pumpengehäuse 1 angrenzendes Dichtungsgehäuse 8. Innerhalb des Dichtungsgehäuses 8 ist als eine Art Wellendichtung eine Dichtung 9 angeordnet, die in dem Ausführungsbeispiel als ein Lippendichtring dargestellt ist. In Abhängigkeit vom verwendeten Förderfluid kann die Dichtung 9 auch als eine Gleitringdichtung ausgebildet sein. Die Dichtung 9 kann in Abhängigkeit von der gewählten Verbindung zwischen Laufrad und einer Welle 10 des Antriebes dichtend am Laufrad 2, an einer Laufradnabe 2.1 oder an der Welle 10 anliegen. Die Temperierräume 7.1 bis 7.3 werden durch externe Mittel beaufschlagt. Dadurch werden die vom Förderfluid berührten Teile des Pumpengehäuse zuverlässig gekühlt, da die Kreiselpumpe für einen Dauerbetrieb in einem Teillast-Betriebspunktefeld ausgelegt ist, dessen Fördermengengrenzen im Bereich von 0 Milliliter/Min. bis 3600 Milliliter/Min. bei einer Förderhöhengrenze von 20 Meter - 300 Meter liegen. Infolge der dafür notwendigen hohen Drehzahl des Antriebes 5 sind zusätzliche Kühlmittel 11 am Außenumfang des Antriebes 5 angeordnet. Und der Antrieb 5 ist kräfteübertragend mit der Temperiereinrichtung 7 verbunden oder daran befestigt.
- Die Fläche des Pumpeneinlasses 4 ist definiert durch eine in unmittelbarer Nähe des Pumpeninnenraumes gelegene Anlagefläche 12, an der eine anzuschließende Leitung für ein Förderfluid dichtend anliegt. Eine analoge Ausbildung ist an dem - hier unterhalb der Zeichenebene befindlichen, nur teilweise als Halbkreis sichtbaren - Pumpenauslass 13 vorhanden. Die Befestigung von daran anzuschließenden Pumpenleitungen - hier nicht dargestellt - erfolgt durch bekannte Mittel, beispielsweise Überwurfmuttern. Durch die unmittelbare Heranführung einer Pumpenleitung an den Laufradraum 6 und durch die geringen Durchmesserunterschiede zwischen Laufrad-Außendurchmesser DLA und Innendurchmesser DLRI des Laufradraumes 6, ergibt sich innerhalb des Pumpengehäuses mit montiertem Radialrad für ein Förderfluid ein Restvolumen von gleich oder kleiner 50 Milliliter. Diese sehr geringe Menge hat den Vorteil, dass bei einem Wechsel des wertvoller Förderfluide nur geringste Verluste auftreten.
- Aus der
Fig. 2 , der perspektivischen Ansicht auf die als Einheit aufgebauten Förderpumpe, ist der Pumpeneinlass 4 und der Pumpenauslass 13 ersichtlich. Die Temperiereinrichtung 7 ist in das Pumpengehäuse 1 integriert und Pumpeneinlass 4 und Pumpenauslass 13 sind durch die Temperiereinrichtung 7 hindurchgeführt bis zum Laufradraum. - Externe Temperiermittel, beispielsweise Kühlmittel, werden durch die wahlweise verwendbaren axialen oder radialen Anschlüsse 14, 15 den Temperierräumen 7.1 bis 7.3 zugeführt und abgeleitet. Pumpeneinheit und Antriebsmotor 5 sind zu einer baulichen Einheit zusammengefasst und in einem Tragelement 16 gehalten. Das Tragelement 16 bietet die Voraussetzung für den modulartigen Aufbau oder Einbau in eine bestehende Anlage.
-
Fig. 3 zeigt eine perspektivische Ansicht auf ein Radialrad 2. Das Radialrad 2 ist scheibenförmig gestaltet und in diesem Beispiel mit einer Nabe 2.1 versehen. Innerhalb der Nabe 2.1 erfolgt eine kräfteübertragene Verbindung mit der hier nicht dargestellten Welle 10 des Antriebes 5. Innerhalb des Radialrades 2 sind vier Förderkanäle 3 angeordnet. Zusätzlich sind auf dem Laufradumfang 17 eine Vielzahl von Fördervertiefungen 18 angeordnet, die in Form von Sackbohrungen gestaltet sind. Mit Hilfe dieser Fördervertiefungen wird die Druckziffer des Kreiselpumpenrades erheblich verbessert. Zusätzlich weisen die druck- und saugseitigen Deckscheiben 19, 20 mehrere radialverlaufende Fördernuten 21 auf. Die Fördernuten 21 verbessern ebenfalls die Druckziffer eines gemäßFig. 1 in einen Laufradraum 6 eingebauten Laufrades. Das Laufrad in axialer Richtung durchdringende Ausgleichbohrungen 22 dienen zum Druckausgleich innerhalb des Pumpengehäuses und gleichzeitig als eine Montagehilfe bei der Herstellung einer Verbindung mit dem Antrieb. -
Fig. 4 zeigt einen Schnitt durch ein Laufrad 2. Daraus ist ersichtlich, dass hier nur insgesamt vier Förderkanäle 3 Verwendung finden. Deren Durchmesser ist so abgestimmt, dass sie im Bereich des Laufradeintritts 23 einen benachbarten Förderkanal nicht schneiden. Somit ist die Beibehaltung eines definierten Laufradeintrittsdurchmessers gewährleistet. Die Tiefe T der Fördervertiefungen 18 ist in Abhängigkeit vom gewünschten Restvolumen einer fertig montierten Pumpe gewählt. - Anstelle der hier gezeigten Fördervertiefungen 18 in Form von Bohrungen kann auch jede andere Form, beispielsweise Nuten, Schlitze oder dergleichen, Anwendung finden, mit denen im Bereich des Laufrad-Außendurchmessers eine Energieübertragung möglich ist.
-
Fig. 5 zeigt einen Querschnitt durch die Förderpumpe. Aufgrund des großzügigen Temperierraumes 7.2, der in Wirkverbindung mit dem anderen Temperierraum steht, ist ein dauerhafter extremer Teillastbetrieb gewährleistet. - Durch den minimierten Laufradraum 6 ergeben sich zwischen dem Außendurchmesser DLA des Radialrades und dem einhüllenden, umgebenden Durchmesser DLRI des Laufradraumes 6 eine radiale Spaltweite, die im einstelligen Millimeterbereich liegt. Bei einer ausgeführten Kreiselpumpe liegt der radiale Spalt zwischen Laufrad und Gehäuse im Bereich von 2 mm. Im Bereich der axialen Laufradseiten liegt der Spalt zwischen Laufrad und Gehäuse in einer analogen Größenordnung. Durch diese Gestaltung von dem ein minimales Restvolumen aufweisenden Bereiches im Gehäuse kann die Pumpe sehr schnell und zuverlässig durch ein Spülmedium gereinigt werden. Und mit geringsten Verlusten von Förderproduktteilen an geänderte Förderbedingungen oder Anlagen angepasst werden. Durch die kontinuierliche Rotation des zentrifugalen Laufrades 2 ergibt sich ein pulsationsfreier Betrieb dieser Förderpumpe.
- Durch den minimierten Spalt zwischen Laufrad-Außendurchmesser und Laufradraum nähert sich die Umfangskomponente des Laufrades gleichzeitig der Umfangsgeschwindigkeit an und in Kombination mit einer schrägwinklig, vorzugsweise tangential, zum Laufrad 2 angeordneten Pumpenauslass 13 ergibt sich für diese Kreiselpumpe an deren Austrittsöffnung ein maximal möglicher Staudruck. In Verbindung mit dem drehzahlgeregelten Motor sind große Förderhöhen bei einem minimalen Restvolumen innerhalb des Pumpengehäuses realisierbar.
- Die berührungsfreie Anordnung des Laufrades innerhalb des Laufradraumes vermeidet dichtend aneinanderliegende Reibungsflächen. Diese Maßnahme verhindert die Erzeugung mechanischer Reibungswärme, verhindert einen Reibverschleiß sowie eine dadurch bedingte Verschmutzung einer Förderflüssigkeit mit abgeriebenen Partikeln und verbessert die Betriebssicherheit durch wesentlich verlängerte Nutzungszeiten. Außerdem werden der Reinigbarkeit entgegenwirkende Dichtspalte vermieden.
-
- 1 =
- Pumpengehäuse
- 2 =
- Radialrad
- 2.1 =
- Nabe
- 3 =
- Förderkanäle
- 4 =
- Pumpeneinlass
- 5 =
- regelbarer Antrieb
- 6 =
- Laufradraum
- 7 =
- Temperiereinrichtung
- 7.1 - 7.3=
- Kühlräume
- 8 =
- Dichtungsgehäuse
- 9 =
- Dichtung
- 10 =
- Welle,
- 11 =
- Kühlmittel
- 12 =
- Anlagefläche
- 13 =
- Pumpenauslass
- 14, 15 =
- Anschlüsse für Temperiermittel
- 16 =
- Tragelement
- 17 =
- Laufradumfang
- 18 =
- Fördervertiefungen
- 19, 20 =
- Deckscheibe
- 21 =
- Fördernuten
- 22 =
- Ausgleichsbohrungen
- 23 =
- Laufradeintritt
- DLA =
- Außendurchmesser Radialrad 2
- DLRI =
- Innendurchmesser Laufradraum 6
Claims (20)
- Förderpumpe mit einem drehzahlveränderbaren Antrieb (5) für eine dosierende Fördermengenabgabe, wobei die Förderpumpe als einstufige Kreiselpumpe mit in einem Laufradraum (6) eines Pumpengehäuses (1) ohne Dichtspalt rotierend angeordneten Radialrad (2) zentrifugaler Bauart zur Förderung eines Fluids zwischen einem Pumpeneinlass (4) und einem Pumpenauslass (13) ausgebildet ist, das Radialrad (2) mit einem bis in den fünfstelligen Bereich von Umdrehungen pro Minute drehzahlveränderbaren Antriebsmotor verbunden ist, das Radialrad (2) mittig angeströmt wird, mit Förderkanälen (3) versehen ist und einen Außendurchmesser bis zu 50 mm aufweist, dadurch gekennzeichnet dass, zur Verwendung in einer verfahrenstechnischen Anlage mit kontinuierlichen Fördermengen die Kreiselpumpe für einen Teillast-Betrieb ausgelegt ist, dessen Fördermengen im Bereich von 0 ml/min bis 3600 ml/min und bei Förderhöhen von 20 m bis 300 m liegen, dass ein Innendurchmesser (DLRI) vom Laufradraum (6) maximal 4 % größer ausgebildet ist als ein Außendurchmesser (DLA) des Radialrades (2), dass zwischen Laufradraum (6) und dem Radialrad (2) und/oder dessen Welle (10) eine Dichtung (9) angeordnet ist und dass der Laufradraum (6) am Umfang mit einem oder mehreren, spitzwinklig oder tangential zum Radialradaußendurchmesser angeordneten Pumpenauslasskanälen (13) versehen ist.
- Förderpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das Pumpengehäuse (1) mit einem darin angeordneten Radialrad (2) im Bereich zwischen einem Pumpeneintritt (4) und einem Pumpenaustritt (13), deren Querschnittsflächen durch Anlageflächen von daran anzuschließenden Leitungen definiert sind, ein Restvolumen gleich oder kleiner 50 Milliliter aufweist.
- Förderpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Pumpengehäuse (1) mit einer Temperiereinrichtung (7 - 7.3) versehen ist.
- Förderpumpe nach Anspruch 3, dadurch gekennzeichnet, dass die Temperiereinrichtung (7) als Wärmetauscher ausgebildet ist und die fluidberührten Teile des Pumpengehäuses (1) und/oder des Laufradraumes (6) ganz oder teilweise umgibt.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass flüssigkeitsdichte Verbindungen das Temperiergehäuse (7) durchdringen und eine Anlage mit dem Laufradraum (6) verbinden.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Radialrad (2) mindestens zwei Förderkanäle (3) aufweist und am Radialradaußendurchmesser (DLA) mehrere Fördervertiefungen (18) angeordnet sind.
- Förderpumpe nach Anspruch 6, dadurch gekennzeichnet, dass am Radialrad (2) die Fördervertiefungen (18) als Sackbohrungen, Taschen oder zahnförmige Ausnehmungen gestaltet sind.
- Förderpumpe nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Förderkanäle (3) als offene Vertiefungen in Form von Schaufelkanälen, Nuten oder Rillen ausgebildet sind.
- Förderpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass saug- und/oder druckseitige Laufraddeckscheiben mit an sich bekannten Fördernuten versehen sind.
- Förderpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Anzahl und die Anordnung von den Eintrittsöffnungen der Förderkanäle (3) des Radialrades (2) einen Radialradeintrittsdurchmesser nicht vergrößern.
- Förderpumpe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein hermetisch dichter, magnetgekuppelter Antrieb ein Drehmoment auf das Radialrad (2) überträgt.
- Förderpumpe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass ein elektrischer, pneumatischer oder hydraulischer Antrieb mit dem Radialrad (2) verbunden ist.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Antriebsmotor (5) an der Pumpen- (1) oder Temperiereinrichtung (7) befestigt ist und mit einer dadurch geführten Welle (4) mit dem Radialrad (2) verbunden ist.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass eine Wärmesperre zwischen Antriebsmotor (5) und der Temperiereinrichtung (7) und/oder Pumpengehäuse (1) angeordnet ist und der Antriebsmotor (5) über eine durchgeführte Welle (4) mit dem Radialrad (2) verbunden ist.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass Verbindungszonen zwischen den Teilen des Pumpengehäuses (1) und der Temperiereinrichtung (7) rotationssymmetrisch gestaltet und gegeneinander abgedichtet sind.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass eine Regeleinrichtung mit einer internen oder externen Volumenstrommessung verbunden ist und unabhängig von einem Gegendruck einer Anlage mit dem Antriebsmotor (5) einen einstellbaren konstanten Volumenstrom erzeugt.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass im Schalt- oder Regelbereich zwischen minimaler und maximaler Fördermenge ein veränderbarer Drehzahlbereich des Antriebsmotors (5) einen Mengenfaktor bis zum Wert 5000 erzeugt.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass im Drehzahlbereich des Antriebsmotors (5) von 0 bis 35000 Umdrehungen/min einen Kreiselpumpen-Förderdruck zwischen 0 bis 30 Bar liegt.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass Radialrad (2) und Gehäuse der Kreiselpumpe für einen extremen Dauer-Teillastbetrieb ausgelegt ist.
- Förderpumpe nach einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass Pumpen, Antriebsmotor, Schalt- oder Regeleinrichtung und damit verbundene elektronische Bedien-, Mess- und Steuerungselemente zu einem montagefähigen Modul zusammengefasst sind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200730187T SI2054622T1 (sl) | 2006-08-26 | 2007-07-17 | Dovajalna ŽŤrpalka |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006040130A DE102006040130A1 (de) | 2006-08-26 | 2006-08-26 | Förderpumpe |
PCT/EP2007/006315 WO2008025410A1 (de) | 2006-08-26 | 2007-07-17 | Förderpumpe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2054622A1 EP2054622A1 (de) | 2009-05-06 |
EP2054622B1 true EP2054622B1 (de) | 2009-12-16 |
Family
ID=38610560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07786115A Active EP2054622B1 (de) | 2006-08-26 | 2007-07-17 | Förderpumpe |
Country Status (13)
Country | Link |
---|---|
US (1) | US8021133B2 (de) |
EP (1) | EP2054622B1 (de) |
JP (1) | JP2010501782A (de) |
CN (1) | CN101506526B (de) |
AT (1) | ATE452292T1 (de) |
AU (1) | AU2007291652B2 (de) |
DE (2) | DE102006040130A1 (de) |
DK (1) | DK2054622T3 (de) |
NO (1) | NO337736B1 (de) |
SI (1) | SI2054622T1 (de) |
TW (1) | TWI345031B (de) |
WO (1) | WO2008025410A1 (de) |
ZA (1) | ZA200900924B (de) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004022141A1 (de) * | 2004-05-05 | 2005-11-24 | Heidelberger Druckmaschinen Ag | Vorrichtung zum Fördern und gleichzeitigen Ausrichten von Bogen |
US9347458B2 (en) | 2010-12-21 | 2016-05-24 | Pentair Flow Technologies, Llc | Pressure compensating wet seal chamber |
EP2655804B1 (de) | 2010-12-21 | 2019-08-28 | Pentair Flow Technologies, LLC | Druckkompensierte nassdichtungskammer |
CN102828964A (zh) * | 2012-09-18 | 2012-12-19 | 杨鑫强 | 多孔飞轮泵 |
WO2014137206A1 (en) * | 2013-03-07 | 2014-09-12 | Chaushevski Nikola | Rotational chamber pump |
US9810241B2 (en) | 2013-03-19 | 2017-11-07 | Flow Control LLC | Low profile pump with the ability to be mounted in various configurations |
JP6428410B2 (ja) * | 2015-03-18 | 2018-11-28 | 株式会社島津製作所 | 液化二酸化炭素送液ポンプとそれを備えた超臨界流体クロマトグラフ |
CN108005912A (zh) * | 2016-10-31 | 2018-05-08 | 北京精密机电控制设备研究所 | 一种高背压大流量超高速涡轮泵 |
DE102016225908A1 (de) * | 2016-12-21 | 2018-06-21 | KSB SE & Co. KGaA | Freistrompumpe |
CN109826798A (zh) * | 2017-11-23 | 2019-05-31 | 浙江富莱欧机电有限公司 | 一种变频增压泵 |
DE102018126395A1 (de) * | 2018-10-23 | 2020-04-23 | Moog Gmbh | Elektrohydrostatischer Antrieb mit vergrößertem Betriebsbereich |
CN115182829B (zh) * | 2022-07-15 | 2023-05-12 | 哈尔滨工业大学 | 一种大压差、高转速浮动环密封测试试验台 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB203659A (en) * | 1922-09-09 | 1924-03-20 | Unchokeable Pump Ltd | Improvements in and relating to centrifugal pumps |
US1988875A (en) * | 1934-03-19 | 1935-01-22 | Saborio Carlos | Wet vacuum pump and rotor therefor |
DE1115586B (de) * | 1957-07-12 | 1961-10-19 | Eugen Soeding | Kanalradpumpe mit an den Aussenseiten der Radwaende zusaetzlich angeordneten Rippen |
US3647314A (en) * | 1970-04-08 | 1972-03-07 | Gen Electric | Centrifugal pump |
US3915351A (en) * | 1974-08-19 | 1975-10-28 | Alexander Enrico Kiralfy | Cordless electrically operated centrifugal pump |
US4480592A (en) * | 1982-11-30 | 1984-11-06 | Goekcen Mehmet R | Device for converting energy |
IT1187933B (it) * | 1986-02-25 | 1987-12-23 | Gilardini Spa | Pompa rotativa per liquidi |
US4704071A (en) * | 1986-06-17 | 1987-11-03 | Mccullough Ross M | Method and apparatus for pumping liquids |
US4798176A (en) * | 1987-08-04 | 1989-01-17 | Perkins Eugene W | Apparatus for frictionally heating liquid |
DE3843428C2 (de) * | 1988-12-23 | 1993-12-09 | Klein Schanzlin & Becker Ag | Kreiselpumpenlaufrad geringer spezifischer Drehzahl |
JPH03111697A (ja) * | 1989-09-22 | 1991-05-13 | Jidosha Denki Kogyo Co Ltd | 小型遠心ポンプ |
US5341768A (en) * | 1993-09-21 | 1994-08-30 | Kinetic Systems, Inc. | Apparatus for frictionally heating liquid |
US5540550A (en) * | 1994-01-21 | 1996-07-30 | Nikkiso Co., Ltd. | Solid impeller for centrifugal pumps |
DE10024955A1 (de) * | 2000-05-22 | 2001-11-29 | Richter Chemie Tech Itt Gmbh | Kreiselpumpe mit Magnetkupplung |
WO2004034405A2 (en) * | 2002-09-26 | 2004-04-22 | Atomix, Llc | Roto-dynamic fluidic system |
US7089886B2 (en) * | 2003-04-02 | 2006-08-15 | Christian Helmut Thoma | Apparatus and method for heating fluids |
US7316501B2 (en) * | 2004-05-20 | 2008-01-08 | Christian Thoma | Apparatus and method for mixing dissimilar fluids |
US7387262B2 (en) * | 2004-05-28 | 2008-06-17 | Christian Thoma | Heat generator |
-
2006
- 2006-08-26 DE DE102006040130A patent/DE102006040130A1/de not_active Withdrawn
-
2007
- 2007-07-17 DE DE502007002365T patent/DE502007002365D1/de active Active
- 2007-07-17 DK DK07786115.1T patent/DK2054622T3/da active
- 2007-07-17 SI SI200730187T patent/SI2054622T1/sl unknown
- 2007-07-17 AU AU2007291652A patent/AU2007291652B2/en not_active Ceased
- 2007-07-17 CN CN2007800317433A patent/CN101506526B/zh active Active
- 2007-07-17 WO PCT/EP2007/006315 patent/WO2008025410A1/de active Application Filing
- 2007-07-17 AT AT07786115T patent/ATE452292T1/de active
- 2007-07-17 EP EP07786115A patent/EP2054622B1/de active Active
- 2007-07-17 JP JP2009525937A patent/JP2010501782A/ja active Pending
- 2007-08-09 TW TW096129312A patent/TWI345031B/zh not_active IP Right Cessation
-
2009
- 2009-02-09 ZA ZA2009/00924A patent/ZA200900924B/en unknown
- 2009-02-10 NO NO20090626A patent/NO337736B1/no not_active IP Right Cessation
- 2009-02-26 US US12/393,438 patent/US8021133B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE502007002365D1 (de) | 2010-01-28 |
EP2054622A1 (de) | 2009-05-06 |
DK2054622T3 (da) | 2010-04-19 |
TW200831787A (en) | 2008-08-01 |
ZA200900924B (en) | 2009-12-30 |
WO2008025410A1 (de) | 2008-03-06 |
US20090191065A1 (en) | 2009-07-30 |
ATE452292T1 (de) | 2010-01-15 |
NO337736B1 (no) | 2016-06-13 |
TWI345031B (en) | 2011-07-11 |
US8021133B2 (en) | 2011-09-20 |
NO20090626L (no) | 2009-05-08 |
CN101506526B (zh) | 2011-06-08 |
AU2007291652A1 (en) | 2008-03-06 |
JP2010501782A (ja) | 2010-01-21 |
SI2054622T1 (sl) | 2010-04-30 |
AU2007291652B2 (en) | 2011-08-18 |
CN101506526A (zh) | 2009-08-12 |
DE102006040130A1 (de) | 2008-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2054622B1 (de) | Förderpumpe | |
EP1158174B1 (de) | Kreiselpumpe mit Magnetkupplung | |
EP2971784B1 (de) | Durchflusspitotröhrenpumpe | |
WO2008131846A1 (de) | Förderpumpe | |
EP1937980B1 (de) | Rotor für eine strömungsmaschine und eine strömungsmaschine | |
DE102006049663A1 (de) | Schraubenspindelpumpe mit Scheibenpumpen-Axiallager | |
EP0955466A1 (de) | Spaltringdichtung | |
EP3532729B2 (de) | Horizontal geteilte schraubenspindelpumpe | |
EP2348219B1 (de) | Kältemittelpumpenaggregat | |
EP2864640B1 (de) | Motorkreiselpumpe mit einer gleitringdichtung | |
DE10322464B4 (de) | Spaltrohrmotorpumpe | |
WO2002048551A1 (de) | Förderpumpe | |
DE2913608A1 (de) | Verdraengermaschine | |
RU2103555C1 (ru) | Многоступенчатый центробежный насос | |
DE9116052U1 (de) | Pumpe für Flüssigkeiten niedriger Viskosität oder nahe dem Siedepunkt | |
DE3146844C1 (de) | Kreiselpumpe für flüssige Fördermedien | |
DE1940555C3 (de) | Stopfbuchslose Zentrifugalpumpe | |
DE102011050658A1 (de) | Vorrichtung zum Fördern und/oder Komprimieren von Fluiden | |
DE112005002761B4 (de) | Kombinationspumpe | |
WO2022098428A1 (en) | A boundary-layer pump and method of use | |
DE4103848C2 (de) | Rotationskolbenpumpe | |
DE29809258U1 (de) | Flüssigkeitsringgaspumpe in Lagerträgerbauweise | |
WO2019081966A1 (de) | Taumelscheibenpumpe | |
DE202018106140U1 (de) | Taumelscheibenpumpe | |
WO2020156703A1 (de) | Hochdruckradialventilator umfassend eine in einer einlassöffnung angeordnete dichtungsanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090213 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502007002365 Country of ref document: DE Date of ref document: 20100128 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20091216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20091216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100316 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100327 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100416 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100416 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100317 |
|
26N | No opposition filed |
Effective date: 20100917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091216 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007002365 Country of ref document: DE Owner name: KSB SE CO. KGAA, DE Free format text: FORMER OWNER: KSB AG, 67227 FRANKENTHAL, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502007002365 Country of ref document: DE Owner name: KSB SE & CO. KGAA, DE Free format text: FORMER OWNER: KSB AG, 67227 FRANKENTHAL, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 452292 Country of ref document: AT Kind code of ref document: T Owner name: KSB SE & CO. KGAA, DE Effective date: 20190415 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20200717 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200731 Year of fee payment: 14 Ref country code: BE Payment date: 20200722 Year of fee payment: 14 Ref country code: AT Payment date: 20200720 Year of fee payment: 14 Ref country code: SI Payment date: 20200623 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 452292 Country of ref document: AT Kind code of ref document: T Effective date: 20210717 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230801 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230810 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240723 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240724 Year of fee payment: 18 |