EP1152206B1 - Verfahren und Vorrichtung zur Korrektur von Ausrichtfehlern zwischen Geräten - Google Patents

Verfahren und Vorrichtung zur Korrektur von Ausrichtfehlern zwischen Geräten Download PDF

Info

Publication number
EP1152206B1
EP1152206B1 EP00128755A EP00128755A EP1152206B1 EP 1152206 B1 EP1152206 B1 EP 1152206B1 EP 00128755 A EP00128755 A EP 00128755A EP 00128755 A EP00128755 A EP 00128755A EP 1152206 B1 EP1152206 B1 EP 1152206B1
Authority
EP
European Patent Office
Prior art keywords
target
vector
sensor
aiming
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00128755A
Other languages
English (en)
French (fr)
Other versions
EP1152206A1 (de
Inventor
Peter Toth
Essam Prof. Badreddin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Oerlikon Contraves AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves AG filed Critical Oerlikon Contraves AG
Publication of EP1152206A1 publication Critical patent/EP1152206A1/de
Application granted granted Critical
Publication of EP1152206B1 publication Critical patent/EP1152206B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/323Devices for testing or checking for checking the angle between the muzzle axis of the gun and a reference axis, e.g. the axis of the associated sighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G11/00Details of sighting or aiming apparatus; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/26Apparatus for testing or checking

Definitions

  • the present invention relates to a method and a device for correcting alignment errors between devices of fire control systems and weapons systems according to the preamble of patent claims 1 and 10, respectively.
  • EP 0 314 721 B1 discloses a method for correcting alignment errors between carriages and devices arranged thereon, wherein the devices can be fire control systems and weapon devices.
  • the procedure is carried out using device correction values of the coarse position of the installed devices measured in quiet fire control systems and weapons installations and their consideration in the servo controls of the carriages; the device correction values are known ex works and / or are determined from measured values.
  • Fig. 1 shows a system with a total of five devices, namely two sensor devices in the form of Feuerleit confusen T1, T2 and three computer-controlled devisoren wornen in the form of guns G1, G2, G3.
  • the sensor devices and the effector devices can be located on a ship or on land. All these devices T1, T2, G1, G2, G3 are included in Laffeten or bedding and mechanically at least roughly aligned.
  • the sensor device T can be, for example, a fire control or straightening device also designated T for controlling the gun G.
  • the gun G may for example be provided with a TV sensor Sg .
  • the topping device T controls over data or signal lines 11 the gun G.
  • Both the gun G and the target device T are aimed at a common measuring target K, for example, a likewise designated K ball which is attached to a supporting cable 12 of the helicopter 10 degrees.
  • a change in the weight of the ship as a result of change in the payload, of the available fuel or of a change in the shape of the hull, etc. results in a new value for the correction vector P s , which can be determined by new, with the help of attached to the helicopter 10 ball K , measurements in turn approximately in the form of a new P n value can be determined.
  • the display shown in FIG. 3 shows how the TV sensor Sg, for example the measurement target K or the sphere K 'sees', in the actually assumed position generally with a certain offset from a crossing point 0 of a crosshair of the display.
  • This shelf which can be recognized directly by the TV sensor Sg, is a positional error which is the consequence or sum of all kind of system errors;
  • System errors include, for example, mechanical inaccuracies due to manufacturing tolerances or wear, residual errors in the coarse bearing measurement, changes in the shape of the hull, measurement noise.
  • the display of Fig. 3 is calibrated to a predetermined distance so that the components dy i 'and dz i ', which are in reality angles, can be represented by lengths or distances.
  • Factors which influence the residual error R i are, in addition to the thermal noise, among others, the sea state, inaccuracies of the servo system and the fact that the operator can not bring a mark + shown in FIG. 3 exactly to the measurement target in its instantaneous position K i ,
  • a coordinate system according to FIG. 4 is defined. If straightening device T and gun G are on earth, then, for example, the X- axis is directed to the north, the Y- axis to the east and the Z- axis to the earth center. If straightening device T and gun G are on a ship, then the X- axis is for example the longitudinal axis of the ship, the Y- axis the transverse axis of the ship and the Z- axis a clockwise, orthogonal to X- axis and Y- axis Axis.
  • each position that the measurement target K i can assume is determined by three coordinates x k , y k , z k .
  • the angle quantities ⁇ k and ⁇ k are also used as coordinates in the shooting system, ⁇ k being the side angle and ⁇ k the elevation angle; the quantities ⁇ k and ⁇ k and are therefore redundant.
  • the coordinates x k, y k, z k are considered to be components of a target vector 0K i, where ⁇ and the azimuth from these coordinates or the elevation angle ⁇ can be calculated.
  • the projection of the vector 0K onto the plane XY in FIG. 4 defines a straight line g; a straight line also lying in the plane XY and the straight line g at the zero point 0 perpendicular intersecting straight line is selected as the ⁇ axis .
  • the error that results from this has two degrees of freedom and can therefore be corrected by the two rotations ⁇ x i about the X axis and ⁇ y i about the Y axis.
  • the rotation ⁇ z i about the Z axis also includes the rotation of the azimuth ⁇ .
  • the algorithm of the present invention is based on a special least squares method of applying the "least expensive" values by taking the sum of the squares of the respective differences between the observed value for D i and the calculated value for D ic ⁇ M i * P n gives a minimum.
  • the calculated correction vector P i is transformed into the vector D i or the components ⁇ x i , ⁇ y i , ⁇ z i and ⁇ i into the components dy i ', dz i '.
  • a matrix S is used.
  • the matrix S is the covariance matrix listed above, which leads in particular to orthogonal-symmetric measurements to a diagonal-symmetric matrix with decreasing diagonal values, that is, the track Asp or convergence number tends to 0. Experiments with respect to the decimal places of this convergence number have shown that it is advantageous to select the value 49.25 or 492.5 etc. for the constant C, for example.
  • the value of the trace of the covariance matrix S n decreases from initially 99.99 ... to about 0.03 with a sufficiently large number n of measurements or steps.
  • the constant C can also be 1 or have any value.
  • Fig. 5 shows, in each case by a cross +, a number of actual positions of the measurement target K borne by the helicopter 10.
  • Fig. 6 the corresponding corrected values of these positions are shown.
  • the helicopter 10 When the XYZ coordinate system exits a ship, the helicopter 10 preferably flies in a circular path with a radius of the order of 1.5 km, but helically or with increasing height ⁇ Ti , ⁇ Ti , ⁇ Ti around the ship.
  • the sensor sighting line 0 of the gun G (instead of the small parallax offset firing line or gun barrel axis of the gun G) preferably automatically by the controller best possible directed to a measurement target K i .
  • the crossing point of the reticule of the sight line of the sensor Sg (Fig. 3) points in the direction in which the measurement target K i is expected.
  • each point marked with a cross + refers to a respective measured value of ⁇ Ki or ⁇ Ki that is to say the side angle or the elevation angle of the gun G corresponding to the respective position K i of the helicopter 10 Measuring target K correspond.
  • Fig. 6 corresponds to the theoretical values of ⁇ and ⁇ , respectively, which would be measured under exactly the same conditions after the corrections according to the present method, if such a further measurement were practicable at all. In fact, it is impossible to carry out such further measurements with the helicopter 10 in exactly the same positions as in previous measurements, and under the same vessel conditions and so on.
  • the measurement-based correction data with which the alignment error vectors are corrected has a real-time corrective misalignment effect.
  • the measurements may be re-performed from time to time, for example, after four or six weeks, to adjust the correction data to changing conditions, such as a ship. This means that the measured values obtained from time to time can be integrated into the system and that they are therefore system-inherent and thus each correspond to an error that can not be directly observed.
  • the sensor device T can be a sensor, a straightening device, a radar, laser or infrared device, etc., or several such devices can be combined.
  • effector devices G guns not only conventional guns such as cannons but also rocket launchers or laser cannons come into question.
  • the measurements can be carried out for different G / T pairs B11, B12, B21, B22, ... (See FIG. 1 ), wherein a sensor device T can also control a plurality of effector devices G.

Landscapes

  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Control Of Position Or Direction (AREA)
  • Fire Alarms (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Eye Examination Apparatus (AREA)
  • Attitude Control For Articles On Conveyors (AREA)
  • Body Structure For Vehicles (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Feedback Control In General (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Korrektur von Ausrichtfehlern zwischen Geräten von Feuerleitsystemen und Waffenanlagen gemäss dem Oberbegriff des Patentanspruchs 1 bzw. 10.
Aus der EP 0 314 721 B1 ist ein Verfahren zur Korrektur von Ausrichtfehlern zwischen Lafetten und darauf angeordneten Geräten bekannt, wobei die Geräte Feuerleitsysteme und Waffeneinrichtungen sein können. Das Verfahren wird unter Verwendung von Gerätekorrekturwerten der bei ruhiggestellten Feuerleitsystemen und Waffenanlagen ausgemessenen Groblage der installierten Geräte und deren Berücksichtigung in den Servosteuerungen der Lafetten durchgeführt; die Gerätekorrekturwerte sind ab Werk bekannt und/oder werden aus Messwerten ermittelt.
Es ist Aufgabe der vorliegenden Erfindung, ein solches Verfahren zu verbessern und eine Vorrichtung zu seiner Durchführung vorzuschlagen.
Die Lösung dieser Aufgabe erfolgt in vorteilhafter Weise erfindungsgemäss durch ein Verfahren nach Patentanspruch 1 und durch eine Vorrichtung nach dem Patentanspruch 10.
Dadurch können Systemabweichungen von einer definierten idealen Geometrie berücksichtigt werden, um bei der Berechnung der Steuergrössen für die Lafettenservos die Genauigkeit im Schiessbetrieb zu erhöhen.
Andere vorteilhafte Ausführungen der Erfindung ergeben sich aus den weiteren abhängigen Ansprüchen.
Die Erfindung wird nachfolgend beispielsweise an Hand einer Zeichnung näher erläutert. Es zeigen:
Fig. 1
eine schematische Darstellung der gegenseitigen Vernetzung von Sensoreneinrichtungen und Effektoreneinrichtungen bezüglich ihrer Lage,
Fig. 2
eine Einzelbeobachtung bei der Feinmessung gemäss der Erfindung,
Fig. 3
das Resultat einer Einzelbeobachtung gemäss Fig. 2,
Fig. 4
eine Darstellung zur Erläuterung des verwendeten Koordinatensystems,
Fig. 5
das Resultat eines ganzen Satzes von Beobachtungswerten, und
Fig. 6
das Resultat der erfindungsgemäss korrigierten Werte.
Fig. 1 zeigt eine Anlage mit insgesamt fünf Geräten, nämlich zwei Sensoreinrichtungen in Form von Feuerleitgeräten T1, T2 und drei rechnergesteuerte Effektoreneinrichtungen in Form von Geschützen G1, G2, G3. Die Sensoreinrichtungen und die Effektoreneinrichtungen können sich auf einem Schiff oder auch an Land befinden. Alle diese Geräte T1, T2, G1, G2, G3 sind in Laffeten bzw. Bettungen aufgenommen und mechanisch wenigstens grob ausgerichtet.
In Fig. 2 sind beispielsweise ein Helikopter 10 und eine einfache Anlage mit einer Sensoreinrichtung T und einer Effektoreneinrichtung G dargestellt. Die Sensoreinrichtung T kann beispielsweise ein ebenfalls mit T bezeichnetes Feuerleit- bzw. Richtgerät zur Steuerung des Geschützes G sein. Das Geschütz G kann beispielsweise mit einem TV-Sensor Sg versehen sein. Das Richtgerät T steuert über Daten- bzw. Signalleitungen 11 das Geschütz G. Sowohl das Geschütz G als auch das Richtgerät T zielen auf ein gemeinsames Messziel K, beispielsweise eine ebenfalls mit K bezeichnete Kugel, die an einem Tragseil 12 des Helikopters 10 angehängt ist.
Mit solchen Anordnungen soll eine Korrektur für einen Ausrichtfehlervektor B bzw. mehrere Ausrichtfehlervektoren Bjk , in Fig. 1 beispielsweise B11, B12, B21, B22, B31, B32, bestimmt werden. Es wird hierbei davon ausgegangen, dass der Ausrichtfehlervektor B bzw. die Ausrichtfehlervektoren Bjk Basis-Vektoren sind, die aus Groblagemessungen, Werkmessungen usw. bekannt und gespeichert sind.
Durch das erfindungsgemässe Verfahren wird eine Feinmessung durchgeführt, um diese bekannten Werte der Ausrichtfehlervektoren B bzw. Bjk in mehreren Schritten bzw. nach mehreren Messungen zu verbessern. Für einen mit einem berechneten Korrektur-Vektor Pn korrigierten Ausrichtfehlervektor B gilt daher nach einer Anzahl von i Schritten, wobei i ganzzahlige Werte von 1 bis n sind: B(neu) = B(alt) + Pn
Nach einer Anzahl von n Messungen kann angenommen werden, dass Pn ≈ Ps, wobei Ps dem realen oder richtigen, an sich unerreichbaren Wert für die Korrektur des Systems als solchem entspricht.
Befinden sich zum Beispiel die Sensoreinrichtungen bzw. Effektoreinrichtugen auf einem Schiff, so ergibt sich bei Aenderung des Gewichts des Schiffes infolge Aenderung der Nutzladung, des vorhandenen Treibstoffs oder einer Aenderung in der Form des Schiffskörpers usw. ein neuer Wert für den Korrektur-Vektor Ps, der durch neue, mit Hilfe der am Helikopter 10 befestigten Kugel K durchgeführten, Messungen wiederum annäherungsweise in Form eines neuen Pn-Werts ermittelt werden kann. Sehr kleine Aenderungen in der Form des Schiffskörpers, zum Beipiel durch Biegung oder Torsion, insbesondere nach einer Explosion, bewirken eine relativ grosse Aenderung in den Referenzwinkeln. Ein Ziel der Erfindung ist es, diese sehr kleinen Aenderungen zu berücksichtigen.
Dass in Fig. 3 dargestellte Display zeigt, wie der TV-Sensor Sg, zum Beispiel das Messziel K bzw. die Kugel K ,sieht', und zwar in der tatsächlich eingenommenen Lage im allgemeinen mit einer gewissen Ablage von einem Kreuzungspunkt 0 eines Fadenkreuzes des Display. Diese unmittelbar durch den TV-Sensor Sg wahrnehmbare Ablage ist ein Lagefehler, der die Folge bzw. die Summe aller irgendwie gearteten Systemfehler ist; Systemfehler sind zum Beispiel mechanische Ungenauigkeiten in Folge von Herstellungstoleranzen oder Abnutzungen, Restfehler der Groblagemessung, Änderungen in der Form des Schiffskörpers, Messrauschen. Die Ablage kann als ein Spaltenvektor Di mit zwei Komponenten aufgefasst werden, was transponiert wie folgt darstellbar ist: Di = |dyi' dzi'|T worin dyi' und dzi' die Komponenten des Spaltvektors Di in den Achsen y' bzw. z' sind. Der Betrag d der Länge des Spaltvektors Di lässt sich gemäss Fig. 3 berechnen zu d = (dyi '2 + dzi '2)1/2
Das Display nach Fig. 3 ist auf eine vorbestimmte Distanz geeicht, damit die Komponenten dyi' und dzi', die in Wirklichkeit Winkel sind, durch Längen bzw. Distanzen dargestellt werden können. Für den
Spaltvektor Di gilt die Beziehung: Di = Mi * Ps + Ri = Dic + Ri mit Ri = Restfehler
Faktoren, die den Restfehler Ri beeinflussen, sind neben dem thermischen Rauschen unter anderem der Seegang, Ungenauigkeiten des Servosystems und die Tatsache, dass der Operator eine in Fig. 3 dargestellte Marke + nicht genau auf das Messziel in dessen momentaner Lage Ki bringen kann.
Im Bereich des Richtgeräts T und des Geschützes G ist ein Koordinatensystem nach Fig. 4 definiert. Befinden sich Richtgerät T und Geschütz G auf der Erde, so ist beispielsweise die X-Achse nach Norden, die Y-Achse nach Osten und die Z-Achse zum Erdzentrum gerichtet. Befinden sich Richtgerät T und Geschütz G auf einem Schiff, so ist beispielsweise die X-Achse die Längsachse des Schiffs, die Y-Achse die Querachse des Schiffs und die Z-Achse eine rechtsdrehende, orthogonal zur X-Achse und zur Y-Achse gerichtete Achse. Im Koordinatensystem, das durch die X-, Y- und Z-Achse definiert ist, ist jede Position, die das Messziel Ki einnehmen kann, durch drei Koordinaten xk, yk, zk bestimmt. Aus praktischen Gründen werden im Schiesswesen als Koordinaten jedoch auch die Winkel-Grössen αk und λk verwendet, wobei mit αk der Seitenwinkel und mit λk der Höhenwinkel bezeichnet werden; die Grössen αk und λk und sind somit redundant. Die Koordinaten xk, yk, zk werden als Komponenten eines Zielvektors 0Ki betrachtet, wobei aus diesen Koordinaten auch der Seitenwinkel α oder der Höhenwinkel λ berechnet werden kann. Die Projektion des Vektors 0K auf die Ebene X-Y in Fig. 4 definiert eine Gerade g; eine ebenfalls in der Ebene X-Y liegende und die Gerade g im Nullpunkt 0 senkrecht schneidende Gerade wird als λ-Achse gewählt.
Der eingangs erwähnte rekursiv berechnete Korrekturvektor Pi weist vorzugsweise vier Komponenten auf, wie folgt: Pi = |Δxi Δyi Δzi Δλi| worin Δxi, Δyi, Δzi und Δλi kleine Winkelwerte sind, wobei bedeutet:
Δxi
eine Drehung um die X-Achse,
Δyi
eine Drehung um die Y-Achse,
Δzi
eine Drehung um die Z-Achse und
Δλi
eine Drehung um die λ-Achse.
Diese Drehungen oder Verkantungen ergeben sich dadurch, dass die Drehebene der Effektoreneinrichtung, also des Geschützes G, nicht parallel zur Drehebene der Sensoreneinrichtung, also des Richtgerätes T, ist.
Der Fehler, der sich daraus ergibt, hat zwei Freiheitsgrade und kann daher durch die zwei Drehungen Δxi um die X-Achse und Δyi um die Y-Achse korrigiert werden. Die Verdrehung Δzi um die Z-Achse hingegen umfasst auch die Verdrehung des Azimuts Δα. Zu jeder durch einen Zielvektor 0Ki definierten Position eines Messzieles bzw. für jeden Verfahrensschritt i existiert somit eine wie folgt definierte Transformationsmatrix Mi :
Figure 00060001
mit i = 1, 2, 3, ..... n
Für jeden Verfahrensschritt i existiert auch eine Kovarianz-Matrix Si wie folgt: Si= Si-1 - Si-1 * Mi T * Mi * Si-1 (Mi * Si-1 * Mi T + I) worin I eine Einheitsmatrix ist.
Schliesslich wird noch ein Fehlervektor E (equation error) durch folgende Gleichung definiert: Ei = Di - Mi * Pi-1
Die Berechnung wird mit folgenden Werten initialisiert: P0 = |0 0 0 0 |T und
Figure 00070001
worin C eine Konstante ist.
Die Rekursion beginnt mit Initialwerten P0 und S0 , mit berechneten Werten von Mi und gemessenen Werten von Di = |dyi' dzi'|T, wobei i bei 1 beginnt. Daraus werden die Werte von Ei und Si gemäss den oben angegebenen Rekursionsformeln sowie anschliessend Pi nach folgender Rekursionsformel ermittelt: Pi = Pi-1 + Si * Mi T * Ei mit i = 1, 2, 3, ... n
Dieser rekursive Algorithmus minimiert den folgenden Güte-Index J (p) (performance): J(p) = Summe (i = 1, 2,.... n) (Di - Mi * Pi)T * (Di - Mi * Pi)
Der Algorithmus nach der vorliegenden Erfindung beruht auf einer Spezialanwendung der Methode der kleinsten Fehlerquadrate, bei dem man die "günstigsten" Werte dadurch erhält, dass die Summe der Quadrate der jeweiligen Differenzen zwischen dem beobachteten Wert für D i und dem berechneten Wert für D ic ≈ Mi * Pn ein Minimum ergibt.
Durch die Transformations-Matrix Mi wird der berechnete Korrekturvektor Pi in den Vektor Di bzw. die Komponenten Δxi, Δyi, Δzi und Δλi in die Komponenten dyi', dzi' transformiert. Um Mehrdeutigkeiten in der Beobachtungsebene (Fig. 3) zu vermeiden, wird eine Matrix S verwendet. Die Matrix S ist die oben aufgeführte Kovarianz-Matrix, die insbesondere für orthogonal-symmetrisch ausgelegte Messungen zu einer diagonalsymmetrische Matrix mit schwindenden Werten in der Diagonale führt, das heisst, dass die Spur Sp oder Konvergenz-Zahl nach 0 strebt. Versuche bezüglich der Kommastellen dieser Konvergenzzahl haben gezeigt, dass es vorteilhaft ist, für die Konstante C beispielsweise den Wert 49.25 oder 492.5 usw. zu wählen. Bei C = 49,25 sinkt der Wert der Spur der Kovarianz-Matrix Sn von anfänglich 99,99... auf etwa 0.03 bei einer ausreichend grossen Anzahl n von Messungen bzw. Schritten. Die Konstante C kann jedoch auch 1 sein oder einen beliebigen Wert haben. Nach einer Anzahl n Messungen bzw. Rekursionsschritte, beispielsweise 25 < n < 400, vorzugsweise n ≈ 200, strebt der Wert von Pn nach dem gesuchten Wert Ps.
Fig. 5 zeigt, jeweils durch ein Kreuz +, eine Anzahl tatsächlicher Positionen des vom Helikopter 10 getragenen Messziels K. In Fig. 6 sind die entsprechenden korrigierten Werte dieser Positionen dargestellt. Geht das X-Y-Z-Koordinatensystem von einem Schiff aus, so fliegt der Helikopter 10 vorzugsweise in einer kreisförmigen Bahn mit einem Radius in der Grössenordnung von 1.5 km, jedoch schraubenlinienförmig bzw. mit steigender Höhe αTi, λTi, ΔTi um das Schiff herum. Auf Grund der vom Richtgerät T ermittelten Daten und unter Berücksichtigung von bisher bekannten Parametern, insbesondere Parallaxen zwischen dem Richtgerät T und dem Geschütz G, wird die Sensorvisierlinie 0 des Geschützes G (anstatt der mit einer kleinen Parallaxe versetzten Schusslinie bzw. Waffenrohrachse des Geschützes G) vorzugsweise automatisch durch die Steuerung bestmöglich auf ein Messziel Ki gerichtet. Der Kreuzungspunkt des Fadenkreuzes der Visierlinie des Sensors Sg (Fig. 3) zeigt in die Richtung, in der das Messziel Ki erwartet wird.
In Fig. 5 bezieht sich daher jeder mit einem Kreuz + markierte Punkt auf je einen gemessenen Wert von αKi bzw. λKi das heisst auf den Seitenwinkel bzw. den Höhenwinkel des Geschützes G, die der jeweiligen Position Ki des vom Helikopter 10 getragenen Messzieles K entsprechen. Fig. 6 entspricht hingegen den theoretischen Werten von α bzw. λ, die man nach den Korrekturen gemäss dem vorliegenden Verfahren unter genau denselben Bedingungen messen würde, wenn eine solche weitere Messung überhaupt praktisch durchführbar wäre. In Wirklichkeit ist es unmöglich, solche weitere Messungen mit dem Helikopter 10 in genau denselben Positionen wie bei früheren Messungen, und unter denselben Schiffsbedingungen usw. durchzuführen.
Theoretisch müssten - dank der erfolgten Korrektur - in Fig. 6 alle Punkte + in den Nullpunkt 0 fallen. Wegen der im System unvermeidlich vorhandenen Restfehler Ri , wie in Fig. 6 dargestellt, fallen die Punkte + nicht in den Nullpunkt 0, das heisst, man erhält statistisch verteilte Abweichungen vom Nullpunkt 0, deren Verteilung allerdings mittelwertfrei ist, das heisst, dass der Mittelwert der Abweichungen der Punkte in beiden Achsen Null ist.
Im Vergleich zu anderen, mit verschiedenen Durchläufen arbeitenden, Algorithmen für die Rechner ähnlicher Systeme erweist sich der Algorithmus nach der vorliegenden Erfindung besonders vorteilhaft im Hinblick darauf, dass die Initialisierung nach der Erfindung völlig unproblematisch ist und dass es nie zu Singularitäten (Determinante = 0) kommt, so dass man keinerlei ,Entgleisung' des Programms befürchten muss. Solche ,Entgleisungen' könnten beispielsweise vorkommen, wenn man für jeden Durchlauf versucht, Messwerte an eine vorgegebene Kurve, wie eine Sinus-Kurve, anzupassen.
Wie beim System nach der Patentschrift EP 0 314 721 B1 haben die auf Messungen beruhenden Korrekturdaten, mit welchen die Ausrichtfehlervektoren korrigiert werden, eine die Fehlausrichtung in Echtzeit korrigierende Wirkung. Die Messungen können von Zeit zu Zeit, zum Beispiel nach vier oder sechs Wochen, neu durchgeführt werden, um die Korrekturdaten an sich verändernde Verhältnisse, beispielsweise eines Schiffes, anzupassen. Dies bedeutet, dass die von Zeit zu Zeit gewonnenen Messwerte in das System integriert werden können und dass sie daher system-inhärent sind und somit jeweils einem nicht direkt beobachtbaren Fehler entsprechen.
Die Sensoreinrichtung T (Tracker) kann ein Sensor, ein Richtgerät, ein Radar-, Laser- oder ein Infrarotgerät usw. sein, oder es können mehrere solcher Geräte kombiniert werden. Als Effektoreinrichtungen G (Geschütze) kommen nicht nur herkömmliche Geschütze wie beispielsweise Kanonen sondern auch Raketenabschussvorrichtungen oder Laserkanonen in Frage. Die Messungen können für verschiedene G/T-Paare B11, B12, B21, B22, ... (vgl. Fig. 1) durchgeführt werden, wobei eine Sensoreinrichtung T auch mehrere Effektoreinrichtungen G steuern kann.
Die an Hand der Figuren beschriebene Anlage kann die notwendigen Steuerungen, Computer-Mittel bzw. Hardware und Programme bzw. Software aufweisen, um die verschiedenen verfahren bzw. Teilverfahren nach den beanspruchten Varianten oder in jeder kombination derselben zu realisieren.

Claims (10)

  1. Verfahren zur Korrektur von Ausrichtfehlern zwischen einer Sensoreinrichtung (T; T1, T2) und einer über eine Servosteuerung von der Sensoreinrichtung (T; T1, T2) gesteuerten Effektoreneinrichtung (G; G1, G2, G3) durch Korrektur eines Ausrichtfehlervektors (B),
    gekennzeichnet durch
    folgende Verfahrensschritte:
    a) Ausrichten der Sensoreinrichtung (T; T1, T2) auf ein Messziel (Ki ),
    b) Ausrichten eines in der Effektoreneinrichtung (G; G1, G2, G3) vorhandenen Zielmess-Sensors (Sg) auf dieses Messziel (Ki ), das somit ein gemeinsames Messziel (Ki ) der Sensoreinrichtung (T; T1, T2) und der Effektoreneinrichtung (G; G1, G2, G3) darstellt,
    c) Erfassen eines Abweichungswertes (Di ) zwischen der Lage der Visierlinie (0) des Zielmess-Sensors (Sg), wie sie sich aus der von der Sensoreinrichtung (T; T1, T2) gesteuerten Effektoreneinrichtung (G; G1, G2, G3) ergibt, und der Lage des Messziels (Ki ), wie sie vom Zielmess-Sensor (Sg) wahrgenommen wird;
    d) Verwendung eines vorhandenen Ausrichtfehlervektors (B) als Eingangssignal der Steuerung, und
    e) Durchführung einer anschliessenden Korrektur des Ausrichtfehlervektors (B) auf Grund des Abweichungswertes (Di ) rekursiv nach der Methode der kleinsten Fehlerquadrate durchgeführt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass zur Korrektur eines Ausrichtfehlervektors (B) ein rekursiv in Verfahrensschritten i = 1, ... bis i = n berechneter Vektor (Pn) gewonnen wird, der für jede gemessene Position des Messzieles (Ki ) mindestens zwei Komponenten bzw. Koordinaten des Abweichungswertes (Di ) aufweist, und
    dass die Korrektur eines berechneten Vektors (Pi) durch Multiplikation eines Initialwertes oder eines vorhergehend berechneten Vektors mit einer eine Transformation der Koordinaten des Messzieles in Funktion des Seitenwinkels (αgi) und des Höhenwinkels (λgi) des Zielmess-Sensors (Sg) bewirkenden Transformationsmatrix (Mi ) durchgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Transformationsmatrix wie folgt definiert ist:
    Figure 00110001
    mit i = 1, 2, 3, ..... n
  4. Verfahren nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, dass für jeden Verfahrensschritt i auch eine Kovarianz-Matrix (Si ) wie folgt Si = Si-1 - Si-1 * Mi T * Mi * Si-1 (Mi * Si-1 * Mi T + I) verwendet wird, wobei I eine Einheitsmatrix ist, für die Initialisierung der Rekursion ein Initialwert von S0 verwendet wird und i = 1, 2, 3, ... n ist.
  5. Verfahren nach einem der Ansprüche 2 bis 4,
    dadurch gekennzeichnet, dass ein Fehlervektor (E) gemäss folgender Rekursionsformel Ei = Di - Mi * Pi-1 gewonnen wird, worin Di = |dyi' dzi'| ein Vektor mit den Komponenten der Abweichungswerte (d) ist.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass die rekursiven Verfahrensschritte mit frei wählbaren Werten für P0 , S0, mit berechneten Werten von Mi und mit gemessenen Werten von Di = |dyi' dzi'|T beginnend mit i = 1 durchgeführt werden, und dass daraus der Fehlervektor (Ei) gemäss der genannten Rekursionsformel Ei = Di - Mi * Pi-1 und
    der Korrekturvektor (Pi) nach folgender Rekursionsformel Pi = Pi-1 + Si * Mi T * Ei mit i = 1, 2, 3, .... n
    abgeleitet werden:
  7. Verfahren nach einem der Ansprüche 2 bis 5,
    dadurch gekennzeichnet, dass der Korrektur-Vektor (Pi ) mit mindestens zwei aus folgenden vier Komponenten Δxi, Δyi, Δzi und Δλi gebildet wird.
  8. Verfahren nach einem der Ansprüche 3 bis 7,
    dadurch gekennzeichnet, dass die Berechnung mit dem Korrekturvektor Pi = |Δxi Δyi Δzi Δλi| durchgeführt und mit folgenden Werten P0 = |0 0 0 0|T und
    Figure 00130001
    initialisiert wird, worin C eine Konstante ist, die vorzugsweise den Wert 49.25 aufweist.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass das gemeinsame Messziel (Ki ) auf vorgegebenen Bahnen, vorzugsweise mittels eines Helikopters (10), im Raum geführt wird.
  10. Vorrichtung zur Korrektur von Ausrichtfehlern zwischen einer Sensoreinrichtung (T; T1, T2) und einer über eine Servosteuerung von der Sensoreinrichtung (T; T1, T2) gesteuerten Effektoreneinrichtung (G; G1, G2, G3) durch Korrektur eines Ausrichtfehlervektors (B), wobei
    die Sensoreinrichtung (T; T1, T2) ausgebildet ist, um auf ein Messziel (Ki ) ausgerichtet zu werden,
    wobei in der Effektoreneinrichtung (G; G1, G2, G3) ein Zielmess-Sensor (Sg) vorhanden ist, der ausgebildet ist, um auf dieses Messziel (Ki ) ausgerichtet zu werden, das somit ein gemeinsames Messziel (Ki ) der Sensoreinrichtung (T; T1, T2) und der Effektoreneinrichtung (G; G1, G2, G3) darstellen kann,
    wobei Display-Mittel vorhanden sind, um einen Abweichungswert (Di ) zwischen der Lage der Visierlinie (0) des Zielmess-Sensors (Sg), wie sie sich aus der von der Sensoreinrichtung (T; T1, T2) gesteuerten Effektoreneinrichtung (G; G1, G2, G3) ergibt, und der Lage des Messziels (Ki ), wie sie vom Zielmess-Sensor (Sg) wahrgenommen wird, zu erfassen,
    und wobei Computer-Mittel vorhanden sind,
    um aus einem vorhandenen Ausrichtfehlervektor (B) ein Eingangssignal für die Servosteuerung zu gewinnen, und
    um anschliessend eine Korrektur des Ausrichtfehlervektors (B) auf Grund des Abweichungswertes (Di ) rekursiv nach der Methode der kleinsten Fehlerquadrate durchzuführen.
EP00128755A 2000-04-26 2000-12-30 Verfahren und Vorrichtung zur Korrektur von Ausrichtfehlern zwischen Geräten Expired - Lifetime EP1152206B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH818002000 2000-04-26
CH00818/00A CH694743A5 (de) 2000-04-26 2000-04-26 Verfahren und Vorrichtung zur Korrektur von Ausrichtfehlern zwischen einer Sensoreinrichtung und einer Effektoreneinrichtung.

Publications (2)

Publication Number Publication Date
EP1152206A1 EP1152206A1 (de) 2001-11-07
EP1152206B1 true EP1152206B1 (de) 2005-01-26

Family

ID=4539149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00128755A Expired - Lifetime EP1152206B1 (de) 2000-04-26 2000-12-30 Verfahren und Vorrichtung zur Korrektur von Ausrichtfehlern zwischen Geräten

Country Status (11)

Country Link
US (1) US20010047248A1 (de)
EP (1) EP1152206B1 (de)
JP (1) JP4846102B2 (de)
KR (1) KR100817966B1 (de)
AT (1) ATE288070T1 (de)
CH (1) CH694743A5 (de)
DE (1) DE50009355D1 (de)
DK (1) DK1152206T3 (de)
ES (1) ES2233276T3 (de)
MY (1) MY122819A (de)
PT (1) PT1152206E (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002301626B2 (en) * 2001-11-23 2008-06-26 Oerlikon Contraves Ag Method and device for judging the aiming error of a weapon system and use of the device
AU2002301625B2 (en) * 2001-11-23 2008-06-26 Oerlikon Contraves Ag Method and device for judging aiming errors of a weapon system and use of the device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525000C2 (sv) * 2003-03-04 2004-11-09 Totalfoersvarets Forskningsins Sätt att bringa en projektil i kastbana att verka i en önskad punkt vid en beräknad tidpunkt
SE0402472L (sv) * 2004-10-13 2005-11-01 Goeran Backlund Anordning för automatisk inställning av optiskt sikte för skjutvapen
WO2008104008A1 (en) * 2007-02-23 2008-08-28 Christian Emmanuel Norden Firearm shooting simulator
KR101222531B1 (ko) * 2010-09-01 2013-01-15 국방과학연구소 다중표적처리장치에서 거리 구간별 다른 가중치의 융합 기준을 가지는 표적 융합 방법
KR101815678B1 (ko) * 2011-09-14 2018-01-05 한화지상방산 주식회사 영상 장치 연동 무장 시스템 및 그 동작 방법
KR101376689B1 (ko) 2012-12-13 2014-03-20 국방과학연구소 포신 영상을 활용한 포사격 통제시스템의 흔들림 오차 보정 방법
US20160011064A1 (en) * 2014-04-21 2016-01-14 Joseph Maybank Impact sensing ballistic vest and method for communicating data thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR27014A (tr) * 1987-05-15 1994-09-15 Contraves Ag Bir ates idare tertibati icin tevcih usulü ve bu usulü icra etmeye mahsus ates idare tertibati.
JPH04263796A (ja) * 1991-01-10 1992-09-18 Mitsubishi Electric Corp 自動照準誤差修正方法及びその装置
US5303878A (en) * 1991-08-30 1994-04-19 Texas Instruments Incorporated Method and apparatus for tracking an aimpoint on an elongate structure
JPH1089896A (ja) * 1996-09-11 1998-04-10 Yokogawa Denshi Kiki Kk 射撃指揮装置
JPH10206094A (ja) * 1997-01-23 1998-08-07 Mitsubishi Heavy Ind Ltd シースルー型hmdにおける視線方向情報校正方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002301626B2 (en) * 2001-11-23 2008-06-26 Oerlikon Contraves Ag Method and device for judging the aiming error of a weapon system and use of the device
AU2002301625B2 (en) * 2001-11-23 2008-06-26 Oerlikon Contraves Ag Method and device for judging aiming errors of a weapon system and use of the device

Also Published As

Publication number Publication date
ATE288070T1 (de) 2005-02-15
KR20010098385A (ko) 2001-11-08
PT1152206E (pt) 2005-05-31
JP4846102B2 (ja) 2011-12-28
CH694743A5 (de) 2005-06-30
DK1152206T3 (da) 2005-05-30
US20010047248A1 (en) 2001-11-29
JP2001311774A (ja) 2001-11-09
ES2233276T3 (es) 2005-06-16
KR100817966B1 (ko) 2008-03-31
MY122819A (en) 2006-05-31
EP1152206A1 (de) 2001-11-07
DE50009355D1 (de) 2005-03-03

Similar Documents

Publication Publication Date Title
DE1936820C1 (de) Zielverfolgungsgerät für Luftfahrzeuge
EP0314721B1 (de) Ausrichtverfahren für eine feuerleiteinrichtung und feuerleiteinrichtung zur durchführung des verfahrens
EP1152206B1 (de) Verfahren und Vorrichtung zur Korrektur von Ausrichtfehlern zwischen Geräten
DE2901873A1 (de) Feuerleiteinrichtung
EP0359950B1 (de) Verfahren und Visiereinrichtung zum Grobausrichten von Feuerleit- und Waffenanlagen
EP0016490B1 (de) Verfahren zum indirekten Richten eines Geschützes und Einrichtung zur Durchführung des Verfahrens
WO2006114076A1 (de) Justiervorrichtung und verfahren zur ausrichtung einer simulatorachse eines schusssimulators zur visierlinie einer waffe
DE2651732A1 (de) Schiess-leitvorrichtung
DE19548752C1 (de) Einrichtung zur Verfolgung und Vermessung bewegter Objekte
EP1314950A1 (de) Verfahren und Vorrichtung zum Beurteilen der Richtfehler eines Waffensystems und Verwendung der Vorrichtung
EP0179387B1 (de) Einrichtung zur Durchführung dynamischer Vergleichsmessungen an Feuerleitsystemen für gerichtete Waffen
DE3814958A1 (de) Fahrzeug mit einer fahrzeugorientierungsanlage
DE3912108A1 (de) Fahrzeug mit einer fahrzeugorientierungsanlage
DE102009040280A1 (de) Modulare Justiervorrichtung zur parallelen Ausrichtung der Simulatorachse eines Schusssimulators zur Visierlinie einer Schusswaffe
DE3409538C1 (de) Verfahren und Vorrichtung zum Ausrichten zweier Drehebenen
EP1790937B1 (de) Verfahren zur Erhöhung der Ersttrefferwahrscheinlichkeit einer ballistischen Waffe
DE2103328A1 (de) Feuerleitsystem für Geschütze
CH648117A5 (de) Automatische zielvorrichtung fuer ein geschuetz, insbesondere fuer ein feldartillerie-geschuetz.
WO2011026487A2 (de) Justierverfahren und modulare justiervorrichtung zur parallelen ausrichtung der simulatorachse eines schusssimulators zur visierlinie einer schusswaffe
CH620988A5 (en) Aiming device on a firearm
DE102013104308B4 (de) Justierverfahren und Justiervorrichtung zur parallelen Ausrichtung der Simulatorlinie eines Schusssimulators zur Visierlinie einer Schusswaffe
DE2053190C2 (de) Verfahren und Vorrichtung zum Nachführen von direkt zielenden Waffen
DE3726953C2 (de)
DE921876C (de) Anordnung zur Peil- oder Visiersteuerung
DE65680C (de) Instrument, um die Seitenrichtung eines bereits gerichteten Geschützes auf andere Geschütze zn übertragen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011129

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050126

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

REF Corresponds to:

Ref document number: 50009355

Country of ref document: DE

Date of ref document: 20050303

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050400982

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050405

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20050401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2233276

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051230

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

26N No opposition filed

Effective date: 20051027

BERE Be: lapsed

Owner name: OERLIKON CONTRAVES A.G.

Effective date: 20051231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009355

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20111214

Year of fee payment: 12

Ref country code: PT

Payment date: 20111227

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009355

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref legal event code: R082

Country of ref document: DE

Ref legal event code: R082

Country of ref document: DE

Ref country code: DE

Ref document number: 50009355

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20120523

Ref country code: DE

Ref document number: 50009355

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20111202

Ref country code: DE

Ref legal event code: R081

Ref document number: 50009355

Country of ref document: DE

Owner name: RHEINMETALL AIR DEFENCE AG, CH

Free format text: FORMER OWNER: OERLIKON CONTRAVES AG, ZUERICH, CH

Effective date: 20120523

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009355

Country of ref document: DE

Representative=s name: HUEBSCH & WEIL PATENT- UND RECHTSANWALTSKANZLE, DE

Effective date: 20120523

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009355

Country of ref document: DE

Representative=s name: HUEBSCH & WEIL PATENT- UND RECHTSANWALTSKANZLE, DE

Effective date: 20111202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20121219

Year of fee payment: 13

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121230

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Representative=s name: HUEBSCH & WEIL PATENT- UND RECHTSANWALTSKANZLE, DE

Ref legal event code: R082

Ref document number: 50009355

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009355

Country of ref document: DE

Representative=s name: HUEBSCH, KIRSCHNER & PARTNER, PATENTANWAELTE U, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20151230

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009355

Country of ref document: DE

Representative=s name: HUEBSCH, KIRSCHNER & PARTNER, PATENTANWAELTE U, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181219

Year of fee payment: 19

Ref country code: GR

Payment date: 20181219

Year of fee payment: 19

Ref country code: NL

Payment date: 20181219

Year of fee payment: 19

Ref country code: DE

Payment date: 20181210

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181219

Year of fee payment: 19

Ref country code: CH

Payment date: 20181218

Year of fee payment: 19

Ref country code: IT

Payment date: 20181219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190123

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009355

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200707

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191230