EP1155760B1 - Procédé de fabrication d'une pièce moulée à charge thermique élevée - Google Patents
Procédé de fabrication d'une pièce moulée à charge thermique élevée Download PDFInfo
- Publication number
- EP1155760B1 EP1155760B1 EP01109115A EP01109115A EP1155760B1 EP 1155760 B1 EP1155760 B1 EP 1155760B1 EP 01109115 A EP01109115 A EP 01109115A EP 01109115 A EP01109115 A EP 01109115A EP 1155760 B1 EP1155760 B1 EP 1155760B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- cooling
- polymer foam
- process according
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
- B22C7/023—Patterns made from expanded plastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
- B22C9/043—Removing the consumable pattern
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/182—Transpiration cooling
- F01D5/183—Blade walls being porous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
- F05D2230/211—Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/606—Directionally-solidified crystalline structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/612—Foam
Definitions
- the invention relates to a method for producing a thermally loaded casting of a thermal turbomachine according to the preamble of claim 1.
- thermal turbomachines charged with hot gas for example turbine blades of gas turbines
- cooling air bores or with cooling structures in order to be able to increase the temperature of the hot gas on the one hand and to extend the service life of the affected parts on the other hand.
- the inside or a double-walled cooling system, for example, of a turbine blade with cooling air is cooled by dissipating the heat to the outside.
- the outside of the blade is cooled by a film, which forms on the surface of the turbine blade. The aim is to make film cooling as effective as possible while at the same time reducing the amount of cooling air.
- metal felts in turbine blades are known. This is apparent, for example, from the documents DE-C2-32 03 869 or from DE-C2-32 35 230.
- This application of a metal felt has the task of providing an (internal) cooling system.
- this metal felt can serve as protection against abrasion by external mechanical loads, in particular when it has been arranged on the outside of the turbine blade and coated with a ceramic protective layer.
- a turbine blade with similar properties is also known from European publication EP-B1-132667.
- the invention is based on the object to provide a method for producing a thermally loaded casting of a thermal turbomachine with an integrated cooling structure, which increases the efficiency of the turbomachine.
- the cooling structure should consist of the same material as the casting and, if possible, can be produced in one step during the casting process.
- the object is achieved by a method according to the preamble of claim 1 in that a wax model of the part to be cooled is provided, at least one polymer foam is provided, which is stapled to the wax model or introduced into a cavity of the wax model containing at least one polymer foam and the wax model in a ceramic material be immersed, wherein the ceramic material accumulates around the wax model and also fills the polymer foam with the ceramic material, the ceramic material is dried, so that a mold is formed, the wax and the at least one polymer foam are removed by a heat treatment, the Casting with the mold is made by a known casting process and the ceramic material is removed.
- an externally whitening, open-pored cooling structure can be coated with a ceramic protective layer in front of the casting additional, external abrasion and to protect it from the surrounding hot gases. Due to the open-pored structure of the metal foam, the ceramic protective layer adheres very well to it and the possibility of chipping due to the extreme operating conditions is reduced. In addition, the cooling under the ceramic protective layer is still ensured, provided that the cooling structure is not completely penetrated by the ceramic protective layer.
- a polymer foam with a variable pore size can be used so as to strengthen or reduce cooling of certain areas of the cooling system compared to other areas.
- the thermally loaded casting may be a nozzle or bucket, a heat release segment, a platform of the nozzle or bucket, or a combustor wall of a gas turbine, or a bucket of a compressor.
- the invention relates to a method for producing a thermally loaded casting of a thermal turbomachine.
- these may be, for example, a guide or moving blade of a gas turbine or a compressor, a heat recovery segment of a gas turbine, the wall of a combustion chamber or a similar, highly thermally loaded casting.
- castings are manufactured using casting furnaces generally known in the art. Such a casting furnace can be used to produce complex components that can be exposed to high thermal and mechanical stresses. Depending on the process conditions, it is possible to produce the casting body directionally solidified. In this case, it is possible to form it as single crystal ("single crystal", SX) or polycrystalline as columnar crystals which have a preferred direction ("directionally solidified", DS). Of particular importance is that directed solidification occurs under conditions where there is a strong heat exchange between a cooled part of a molten raw material receiving mold and the still molten raw material. It may then form a zone of directionally solidified material with a solidification front, which migrates with continuous removal of heat to form the directly solidified Giess stressess by the mold.
- SX single crystal
- DS directionally solidified
- the device consists of a vacuum chamber containing an upper heating chamber and a lower cooling chamber. Both chambers are separated by a baffle.
- the vacuum chamber receives a mold, which is filled with a melt.
- a superalloy based on nickel is used.
- In the middle of the baffle there is an opening through which the mold is slowly moved from the heating chamber into the cooling chamber during the process so that the casting solidifies from the bottom upwards. The downward movement is done by a drive rod on which the mold is mounted.
- the bottom of the mold is water cooled.
- Below the baffle means for generating and guiding a gas flow are present. These means provide by the gas flow next to the lower cooling chamber for additional cooling and thus for a larger temperature gradient at the solidification front.
- the turbine blade 1 of Figure 1 has a cavity 6, from which cooling air 18 is passed through inner cooling holes 8,8b in the double-walled cooling system 7 during operation of the turbomachine.
- the arrows indicate the flow direction of the cooling air 18.
- the cooling air 18 then flows both inside the turbine blade in the height and to the trailing edge 3 of the turbine blade 1. It can the cooling system 7 at the trailing edge 3, to outer cooling holes 8,8 a or to larger cooling holes 8,8 c, both at the front 2, on the pressure side 4 or on the suction side 5 may be present, leave again.
- Film cooling is established at the outer cooling holes 8, 8a, while the walls inside the cooling system 7 are cooled by convection.
- axial ribs 10 may also be present within the cooling system 8, in which case no metal foam 9 is present and in which the cooling air 18 can flow unhindered.
- FIG. 3 which shows the front edge 2 from the blade root 9 to the blade tip 10 in the form of a longitudinal section through a turbine blade 1 according to the invention, reveals the flow direction of the cooling air 18.
- the cooling air 18 enters the cooling system 7 through internal cooling openings 8, 8b from the cavity 6 on.
- the cooling air 18 then flows through the pores of the metal foam 9, which is located within the cooling system 7.
- the aim of the invention is now to produce such, filled with open-cell metal foam 9 cooling systems 7 already during the casting process with cast iron furnace, as mentioned above, integral with the entire casting.
- a wax model of the part to be cooled is provided.
- An open-pore polymer foam which, for example, a Polyurethane foam is stapled to the wax model of the part to be molded or introduced into a possibly existing cavity of the wax model.
- Various wax / polymer models can also be stapled together to form an entire model.
- the polymer foam and the wax model is then immersed in a liquid, ceramic material, which is also called slip. Not only does the wax mold form the casting's casting mold, but the ceramic material also penetrates into the pores of the polymer foam.
- the slurry penetrates the polymer foam completely because it is an open-pore foam.
- the ceramic material is dried, so that the mold with which the casting is produced arises.
- the wax and also the polymer foam is removed by a suitable heat treatment, ie burned out.
- the casting mold is fired, ie it contains its strength in this way.
- the casting is made in a known manner with the resulting mold by a known, further described above furnace. Since the liquid alloy penetrates without difficulty during filling not only in the mold itself, but also in the pores formed by the polymer foam, which form the subsequent cooling system, the above-mentioned metal foam 9 is formed as a cooling system 7 simultaneously during the solidification of the alloy.
- the cast part and the metal foam then consist of one part and further process steps for producing the cooling structure do not occur.
- This type of production avoids by the casting process and the subsequent solidification also a porosity of the superalloy within the metal foam 9, since even during filling the liquid alloy evenly distributed within the open-pore mold (created by the polymer foam).
- the ceramic casting mold can then be removed in a suitable manner, for example by using an acid or an alkali.
- FIG. 2 schematically shows a section through a turbine blade 1 according to the invention.
- the cooling structure 7 is present only at the front edge 2 of the turbine blade 1.
- This cooling structure 7 was created as described above by simply adhering the polymer foam to the wax model. All other manufacturing steps are the same.
- the cooling air 18 penetrates from the cavity 6 through the cooling holes 8,8b in the cooling structure 7 a.
- the cooling structure 7 itself is coated with a ceramic protective layer 11 (Thermal Barrier Coating, TBC). This is done, for example, by a known from the prior art plasma spray method or an equivalent coating method.
- TBC Thermal Barrier Coating
- the coating of the porous cooling structure 7 with TBC can be done in various ways (by varying the parameters such as spray angle, distance, particle size, velocity, temperature, etc.).
- the cooling structure 7 can be completely penetrated with TBC, so that the pores of the metal foam 9 are completely filled. Pores allow very good adhesion of the TBC.
- the cooling structure 7 may also be covered with TBC only in a layer near the surface, so that there is still a layer underneath the protective layer of TBC into which cooling air 18 can penetrate. It is also conceivable that cooling holes 8 are present within the protective layer 11, through which the cooling air 18 exits to the outside. Due to the open-pore structure of the metal foam 9, the ceramic protective layer 11 adheres very well.
- the adhesion of the ceramic protective layer 11 to the cooling structure By a coarsening to the pore size outward (where the protective layer 11 is applied), the adhesion of the ceramic protective layer 11 to the cooling structure to be improved.
- the chipping of the TBC during operation of the casting by poor adhesion to the base material is advantageously significantly reduced or prevented.
- the ceramic protective layer 11 itself is porous enough to allow the passage of cooling air to a sufficient extent, no external cooling holes are required. In this way, a so-called sweat cooling can be achieved, which has proven to be very effective in the cooling effect.
- Possible cooling holes 8 within the ceramic protective layer 11 may be formed by appropriate masking prior to coating with TBC and unmasking by suitable means thereafter.
- the masking can be done, for example, with polymer foam, which is burned out for unmasking.
- a second way of masking the surface is to provide places within the mold that occupy that location. In this case, the ceramic mold is removed at these locations only after coating with TBC.
- a metal foam 9 as in FIG. 2 on the outer surface and the additional coating with TBC makes sense, in particular, at the points at which abrasion by mechanical action can occur, for example at the blade tip of a turbine blade 1 or on a heat release segment, since the open-pore structure of the metal foam 9 is very flexible and not clogged by the abrasion itself. Overall, however, the abrasion is reduced by the flexibility of the metal foam 9.
- FIGS. 4 to 8 Casting parts, as shown in FIGS. 4 to 8, can also be produced by the method according to the invention.
- Figures 4 and 5 show a heat rejection segment 14 of a gas turbine.
- This heat statement 1 can have a double-walled cooling structure 7 (FIG. 4) or also an externally attached metal foam 9 (FIG. 5), which, analogously to the turbine blade of FIG. 2, can be completely or partially coated with a protective layer 11 made of TBC.
- the heat dissipation segment is traversed by cooling air 18. This is made possible by the open-pore metal foam 9.
- the cooling air 18 penetrates through cooling holes 8 in the cooling system 7 and leaves it through this again.
- FIGS. 6a, 6b show two variants of section VI of FIG. 5.
- the metal foam 9 can obtain a different pore size by varying the pore size of the polymer foam during the production process.
- FIG. 6a shows the metal foam 9 1 , 9 2 with a variable pore size. This allows a stronger or a weaker cooling einzetner areas of the casting. As already mentioned above, this is also advantageous for a better hold of the protective layer 11 on the metal foam 9.
- the protective layer 11 may also be pierced with cooling holes 8 through which the cooling air 18 can flow to the outside.
- the cooling system 7 consists of several layers of the metal foam 9 and intermediate plates 15.
- the number of layers metal foam 9 / plate 15 is selected only by way of example and depends on special application. Already during production, as described above, several layers of wax / polymer foam are provided, from which subsequently the casting mold for the casting, as already described above, is manufactured. This leads during production directly to the embodiment shown in Figure 6b.
- the cooling air 18 penetrates the metal foam 9, can flow within a "plane" and cool by convection or transpiration. Although the various planes are separated by the plates 15, there are cooling holes 8 through which the cooling air 18 can change the plane. Generally, the specific design depends Of course, this cooling system 7 from the individual case.
- the cooling holes 8 within the plates 15 are also already produced during manufacture.
- the embodiment also applies to the guide vane 16 shown in FIG. 7, which has two cooled platforms 17, and the likewise cooled combustion chamber wall 19 shown in FIG. 8.
- Further exemplary embodiments, which are not illustrated with figures, are the cooled castings (FIG. Shovels, etc.) of a compressor.
- the castings with an integrated, open-pore cooling system 7 produced by the method according to the invention are also advantageous because the pressure difference of the cooling medium between the external pressure and the internal pressure (inside the cavity 6) greatly influences the effectiveness of the cooling. This pressure difference can be very well adjusted and controlled by the appropriate choice of pores (distribution, size, etc.) of the metal foam 9.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Claims (9)
- Procédé de fabrication d'une pièce coulée sollicitée thermiquement (1, 14, 16, 17) d'une turbomachine thermique avec un procédé de coulée connu, la pièce coulée sollicitée thermiquement (1, 14, 16, 17) présentant une structure de refroidissement intégrée (7) et étant fabriquée avec un moule de coulée,
caractérisé en ce que(a) un modèle en cire de la pièce à refroidir est fourni ;(b) au moins une mousse de polymère est fournie, laquelle est adhérée au modèle en cire ou est introduite dans un espace creux du modèle en cire,(c) l'au moins une mousse de polymère et le modèle en cire sont plongés dans un matériau céramique (barbotine), le matériau céramique se déposant autour du modèle en cire et la mousse de polymère se remplissant aussi du matériau céramique,(d) le matériau céramique est séché, de sorte qu'il se forme un moule de coulé,(e) la cire et l'au moins une mousse de polymère sont enlevées par un traitement thermique,(f) la pièce coulée (1, 14, 16, 17) est fabriquée avec le moule de coulée par un procédé de coulée connu et(g) le matériau céramique est enlevé. - Procédé selon la revendication 1,
caractérisé en ce que
l'on revêt une structure de refroidissement (7) à pores ouverts, se trouvant sur la pièce coulée (1, 14, 16, 17), tournée vers l'extérieur, avec une couche de protection céramique (11). - Procédé selon la revendication 2,
caractérisé en ce que
la couche de protection céramique (11) traverse complètement la structure de refroidissement (7) ou la structure de refroidissement (7) n'est revêtue que près de la surface avec la couche de protection (11). - Procédé selon la revendication 3,
caractérisé en ce que
aux endroits de la surface de la pièce coulée (1, 14, 16, 17) auxquels des trous de refroidissement (8) doivent se produire, avant le revêtement avec une couche de protection céramique (11), on prévoit un masquage et ces endroits sont démasqués à nouveau après le revêtement. - Procédé selon la revendication 1,
caractérisé en ce que
plusieurs couches de la mousse de polymère et de la cire sont présentes, lesquelles servent à fabriquer des structures de refroidissement à pores ouverts (7) qui sont séparées les unes des autres par des plaques (15). - Procédé selon la revendication 1,
caractérisé en ce que
la mousse de polymère présente une taille de pores variable. - Procédé selon la revendication 1,
caractérisé en ce que
la mousse de polymère est une mousse de polyuréthane. - Procédé selon la revendication 1,
caractérisé en ce que
l'on utilise un procédé de coulée pour la fabrication de pièces coulées rigidifiées monocristallines ou orientées. - Procédé selon la revendication 1,
caractérisé en ce que
le procédé est un procédé de fabrication d'une aube directrice ou mobile (1), d'un segment accumulateur de chaleur (14), d'une plate-forme (17) de l'aube directrice ou mobile (1, 16), d'une paroi de chambre de combustion (18) d'une turbine à gaz ou d'une aube directrice ou mobile (1, 16) d'un compresseur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05111586A EP1645347B1 (fr) | 2000-05-17 | 2001-04-12 | Procédé de fabrication d'une pièce moulée à charge thermique élevée |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10024302A DE10024302A1 (de) | 2000-05-17 | 2000-05-17 | Verfahren zur Herstellung eines thermisch belasteten Gussteils |
DE10024302 | 2000-05-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05111586A Division EP1645347B1 (fr) | 2000-05-17 | 2001-04-12 | Procédé de fabrication d'une pièce moulée à charge thermique élevée |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1155760A1 EP1155760A1 (fr) | 2001-11-21 |
EP1155760B1 true EP1155760B1 (fr) | 2006-02-15 |
Family
ID=7642477
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05111586A Expired - Lifetime EP1645347B1 (fr) | 2000-05-17 | 2001-04-12 | Procédé de fabrication d'une pièce moulée à charge thermique élevée |
EP01109115A Expired - Lifetime EP1155760B1 (fr) | 2000-05-17 | 2001-04-12 | Procédé de fabrication d'une pièce moulée à charge thermique élevée |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05111586A Expired - Lifetime EP1645347B1 (fr) | 2000-05-17 | 2001-04-12 | Procédé de fabrication d'une pièce moulée à charge thermique élevée |
Country Status (3)
Country | Link |
---|---|
US (1) | US6412541B2 (fr) |
EP (2) | EP1645347B1 (fr) |
DE (3) | DE10024302A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013144022A1 (fr) | 2012-03-28 | 2013-10-03 | Alstom Technology Ltd | Procédé pour retirer une céramique |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1186748A1 (fr) * | 2000-09-05 | 2002-03-13 | Siemens Aktiengesellschaft | Aube de rotor pour une turbomachine et turbomachine |
US6695582B2 (en) * | 2002-06-06 | 2004-02-24 | General Electric Company | Turbine blade wall cooling apparatus and method of fabrication |
EP1475567A1 (fr) * | 2003-05-08 | 2004-11-10 | Siemens Aktiengesellschaft | Structure stratifiée et procédé de fabrication de la structure stratifiée |
EP1481747A3 (fr) * | 2003-05-27 | 2007-05-02 | Alstom Technology Ltd | Procédé de fabrication d'une pièce chargée par chaleur et piéce |
EP1496140A1 (fr) * | 2003-07-09 | 2005-01-12 | Siemens Aktiengesellschaft | Structure stratifiée et procédé pour sa production |
EP1533113A1 (fr) | 2003-11-14 | 2005-05-25 | Siemens Aktiengesellschaft | Système stratifié pour dissipation de chaleur à haute température et méthode de fabrication |
US20050111966A1 (en) * | 2003-11-26 | 2005-05-26 | Metheny Alfred P. | Construction of static structures for gas turbine engines |
DE10360164A1 (de) * | 2003-12-20 | 2005-07-21 | Mtu Aero Engines Gmbh | Gasturbinenbauteil |
CN100509124C (zh) * | 2004-04-14 | 2009-07-08 | 株式会社吴羽 | 偏二氟乙烯系树脂中空丝多孔滤水膜及其制造方法 |
US7144220B2 (en) * | 2004-07-30 | 2006-12-05 | United Technologies Corporation | Investment casting |
DE102005002671B3 (de) * | 2005-01-14 | 2006-06-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Turbinenschaufel für Strömungsmaschinen und Verfahren zu ihrer Herstellung |
US7500828B2 (en) * | 2005-05-05 | 2009-03-10 | Florida Turbine Technologies, Inc. | Airfoil having porous metal filled cavities |
US20080257517A1 (en) * | 2005-12-16 | 2008-10-23 | General Electric Company | Mold assembly for use in a liquid metal cooled directional solidification furnace |
DE102006031305A1 (de) * | 2006-07-06 | 2008-01-10 | Mtu Aero Engines Gmbh | Gasturbinenbauteil für Flugtriebwerke sowie Verfahren zur Herstellung von Gasturbinenbauteilen für Flugtriebwerke |
GB0613715D0 (en) | 2006-07-11 | 2006-08-23 | Rolls Royce Plc | A seal between relatively moveable members |
US7968144B2 (en) * | 2007-04-10 | 2011-06-28 | Siemens Energy, Inc. | System for applying a continuous surface layer on porous substructures of turbine airfoils |
EP2184449A1 (fr) * | 2008-11-05 | 2010-05-12 | Siemens Aktiengesellschaft | Support d'aube directrice, turbine à gaz et moteur à turbine à gaz ou à vapeur avec un tel support d'aube directrice |
GB0822416D0 (en) * | 2008-12-10 | 2009-01-14 | Rolls Royce Plc | A seal and a method of manufacturing a seal |
WO2011019672A2 (fr) * | 2009-08-09 | 2011-02-17 | Rolls-Royce Corporation | Support pour un article cuit |
EP2418354A1 (fr) | 2010-08-10 | 2012-02-15 | Siemens Aktiengesellschaft | Procédé de fabrication d'une aube de turbine refroidie de l'intérieur et turbine à gaz dotée d'une aube de turbine ainsi fabriquée |
US9249491B2 (en) | 2010-11-10 | 2016-02-02 | General Electric Company | Components with re-entrant shaped cooling channels and methods of manufacture |
US8387245B2 (en) | 2010-11-10 | 2013-03-05 | General Electric Company | Components with re-entrant shaped cooling channels and methods of manufacture |
US8673397B2 (en) | 2010-11-10 | 2014-03-18 | General Electric Company | Methods of fabricating and coating a component |
US8727727B2 (en) | 2010-12-10 | 2014-05-20 | General Electric Company | Components with cooling channels and methods of manufacture |
US8753071B2 (en) | 2010-12-22 | 2014-06-17 | General Electric Company | Cooling channel systems for high-temperature components covered by coatings, and related processes |
US8807944B2 (en) * | 2011-01-03 | 2014-08-19 | General Electric Company | Turbomachine airfoil component and cooling method therefor |
US8533949B2 (en) | 2011-02-14 | 2013-09-17 | General Electric Company | Methods of manufacture for components with cooling channels |
US8793871B2 (en) | 2011-03-17 | 2014-08-05 | Siemens Energy, Inc. | Process for making a wall with a porous element for component cooling |
US8528208B2 (en) | 2011-04-11 | 2013-09-10 | General Electric Company | Methods of fabricating a coated component using multiple types of fillers |
US8601691B2 (en) | 2011-04-27 | 2013-12-10 | General Electric Company | Component and methods of fabricating a coated component using multiple types of fillers |
US9327384B2 (en) | 2011-06-24 | 2016-05-03 | General Electric Company | Components with cooling channels and methods of manufacture |
US9216491B2 (en) | 2011-06-24 | 2015-12-22 | General Electric Company | Components with cooling channels and methods of manufacture |
US9057523B2 (en) * | 2011-07-29 | 2015-06-16 | United Technologies Corporation | Microcircuit cooling for gas turbine engine combustor |
US9206696B2 (en) | 2011-08-16 | 2015-12-08 | General Electric Company | Components with cooling channels and methods of manufacture |
US9249672B2 (en) | 2011-09-23 | 2016-02-02 | General Electric Company | Components with cooling channels and methods of manufacture |
US20130086784A1 (en) | 2011-10-06 | 2013-04-11 | General Electric Company | Repair methods for cooled components |
US9249670B2 (en) | 2011-12-15 | 2016-02-02 | General Electric Company | Components with microchannel cooling |
US9435208B2 (en) | 2012-04-17 | 2016-09-06 | General Electric Company | Components with microchannel cooling |
US9243503B2 (en) | 2012-05-23 | 2016-01-26 | General Electric Company | Components with microchannel cooled platforms and fillets and methods of manufacture |
DE102013109116A1 (de) | 2012-08-27 | 2014-03-27 | General Electric Company (N.D.Ges.D. Staates New York) | Bauteil mit Kühlkanälen und Verfahren zur Herstellung |
US8974859B2 (en) | 2012-09-26 | 2015-03-10 | General Electric Company | Micro-channel coating deposition system and method for using the same |
US9242294B2 (en) | 2012-09-27 | 2016-01-26 | General Electric Company | Methods of forming cooling channels using backstrike protection |
US9238265B2 (en) | 2012-09-27 | 2016-01-19 | General Electric Company | Backstrike protection during machining of cooling features |
US9562436B2 (en) | 2012-10-30 | 2017-02-07 | General Electric Company | Components with micro cooled patterned coating layer and methods of manufacture |
US9200521B2 (en) | 2012-10-30 | 2015-12-01 | General Electric Company | Components with micro cooled coating layer and methods of manufacture |
US9003657B2 (en) | 2012-12-18 | 2015-04-14 | General Electric Company | Components with porous metal cooling and methods of manufacture |
EP2938828A4 (fr) | 2012-12-28 | 2016-08-17 | United Technologies Corp | Composant de moteur à turbine à gaz à structure maillée vasculaire artificielle |
US10018052B2 (en) | 2012-12-28 | 2018-07-10 | United Technologies Corporation | Gas turbine engine component having engineered vascular structure |
WO2014143340A2 (fr) * | 2013-03-03 | 2014-09-18 | Uskert Richard C | Élément de turbine à gaz doté d'un noyau en mousse et d'un revêtement composite, comprenant fente de refroidissement |
DE102013212465B4 (de) | 2013-06-27 | 2015-03-12 | MTU Aero Engines AG | Dichtanordnung für eine Strömungsmaschine, eine Leitschaufelanordnung und eine Strömungsmaschine mit einer derartigen Dichtanordnung |
US20150064019A1 (en) * | 2013-08-30 | 2015-03-05 | General Electric Company | Gas Turbine Components with Porous Cooling Features |
US9278462B2 (en) | 2013-11-20 | 2016-03-08 | General Electric Company | Backstrike protection during machining of cooling features |
US9476306B2 (en) | 2013-11-26 | 2016-10-25 | General Electric Company | Components with multi-layered cooling features and methods of manufacture |
US10960460B2 (en) | 2014-01-23 | 2021-03-30 | Raytheon Technologies Corporation | Additive manufactured mold, a method of manufacturing the mold, and a workpiece casted from the mold |
US9789534B2 (en) | 2015-01-20 | 2017-10-17 | United Technologies Corporation | Investment technique for solid mold casting of reticulated metal foams |
US9737930B2 (en) | 2015-01-20 | 2017-08-22 | United Technologies Corporation | Dual investment shelled solid mold casting of reticulated metal foams |
US9789536B2 (en) | 2015-01-20 | 2017-10-17 | United Technologies Corporation | Dual investment technique for solid mold casting of reticulated metal foams |
US10094287B2 (en) | 2015-02-10 | 2018-10-09 | United Technologies Corporation | Gas turbine engine component with vascular cooling scheme |
US9884363B2 (en) | 2015-06-30 | 2018-02-06 | United Technologies Corporation | Variable diameter investment casting mold for casting of reticulated metal foams |
US9731342B2 (en) | 2015-07-07 | 2017-08-15 | United Technologies Corporation | Chill plate for equiax casting solidification control for solid mold casting of reticulated metal foams |
US10221694B2 (en) | 2016-02-17 | 2019-03-05 | United Technologies Corporation | Gas turbine engine component having vascular engineered lattice structure |
US10598026B2 (en) * | 2016-05-12 | 2020-03-24 | General Electric Company | Engine component wall with a cooling circuit |
US10458259B2 (en) * | 2016-05-12 | 2019-10-29 | General Electric Company | Engine component wall with a cooling circuit |
US20180051566A1 (en) * | 2016-08-16 | 2018-02-22 | General Electric Company | Airfoil for a turbine engine with a porous tip |
US10583489B2 (en) * | 2017-04-26 | 2020-03-10 | General Electric Company | Method of providing cooling structure for a component |
US20180347442A1 (en) * | 2017-05-31 | 2018-12-06 | General Electric Company | Lattice structure in cooling pathway by additive manufacture |
US10974312B2 (en) * | 2017-06-28 | 2021-04-13 | General Electric Company | Additively manufactured casting core-shell mold with integrated filter and ceramic shell |
US11208902B2 (en) * | 2018-12-03 | 2021-12-28 | General Electric Company | Tip rail cooling insert for turbine blade tip cooling system and related method |
US10774653B2 (en) | 2018-12-11 | 2020-09-15 | Raytheon Technologies Corporation | Composite gas turbine engine component with lattice structure |
CN110566290A (zh) * | 2019-07-23 | 2019-12-13 | 华南理工大学 | 金属丝冶金结合多孔材料在制造耐高温机械零件的应用 |
US11834956B2 (en) * | 2021-12-20 | 2023-12-05 | Rolls-Royce Plc | Gas turbine engine components with metallic and ceramic foam for improved cooling |
US11746660B2 (en) | 2021-12-20 | 2023-09-05 | Rolls-Royce Plc | Gas turbine engine components with foam filler for impact resistance |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1508663B1 (de) * | 1966-02-02 | 1970-06-25 | Howe Sound Company, New York, N y (V.St.A.) | Verfahren und Vorrichtung zum Herstellen von Ausschmelzmodellen für das Präzisionsgießverfahren |
US3616841A (en) * | 1967-10-30 | 1971-11-02 | Energy Research And Generation | Method of making an inorganic reticulated foam structure |
US3690367A (en) * | 1968-07-05 | 1972-09-12 | Anadite Inc | Apparatus for the restructuring of metals |
US3627015A (en) * | 1970-06-01 | 1971-12-14 | Hughes Aircraft Co | Cocoon casting of directionally solidified articles |
US3763926A (en) * | 1971-09-15 | 1973-10-09 | United Aircraft Corp | Apparatus for casting of directionally solidified articles |
BE790956A (fr) * | 1971-11-05 | 1973-03-01 | Penny Robert N | Tube de flamme pour chambre de combustion de moteur a turbine agaz |
US4195683A (en) * | 1977-12-14 | 1980-04-01 | Trw Inc. | Method of forming metal article having plurality of airfoils extending outwardly from a hub |
JPS5483624A (en) * | 1977-12-16 | 1979-07-03 | Hitachi Ltd | Production of three dimentional net like porous metal having continuous voids |
GB2042648B (en) * | 1979-02-24 | 1983-05-05 | Rolls Royce | Gas turbine engine hollow blades |
GB2068818B (en) * | 1980-02-12 | 1983-05-25 | Rolls Royce | Lost wax patterns |
GB2096523B (en) * | 1981-03-25 | 1986-04-09 | Rolls Royce | Method of making a blade aerofoil for a gas turbine |
DE3203869C2 (de) * | 1982-02-05 | 1984-05-10 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Turbinenlaufschaufel für Strömungsmaschinen, insbesondere Gasturbinentriebwerke |
DE3235230A1 (de) * | 1982-09-23 | 1984-03-29 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Gasturbinenschaufel mit metallkern und keramikblatt |
DE3327218A1 (de) * | 1983-07-28 | 1985-02-07 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Thermisch hochbeanspruchtes, gekuehltes bauteil, insbesondere turbinenschaufel |
US4653983A (en) * | 1985-12-23 | 1987-03-31 | United Technologies Corporation | Cross-flow film cooling passages |
GB2205261B (en) * | 1987-06-03 | 1990-11-14 | Rolls Royce Plc | Method of manufacture and article manufactured thereby |
DE3806987A1 (de) * | 1988-03-03 | 1989-09-14 | Thyssen Industrie | Verfahren zur herstellung von gussstuecken nach dem wachsausschmelzverfahren |
DE3928394A1 (de) * | 1989-08-28 | 1991-03-21 | Eska Medical Gmbh & Co | Verfahren zur herstellung eines implantates mit einer seine oberflaeche zumindest teilweise bedeckenden metallischen offenzelligen struktur |
FR2666528B1 (fr) * | 1990-09-12 | 1993-07-02 | Snecma | Procede de preparation d'un moule de fonderie a partir de mousse alveolaire et barbotines ceramiques utilisees. |
DE4128425A1 (de) * | 1991-08-27 | 1992-03-19 | Eska Medical Gmbh & Co | Verfahren zur herstellung eines implantates mit einer seine oberflaeche zumindest teilweise bedeckenden metallischen offenmaschigen struktur |
US5253976A (en) * | 1991-11-19 | 1993-10-19 | General Electric Company | Integrated steam and air cooling for combined cycle gas turbines |
US5690473A (en) * | 1992-08-25 | 1997-11-25 | General Electric Company | Turbine blade having transpiration strip cooling and method of manufacture |
US5511603A (en) * | 1993-03-26 | 1996-04-30 | Chesapeake Composites Corporation | Machinable metal-matrix composite and liquid metal infiltration process for making same |
US5439750A (en) * | 1993-06-15 | 1995-08-08 | General Electric Company | Titanium metal matrix composite inserts for stiffening turbine engine components |
DE4328401A1 (de) * | 1993-08-24 | 1995-03-02 | Abb Management Ag | Turbinenschaufel für eine Gasturbine |
DE19539770A1 (de) * | 1995-06-20 | 1997-01-02 | Abb Research Ltd | Verfahren zur Herstellung eines gerichtet erstarrten Gießkörpers und Vorrichtung zur Durchführung dieses Verfahrens |
US5535810A (en) * | 1995-07-28 | 1996-07-16 | Zimmer, Inc. | Cast orthopaedic implant and method of making same |
GB2310896A (en) * | 1996-03-05 | 1997-09-10 | Rolls Royce Plc | Air cooled wall |
DE19612500A1 (de) * | 1996-03-29 | 1997-10-02 | Bleistahl Prod Gmbh & Co Kg | Verfahren zur Herstellung von Zylinderköpfen für Verbrennungsmotoren |
DE19718886A1 (de) * | 1997-05-03 | 1998-11-05 | Bosch Gmbh Robert | Verfahren zur Herstellung von porösen Formkörpern |
-
2000
- 2000-05-17 DE DE10024302A patent/DE10024302A1/de not_active Withdrawn
-
2001
- 2001-04-12 DE DE50108928T patent/DE50108928D1/de not_active Expired - Lifetime
- 2001-04-12 EP EP05111586A patent/EP1645347B1/fr not_active Expired - Lifetime
- 2001-04-12 EP EP01109115A patent/EP1155760B1/fr not_active Expired - Lifetime
- 2001-04-12 DE DE50114026T patent/DE50114026D1/de not_active Expired - Lifetime
- 2001-04-18 US US09/836,297 patent/US6412541B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013144022A1 (fr) | 2012-03-28 | 2013-10-03 | Alstom Technology Ltd | Procédé pour retirer une céramique |
Also Published As
Publication number | Publication date |
---|---|
EP1645347A1 (fr) | 2006-04-12 |
DE50108928D1 (de) | 2006-04-20 |
US20010042607A1 (en) | 2001-11-22 |
EP1645347B1 (fr) | 2008-06-11 |
DE10024302A1 (de) | 2001-11-22 |
DE50114026D1 (de) | 2008-07-24 |
EP1155760A1 (fr) | 2001-11-21 |
US6412541B2 (en) | 2002-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1155760B1 (fr) | Procédé de fabrication d'une pièce moulée à charge thermique élevée | |
EP1065026B1 (fr) | Procédé pour fabriquer ou réparer les canaux de refroidissement d' un élement monocristallin d' un turbine à gas | |
DE69322300T2 (de) | Verfahren und Form zur Herstellung gegossener, hochtemperaturbeständiger und dünnwandiger Strukturen und das hergestellte Produkt | |
EP1828544B1 (fr) | Procede de production d'un composant comprenant un canal incorpore et composant | |
EP1173657B1 (fr) | Aube de turbine et son procede de production | |
EP1322838B1 (fr) | Aube de turbomachine et turbomachine | |
EP0575685B1 (fr) | Moulage de précision ayant des surfaces d'usure | |
EP3191244B1 (fr) | Procédé de production d'une aube mobile et aube obtenue | |
DE102014220787A1 (de) | Gasturbinenbauteil mit Innenmodul und Verfahren zu seiner Herstellung unter Verwendung von Selektivem Laserschmelzen | |
WO2006061267A1 (fr) | Systeme stratifie, utilisation et procede de realisation d'un systeme stratifie | |
EP3768447A1 (fr) | Procédé pour produire un moule servant à couler des matières en fusion ainsi que moule | |
EP1193006B1 (fr) | Procédé de fabrication d'une pièce coulée de précision refroidie | |
WO2006056524A1 (fr) | Procede pour fabriquer un modele perdu et noyau place a l'interieur | |
EP1930096A1 (fr) | Procédé de fabrication de modèles pour la fonderie en cire perdue des pièces contenants au moins une cavité | |
DE60117715T2 (de) | Modellform, ihr Herstellungsverfahren und Verfahren zur Modellherstellung für Gussstücke mit verbesserter Wärmeübertragungsfläche | |
DE102014213343A1 (de) | Turbinenrad eines Abgasturboladers und zugehöriges Herstellungsverfahren | |
EP2845918A1 (fr) | Procédé destiné à revêtir au moins partiellement une aube, dispositif de revêtement et aube | |
DE10235492A1 (de) | Verfahren zum Brennen eines keramischen Kerns | |
WO1999006166A1 (fr) | Aube de turbine et son procede de fabrication | |
EP1331361B1 (fr) | Aube statorique de turbine coulée ayant un crochet de fixation | |
EP1557533B1 (fr) | Refroidissement d'une aube de turbine avec faux-plancher entre l'aube et son extrémité | |
EP1481747A2 (fr) | Procédé de fabrication d'une pièce chargée par chaleur et piéce | |
DE10151000A1 (de) | Verfahren und Vorrichtung zum Herstellen einer Formgusskokille | |
WO1999006672A1 (fr) | Aube de turbine et son procede de production | |
DE2837286C2 (de) | Verfahren zur Herstellung einer aus mehreren Teilen zusammengesetzten Maskenform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
17P | Request for examination filed |
Effective date: 20020410 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
17Q | First examination report despatched |
Effective date: 20050215 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060323 |
|
REF | Corresponds to: |
Ref document number: 50108928 Country of ref document: DE Date of ref document: 20060420 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20061116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50108928 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50108928 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50108928 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170419 Year of fee payment: 17 Ref country code: DE Payment date: 20170419 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50108928 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50108928 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108928 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180412 |