EP1141051B1 - Process to prepare branched ethylene-propylene copolymers - Google Patents

Process to prepare branched ethylene-propylene copolymers Download PDF

Info

Publication number
EP1141051B1
EP1141051B1 EP99966280A EP99966280A EP1141051B1 EP 1141051 B1 EP1141051 B1 EP 1141051B1 EP 99966280 A EP99966280 A EP 99966280A EP 99966280 A EP99966280 A EP 99966280A EP 1141051 B1 EP1141051 B1 EP 1141051B1
Authority
EP
European Patent Office
Prior art keywords
propylene
ethylene
molecular weight
reactor
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99966280A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1141051A1 (en
Inventor
Eric J. Markel
Weiqing Weng
Armenag H. Dekmezian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
ExxonMobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Chemical Patents Inc filed Critical ExxonMobil Chemical Patents Inc
Publication of EP1141051A1 publication Critical patent/EP1141051A1/en
Application granted granted Critical
Publication of EP1141051B1 publication Critical patent/EP1141051B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to processes for making gel-free, diene-free, branched semi-crystalline high-C 3 ethylene-propylene compositions, and especially high-C 3 ethylene-propylene compositions utilizing single site catalyst compounds.
  • the class of rubbery ethylene-propylene copolymers conventionally referred to as EPR polymers, is well known and has gained substantial commercial acceptance.
  • the copolymers are known to have good properties such as weatherability, ozone resistance and thermal stability and the polymers have accepted utility in automotive applications, as construction materials and as wire and cable coatings, among others.
  • conventional ethylene-propylene rubbery copolymers are often difficult to process unless compounded by relatively large amounts of other materials.
  • EP 190 889 A2 discloses high energy irradiation of polypropylene to create what is believed to be polypropylene having substantial free-end long branches of propylene units.
  • EP. 384 431 discloses the use of peroxide decomposition of polypropylene in the substantial absence of oxygen to obtain a similar product.
  • long chain branched polypropylene examples include U.S. Patent 5,541,236 , which introduces long chain branching by bridging two PP backbones to form H-type polymers, and U.S. Patent 5514,761 , which uses dienes incorporated in the backbones to achieve a similar effect, However, it is difficult to avoid cross-linking and gel formation in such processes.
  • WO97/01586 discloses elastic copolymers having a specified uniform branching coefficient.
  • the catalyst system monocyclopentadienyl titanium as the transition metal component.
  • US5705584 discloses polymerization processes using bridged bis indenyl zirconocenes as the transition metal component in the catalyst system but does not teach the combination of reactant ratio's and other conditions of the invention described hereinafter.
  • the invention provides a process for producing a branched ethylene-propylene composition in continuous mode comprising:
  • the present invention provides a process for producing gel-free, diene-free, branched EP.
  • the branched EP product of the present invention is novel.
  • the weight average branching index g' for the higher molecular weight region of the ethylene-propylene composition is less than 0.95.
  • the weight average branching index g' for the higher molecular weight region of the ethylene-propylene composition is less than 0.90. More preferably, it is less than 0.85.
  • An unusual feature of the branched ethylene-propylene of the present invention is the presence of a significant amount of branching in the higher molecular weight range of the polymer. This branching results in improved melt strength and shear thinning, as well as other unique physical properties.
  • the amount of branching is determined using the weight average branching index g' of the branched ethylene-propylene.
  • the ethylene-propylene polymers produced by the process of the invention of the present invention have a high propylene content, wherein a majority of the monomeric content of the polymer is propylene.
  • the propylene content of the ethylene-propylene polymers is greater than 50%. More preferably, the propylene content of the ethylene-propylene polymers is in the range of 75 to 95%. Most preferably, the propylene content of the ethylene-propylene polymers is in the range of 80 to 90%.
  • comonomers can be included in the branched ethylene-propylene of the present invention.
  • these other comonomers include C 4 -C 20 ⁇ -olefins, geminally disubstituted monomers, C 5 -C 25 cyclic olefins, C 8 -C 25 styrenic olefins, and lower carbon number (C 3 -C 8 ) alkyl substituted analogs of the cyclic and styrenic olefins.
  • the other comonomers comprise from 3 to 25 mole percent of the ethylene-propylene composition. More preferably, they comprise from 5 to 20 mole percent of the ethylene-propylene composition.
  • the total comonomer content of the branched ethylene-propylene composition of the present invention is from 5 to 40 mole percent. More preferably, the total comonomer content is from 10 to 30 mole percent. Most preferably, the total comonomer content is from 15 to 25 mole percent.
  • Preferred metallocenes are those that are stereorigid and comprise a bis-indenyl metallocene components having the following general structure:
  • Halogen is fluorine, chlorine, bromine or iodine atoms, preferably fluorine or chlorine.
  • Particularly preferred metallocenes are compounds of the structures: wherein:
  • the chiral metallocenes may be used as a racemate for the preparation of highly isotactic polypropylene polymers and copolymers. It is also possible to use the pure R or S form. An optically active polymer can be prepared with these pure stereoisomeric forms. Preferably the meso form of the metallocene is removed to ensure the center (i.e., the metal atom) provides stereoregular polymerization. Separation of the stereoisomers can be accomplished by known literature techniques. For special products it is also possible to use rac/meso mixtures.
  • Illustrative but non-limiting examples of some preferred metallocenes include: Dimethylsilanylbis (2-methyl-4-phenyl-1-indenyl)ZrCl 2 Dimethylsilanylbis(2-methyl-4,5-benzoindenyl)ZrCl 2 ; Dimethylsilanylbis(2-methyl-4,6-diisopropylindenyl)ZrCl 2 ; Dimethylsilanylbis(2-ethyl-4-phenyl-l-indenyl)ZrCI 2 ; Dimethylsilanylbis (2-ethyl-4-naphthyl-1-indenyl)ZrCl 2, Phenyl(Methyl)silanylbis(2-methyl-4-phenyl-1-indenyl)ZrCl 2 , Dimethylsilanylbis(2-methyl-4-(1-naphthyl)-1-indenyl)ZrCl 2 , Dimethylsilanylbis(2-
  • the catalyst used to produce the branched ethylene-propylene of the present invention is a substituted bridged bis-indenyl zirconocene or hafnocene such as dimethylsilyl bis(2-methyl-indenyl) ZrCl 2 , dimethylsilyl bis(2-methyl-indenyl) ZrMe 2 , dimethylsilyl bis(2-methyl-4-phenyl-1-indenyl) ZrCl 2 , dimethylsilyl bis(2-methyl-4-(1-naphthyl)-1-indenyl) ZrCl 2 , or dimethylsilyl bis(indenyl)hafnium dimethyl.
  • a substituted bridged bis-indenyl zirconocene or hafnocene such as dimethylsilyl bis(2-methyl-indenyl) ZrCl 2 , dimethylsilyl bis(2-methyl-indenyl) ZrMe 2 , dimethylsilyl bis(2-
  • This invention uses ionizing activators, neutral or ionic, or compounds such as tri(n-butyl)ammonium tetrakis(pentaflurophenyl)boron, which ionize the neutral metallocene compound.
  • ionizing compounds may contain an active proton, or some other cation associated with but not coordinated or only loosely coordinated to the remaining ion of the ionizing compound.
  • ionic catalysts for coordination polymerization comprised of metallocene cations activated by non-coordinating anions appear in the early work in EP-A-0 277 003 , EP-A-0 277 004 and US patent 5,198,401 and WO-A-92/00333 . These teach a preferred method of preparation wherein metallocenes are protonated by an anion precursor such that an alkyl/hydride group is abstracted from a transition metal to make it both cationic and charge-balanced by the non-coordinating anion.
  • noncoordinating anion means an anion which either does not coordinate to said cation or which is only weakly coordinated to said cation thereby remaining sufficiently labile to be displaced by a neutral Lewis base.
  • “Compatible” noncoordinating anions are those which are not degraded to neutrality when the initially formed complex decomposes. Further, the anion will not transfer an anionic substituent or fragment to the cation so as to cause it to form a neutral four coordinate metallocene compound and a neutral by-product from the anion.
  • Noncoordinating anions useful in accordance with this invention are those which are compatible, stabilize the metallocene cation in the sense of balancing its ionic charge in a +1 state, yet retain sufficient lability to permit displacement by an ethylenically or acetylenically unsaturated monomer during polymerization.
  • ionizing ionic compounds not containing an active proton but capable of producing both the active metallocene cation and an noncoordinating anion is also known. See, EP-A-0 426 637 and EP-A- 0 573 403
  • An additional method of making the ionic catalysts uses ionizing anion pre-cursors which are initially neutral Lewis acids but form the cation and anion upon ionizing reaction with the metallocene compounds, for example the use of tris(pentafluorophenyl) boron.
  • Ionic catalysts for addition polymerization can also be prepared by oxidation of the metal centers of transition metal compounds by anion pre-cursors containing metallic oxidizing groups along with the anion groups, see EP-A-0 495 375 .
  • metal ligands include halogen moieties (for example, bis-cyclopentadienyl zirconium dichloride) which are not capable of ionizing abstraction under standard conditions, they can be converted via known alkylation reactions with organometallic compounds such as lithium or aluminum hydrides or alkyls, alkylalumoxanes, Grignard reagents, etc. See EP-A-0 500 944 and EP-A1-0 570 982 (incorporated herein by reference) for in situ processes describing the reaction of alkyl aluminum compounds with dihalo-substituted metallocene compounds prior to or with the addition of activating anionic compounds.
  • organometallic compounds such as lithium or aluminum hydrides or alkyls, alkylalumoxanes, Grignard reagents, etc.
  • the metallocenes described herein may be supported using a porous particulate material, such as for example, talc, inorganic oxides, inorganic chlorides and resinous materials such as polyolefin or polymeric compounds.
  • a porous particulate material such as for example, talc, inorganic oxides, inorganic chlorides and resinous materials such as polyolefin or polymeric compounds.
  • Preferred support materials are porous inorganic oxide materials, which include those from the Periodic Table of Elements of Groups 2, 3, 4, 5, 13 or 14 metal oxides. Silica, alumina, silica-alumina, and mixtures thereof are particularly preferred. Other inorganic oxides that may be employed either alone or in combination with the silica, alumina or silica-alumina are magnesia, titania, zirconia, and the like.
  • the support material is porous silica which has a surface area in the range of from about 10 to about 700 m 2 /g, a total pore volume in the range of from about 0.1 to about 4.0 cc/g and an average particle size in the range of from about 10 to about 500 ⁇ m. More preferably, the surface area is in the range of from about 50 to about 500 m 2 /g, the pore volume is in the range of from about 0.5 to about 3.5 cc/g and the average particle size is in the range of from about 20 to about 200 ⁇ m.
  • the surface area is in the range of from about 100 to about 400 m 2 /g
  • the pore volume is in the range of from about 0.8 to about 3.0 cc/g
  • the average particle size is in the range of from about 30 to about 100 ⁇ m.
  • the average pore size of typical porous support materials is ⁇ 10 ⁇ .
  • a support material is used that has an average pore diameter of ⁇ 50 ⁇ , and most preferably it is in the range of from about 75 to about 350 ⁇ . It may be particularly desirable to dehydrate the silica at a temperature of from about 100°C to about 800°C anywhere from about 3 to about 24 hours.
  • the metallocenes, activator and support material may be combined in any number of ways. Suitable support techniques are described in U. S Patent Nos. 4,808,561 and 4,701,432 (each fully incorporated herein by reference.) Preferably the metallocenes and activator are combined and their reaction product supported on the porous support material as described in U. S. Patent No. 5,240,894 and WO 94/ 28034 , WO 96/00243 , and WO 96/00245 (each fully incorporated herein by reference.) Alternatively, the metallocenes may be preactivated separately and then combined with the support material either separately or together. If the metallocenes are separately supported, then preferably, they are dried then combined as a powder before use in polymerization.
  • the total volume of reaction solution applied to porous support is preferably less than about 4 times the total pore volume of the porous support, more preferably less than about 3 times the total pore volume of the porous support and even more preferably in the range of from more than about 1 to less than about 2.5 times the total pore volume of the porous support.
  • Procedures for measuring the total pore volume of porous support are well known in the art. The preferred method is described in Volume 1, Experimental Methods in Catalyst Research, Academic Press, 1968, pages 67-96 .
  • the methods generally comprise either physical adsorption on traditional polymeric or inorganic supports that have been largely dehydrated and dehydroxylated, or using neutral anion precursors that are sufficiently strong Lewis acids to activate retained hydroxy groups in silica containing inorganic oxide supports such that the Lewis acid becomes covalently bound and the hydrogen of the hydroxy group is available to protonate the metallocene compounds.
  • the supported catalyst system may be used directly in polymerization or the catalyst system may be prepolymerized using methods well known in the art.
  • prepolymerization see United States Patent Nos. 4,923,833 and 4,921,825 , EP 0 279 863 and EP 0 354 893 each of which is fully incorporated herein by reference.
  • the process of the invention may employ the catalysts described above in any process including gas, slurry, suspension or solution phase processes. Additionally, combinations of the above reactor types in multiple, series reactors and/or multiple reaction conditions and/or multiple catalyst configurations are explicitly intended.
  • this invention is directed toward the polymerization of ethylene and propylene in a slurry or solution phase polymerization process, particularly a solution polymerization process.
  • a continuous cycle is employed wherein one part of the cycle of a reactor, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization.
  • the recycle stream usually contains one or more monomers continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. This heat is removed in another part of the cycle by a cooling system external to the reactor.
  • the recycle stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and new or fresh monomer is added to replace the polymerized monomer.
  • a slurry polymerization process generally uses pressures in the range of from about 1 to about 500 atmospheres or even greater and temperatures in the range of from -60°C to about 280°C.
  • a suspension of solid, particulate polymer is formed in a liquid or supercritical polymerization medium to which ethylene, propylene and comonomers and often hydrogen along with catalyst are added.
  • the medium employed should be liquid under the conditions of polymerization and relatively inert.
  • the liquid employed in the polymerization medium can be an inert hydrocarbon solvent or diluent.
  • an alkane or a cycloalkane such as hexane or isobutane can be used.
  • hexane or propylene monomer serves as the polymerization diluent.
  • the ethylene monomers, the propylene monomers and the inert hydrocarbon solvent or diluent comprise no more than 90 percent of the total contents of the reactor. More preferably, they comprise no more than 80 percent of the total contents of the reactor. Most preferably, the ethylene monomers, the propylene monomers and the inert hydrocarbon solvent or diluent comprise no more than 70 percent of the total contents of the reactor. In a preferred embodiment, the ethylene monomers, the propylene monomers and the inert hydrocarbon solvent or diluent comprise at least 50 percent of the total contents of the reactor.
  • the ratio in the reactor of the ethylene and propylene monomers to the inert hydrocarbon solvent or diluent in the reactor feed is preferably less than 2.0. More preferably, the ratio is less than 1.0. Still more preferably, it is less than 0.8. Most preferably, the ratio in the reactor of the ethylene and propylene monomers to the inert hydrocarbon solvent or diluent in the reactor feed is less than 0.5.
  • the polymerization is carried out using a pressure of from about 200 kPa to about 7,000 kPa at a temperature in the range of from about 50°C to about 180°C. More preferably, the polymerization is carried out at a temperature in the range of from about 50°C to about 130°C. Most preferably, the polymerization is carried out at a temperature in the range of from 60°C to 110°C.
  • the polymerization is be conducted in continuous mode and the entire polymerization may take place in one reactor or the polymerization may be carried out in a series of reactors.
  • reaction time for the polymerization of the present invention will depend upon the catalyst system and reaction conditions.
  • Hydrogen may be added to the polymerization system as a molecular weight regulator in the first and/or subsequent reactors depending upon the particular properties of the product desired and the specific metallocenes used. When metallocenes having different hydrogen responses are used, the addition of hydrogen will affect the molecular weight distribution of the polymer product accordingly. Hydrogen may also affect the distribution of branching.
  • preactivation of the metallocene may be advantageous.
  • preactivation of the metallocene with alumoxane before addition to a continuous solution-phase reactor yields higher activities than continuous addition of metallocene and activator in two separate streams.
  • the branched ethylene-propylene polymers produced by the process of the present invention exhibit improved melt properties, such as shear thinning, elasticity, melt strength and low viscosity.
  • the branched ethylene-propylene polymers are useful in a variety of applications, including hot melt adhesives, elastic compositions, modifiers and molded products.
  • Liquids were measured into the reactor feed tanks using calibrated sight glasses.
  • High purity (>99.5%) hexane was purified by passing first through basic alumina activated at high temperature in nitrogen, followed by molecular sieve activated at high temperature in nitrogen.
  • Polymerization grade ethylene was supplied directly in a nitrogen-jacketed line and used without further purification, and propylene was purified by passing it through activated basic alumina and molecular sieves.
  • Dimethylanilinium tetrakis(perfluoroaryl)borate [DMAH] + [(C 6 F 5 ) 4 B] - was obtained from Boulder Scientific Co., Mead, Colorado.
  • Propylene was measured into the reactor through a calibrated container. To ensure the reaction medium was well mixed, a flat-paddle stirrer rotating at 750 rpm was used. Polymerization was performed in 0.5 liter (continuous) Zipperclave reactor equipped with a water jacket for temperature control. The reactors were first cleaned by heating to 120°C in toluene to dissolve any polymer residues, then cooled and drained. Next, the reactor was heated using jacket water at 110°C and the reactor was purged with flowing nitrogen for a period of >30 minutes.
  • Catalyst A Dimethylsilyl bis(2-methyl-indenyl) ZrMe 2
  • Catalyst B Dimethylsilyl bis(indenyl)hafnium dimethyl
  • DMAH-activated catalysts were used in these reactions. Each run utilized 30 mg of Catalyst A or Catalyst B (1:1.3 molar DMAH) in 100 ml toluene, preactivated 15 minutes before loading into the feed bomb for injection/metering by the HPLC pump. Hexane, propylene and ethylene feeds were premixed in an 18 liter feed tank. Ethylene concentrations were controlled by controlled addition of an ethylene partial pressure above that of the propylene/hexane mix. After ethylene addition, the feed tank was closed, then pressurized with nitrogen to 200 psig.
  • a positive displacement pump was used to meter the feed into the reactor and to raise the pressure sufficiently to prevent bubbling of the reaction medium at reaction temperatures. In this way, liquid-full reaction was accomplished.
  • Reactor pressure was controlled using a downstream backpressure regulator. At the highest pump setting, a residence time of approx. 2 minutes was obtained using the 0.5 liter reactor body.
  • the molecular weight and MWD of the polymers were measured by a Waters 150-C ALC/GPC. Branching levels were measured by GPC/Vis and are reported as g' at each molecular weight in the GPC trace. Relating the measured g' to branched structure requires the application of Zimm-Stockmayer theory, which assumes a random distribution of branch sizes for each population of branched structures (singly, doubly, triply branched, etc.) at each molecular weight. See B.H. Zimm and W.H. Stockmayer, J. Chem. Phys. 17, 1301 (1949 ).
EP99966280A 1998-12-21 1999-12-15 Process to prepare branched ethylene-propylene copolymers Expired - Lifetime EP1141051B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11322798P 1998-12-21 1998-12-21
US113227P 1998-12-21
PCT/US1999/029787 WO2000037514A1 (en) 1998-12-21 1999-12-15 Branched semi-crystalline ethylene-propylene compositions

Publications (2)

Publication Number Publication Date
EP1141051A1 EP1141051A1 (en) 2001-10-10
EP1141051B1 true EP1141051B1 (en) 2008-01-23

Family

ID=22348278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99966280A Expired - Lifetime EP1141051B1 (en) 1998-12-21 1999-12-15 Process to prepare branched ethylene-propylene copolymers

Country Status (11)

Country Link
US (2) US6573350B1 (ko)
EP (1) EP1141051B1 (ko)
JP (1) JP4860819B2 (ko)
KR (1) KR100653018B1 (ko)
CN (1) CN1234739C (ko)
AT (1) ATE384747T1 (ko)
BR (1) BR9916426A (ko)
CA (1) CA2356667A1 (ko)
DE (1) DE69938061D1 (ko)
MX (1) MXPA01006372A (ko)
WO (1) WO2000037514A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8071687B2 (en) 2002-10-15 2011-12-06 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026921A1 (en) * 2002-09-20 2004-04-01 Exxonmobil Chemical Patents Inc. Polymer production at supercritical conditions
US7807769B2 (en) 2002-09-20 2010-10-05 Exxonmobil Chemical Patents Inc. Isotactic polypropylene produced from supercritical polymerization process
US7550528B2 (en) 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US8618219B2 (en) 2002-10-15 2013-12-31 Exxonmobil Chemical Patents Inc. Propylene copolymers for adhesive applications
US8653169B2 (en) 2002-10-15 2014-02-18 Exxonmobil Chemical Patents Inc. Propylene copolymers for adhesive applications
US7439312B2 (en) 2002-10-24 2008-10-21 Exxonmobil Chemical Patents Inc. Branched crystalline polypropylene
EP1422250A1 (en) * 2002-11-20 2004-05-26 ATOFINA Research Branched polypropylene
US7863379B2 (en) 2004-03-17 2011-01-04 Dow Global Technologies Inc. Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
US7582716B2 (en) 2004-03-17 2009-09-01 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack
US7504347B2 (en) 2004-03-17 2009-03-17 Dow Global Technologies Inc. Fibers made from copolymers of propylene/α-olefins
US7741397B2 (en) 2004-03-17 2010-06-22 Dow Global Technologies, Inc. Filled polymer compositions made from interpolymers of ethylene/α-olefins and uses thereof
US8273838B2 (en) 2004-03-17 2012-09-25 Dow Global Technologies Llc Propylene/α-olefins block interpolymers
US7608668B2 (en) 2004-03-17 2009-10-27 Dow Global Technologies Inc. Ethylene/α-olefins block interpolymers
US7622529B2 (en) 2004-03-17 2009-11-24 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility
US7579408B2 (en) 2004-03-17 2009-08-25 Dow Global Technologies Inc. Thermoplastic vulcanizate comprising interpolymers of ethylene/α-olefins
US7662881B2 (en) 2004-03-17 2010-02-16 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
US7524911B2 (en) 2004-03-17 2009-04-28 Dow Global Technologies Inc. Adhesive and marking compositions made from interpolymers of ethylene/α-olefins
US7671131B2 (en) 2004-03-17 2010-03-02 Dow Global Technologies Inc. Interpolymers of ethylene/α-olefins blends and profiles and gaskets made therefrom
US7622179B2 (en) 2004-03-17 2009-11-24 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/α-olefins and uses thereof
US7897689B2 (en) 2004-03-17 2011-03-01 Dow Global Technologies Inc. Functionalized ethylene/α-olefin interpolymer compositions
US7795321B2 (en) 2004-03-17 2010-09-14 Dow Global Technologies Inc. Rheology modification of interpolymers of ethylene/α-olefins and articles made therefrom
US7671106B2 (en) 2004-03-17 2010-03-02 Dow Global Technologies Inc. Cap liners, closures and gaskets from multi-block polymers
US7666918B2 (en) 2004-03-17 2010-02-23 Dow Global Technologies, Inc. Foams made from interpolymers of ethylene/α-olefins
BRPI0508148B1 (pt) 2004-03-17 2015-09-01 Dow Global Technologies Inc Interpolímero de etileno em multibloco, derivado reticulado e composição”
US7557147B2 (en) 2004-03-17 2009-07-07 Dow Global Technologies Inc. Soft foams made from interpolymers of ethylene/alpha-olefins
US7714071B2 (en) 2004-03-17 2010-05-11 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/α-olefins and flexible molded articles made therefrom
US7687442B2 (en) 2004-03-17 2010-03-30 Dow Global Technologies Inc. Low molecular weight ethylene/α-olefin interpolymer as base lubricant oils
US7355089B2 (en) 2004-03-17 2008-04-08 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates
US7803728B2 (en) 2004-03-17 2010-09-28 Dow Global Technologies Inc. Fibers made from copolymers of ethylene/α-olefins
AR053693A1 (es) 2004-03-17 2007-05-16 Dow Global Technologies Inc Composiciones de interpolimero de etileno/alfa-olefina multibloque adecuado para peliculas
US7514517B2 (en) 2004-03-17 2009-04-07 Dow Global Technologies Inc. Anti-blocking compositions comprising interpolymers of ethylene/α-olefins
CN102936304B (zh) 2004-03-24 2014-10-22 埃克森美孚化学专利公司 乙烯共聚体及其生产方法、含有乙烯共聚体的组合物和电装置
US7645829B2 (en) 2004-04-15 2010-01-12 Exxonmobil Chemical Patents Inc. Plasticized functionalized propylene copolymer adhesive composition
WO2006019494A1 (en) 2004-07-14 2006-02-23 Exxonmobil Chemical Patents Inc. Polymer production at supercritical conditions
GB2420348B (en) * 2004-10-28 2009-11-18 Exxonmobil Chem Patents Inc Syndiotactic rich polyolefins
US7737215B2 (en) 2005-03-17 2010-06-15 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates
US7786216B2 (en) 2005-03-17 2010-08-31 Dow Global Technologies Inc. Oil based blends of interpolymers of ethylene/α-olefins
AU2006237514B2 (en) 2005-03-17 2011-10-27 Dow Global Technologies Llc Cap liners, closures and gaskets from multi-block polymers
US7910658B2 (en) 2005-03-17 2011-03-22 Dow Global Technologies Llc Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates
TWI388574B (zh) 2005-03-17 2013-03-11 Dow Global Technologies Llc 由乙烯/α-烯烴之異種共聚物製成的黏著及標記組成物
ATE507251T1 (de) 2005-03-17 2011-05-15 Dow Global Technologies Llc Zusammensetzungen aus einem ethylen/alpha-olefin- multiblock-interpolymer für elastische folien und laminate
US20060260031A1 (en) * 2005-05-20 2006-11-23 Conrad Joseph M Iii Potty training device
US7928164B2 (en) 2005-06-22 2011-04-19 Exxonmobil Chemical Patents Inc. Homogeneous polymer blend and process of making the same
US9644092B2 (en) 2005-06-22 2017-05-09 Exxonmobil Chemical Patents Inc. Heterogeneous in-situ polymer blend
US9745461B2 (en) 2005-06-22 2017-08-29 Exxonmobil Chemical Patents Inc. Vulcanized polymer blends
US7951872B2 (en) 2005-06-22 2011-05-31 Exxonmobil Chemical Patents Inc. Heterogeneous polymer blend with continuous elastomeric phase and process of making the same
US20060293462A1 (en) * 2005-06-22 2006-12-28 Sunny Jacob Heterogeneous polymer blend and process of making the same
US8022142B2 (en) * 2008-12-15 2011-09-20 Exxonmobil Chemical Patents Inc. Thermoplastic olefin compositions
JP4900975B2 (ja) 2005-06-24 2012-03-21 エクソンモービル・ケミカル・パテンツ・インク 官能基形成プロピレンコポリマー接着組成物
US7906587B2 (en) 2005-09-16 2011-03-15 Dow Global Technologies Llc Polymer blends from interpolymer of ethylene/α olefin with improved compatibility
US7695812B2 (en) 2005-09-16 2010-04-13 Dow Global Technologies, Inc. Fibers made from copolymers of ethylene/α-olefins
US20090068427A1 (en) 2005-10-26 2009-03-12 Dow Global Technologies Inc. Multi-layer, elastic articles
BRPI0620567B1 (pt) 2005-12-09 2018-05-29 Dow Global Technologies Inc. Processo para produzir uma composição de interpolímero de etileno/(alfa)-olefina
US8153243B2 (en) 2005-12-09 2012-04-10 Dow Global Technologies Llc Interpolymers suitable for multilayer films
US8143352B2 (en) 2006-12-20 2012-03-27 Exxonmobil Research And Engineering Company Process for fluid phase in-line blending of polymers
DE602006005508D1 (de) * 2006-12-28 2009-04-16 Borealis Tech Oy Verfahren zur Herstellung von verzweigtem Polypropylen
US8080610B2 (en) 2007-03-06 2011-12-20 Exxonmobil Research And Engineering Company Monomer recycle process for fluid phase in-line blending of polymers
US7928162B2 (en) 2007-09-13 2011-04-19 Exxonmobil Research And Engineering Company In-line process for producing plasticized polymers and plasticized polymer blends
EP2201042B1 (en) 2007-09-13 2012-06-27 ExxonMobil Research and Engineering Company In-line blending of plasticizers with a base polymer
EP2052857A1 (en) 2007-10-22 2009-04-29 Dow Global Technologies Inc. Multilayer films
CN103254514B (zh) 2007-12-20 2015-11-18 埃克森美孚研究工程公司 全同立构聚丙烯和乙烯-丙烯共聚物的共混物
US7910679B2 (en) 2007-12-20 2011-03-22 Exxonmobil Research And Engineering Company Bulk homogeneous polymerization process for ethylene propylene copolymers
US7994237B2 (en) 2007-12-20 2011-08-09 Exxonmobil Research And Engineering Company In-line process to produce pellet-stable polyolefins
DE102008005949A1 (de) 2008-01-24 2009-07-30 Evonik Degussa Gmbh Polyolefine mit Isotaktischen Strukturelementen, Verfahren zu deren Herstellung und deren Verwendung
DE102008005945A1 (de) 2008-01-24 2009-07-30 Evonik Degussa Gmbh Verfahren zur Herstellung von Polyolefinen mit syndiotaktischen Strukturelementen, Polyolefine und deren Verwendung
BRPI0906091B8 (pt) 2008-03-13 2019-05-14 Dow Global Technologies Inc polímetro etilênico e processo para preparar polímetros etilênicos.
US8283428B2 (en) 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Polymacromonomer and process for production thereof
US8372930B2 (en) 2008-06-20 2013-02-12 Exxonmobil Chemical Patents Inc. High vinyl terminated propylene based oligomers
US8399725B2 (en) * 2008-06-20 2013-03-19 Exxonmobil Chemical Patents Inc. Functionalized high vinyl terminated propylene based oligomers
US8802797B2 (en) 2008-06-20 2014-08-12 Exxonmobil Chemical Patents Inc. Vinyl-terminated macromonomer oligomerization
US8283419B2 (en) * 2008-06-20 2012-10-09 Exxonmobil Chemical Patents Inc. Olefin functionalization by metathesis reaction
US8399586B2 (en) * 2008-09-05 2013-03-19 Exxonmobil Research And Engineering Company Process for feeding ethylene to polymerization reactors
DE102009027445A1 (de) 2009-07-03 2011-01-05 Evonik Degussa Gmbh Modifizierte Polyolefine mit besonderem Eigenschaftsprofil, Verfahren zu deren Herstellung und deren Verwendung
DE102009027447A1 (de) 2009-07-03 2011-01-05 Evonik Degussa Gmbh Modifizierte Polyolefine mit besonderem Eigenschaftsprofil, Verfahren zu deren Herstellung und deren Verwendung
DE102009027446A1 (de) 2009-07-03 2011-01-05 Evonik Degussa Gmbh Modifizierte Polyolefine mit besonderem Eigenschaftsprofil, Verfahren zu deren Herstellung und deren Verwendung
US20110054117A1 (en) * 2009-08-27 2011-03-03 Hall Gregory K Polyolefin Adhesive Compositions and Method of Making Thereof
US8455597B2 (en) * 2011-03-25 2013-06-04 Exxonmobil Chemical Patents Inc. Catalysts and methods of use thereof to produce vinyl terminated polymers
BR112013033143A2 (pt) 2011-06-27 2017-01-24 Fuller H B Co composição adesiva termofundida modificada por iniciador de radical livre incluindo polietileno funcionalizado e polímero de propileno-alfa-olefina
EP2723824A1 (en) 2011-06-27 2014-04-30 H. B. Fuller Company Propylene-alpha-olefin polymers, hot melt adhesive compositions that include propylene-alpha-olefin polymers and articles that include the same
CN103946022B (zh) 2011-12-02 2016-10-12 埃克森美孚化学专利公司 多层薄膜及其制造方法
US20140020165A1 (en) 2012-07-20 2014-01-23 For Kids By Parents, Inc. Potty training device
US9593235B2 (en) 2013-02-15 2017-03-14 H.B. Fuller Company Reaction product of propylene polymer and wax, graft copolymers derived from polypropylene polymer and wax, hot melt adhesive compositions including the same, and methods of using and making the same
US9267060B2 (en) 2013-02-15 2016-02-23 H.B. Fuller Company Reaction product of propylene polymer and wax, graft copolymers derived from polypropylene polymer and wax, hot melt adhesive compositions including the same, and methods of using and making the same
US9376559B2 (en) * 2013-11-22 2016-06-28 Exxonmobil Chemical Patents Inc. Reverse staged impact copolymers
US9399686B2 (en) 2014-02-07 2016-07-26 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US10647795B2 (en) 2014-02-07 2020-05-12 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10723824B2 (en) 2014-02-07 2020-07-28 Eastman Chemical Company Adhesives comprising amorphous propylene-ethylene copolymers
US10308740B2 (en) 2014-02-07 2019-06-04 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US11267916B2 (en) 2014-02-07 2022-03-08 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10696765B2 (en) 2014-02-07 2020-06-30 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and propylene polymer
US9926396B2 (en) 2015-10-23 2018-03-27 Exxonmobil Chemical Patents Inc. Production of polyolefins with internal unsaturation structures using a metallocene catalyst system
CN106632781B (zh) * 2015-10-29 2020-05-12 中国石油化工股份有限公司 具有支化结构的乙烯/丙烯共聚物的制备方法和该共聚物
US10889663B2 (en) 2017-11-29 2021-01-12 Exxonmobil Chemical Patents Inc. Asymmetric ANSA-metallocene catalyst compounds for producing polyolefins having a broad molecular weight distribution
US10882925B2 (en) 2017-11-29 2021-01-05 Exxonmobil Chemical Patents Inc. Catalysts that produce polyethylene with broad, bimodal molecular weight distribution

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141888A (en) 1976-05-21 1977-11-26 Nippon I P Rubber Kk Ethyleneepropylene copolymers rubber
ATE88196T1 (de) 1985-01-31 1993-04-15 Himont Inc Polypropylen mit freier langkettenverzweigung, verfahren zur herstellung und verwendung davon.
IL85097A (en) * 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
US5047485A (en) * 1989-02-21 1991-09-10 Himont Incorporated Process for making a propylene polymer with free-end long chain branching and use thereof
AU7875791A (en) 1990-05-07 1991-11-27 Exxon Chemical Patents Inc. Unsaturated alpha-olefin copolymers and method for preparation thereof
TW272985B (ko) * 1992-09-11 1996-03-21 Hoechst Ag
KR950703595A (ko) * 1992-09-29 1995-09-20 벤셔 카펜헤르 장쇄 분지된 중합체 및 그의 제조방법(long chain branched polymers and a process to make long chain branched polymers)
US5414027A (en) 1993-07-15 1995-05-09 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
IT1271406B (it) * 1993-09-13 1997-05-28 Spherilene Srl Procedimento per la preparazione di polimeri dell'etilene e prodotti ottenuti
EP0727446B1 (en) * 1993-10-26 2000-09-13 Idemitsu Kosan Company Limited Branched ethylene macromonomer and polymer produced therefrom
EP0760828B1 (en) * 1994-05-24 2001-05-23 Exxon Chemical Patents Inc. Improved propylene copolymer heat seal resin and articles therefrom
US5766713A (en) * 1995-06-14 1998-06-16 Exxon Chemical Patents Inc. Elastomeric vehicle hoses
JP3486007B2 (ja) * 1995-06-23 2004-01-13 三井化学株式会社 シール用架橋ゴム成形体およびその製造方法
WO1997001586A1 (en) * 1995-06-29 1997-01-16 Dsm N.V. Elastomeric copolymer
JPH1072506A (ja) * 1996-08-30 1998-03-17 Mitsubishi Chem Corp プロピレン重合用触媒およびプロピレン重合体の製造法
EP0855413B1 (en) 1997-01-23 2002-01-02 JSR Corporation Ethylene copolymer rubber composition
DE19703478A1 (de) * 1997-01-31 1998-08-06 Hoechst Ag Verfahren zur Herstellung eines Matallocen-Katalysatorsystems
US6303717B1 (en) * 1997-02-05 2001-10-16 The Penn State Research Foundation University Park Pa Metal catalyzed synthesis of hyperbranched ethylene and/or α-olefin polymers
JP4226088B2 (ja) * 1997-06-06 2009-02-18 出光興産株式会社 プロピレン系共重合体
TW482770B (en) * 1997-08-15 2002-04-11 Chisso Corp Propylene/ethylene random copolymer, molding material, and molded article
US6197910B1 (en) * 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US6184327B1 (en) * 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8071687B2 (en) 2002-10-15 2011-12-06 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US8088867B2 (en) 2002-10-15 2012-01-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US8957159B2 (en) 2002-10-15 2015-02-17 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom

Also Published As

Publication number Publication date
EP1141051A1 (en) 2001-10-10
WO2000037514A1 (en) 2000-06-29
MXPA01006372A (es) 2002-06-04
ATE384747T1 (de) 2008-02-15
US20030060583A1 (en) 2003-03-27
KR100653018B1 (ko) 2006-11-30
CN1361795A (zh) 2002-07-31
CA2356667A1 (en) 2000-06-29
BR9916426A (pt) 2001-09-04
CN1234739C (zh) 2006-01-04
DE69938061D1 (de) 2008-03-13
JP4860819B2 (ja) 2012-01-25
US6573350B1 (en) 2003-06-03
KR20010081088A (ko) 2001-08-25
US6569965B2 (en) 2003-05-27
JP2002533485A (ja) 2002-10-08

Similar Documents

Publication Publication Date Title
EP1141051B1 (en) Process to prepare branched ethylene-propylene copolymers
EP1115761B1 (en) Branched polypropylene compositions
JP5027353B2 (ja) マクロマーを組み入れるプロピレンポリマー
US6774191B2 (en) Propylene polymers incorporating polyethylene macromers
US6184170B1 (en) Metallocene catalyst systems
EP1361232B1 (en) Polypropylene polymers incorporating macromers
EP1114069B1 (en) A method for preparing a supported catalyst system and its use in a polymerization process
EP2275453A1 (en) Latent metallocene catalyst systems for olefin polymerization
EP1237957B1 (en) Preparation of supported polymerization catalysts
MXPA00005703A (es) Polimeros de propileno que incorporan macromeros
MXPA99007266A (es) Polimeros de propileno que incorporan macromeros de polietileno
MXPA00005267A (es) Polimeros de propileno elastomericos
MXPA00007972A (en) Ethylene copolymerization process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PROCESS TO PREPARE BRANCHED ETHYLENE-PROPYLENE COPOLYMERS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69938061

Country of ref document: DE

Date of ref document: 20080313

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080504

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131126

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181203

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20191214