EP2582983B1 - Doppelflutige kreiselpumpe - Google Patents

Doppelflutige kreiselpumpe Download PDF

Info

Publication number
EP2582983B1
EP2582983B1 EP11723310.6A EP11723310A EP2582983B1 EP 2582983 B1 EP2582983 B1 EP 2582983B1 EP 11723310 A EP11723310 A EP 11723310A EP 2582983 B1 EP2582983 B1 EP 2582983B1
Authority
EP
European Patent Office
Prior art keywords
impeller
pump
sealing
gaps
centrifugal pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11723310.6A
Other languages
English (en)
French (fr)
Other versions
EP2582983A1 (de
Inventor
Manfred Britsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allweiler GmbH
Original Assignee
Allweiler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allweiler GmbH filed Critical Allweiler GmbH
Publication of EP2582983A1 publication Critical patent/EP2582983A1/de
Application granted granted Critical
Publication of EP2582983B1 publication Critical patent/EP2582983B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/006Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/086Sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/406Casings; Connections of working fluid especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/11Kind or type liquid, i.e. incompressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the invention relates to a, preferably single-stage, double-flow centrifugal pump, in particular a cooling water pump for a marine diesel engine or a Balastwasser formulapumpe on a ship, according to the preamble of claim 1. Further, the invention relates to a use according to claim 9.
  • sealing gaps extend in the axial direction and are formed between the impeller and the pump housing.
  • a resulting radial force component acting on the cantilevered shaft occurs, so that the shaft is deflected in the radial direction with the impeller fixed to it in a rotationally fixed manner.
  • the sealing gaps formed as axial gaps must be dimensioned correspondingly broad.
  • centrifugal pumps are suitable, if the shaft is mounted on one side, only for applications in which comparatively low volume flows have to be conveyed.
  • the impeller bearing shaft is usually mounted on both axial sides of the impeller to minimize the radial deflection movement during operation.
  • a shaft with a correspondingly large diameter and / or complex storage would have to be used.
  • centrifugal pump for conveying small volume flows known.
  • the centrifugal pump has sealing gaps between the impeller and a position-variable, ie non-stationary pump component.
  • the known centrifugal pump is not suitable for use on ships.
  • the GB 242230 A also shows a centrifugal pump, wherein the Dichtspaltany between the impeller and a non-stationary component is adjustable.
  • the present invention seeks to provide a double-flow centrifugal pump, for large volume flows of at least 500m 3 / h, especially for use on ships, with a high efficiency without complex design measures is possible.
  • the impeller bearing shaft of the centrifugal pump should be stored exclusively on one side and have the smallest possible diameter. A striking of the impeller on the pump housing should be safely avoided.
  • the invention is based on the idea that the sealing gaps between the impeller and at least one pump part, with which the suction side of the centrifugal pump is sealed against the pressure side, extending in the radial direction with respect to their longitudinal extent, ie as an axial gap train.
  • the impeller according to the invention by means of the sealing gaps in the axial direction spaced from the at least one, preferably exclusively a pump component, ie, a stationary pump housing and / or a stationary built-in part.
  • the at least approximately in the axial direction extending width of the sealing gap, at least at one point, preferably over its longitudinal extent less than the distance between the impeller and all other radially spaced from the impeller components of the pump.
  • the gap width of the sealing gap is smaller than the radial distance of the impeller to all components of the pumps located radially outside the impeller.
  • the sealing gaps are characterized by the fact that their axial extent is (substantially) less than their radial extent.
  • the gap width of the axial gap (sealing gap) measured in the axial direction is preferably greater than the gap width measured in the radial direction of a radial gap arranged between the impeller and the pump component bounding the axial gap.
  • the centrifugal pump according to the invention is designed for large-volume, in particular marine applications.
  • the centrifugal pump for conveying a volume flow from a value range between about 500m 3 / h and about 4000m 3 / h, preferably between about 800m 3 / h and about 1500m 3 / h (for example, smaller cooling water pumps) or between about 1500m 3 / h and about 2300m 3 / h (for example, in medium-sized cooling water pumps) or between 2300m 3 / h and 3500m 3 / h (for example, larger cooling water pump) designed preferably at a maximum head from a range between about 20m and about 50m, preferably from about 30m.
  • the double-flow centrifugal pump is realized in a vertical design, that is to say in such a way that the shaft runs perpendicular to a stationary surface of the centrifugal pump.
  • the impeller bearing shaft is supported only on one side, preferably on an upper side.
  • the gap width of the sealing gaps is at least 20%, preferably at least 12%, more preferably 6% of the radial distance of the impeller 7 to the axial gap defining pump component, i. the pump housing and / or to the, preferably a housing portion forming, insert part.
  • sealing gaps each formed as an axial gap.
  • the sealing gaps are arranged in a region radially inwardly of circumferentially closed radial gaps, via which the impeller is spaced from the at least one, preferably only one, pump component. It is particularly preferred if the axial gaps, starting from the radial gaps in the radial direction extend inwards. Particularly preferred is therefore an embodiment variant in which the axial gaps, at least in a radially inner region, have a smaller distance from the shaft than the radial gaps.
  • the sealing gaps are located within an imaginary circular cylinder whose lateral surface receives the radial gaps in itself. Due to such a variant, the sealing effect is improved.
  • the impeller has a circular cylindrical envelope contour, wherein it is even more preferred if the sealing gaps (axial gaps) between each end face of a cylindrical envelope contour having impeller and the at least one, preferably exclusively one, pump component are formed.
  • an envelope contour can also be provided in which the impeller extends with its outlet region farther outward in the radial direction.
  • the axial sealing gap is arranged in a region which has a smaller radius than a possible radial gap, which is arranged between the pump jet and the impeller.
  • the sealing gaps Due to the inventive design of the sealing gaps as axial gaps, it is possible to measure the gap width of the sealing gaps much lower than in the prior art, without the risk that the impeller strikes at a radial deflection of the sealing gap limiting pump component. It is thus possible to achieve a high efficiency of the centrifugal pump by the inventive design of the sealing gaps, since the amount of liquid flowing from the pressure region in the suction region (negative pressure region) is minimized by the small gap width of the sealing gaps. In the radial direction, the distance between the impeller and the pump component and / or other components of the pump can be dimensioned so that there is no risk of collision even with the largest possible occurring during operation deflection of the impeller.
  • the sealing gaps - within the tolerances - exactly in relation to their longitudinal extent in the radial direction is also a slightly curved or slightly oblique configuration of the sealing gaps by a corresponding formation of at least one of the sealing gaps bounding component (impeller and / or pump component, in particular pump housing) possible, in particular such that the gap geometry of the curved deflection movement of the impeller, especially in unilateral shaft bearing follows, so that the gap width, regardless of the degree of deflection of the impeller in operation, at least independently remains constant.
  • the radius of curvature at least approximately corresponds to the distance of the impeller to the bearing of the impeller bearing shaft.
  • the gap width of the sealing gaps designed as axial gaps is selected from a value range between 200 ⁇ m and 2000 ⁇ m, very particularly preferably between 200 ⁇ m and 400 ⁇ m.
  • the minimum, i. the smallest radial distance of the impeller to which the axial gap formed as a sealing column limiting pump component of the centrifugal pump (with stationary impeller) is selected from a range of values between 2mm to 10mm.
  • the distance between the impeller and the aforementioned pump component is preferably greater than the distances of the specified range of values.
  • the aforementioned minimum radial distance is not only the minimum radial distance of the impeller to the at least one, preferably only a sealing column defining pump component, but the minimum radial distance of the impeller to all components of the pump to a collision at radial To prevent deflection safely.
  • An embodiment of the double-flow centrifugal pump in which the sealing gaps are arranged between the end faces of the impeller pointing in the axial direction and the at least one pump component is particularly preferred.
  • the sealing gaps have the greatest possible axial distance from each other.
  • the impeller has an at least approximately circular cylindrical envelope contour.
  • Especially preferred encloses an imaginary, the radial gaps receiving circular cylindrical surface, the axial gaps radially outward.
  • an axial gap (sealing gap) extending in the radial direction is understood to mean not only an embodiment in which the sealing gaps extend exactly in the radial direction with respect to their longitudinal extent, ie they are, for example, annular disk-shaped.
  • An embodiment is also conceivable in which the sealing gaps have a small pitch angle or are slightly curved, i. have a large radius of curvature, which preferably, at least approximately, in particular in one-sided bearing shaft, corresponds to the distance of the respective sealing gap of the shaft bearing.
  • the respective sealing gap is then designed such that the gap width during operation of the centrifugal pump, ie not with a possible radial deflection of the impeller, or only slightly as possible, since the gap geometry follows the deflection movement.
  • the curvature or bevel of the sealing gaps can be realized by a corresponding geometric shape of the impeller and / or the at least one, preferably only one, the sealing gaps on the opposite axial side of the impeller pump component.
  • the angle (inclination angle) of the respective sealing gap to an imaginary, arranged orthogonal to the longitudinal extent of the shaft radial plane is selected from a range of values between 0.01 ° and 2.0 °.
  • a possible radius of curvature is selected from a value range between 200 mm and 1000 mm, preferably 300 mm and 700 mm.
  • the radius of curvature of the respective sealing gap preferably corresponds, at least approximately, to the distance of the respective sealing gap (in particular at a radially innermost region of the sealing gap) to the shaft bearing, in particular on one side stored (pump shaft). Accordingly, the angle of inclination of the gap explained in the description refers to the inclination of at least one of them Sealing gap limiting surface (of the impeller and / or the pump component) relative to the aforementioned radial plane.
  • centrifugal pump is a single-stage centrifugal pump, that is to say exclusively an impeller.
  • the pump housing is a so-called spiral housing, which predetermines the flow path on the suction side to the two axial sides of the impeller and preferably spirally combines two outlet channels on the pressure side.
  • the invention also leads to the use of a trained according to the concept of the invention double-flow centrifugal pump as a cooling water pump for a marine diesel engine or ballast water pump on a ship.
  • Fig. 1 is a sectional view of a double-flow centrifugal pump 1 shown in a vertical design.
  • a cooling water pump for a marine diesel engine which is designed to promote a flow rate of 2300m3 / h at a maximum head of 30m.
  • the centrifugal pump 1 comprises a pump housing 2 designed as a spiral housing with a suction-side inlet 3 and a pressure-side outlet 4.
  • a shaft 5 mounted on one side, which is mounted by means of a bearing 6 designed as a ball bearing
  • the end of the shaft 5 carries a doppelflutiges impeller 7 with a substantially circular cylindrical envelope contour.
  • the impeller 7 is rotatably mounted on the shaft 5.
  • a shaft seal 8 In a region axially between the bearing 6 and the impeller 7 is a shaft seal 8.
  • the shaft 5 passes through in a region above the shaft seal 8 fixed to the pump housing 2 by screwing cover. 9
  • the impeller 7 separates a negative pressure region 10 (suction side) from an overpressure region 11 (pressure side).
  • the shaft 5 is rotatable by means of a motor, not shown, in particular an electric motor in a conventional manner, said rotating with the shaft 5 impeller 7 from both axial sides of the negative pressure region 10 fluid, here sucking cooling water and in the radial direction outwardly into the overpressure region 11 promotes, wherein the pressure area 11 is divided into two spirally arranged flow channels 12, 13 which are separated by a partition 14 from each other. In the region of the outlet 4, the two flow channels 12, 13 or the fluid streams are brought together again.
  • the radial gaps 15, 16 are not designed as sealing gaps by the approximately 5 mm in the exemplary embodiment shown or do not fulfill a sufficient sealing function.
  • the radial gaps are in the form of circular cylinder jacket surfaces. If the radial gaps 15, 16 were the only sealing gaps, the centrifugal pump 1 would have a very poor efficiency due to the comparatively large gap width, since liquid, here cooling water constantly in large quantity through the radial gaps 15, 16 from the overpressure region 11 in the Vacuum range 10 flow and thus would be funded directly in a circle.
  • the pump housing 2 engages the impeller 7 at both axial sides, ie up and down in the radial direction inwards, such that between each end face 17, 18th of the impeller 7 and the pump housing 2 (pump component) formed as an axial gap, extending in terms of its longitudinal extent in the radial direction sealing gap 19, 20 is formed is. It is essential that these sealing gaps 19, 20, measured at their narrowest point, have a smaller gap width than the radial gaps 15, 16.
  • the sealing gaps 19, 20 are located radially inside the radial gaps 15, 16, wherein the radial gaps 15, 16 pass into the sealing gaps 19, 20 and the sealing gaps 19, 20 directly adjoin the radial gaps 15, 15.
  • the gap width of the sealing gaps 19, 20 corresponds to approximately 400 ⁇ m.
  • the sealing gaps 19, 20 are, as explained on the one hand in the axial direction bounded by the impeller 7, in the embodiment shown by one end face 17, 18 of the impeller 7 and opposite of a parallel here to the respective end face 17, 18 aligned wall surface 21, 22nd of the pump housing 2.
  • the end faces 17, 18 are displaced substantially parallel to the wall surfaces 21, 22 of the pump housing 2, so that a collision can not occur here.
  • the radial gaps 15, 16 are, as explained, so broadly dimensioned that a collision with the impeller 7, even at a maximum permissible deflection exits.
  • impeller 2 shown schematically, which is rotatably mounted on a rotatably mounted shaft 5.
  • the impeller 7 is surrounded by a pump component 23, here the pump housing 2, more precisely an insert part 24, which forms part of the pump housing 2.
  • the insert can not be formed and arranged forming part of the housing, ie within the pump housing and that at a distance to a housing outside.
  • sealing gaps 19, 20 are formed between the pump component 23, which may be formed in one or more parts and the impeller 7, more precisely between the end faces 17, 18 of a circular cylindrical envelope contour having impeller 7, here two sealing gaps 19, 20 are formed. These sealing gaps 19, 20 are axial gaps, which are formed axially between the pump component 23 and the impeller 7.
  • the gap width s of the sealing gaps 19, 20 is 400 ⁇ m in the embodiment shown.
  • the two flat annular disc-shaped sealing gaps 19, 20 are spaced apart in the axial direction and u.a. separated from the one or more radial outlet regions of the impeller. 7
  • two radial gaps 15, 16 are provided in addition to the sealing gaps 19, 20 between the impeller 7 and the pump component 23, the gap width a is greater than the gap width s of the sealing gaps.
  • the gap width a with stationary impeller 7 is about 5mm.
  • the sealing gaps 19, 20 are located radially inside the radial gaps 15, 16, that is, they are spaced less far from the shaft 5 than the radial gaps 15, 16.
  • the radial gaps are circular-cylinder-jacket-shaped.
  • the sealing gaps 19, 20 have approximately the shape of a circular disk.
  • the (narrow) radial gaps 15, 16 can also be dispensed with a modified design of the pump component 23.
  • the sealing gaps are axial gaps which essentially extend in the radial direction with respect to their longitudinal extent and whose axial extent is (substantially) less than their radial extent.
  • a sealing gap 19 is formed between the impeller 7 and a pump component 23.
  • the sealing gap 19 delimiting portion of the impeller 7 extends in relation to the longitudinal extent of the shaft exactly in the radial direction, whereas the surface portion of the pump member 23 which limits the sealing gap 19 is slightly inclined with respect to a radial plane, here at an angle ⁇ of ⁇ 1 °. This results in a sealing gap inclination by this angle ⁇ with respect to an imaginary radial plane, in which in the embodiment shown, the illustrated surface portion of the impeller 7 is located.
  • Fig. 4 are both the sealing gap 19 delimiting surface portion of the impeller 7 and the sealing gap 19 opposite limiting surface portion of the pump member 23 inclined with respect to a radial plane, in the embodiment shown both at the same angle ⁇ from here ⁇ 10 °. It is also the realization of different, but similar inclination angle feasible.
  • the area of the impeller 7 bordering the sealing gap 19 lies in a radial plane with respect to the longitudinal extent of the shaft, whereas the surface portion of the pump component 23 delimiting the sealing gap 19 is curved, Preferably, the curvature has a radius which has the sealing gap 19 from the bearing of the shaft 5, not shown.
  • both the sealing gap 19 bounding surfaces as both the impeller 7 and the pump member 23 are slightly curved.
  • Fig. 7 is the sealing gap 19 limiting surface of the impeller 7 flat, but at an angle ⁇ of ⁇ 10 ° inclined to the radial plane, whereas the sealing gap 19 delimiting surface of the pump member 23 is slightly curved and preferably has a radius of curvature of 500mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine, vorzugsweise einstufige, doppelflutige Kreiselpumpe, insbesondere eine Kühlwasserpumpe für einen Schiffsdieselmotor oder eine Balastwasserförderpumpe auf einem Schiff, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Verwendung gemäß Anspruch 9.
  • Bei bekannten doppelflutigen Kreiselpumpen verlaufen die als Ringspalte ausgebildeten Dichtspalte in axialer Richtung und sind ausgebildet zwischen dem Flügelrad und dem Pumpengehäuse. Im Betrieb der bekannten Kreiselpumpen kommt es, insbesondere dann, wenn die Kreiselpumpen nicht an ihrem optimalen Arbeitspunkt betrieben werden zu einer resultierenden, auf die einseitig gelagerte Welle wirkenden Radialkraftkomponente, so dass die Welle mit dem drehfest daran festgelegten Flügelrad in radialer Richtung ausgelenkt wird. Um zu verhindern, dass das Flügelrad bei dieser Auslenkbewegung das Pumpengehäuse berührt, müssen die als Axialspalte ausgebildeten Dichtspalte entsprechend breit dimensioniert werden. Dies wiederum führt jedoch zu einem Leistungsverlust der Pumpe, da ständig gefördertes Medium aus dem radialen Überdruckbereich in axialer Richtung durch die Dichtspalte in den Unterdruckbereich (Ansaugbereich) strömt. Hierdurch verschlechtert sich der Wirkungsgrad der bekannten Kreiselpumpen erheblich. Vorgenannte Kreiselpumpen eignen sich, dann, wenn die Welle einseitig gelagert ist, nur für Applikationen, in denen vergleichsweise geringe Volumenströme gefördert werden müssen. Bei doppelflutigen Kreiselpumpen für großvolumenströmige Applikationen, beispielsweise bei Kühlwasserpumpen für einen Schiffsdieselmotor oder bei Balastwasserförderpumpen auf einem Schiff ist die das Flügelrad tragende Welle in der Regel auf beiden Axialseiten des Flügelrades gelagert, um die radiale Auslenkbewegung im Betrieb zu minimieren. Bei einer nur einseitigen Lagerung der Welle für diese Anwendungen müsste eine Welle mit entsprechend großem Durchmesser und/oder aufwändiger Lagerung eingesetzt werden.
  • Aus der FR-A-723344 ist eine doppelflutige Kreiselpumpe zum Fördern kleiner Volumenströme bekannt. Die Kreiselpumpe weist Dichtspalte zwischen dem Flügelrad und einer positionsveränderbaren, d.h. nicht stationären Pumpenbauteil auf. Die bekannte Kreiselpumpe ist nicht zum Einsatz auf Schiffen geeignet.
  • Die GB 242230 A zeigt ebenfalls eine Kreiselpumpe, wobei das Dichtspaltmaß zwischen dem Flügelrad und einem nicht stationären Einbauteil einstellbar ist.
  • Ausgehend von dem vorgenannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine doppelflutige Kreiselpumpe, für große Volumenströme von mindestens 500m3/h, insbesondere für den Einsatz auf Schiffen anzugeben, mit der ein hoher Wirkungsgrad ohne aufwändige konstruktive Maßnahmen möglich ist. Dabei soll die das Flügelrad tragende Welle der Kreiselpumpe dabei ausschließlich einseitig gelagert sein und einen möglichst geringen Durchmesser aufweisen. Ein Anschlagen des Flügelrades am Pumpengehäuse soll sicher vermieden werden.
  • Diese Aufgabe wird mit einer doppelflutigen Kreiselpumpe mit den Merkmalen des Anspruchs 1 gelöst.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen. Zur Vermeidung von Wiederholungen sollen vorrichtungsgemäß offenbarte Merkmale als verfahrensgemäß offenbart gelten und beanspruchbar sein. Ebenso sollen verfahrensgemäß offenbarte Merkmale als vorrichtungsgemäß offenbart gelten und beanspruchbar sein.
  • Der Erfindung liegt der Gedanke zugrunde, die Dichtspalte zwischen dem Flügelrad und mindestens einem Pumpenteil, mit denen die Saugseite der Kreiselpumpe gegenüber der Druckseite abgedichtet ist, bezüglich ihrer Längserstreckung in radialer Richtung verlaufend, d.h. als Axialspalt auszubilden. Anders ausgedrückt ist das Flügelrad gemäß der Erfindung mittels der Dichtspalte in axialer Richtung beabstandet von dem mindestens einen, vorzugsweise ausschließlich einen Pumpenbauteil, d.h. einem stationären Pumpengehäuse und/oder einem stationären Einbauteil. Dabei ist die, sich zumindest näherungsweise in axialer Richtung erstreckende, Breite des Dichtspaltes, zumindest an einer Stelle, vorzugsweise über seine Längserstreckung geringer als der Abstand zwischen dem Flügelrad und sämtlichen anderen mit Radialabstand zu dem Flügelrad angeordneten Bauteilen der Pumpe. Anders ausgedrückt ist die Spaltbreite des Dichtspaltes kleiner als der Radialabstand des Flügelrades zu sämtlichen radial außerhalb des Flügelrades befindlichen Bauteilen der Pumpen. Die Dichtspalte zeichnen sich dadurch aus, dass deren Axialerstreckung (wesentlich) geringer ist als deren Radialerstreckung. Bevorzugt ist die in axialer Richtung gemessene Spaltbreite des Axialspaltes (Dichtspalt) größer als die in radialer Richtung gemessene Spaltbreite eines zwischen dem Flügelrad und dem den Axialspalt begrenzenden Pumpenbauteil angeordneten Radialspaltes.
  • Die erfindungsgemäße Kreiselpumpe ist für großvolumenströmige, insbesondere Marineanwendungen ausgelegt. Bevorzugt ist die Kreiselpumpe zum Fördern eines Volumenstroms aus einem Wertebreich zwischen etwa 500m3/h und etwa 4000m3/h, vorzugsweise zwischen etwa 800m3/h und etwa 1500m3/h (beispielsweise bei kleineren Kühlwasserpumpen) oder zwischen etwa 1500m3/h und etwa 2300m3/h (beispielsweise bei mittelgroßen Kühlwasserpumpen) oder zwischen 2300m3/h und 3500m3/h (beispielsweise bei größeren Kühlwasserpumpen) ausgelegt vorzugsweise bei einer maximalen Förderhöhe aus einem Wertebereich zwischen etwa 20m und etwa 50m, bevorzugt von etwa 30m. Insbesondere für Marineanwendungen ist es aus Platzgründen besonders bevorzugt, dass die doppelflutige Kreiselpumpe in vertikaler Bauart realisiert ist, also derart, dass die Welle senkrecht zu einer Standfläche der Kreiselpumpe verläuft.
  • Wie bereits angedeutet ist es im Hinblick auf eine möglichst kostengünstige Ausführungsvariante der Kreiselpumpe erfindungsgemäß vorgesehen, dass die das Flügelrad tragende Welle ausschließlich auf einer Seite, vorzugsweise auf einer oberen Seite gelagert ist.
  • Vorzugsweise beträgt die Spaltbreite der Dichtspalte mindestens 20%, vorzugsweise mindestens 12%, noch weiter bevorzugt 6% des Radialabstandes des Flügelrades 7 zu dem den Axialspalt begrenzenden Pumpenbauteil, d.h. dem Pumpengehäuse und/oder zu dem, vorzugsweise einen Gehäuseabschnitt bildenden, Einsatzteil.
  • Selbstverständlich ist es möglich, auf beiden Axialseiten des radialen Austrittsbereichs des Flügelrades mehrere, jeweils als Axialspalt ausgebildete Dichtspalte vorzusehen. Bevorzugt ist es jedoch, jeweils nur einen als Axialspalt ausgebildeten Dichtspalt vorzusehen, wobei als Dichtspalte jeweils die Spalte mit geringster Spaltbreite verstanden werden.
  • Ganz besonders bevorzugt ist eine Ausführungsvariante, bei der die, vorzugsweise ausschließlich, zwei Dichtspalte in einem Bereich radial innerhalb von umfangsgeschlossenen Radialspalten angeordnet sind, über die das Flügelrad von dem mindestens einen, vorzugsweise ausschließlich einen, Pumpenbauteil beabstandet ist. Dabei ist es besonders bevorzugt, wenn sich die Axialspalte, ausgehend von den Radialspalten in radialer Richtung nach innen erstrecken. Besonders bevorzugt ist also eine Ausführungsvariante, bei der die Axialspalte, zumindest in einem radial inneren Bereich, einen geringeren Abstand zur Welle aufweisen als die Radialspalte. Mit Vorteil befinden sich die Dichtspalte innerhalb eines gedachten Kreiszylinders, dessen Mantelfläche die Radialspalte in sich aufnimmt. Aufgrund einer derartigen Ausführungsvariante wird die Dichtwirkung verbessert.
  • Besonders zweckmäßig ist es, wenn das Flügelrad eine kreiszylindrische Hüllkontur aufweist, wobei es noch weiter bevorzugt ist, wenn die Dichtspalte (Axialspalte) zwischen jeweils einer Stirnseite des eine zylindrisch Hüllkontur aufweisenden Flügelrades und dem mindestens einen, vorzugsweise ausschließlich einen, Pumpenbauteil ausgebildet sind.
  • Alternativ kann auch eine Hüllkontur vorgesehen werden, bei der das Flügelrad sich mit seinem Auslassbereich weiter nach außen in radialer Richtung erstreckt. Wie später noch erläutert werden wird ist es jedoch auch bei einer solchen Geometrie bevorzugt, wenn der axiale Dichtspalt in einem Bereich angeordnet ist, der einen geringeren Radius aufweist als ein möglicher Radialspalt, der zwischen dem Pumpenstrahl und dem Flügelrad angeordnet ist.
  • Aufgrund der erfindungsgemäßen Ausbildung der Dichtspalte als Axialspalte ist es möglich, die Spaltbreite der Dichtspalte wesentlich geringer zu bemessen als im Stand der Technik, ohne dass die Gefahr besteht, dass das Flügelrad bei einer radialen Auslenkung an dem die Dichtspalte begrenzenden Pumpenbauteil anschlägt. Es ist also möglich, durch die erfindungsgemäße Ausgestaltung der Dichtspalte einen hohen Wirkungsgrad der Kreiselpumpe zu erzielen, da die Flüssigkeitsmenge, die aus dem Druckbereich in den Saugbereich (Unterdruckbereich) strömt, durch die geringe Spaltbreite der Dichtspalte minimiert wird. In radialer Richtung kann der Abstand zwischen dem Flügelrad und dem Pumpenbauteil und/oder anderen Bauteilen der Pumpe so bemessen werden, dass selbst bei der größtmöglichen im Betrieb auftretenden Auslenkung des Flügelrades keine Kollisionsgefahr besteht. Es ist also möglich, auch vor großvolumenströmigen Anwendungen, insbesondere für Marineapplikationen eine nur einseitige Lagerung der Flügelradwelle zu realisieren, da größere Radialauslenkungen des Flügelrades als bisher akzeptiert werden können. Darüber hinaus kann die Dimensionierung der Welle als solches minimiert werden.
  • Konstruktiv besonders einfach und damit bevorzugt ist eine Ausführungsform, bei der die Dichtspalte - im Rahmen der Toleranzen - exakt in Bezug auf ihre Längserstreckung in radialer Richtung verlaufen. Es ist jedoch auch eine leicht gekrümmte oder leicht schräge Ausgestaltung der Dichtspalte durch eine entsprechende Ausformung zumindest eines die Dichtspalte begrenzenden Bauteils (Flügelrad und/oder Pumpenbauteil, insbesondere Pumpengehäuse) möglich, insbesondere derart, dass die Spaltgeometrie der gekrümmten Auslenkbewegung des Flügelrades, insbesondere bei einseitiger Wellenlagerung folgt, so dass die Spaltbreite, unabhängig vom Grad der Auslenkung des Flügelrades im Betrieb, zumindest unabhängig konstant bleibt. Besonders bevorzugt entspricht der Krümmungsradius zumindest näherungsweise dem Abstand des Flügelrades zu dem Lager der das Flügelrad tragenden Welle.
  • In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass die Spaltbreite der als Axialspalte ausgebildeten Dichtspalte aus einem Wertebereich zwischen 200µm und 2000µm, ganz besonders bevorzugt zwischen 200µm und 400µm gewählt ist.
  • Besonders zweckmäßig ist es, wenn der minimale, d.h. der geringste Radialabstand des Flügelrades zu dem die als Axialspalte ausgebildeten Dichtspalte begrenzenden Pumpenbauteil der Kreiselpumpe (bei stillstehendem Flügelrad) aus einem Wertebereich zwischen 2mm bis 10mm gewählt ist. Anders ausgedrückt ist der Abstand zwischen dem Flügelrad und dem vorgenannten Pumpenbauteil vorzugsweise größer als die Abstände des angegebenen Wertebereichs. Ganz besonders bevorzugt handelt es sich bei dem vorgenannten minimalen Radialabstand nicht nur um den minimalen Radialabstand des Flügelrades zu dem mindestens einen, vorzugsweise ausschließlich einen die Dichtspalte begrenzenden Pumpenbauteil, sondern um den minimalen Radialabstand des Flügelrades zu sämtlichen Bauteilen der Pumpe, um eine Kollision bei radialer Auslenkung sicher zu verhindern.
  • Konstruktiv besonders bevorzugt ist eine Ausführungsform der doppelflutigen Kreiselpumpe, bei der die Dichtspalte zwischen den in axialer Richtung weisenden Stirnseiten des Flügelrades und dem mindestens einen Pumpenbauteil angeordnet sind. Anders ausgedrückt ist es bevorzugt, wenn die Dichtspalte zueinander den größtmöglichen Axialabstand aufweisen. Dies kann beispielsweise dadurch realisiert werden, dass das Flügelrad eine, zumindest näherungsweise kreiszylindrische Hüllkontur aufweist. Besonders bevorzugt umschließt eine gedachte, die Radialspalte aufnehmende Kreiszylindermantelfläche die Axialspalte radial außen.
  • Wie eingangs erläutert wird unter einem sich in radialer Richtung erstreckenden Axialspalt (Dichtspalt) nicht nur eine Ausführungsform verstanden, bei der die Dichtspalte in Bezug auf ihre Längserstreckung - im Rahmen der Toleranzen - exakt in radialer Richtung verlaufen, also beispielsweise ringscheibenförmig ausgebildet sind. Es ist auch eine Ausführungsform denkbar, bei der die Dichtspalte einen geringen Steigungswinkel aufweisen oder leicht gekrümmt sind, d.h. einen großen Krümmungsradius aufweisen, wobei dieser bevorzugt, zumindest näherungsweise, insbesondere bei einseitig gelagerter Welle, dem Abstand des jeweiligen Dichtspaltes von dem Wellenlager entspricht. Der jeweilige Dichtspalt ist also dann derart ausgebildet, dass sich die Spaltbreite im Betrieb der Kreiselpumpe, also bei einer möglichen radialen Auslenkung des Flügelrades nicht, oder nur möglichst geringfügig ändert, da die Spaltgeometrie der Auslenkbewegung folgt. Die Krümmung bzw. Abschrägung der Dichtspalte kann durch eine entsprechend geometrische Ausformung des Flügelrades und/oder des mindestens einen, vorzugsweise ausschließlich einen, die Dichtspalte auf der dem Flügelrad gegenüberliegenden Axialseite begrenzenden Pumpenbauteil realisiert werden. Ganz besonders bevorzugt ist der Winkel (Neigungswinkel) des jeweiligen Dichtspaltes zu einer gedachten, orthogonal zur Längserstreckung der Welle angeordneten Radialebene aus einem Wertebereich zwischen 0,01 ° und 2,0° gewählt. Bevorzugt ist ein möglicher Krümmungsradius aus einem Wertebereich zwischen 200mm und 1000mm, vorzugsweise 300mm und 700mm gewählt.
  • Der Krümmungsradius des jeweiligen Dichtspaltes, genauer zumindest einer den Dichtspalt begrenzenden Fläche (des Flügelrades und/oder des Pumpenbauteils) entspricht bevorzugt, zumindest näherungsweise, dem Abstand des jeweiligen Dichtspaltes (insbesondere an einem radial innersten Bereich des Dichtspaltes) zu dem Wellenlager, insbesondere bei einseitig gelagerter (Pumpen-Welle). Entsprechend bezieht sich der in der Beschreibung erläuterter Neigungswinkel des Spaltes auf die Neigung zumindest einer den Dichtspalt begrenzenden Fläche (des Flügelrades und/oder des Pumpenbauteils) relativ zur vorerwähnten Radialebene.
  • Besonders bevorzugt ist es, wenn es sich bei der Kreiselpumpe um eine einstufige, also ausschließlich ein Flügelrad aufweisende Kreiselpumpe handelt.
  • Besonders zweckmäßig ist es, wenn es sich bei dem Pumpengehäuse um ein sogenanntes Spiralgehäuse handelt, welches den Strömungsweg auf der Saugseite zu den beiden Axialseiten des Flügelrades vorgibt und auf der Druckseite vorzugsweise zwei Auslasskanäle spiralartig zusammenführt.
  • Die Erfindung führt auch auf die Verwendung einer nach dem Konzept der Erfindung ausgebildeten doppelflutigen Kreiselpumpe als Kühlwasserpumpe für einen Schiffsdieselmotor oder als Ballastwasserförderpumpe auf einem Schiff.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.
  • Diese zeigen in:
  • Fig. 1:
    eine geschnittene Darstellung eines Ausführungsbeispieles einer nach dem Konzept der Erfindung ausgebildeten doppelflutigen Kreiselpumpe,
    Fig. 2:
    eine Prinzipzeichnung zur Darstellung der Spaltverhältnisse,
    Fig. 3 bis Fig. 7:
    unterschiedliche Ausgestaltungsmöglichkeiten der Dichtspalte.
  • In den Figuren sind gleiche Elemente und Elemente mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet.
  • In Fig. 1 ist in einer Schnittansicht eine doppelflutige Kreiselpumpe 1 in vertikaler Bauart gezeigt. In dem dargestellten Ausführungsbeispiel handelt es sich um eine Kühlwasserpumpe für einen Schiffsdieselmotor, die ausgelegt ist, um einen Volumenstrom von 2300m3/h bei einer maximalen Förderhöhe von 30m zu fördern.
  • Die Kreiselpumpe 1 umfasst ein als Spiralgehäuse ausgebildetes Pumpengehäuse 2 mit einem saugseitigen Einlass 3 sowie einem druckseitigen Auslass 4. In das Pumpengehäuse 2 ragt von oben in vertikaler Richtung nach unten eine einseitig gelagerte Welle 5 hinein, die mittels eines als Kugellager ausgebildeten Lagers 6 gelagert ist. Endseitig trägt die Welle 5 ein doppelflutiges Flügelrad 7 mit einer im Wesentlichen kreiszylindrischen Hüllkontur. Das Flügelrad 7 sitzt drehfest auf der Welle 5. In einem Bereich axial zwischen dem Lager 6 und dem Flügelrad 7 befindet sich eine Wellendichtung 8. Wie sich aus Fig. 1 ergibt, durchsetzt die Welle 5 in einem Bereich oberhalb der Wellendichtung 8 einen am Pumpengehäuse 2 durch Verschrauben festgelegten Deckel 9.
  • Das Flügelrad 7 trennt einen Unterdruckbereich 10 (Saugseite) von einem Überdruckbereich 11 (Druckseite).
  • Die Welle 5 ist mittels eines nicht dargestellten Motors, insbesondere eines Elektromotors in an sich bekannter Weise rotierbar, wobei das mit der Welle 5 rotierende Flügelrad 7 aus beiden Axialseiten aus dem Unterdruckbereich 10 Fluid, hier Kühlwasser ansaugt und in radialer Richtung nach außen in den Überdruckbereich 11 fördert, wobei der Überdruckbereich 11 unterteilt ist in zwei spiralförmig angeordnete Strömungskanäle 12, 13, die über eine Scheidewand 14 voneinander getrennt sind. Im Bereich des Auslasses 4 werden die beiden Strömungskanäle 12, 13 bzw. die Fluidströme wieder zusammengeführt.
  • In Betrieb der Kreiselpumpe 1 kommt es, insbesondere dann, wenn die Kreiselpumpe 1 nicht an einem optimalen Arbeitspunkt arbeitet zu einer Radialkraftbelastung der Welle 5 im Bereich des Flügelrades 7, die bestrebt ist, die Welle 5 mit Flügelrad 7 in radialer Richtung auszulenken. Um zu verhindern, dass das Flügelrad 7 mit dem Pumpengehäuse 2 (Pumpenbauteil) in radialer Richtung kollidiert, sind zwei axial beabstandete, sich in axialer Richtung erstreckende Radialspalte 15, 16 so breit bemessen, dass selbst eine maximal denkbare Auslenkung der Welle 5 im Betrieb nicht zu einer Kollision des Flügelrades 7 mit dem Pumpengehäuse 2 führen kann. Die Radialspalte 15, 16 sind aufgrund ihrer vergleichsweise großen Spaltbreite (gemessen an der engsten Stelle) von dem in dem gezeigten Ausführungsbeispiel etwa 5mm nicht als Dichtspalte ausgelegt bzw. erfüllen keine ausreichende Dichtfunktion. Die Radialspalte haben die Form von Kreiszylindermantelflächen. Würde es sich bei den Radialspalten 15, 16 um die einzigen Dichtspalte handeln, hätte die Kreiselpumpe 1 aufgrund der vergleichsweise großen Spaltbreite einen äußerst schlechten Wirkungsgrad, da Flüssigkeit, hier Kühlwasser ständig in großer Menge durch die Radialspalte 15, 16 aus dem Überdruckbereich 11 in den Unterdruckbereich 10 strömen und somit unmittelbar im Kreis gefördert werden würde.
  • Zur Erzielung der gewünschten Dichtwirkung bei vermiedener Kollisionsgefahr zwischen Flügelrad 7 und Pumpengehäuse 2 (Pumpenbauteil) übergreift das Pumpengehäuse 2 (Pumpenbauteil) das Flügelrad 7 an beiden Axialseiten, d.h. oben und unten in radialer Richtung nach innen, derart, dass zwischen jeder Stirnseite 17, 18 des Flügelrades 7 und dem Pumpengehäuse 2 (Pumpenbauteil) ein als Axialspalt ausgebildeter, sich hinsichtlich seiner Längserstreckung in radialer Richtung erstreckender Dichtspalt 19, 20 gebildet ist. Wesentlich ist nun, dass diese Dichtspalte 19, 20, gemessen an ihrer engsten Stelle eine geringere Spaltbreite aufweisen als die Radialspalte 15, 16.
  • Die Dichtspalte 19, 20 befinden sich radial innerhalb der Radialspalte 15, 16, wobei die Radialspalte 15, 16 in die Dichtspalte 19, 20 übergehen bzw. die Dichtspalte 19, 20 grenzen unmittelbar an die Radialspalte 15, 15 an.
    In dem gezeigten Ausführungsbeispiel entspricht die Spaltbreite der Dichtspalte 19, 20 etwa 400µm.
  • Die Dichtspalte 19, 20 sind, wie erläutert einerseits in axialer Richtung begrenzt von dem Flügelrad 7, in dem gezeigten Ausführungsbeispiel von jeweils einer Stirnseite 17, 18 des Flügelrads 7 und gegenüberliegend von einer hier parallel zur jeweiligen Stirnseite 17, 18 ausgerichteten Wandfläche 21, 22 des Pumpengehäuses 2.
  • Kommt es zu einer Auslenkung des Flügelrades 7 im Betrieb in radialer Richtung werden die Stirnseiten 17, 18 im Wesentlichen parallel verschoben zu den Wandflächen 21, 22 des Pumpengehäuses 2, so dass es hier nicht zu einer Kollision kommen kann. Die Radialspalte 15, 16 sind, wie erläutert, so breit bemessen, dass auch hier eine Kollision mit dem Flügelrad 7, auch bei einer maximal zulässigen Auslenkung ausscheidet.
  • In Fig. 2 sind die Spaltverhältnisse schematisch dargestellt.
  • Zu erkennen ist das schematisch dargestellte Flügelrad 2, das drehfest an einer drehbar gelagerten Welle 5 angeordnet ist.
  • Das Flügelrad 7 ist umgeben von einem Pumpenbauteil 23, hier dem Pumpengehäuse 2, genauer einem Einsatzteil 24, welches einen Bestandteil des Pumpengehäuses 2 bildet. Alternativ kann das Einsatzteil auch nicht einen Bestandteil des Gehäuses bildend ausgebildet und angeordnet werden, also innerhalb des Pumpengehäuses und zwar mit Abstand zu einer Gehäuseaußenseite. Bei einer Rotation des Flügelrades 7 strömt die Flüssigkeit in Pfeilrichtungen von der Saugseite (Unterdruckbereich) 10 zur Druckseite (Überdruckbereich) 11.
  • Zwischen dem Pumpenbauteil 23, welches ein- oder mehrteilig ausgebildet sein kann und dem Flügelrad 7, genauer zwischen den Stirnseiten 17, 18 des eine kreiszylindrische Hüllkontur aufweisenden Flügelrades 7 sind, hier zwei Dichtspalte 19, 20 ausgebildet. Bei diesen Dichtspalten 19, 20 handelt es sich um Axialspalte, die axial zwischen dem Pumpenbauteil 23 und dem Flügelrad 7 ausgebildet sind. Die Spaltbreite s der Dichtspalte 19, 20 beträgt in dem gezeigten Ausführungsbeispiel 400µm. Die beiden flachringscheibenförmigen Dichtspalte 19, 20 sind in axialer Richtung voneinander beabstandet und u.a. getrennt voneinander von dem bzw. den radialen Austrittsbereichen des Flügelrades 7.
  • In dem gezeigten Ausführungsbeispiel sind zusätzlich zu den Dichtspalten 19, 20 zwischen dem Flügelrad 7 und dem Pumpenbauteil 23 zwei Radialspalte 15, 16 vorgesehen, deren Spaltbreite a größer ist als die Spaltbreite s der Dichtspalte. In dem gezeigten Ausführungsbeispiel beträgt die Spaltbreite a bei stillstehendem Flügelrad 7 etwa 5mm. Die Dichtspalte 19, 20 befinden sich radial innerhalb der Radialspalten 15, 16, sind also weniger weit von der Welle 5 beabstandet als die Radialspalte 15, 16. Die Radialspalte sind kreiszylindermantelförmig. Die Dichtspalte 19, 20 haben in etwa die Form einer Kreisringscheibe. Auf das Vorsehen der (engen) Radialspalte 15, 16 kann bei geänderter konstruktiver Auslegung des Pumpenbauteils 23 auch verzichtet werden. Auch ist es denkbar auf zumindest einer der beiden Axialseiten, vorzugsweise auf beiden Axialseiten, des Flügelrades 7 mehrere, vorzugsweise in Parallelebenen befindliche Dichtspalte 19, 20, bei denen es sich dann jeweils um Axialspalte handelt vorzusehen. Bevorzugt sind dann auf mindestens einer Axialseite des Flügelrades 7 zwei axial benachbarte Dichtspalte über einen Radialspalt mit einer größeren Spaltbreite als die Spaltbreite der Dichtspalte miteinander verbunden. Es würde sich also eine gestufte Spaltausbildung ergeben, wobei die Axialspaltabschnitte die Dichtspalte darstellen würden. Es ergibt sich also eine gestufte Spaltausführung.
  • Anhand der Fig. 3 bis 7 werden denkbare alternative Dichtspaltgeometrien gezeigt, wobei die Winkel bzw. Krümmungsradien aus Veranschaulichungsgründen übertrieben dargestellt sind. In der Realität handelt es sich um minimale Steigungen bzw. große Krümmungsradien.
  • Gemeinsam ist in allen Ausführungsbeispielen, dass es sich bei den Dichtspalten um Axialspalte handelt, die hinsichtlich ihrer Längenerstreckung im Wesentlichen in radialer Richtung verlaufen und deren Axialerstreckung (wesentlich) geringer ist als deren Radialerstreckung.
  • Bei dem Ausführungsbeispiel gemäß Fig. 3 ist ein Dichtspalt 19 zwischen dem Flügelrad 7 und einem Pumpenbauteil 23 ausgebildet. Der den Dichtspalt 19 begrenzende Abschnitt des Flügelrades 7 verläuft in Bezug auf die Längserstreckung der Welle exakt in radialer Richtung, wohingegen der Flächenabschnitt des Pumpenbauteils 23, welcher den Dichtspalt 19 begrenzt leicht geneigt ist in Bezug auf eine Radialebene, hier unter einem Winkel α von < 1 °. Hieraus ergibt sich eine Dichtspaltneigung um diesen Winkel α in Bezug auf eine gedachte Radialebene, in der in dem gezeigten Ausführungsbeispiel der dargestellte Flächenabschnitt des Flügelrades 7 liegt.
  • Bei dem Ausführungsbeispiel gemäß Fig. 4 sind sowohl der den Dichtspalt 19 begrenzende Flächenabschnitt des Flügelrades 7 als auch der den Dichtspalt 19 gegenüberliegend begrenzende Flächenabschnitt des Pumpenbauteils 23 geneigt in Bezug auf eine Radialebene, in dem gezeigten Ausführungsbeispiel beide unter dem gleichen Winkel α von hier < 10°. Es ist auch die Realisierung unterschiedlicher, jedoch ähnlicher Neigungswinkel realisierbar.
  • Bei dem Ausführungsbeispiel gemäß Fig. 5 liegt der den Dichtspalt 19 begrenzende Flächenabschnitt des Flügelrades 7 in einer Radialebene bezogen auf die Längserstreckung der Welle, wohingegen der den Dichtspalt 19 begrenzende Flächenabschnitt des Pumpenbauteils 23 gekrümmt ist, vorzugsweise weist die Krümmung einen Radius auf, der den Dichtspalt 19 vom nicht dargestellten Lager der Welle 5 hat.
  • Bei dem Ausführungsbeispiel gemäß Fig. 6 sind beide den Dichtspalt 19 begrenzende Flächen als sowohl die des Flügelrades 7 als auch die des Pumpenbauteils 23 leicht gekrümmt ausgebildet.
  • Bei dem Ausführungsbeispiel gemäß Fig. 7 ist die den Dichtspalt 19 begrenzende Fläche des Flügelrades 7 eben, jedoch unter einem Winkel α von < 10° geneigt zur Radialebene ausgebildet, wohingegen die den Dichtspalt 19 begrenzende Fläche des Pumpenbauteils 23 leicht gekrümmt ist und vorzugsweise ein Krümmungsradius von 500mm aufweist.
  • Bezugszeichenliste
  • 1
    doppelflutige Kreiselpumpe
    2
    Pumpengehäuse
    3
    Einlass (Einlassstutzen)
    4
    Auslass (Auslassstutzen)
    5
    Welle
    6
    Lager
    7
    Flügelrad
    8
    Wellendichtung
    9
    Deckel
    10
    Unterdruckbereich
    11
    Überdruckbereich
    12
    Strömungskanal
    13
    Strömungskanal
    14
    Scheidewand
    15
    Radialspalt
    16
    Radialspalt
    17
    Stirnseite
    18
    Stirnseite
    19
    Dichtspalt
    20
    Dichtspalt
    21
    Wandfläche
    22
    Wandfläche
    23
    Pumpenbauteil
    24
    Einsatzteil
    s
    Spaltbreite, Dichtspalt
    a
    Spaltbreite, Radialspalt

Claims (9)

  1. Doppelflutige Kreiselpumpe, insbesondere Kühlwasserpumpe für einen Schiffdieselmotor oder Balastwasserförderpumpe, mit einem Pumpengehäuse (2) und mit einem an einer rotatorisch antreibbaren Welle (5) drehfest angeordneten, doppelflutigen Flügelrad (7), mit welchem ein Fluid von zwei Axialseiten aus einem Unterdruckbereich (10) ansaugbar und in radialer Richtung in einen Überdruckbereich (11) förderbar ist, wobei der Unterdruckbereich (10) gegenüber dem Überdruckbereich (11) mittels mindestens zweier axial beabstandeter Dichtspalte (19, 20) abgedichtet ist, wobei die Dichtspalte (19, 20) als sich in Umfangsrichtung sowie in radialer Richtung erstreckende Axialspalte ausgebildet sind, deren Spaltbreite (s) geringer ist als der Radialabstand (a) des Flügelrades (7) zu sämtlichen mit Radialabstand zu dem Flügelrad (7) angeordneten Bauteilen,
    dadurch gekennzeichnet,
    dass die Kreiselpumpe zum Fördern eines Volumenstroms aus einem Wertebereich zwischen 500m3/h und 4000m3/h ausgelegt und in vertikaler Bauart realisiert ist, und
    dass die Welle (5) ausschließlich einseitig gelagert ist, und dass die Dichtspalte (19,20) axial zwischen dem Flügelrad (7) und dem stationären Pumpengehäuse (2) und/oder einem stationären Einsatzteil (24) ausgebildet sind.
  2. Kreiselpumpe nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Spaltbreite (s) des Dichtspaltes (19, 20) aus einem Wertebereich zwischen 200µm und 2000µm aufweist.
  3. Kreiselpumpe nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass der minimale Radialabstand (a) des Flügelrades (7) zu dem Pumpenbauteil (23) der Kreiselpumpe bei stillstehendem Flügelrad (7) aus einem Wertebereich zwischen 2mm und 10mm gewählt ist.
  4. Kreiselpumpe nach einem der Ansprüche 1 oder 3,
    dadurch gekennzeichnet,
    dass die Dichtspalte (19, 20) zwischen dem Stirnseiten (17, 18) des Flügelrades (7) und dem Pumpengehäuse (2) oder dem Einbauteil (24) angeordnet sind.
  5. Kreiselpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Dichtspalte (19, 20) exakt in radialer Richtung verlaufend ausgebildet sind, oder mit einer Radialebene einen Winkel aus einem Wertebereich zwischen etwa 0° und 1° einschließen, vorzugsweise zwischen 0,5° und 5° und/oder dass der Dichtspalt (19, 20) einen Krümmungsradius aus einem Wertebereich zwischen 200mm und 1000mm, vorzugsweise zwischen 300mm und 700mm aufweist.
  6. Kreiselpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass Kreiselpumpe zum Fördern eines Volumenstromes aus einem Wertebereich zwischen etwa 800m3/h und etwa 1500m3/h oder zwischen etwa 1500m3/h und etwa 2300m3/h oder zwischen 2300m3/h und 3500m3/h ausgelegt ist, vorzugsweise bei einer maximalen Förderhöhe aus einem Wertebereich zwischen etwa 20m und etwa 50m, bevorzugt von etwa 30m.
  7. Kreiselpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die, vorzugsweise ausschließlich, zwei Dichtspalte (19, 20) einen geringeren Radialabstand zur Welle (5) aufweisen als zwischen dem Flügelrad (7) und dem als Pumpenbauteil ausgebildete Radialspalte (15, 16).
  8. Kreiselpumpe nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Flügelrad (7) eine kreiszylindrische Hüllkontur aufweist.
  9. Verwendung einer Kreiselpumpe nach einem der vorhergehenden Ansprüche als Kühlwasserpumpe für einen Schiffsdieselmotor oder als Ballastförderpumpe.
EP11723310.6A 2010-06-16 2011-05-09 Doppelflutige kreiselpumpe Not-in-force EP2582983B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010023931A DE102010023931A1 (de) 2010-06-16 2010-06-16 Doppelflutige Kreiselpumpe
PCT/EP2011/057396 WO2011157485A1 (de) 2010-06-16 2011-05-09 Doppelflutige kreiselpumpe

Publications (2)

Publication Number Publication Date
EP2582983A1 EP2582983A1 (de) 2013-04-24
EP2582983B1 true EP2582983B1 (de) 2016-03-30

Family

ID=44365041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723310.6A Not-in-force EP2582983B1 (de) 2010-06-16 2011-05-09 Doppelflutige kreiselpumpe

Country Status (9)

Country Link
US (1) US20130156545A1 (de)
EP (1) EP2582983B1 (de)
JP (1) JP5857042B2 (de)
KR (1) KR101737665B1 (de)
CN (1) CN103080556B (de)
DE (1) DE102010023931A1 (de)
DK (1) DK2582983T3 (de)
ES (1) ES2569878T3 (de)
WO (1) WO2011157485A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107676269A (zh) * 2016-08-02 2018-02-09 东山县飞腾机电设备有限公司 一种高效紧凑型自吸双吸泵
RU196811U1 (ru) * 2019-12-17 2020-03-16 Акционерное общество (АО) "Научно-исследовательский институт "Лопастных машин" ("НИИ ЛМ") Центробежный насос с плоским горизонтальным разъемом корпуса

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB242230A (en) 1925-06-30 1926-05-06 John James Schmidt Improvements in centrifugal pumps
FR723344A (fr) 1930-12-10 1932-04-07 Beaudrey Et Bergeron Soc Perfectionnements aux pompes centrifuges
US3671138A (en) * 1971-02-02 1972-06-20 Borg Warner Composite knockdown pump
US4004541A (en) * 1973-07-25 1977-01-25 Hydro-Tech Corporation Jet boat pump
US4190395A (en) * 1978-04-28 1980-02-26 Borg-Warner Corporation Multiple stage pump
ZW4381A1 (en) * 1980-03-07 1981-05-20 Orion Pumps Ltd Improvements in or relating to pumps
US4613281A (en) * 1984-03-08 1986-09-23 Goulds Pumps, Incorporated Hydrodynamic seal
US4643652A (en) * 1985-03-04 1987-02-17 Hale Fire Pump Company Portable engine-pump assembly
NO162781C (no) * 1987-10-26 1990-02-14 Kvaerner Eureka As Vertikal neddykkbar pumpesats.
US4867633A (en) * 1988-02-18 1989-09-19 Sundstrand Corporation Centrifugal pump with hydraulic thrust balance and tandem axial seals
US4913619A (en) * 1988-08-08 1990-04-03 Barrett Haentjens & Co. Centrifugal pump having resistant components
US4976444A (en) * 1989-08-21 1990-12-11 Amoco Corporation Seal and seal assembly
JP2627810B2 (ja) * 1990-04-05 1997-07-09 株式会社クボタ プリローテーション形渦巻ポンプ
ITMI981112A1 (it) * 1998-05-20 1999-11-20 Termomeccanica S P A Pompa centrifuga a tenuta radiale
US6264440B1 (en) * 1998-10-29 2001-07-24 Innovative Mag-Drive, L.L.C. Centrifugal pump having an axial thrust balancing system
US20040136825A1 (en) * 2001-08-08 2004-07-15 Addie Graeme R. Multiple diverter for reducing wear in a slurry pump
JP4078833B2 (ja) * 2001-12-19 2008-04-23 株式会社日立プラントテクノロジー 両吸込渦巻ポンプ
CN2718278Y (zh) * 2004-08-04 2005-08-17 上海中航泵业制造有限公司 改进型双吸泵
US20070110595A1 (en) * 2004-12-06 2007-05-17 Ebara Corporation Fluid conveying machine
CN2775361Y (zh) * 2005-03-23 2006-04-26 大连深蓝泵业有限公司 防转子轴向左右窜动的双吸泵
DE102006045558A1 (de) * 2006-09-25 2008-04-03 Rwo Gmbh Wasseraufbereitungsanlage
CN200975367Y (zh) * 2006-12-04 2007-11-14 上海连成(集团)有限公司 一种便于观测径向间隙的密封环
CN105508291B (zh) * 2008-05-27 2019-01-08 伟尔矿物澳大利亚私人有限公司 叶轮
CN201461456U (zh) * 2009-07-16 2010-05-12 上海奥一泵业制造有限公司 一种双吸式潜水电泵

Also Published As

Publication number Publication date
KR20130131213A (ko) 2013-12-03
JP5857042B2 (ja) 2016-02-10
US20130156545A1 (en) 2013-06-20
ES2569878T3 (es) 2016-05-12
DE102010023931A1 (de) 2011-12-22
EP2582983A1 (de) 2013-04-24
JP2013532252A (ja) 2013-08-15
KR101737665B1 (ko) 2017-05-18
DK2582983T3 (en) 2016-05-02
CN103080556B (zh) 2016-07-13
WO2011157485A1 (de) 2011-12-22
CN103080556A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
EP2597029A2 (de) Vordüse für ein Antriebssystem eines Wasserfahrzeuges zur Verbesserung der Energieeffizienz
DE102015100215B4 (de) Seitenkanalgebläse für eine Verbrennungskraftmaschine
WO2001081767A1 (de) Förderpumpe
DE102007032228A1 (de) Selbstansaugende Pumpenaggregation
EP2932105A2 (de) Pumpvorrichtung mit einem strömungsleitelement
EP2582983B1 (de) Doppelflutige kreiselpumpe
EP3303845B1 (de) Selbstansaugende pumpenaggregation
WO2007060501A1 (de) Homogenisator mit einem rotor und einem gegenläufig zum rotor rotierbaren vorlaufrad (inducerschraube) und einem gegenläufig zum rotor rotierbaren gegenstromläufer
EP1131560B1 (de) Seitenkanalpumpe
EP2342464B1 (de) Seitenkanalgebläse, insbesondere sekundärluftgebläse für eine verbrennungskraftmaschine
DE4239071C2 (de) Tauchpumpenaggregat
DE2024215B2 (de)
EP3577346B1 (de) Turboverdichter mit integrierten strömungskanälen
EP4305317A1 (de) Kreiselpumpe mit einlaufrippen
WO2009043765A1 (de) Kraftstoffpumpe zum fördern von kraftstoff aus einem vorratsbehälter zu einer brennkraftmaschine
EP3978760A1 (de) Tauchkreiselpumpe und laufrad für eine solche
EP2754344B1 (de) Strömungsmaschine für Flüssigkeiten
DE102014114801B4 (de) Strömungsmaschine mit halbaxialem Laufrad
EP2673512A2 (de) Ölpumpe
WO2019120633A1 (de) Seitenkanalgebläse, insbesondere sekundärluftgebläse für eine verbrennungskraftmaschine
WO2014111272A1 (de) Seitenkanalpumpe mit asymmetrischen querschnitten der seitenkanäle
DE2432073A1 (de) Kreiselpumpe, insbesondere tauchpumpe
DE102013218410A1 (de) Zentrifugalpumpe
DE10202366A1 (de) Seitenkanalpumpe
DE102014116068A1 (de) Zentrifugalpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1184841

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 785718

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009283

Country of ref document: DE

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2569878

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160512

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160330

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160509

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009283

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160509

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 785718

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160509

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190515

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190527

Year of fee payment: 9

Ref country code: DK

Payment date: 20190510

Year of fee payment: 9

Ref country code: ES

Payment date: 20190603

Year of fee payment: 9

Ref country code: NO

Payment date: 20190509

Year of fee payment: 9

Ref country code: DE

Payment date: 20190423

Year of fee payment: 9

Ref country code: FI

Payment date: 20190509

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190410

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190508

Year of fee payment: 9

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1184841

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011009283

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200531

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200509

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200509

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200510