EP1134840A2 - Antenne - Google Patents

Antenne Download PDF

Info

Publication number
EP1134840A2
EP1134840A2 EP01103315A EP01103315A EP1134840A2 EP 1134840 A2 EP1134840 A2 EP 1134840A2 EP 01103315 A EP01103315 A EP 01103315A EP 01103315 A EP01103315 A EP 01103315A EP 1134840 A2 EP1134840 A2 EP 1134840A2
Authority
EP
European Patent Office
Prior art keywords
antenna
conductor piece
conductor
wavelength
current distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01103315A
Other languages
English (en)
French (fr)
Other versions
EP1134840B1 (de
EP1134840A3 (de
Inventor
Horst Prof. Dr. Ziegler
Horst Dipl.Ing Behlen (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prof Dr Horst Ziegler und Partner GbR
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1134840A2 publication Critical patent/EP1134840A2/de
Publication of EP1134840A3 publication Critical patent/EP1134840A3/de
Application granted granted Critical
Publication of EP1134840B1 publication Critical patent/EP1134840B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the invention relates to an antenna according to the preamble of claim 1.
  • the magnetic loop antennas include a closed, mostly circular or rectangular ladder, the length of which is significantly smaller than the wavelength.
  • the ladder piece is connected to an input to a transmitter output and its other end is terminated with a head capacity, such that conductor loop and head capacity form a resonance circuit, the resonance frequency with the working frequency of the transmitter matches.
  • the head capacity can also by one with air or one Dielectric filled gap at the corresponding end of the Head piece be formed.
  • Such a loop antenna is in DE 195 45 394 A1 described. It is characterized by very little Dimensions. Now with a magnetic Loop antenna the radiation resistance and thus the Effectiveness of the radiation proportional to the square the area enclosed by the conductor section (antenna area), small and is typically 10 mOhm. To at one to get a good efficiency from such an antenna, all loss resistances in the antenna must be very small his. The critical RF resistance of the is difficult Conductor and also the RF resistance of the head capacitance.
  • Antennas of those mentioned in DE 195 45 394 A1 Type are typically used for remote radio reading of electronic consumption meters (heat cost allocators, Water meter, heat meter, gas meter, electricity meter, etc.) used.
  • the radio remote reading takes place mostly in those approved for this in almost all of Europe Radio bands at 433.92 MHz or 868 to 870 MHz. See would also depend on these admission-related criteria Frequency bands in the range between 200 and 3000 MHz usable.
  • the resistances are already at such frequencies usual capacitive components a few tens of mOhm. Because of the very low radiation resistance of the antenna would also have all other resistances of the conductor piece and the head capacity is in the range of a few mOhm, which makes wide conductor dimensions necessary.
  • antennas should be as small as possible, in practice significantly smaller than a quarter of the wavelength.
  • those are also used for remote radio reading Devices placed in the vicinity of larger metal surfaces, such as meter housings for gas / electricity meters, radiators for heat cost allocators, water pipes for water and heat meters.
  • This also has a disadvantage on the radiation. Further influences on the Radiation is caused by furniture, curtains and people.
  • the consumption meters are usually battery operated, being a long-term battery desired over the entire calibration period (5 to 12 years) becomes.
  • An antenna is therefore intended by the present invention be specified, the one with small dimensions has high efficiency.
  • An antenna according to the invention is a magnetic loop antenna, however, unlike the antenna, it follows DE 195 45 394 A1 without head capacity.
  • the length of the conductor section that limits the antenna area is at least 1.5 times the circumference of the antenna area. This gives circumferential directions Sections of the conductor piece that are adjacent to each other. Neighborhood can be limited the antenna area in the radial direction or in relation on the antenna surface in a vertical direction or in a combination of these two directions.
  • overlap This term implies that the corresponding Conductor sections do not touch each other need. It is only important that the conductor sections are so close to each other that there is field coupling comes between the conductor sections.
  • the mentioned field coupling leads to the fact that the conductor piece in the overlap area more like one Double line behaves. This reduces the speed of propagation significantly below the speed of light from.
  • the reduction in the rate of propagation (or the wavelength of the current distribution in the conductor section) correct in detail according to the distance of the conductor sections and the number of turns of the antenna (ratio between the length of the conductor piece and the circumference of the Antenna area).
  • the overlapping Conducted sections so that there is a reduction the rate of propagation to about that 0.8 times the speed of propagation, which are in the conductor piece without overlapping line sections sets.
  • the size of one The antenna is therefore as small as that of a classic one Loop antenna with head capacity, but one head capacity impairing the quality of the antenna is not required, rather the magnetic coupling the overlapping wire sections for adjustment the resonance conditions for small antenna dimensions responsible for.
  • antennas according to the invention can be used get an operational resonance quality of 10 to 300.
  • An antenna according to the invention can thus be used as receiving antennas with low loss pre-filter serve high operational resonance quality or when in use as a transmitting antenna as a filter to suppress the radiation of harmonics and secondary waves of the transmission frequency serve.
  • the radiation resistance is compared to a ring antenna the antenna according to the invention significantly higher (in Ohm range), so that the conductor resistance is long is more critical. With that you can also use the antenna easy to implement from wire. Geometric tolerances are not critical for the same reason.
  • one according to the invention can be used Antenna good even with a small distance (few Millimeters) in front of a metal surface, and also capacitive influences of the antenna (e.g. by a Hand) are only small.
  • the conductor piece can be bent accordingly Wire, through milled conductor pieces or through printed Conductors are made, the latter on an insulating Arranged carrier which e.g. also a plastic case or can be a plastic housing cover.
  • an insulating Arranged carrier which e.g. also a plastic case or can be a plastic housing cover.
  • a spacing of the overlapping sections the conductor piece as specified in claim 4, has proven particularly useful in practice. You get a good reduction in the rate of propagation. At the same time, the antenna structure is compact and side by side guided conductor sections can be precisely to lead.
  • the antenna according to the invention flows at the ends of the conductor piece no current, so that one ends either connect (claim 6) or leave open electrically can (claim 7), as from other points of view, e.g. Ease of manufacture, mechanical Strength of the antenna, is desirable.
  • the conductor piece needs for feeding the transmission energy or to decouple the received Energy not to be interrupted additionally.
  • a inductive coupling with the transmitter or receiver, the cooperating with the antenna is also in view to a residual adaptation of the antenna and transmitter or receiver advantageous.
  • the geometries for the antenna area which in claim 9 are particularly suitable for Realization of antennas that have no pronounced directional characteristic have, as is the case with radio remote reading of consumption meters is desired because the Orientation of installation of the radio remote reading Consumption meter with regard to local requirements (Radiator surface, wall surface) must be done and not to the transmission conditions to a remote reading center can be adjusted.
  • FIG. 1 A magnetic loop antenna is entered in FIG. 1, which has a conductor piece 10. This includes 1.75 Windings seen in the axial direction are square Enclose antenna area A. The edge length the antenna area A is denoted by a.
  • Sections 12 of the conductor piece 10 are similar led, with the pitch of the turns designated p is.
  • each Overlap conductor piece 10 seen in the axial direction, with the exception of the front section, which is individually is and bridges the winding levels.
  • the axial distance p of the conductor sections 12 lies in Range from 1 to 5 wire diameters. So that results one in the area of three sides of the antenna area A. magnetic coupling of the conductor sections 12 and thus a decrease in the rate of spread of the electromagnetic radiation along the conductor piece 10.
  • the corresponding shortening factor k (wavelength the current distribution in the conductor section 10 / wavelength of electromagnetic radiation in a vacuum) can be between 0.2 and 0.8 can be chosen depending on how small the distance p is chosen and how far the conductor sections 12 overlap in the circumferential direction.
  • a coupling loop 14 is provided, which also limits a square area that however, is significantly smaller than the antenna area A.
  • One end of the coupling loop 14 is directly connected to the a connection of a transmitter 16 connected.
  • the other Connection of the coupling loop 14 is via a coupling capacitor 18 with the second connection of the transmitter 16 connected.
  • the transmitter 16 is from a consumption meter 20 ago controlled and transmitted at larger intervals the counter reading of the consumption meter 20 in serial binary representation. Details about that Working of such a consumption meter can DE 195 45 394 A1, DE 30 44 262 A1, DE 42 25 042 A1 or DE 44 22 281 A1 which is referred to in this regard.
  • the conductor piece 10 is dimensionally stable and can e.g. about an insulating piece (not shown) that covers the middle of the double provided conductor sections 12 packs on one Support structure not shown (e.g. circuit board or Housing).
  • Figure 2 is a modified antenna for radio remote reading shown by consumption meters that are differs from that of Figure 1 in that the conductor sections 12 are arranged at a radial distance are. Such an arrangement is particularly suitable good for realization on printed circuit boards.
  • the ladder pieces 10 can simply be there from a continuous Copper layer are etched out, as is the coupling loop 14.
  • the antenna of Figure 3 differs from that according to Figure 1 in that the total length of the conductor piece 10 corresponds to a wavelength.
  • To be a positive one Superposition of those generated by the conductor sections 12
  • To achieve partial magnetic fields is the conductor piece 10 first folded and the fold thus obtained The conductor arrangement is then additionally shaped as shown in Figure 1 for a simple conductor piece.
  • FIG. 4 gives precise dimensions of a practical embodiment.
  • the characteristics of the W antenna shown there are as follows: Edge length a 25.00 mm Wire diameter d 0.63 mm Pitch p 6.40 mm Edge length of the coupling loop 8.50 mm Distance of the coupling loop 6.60 mm Coupling capacitor 6.20 pF.
  • the antennas described above are therefore typical W / 2 antennas, but have considerably smaller dimensions as typical known W / 2 antennas. From head capacities differentiate completed loop antennas they are characterized by the lack of head capacity and by a significantly improved goodness.
  • the antennas described above stand out due to a mechanically simple compact structure.
  • the Antenna area A essentially square. It understands yourself that the limitation of the antenna area instead can also be selected circular. Such antennas have a substantially constant in the circumferential direction Characteristic If you choose the antenna area A rectangular or oval, you can have a directional characteristic in the circumferential direction achieve variable directional characteristics.

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Es wird eine magnetischen Loop-Antenne angegeben, die ohne Kopfkapazität geringe Abmessungen aufweist. Hierzu sind Abschnitte eines die Antenne bildenden Leiterstückes (10), dessen Länge mindestens das 1,5-Fache des Umfanges der Antennenfläche A beträgt, so eng benachbart geführt, daß sich eine magnetische Verkopplung der Leiterabschnitte (12) ergibt. <IMAGE>

Description

Die Erfindung betrifft eine Antenne gemäß dem Oberbegriff des Ansrpuches 1.
Unter den Antennen, die für kleine Funkmodems verwendet werden, befinden sich insbesonder die magnetischen Loop-Antennen: Diese umfassen ein geschlossenes, meist kreisförmiges oder rechteckiges Leiterstück, dessen Länge deutlich kleiner ist als die Wellenlänge. Das Leiterstück ist an einem Eingang an einen Senderausgang angeschlossen und sein anderes Ende wird mit einer Kopfkapazität abgeschlossen, derart, daß Leiterschleife und Kopfkapazität einen Resonanzkreis bilden, dessen Resonanzfrequenz mit der Arbeitsfrequenz des Senders übereinstimmt. Die Kopfkapazität kann auch durch einen mit Luft oder einem Dielektrikum gefüllten Spalt am entsprechenden Ende des Leiterstückes gebildet sein.
Eine derartige Loop-Antenne ist in der DE 195 45 394 A1 beschrieben. Sie zeichnet sich durch sehr geringe Abmessungen aus. Nun ist aber bei einer magnetischen Loop-Antenne der Strahlungswiderstand und damit die Effektivität der Abstrahlung proportional zum Quadrat der vom Leiterstück umschlossenen Fläche (Antennenfläche), klein und liegt typischerweise bei 10 mOhm. Um bei einer solchen Antenne einen guten Wirkungsgrad zu erhalten, müssen alle Verlustwiderstände in der Antenne sehr klein sein. Schwierig ist dabei der kritische HF-Widerstand des Leitstückes und auch der HF-Widerstand der Kopfkapazität.
Antennen der in der DE 195 45 394 A1 angesprochenen Art werden typischerweise für die Funkfernauslesung von elektronischen Verbrauchszählern (Heizkostenverteiler, Wasserzähler, Wärmemengenzähler, Gaszähler, Stromzähler, usw.) verwendet. Die Funkfernauslesung erfolgt meist in den in fast ganz Europa hierfür zugelassenen Funkbändern bei 433,92 MHz oder 868 bis 870 MHz. Sieht von diesen zulassungsbedingten Kriterien ab, wären auch Frequenzbänder im Bereich zwischen 200 und 3000 MHz verwendbar.
Bei derartigen Frequenzen betragen schon die Widerstände üblicher kapazitiver Bauelemente einige -zig mOhm. Wegen des recht niedrigen Strahlungswiderstandes der Antenne müßten auch alle anderen Widerstände des Leiterstückes und der Kopfkapzität im Bereich von wenigen mOhm liegen, was breite Leiterabmessungen notwendig macht.
Nun sollen aber derartige Antennen möglichst klein sein, in der Praxis deutlich kleiner als ein Viertel der Wellenlänge. Oft sind auch die zur Funkfernauslesung verwendeten Geräte in der Nachbarschaft größerer Metallflächen angeordnet, etwa Zählegehäuse bei Gas/Stromzählern, Heizkörper bei Heizkostenverteilern, Wasserleitungen bei Wasser- und Wärmemengen-Zählern. Auch dies wirkt sich nachteilig auf die Abstrahlung aus. Weitere Beeinflussungen der Abstrahlung erfolgen durch Möbel, Vorhänge und Personen. Die Verbrauchsmessgeräte sind in der Regel batteriegetrieben, wobei eine Funktionsfähigkeit der Langzeitbatterie über die gesamte Eichdauer hinweg (5 bis 12 Jahre) gewünscht wird.
Durch die vorliegende Erfindung soll daher eine Antenne angegeben werden, die bei kleinen Abmessungen einen hohen Wirkungsgrad aufweist.
Diese Aufgabe ist erfindunngsgemäß gelöst durch eine Antenne mit den im Anspruch 1 angegebenen Merkmalen.
Eine erfindungsgemäße Antenne ist eine magnetische Loop-Antenne, sie kommt jedoch, anders wie die Antenne nach der DE 195 45 394 A1 ohne Kopfkapazität aus. Die Länge des Leiterstückes, welches die Antennenfläche begrenzt, beträgt mindestens das 1,5-fache des Umfanges der Antennenfläche. Damit erhält man in Umfangsrichtung verlaufende Abschnitte des Leiterstückes, die einander benachbart sind. Das Benachbartsein kann in bezogen auf die Begrenzung der Antennenfläche radialer Richtung oder in bezogen auf die Antennenfläche senkrechter Richtung oder in einer Kombination dieser beiden Richtungen gegeben sein.
Die benachbarte Führung von Abschnitten des Leiterstückes werden nachstehend auch kurz als "Überlappung" angesprochen, wobei dieser Begriff beinhaltet, daß die entsprechenden Leiterstückabschnitte einander nicht zu berühren brauchen. Wichtig ist nur, daß die Leiterabschnitte einander so dicht benachbart sind, daß es zu Feldverkopplungen zwischen den Leiterabschnitten kommt.
Die angesprochene Feldverkopplung führt dazu, daß sich das Leiterstück im Überlappungsbereich eher wie eine Doppelleitung verhält. Dadurch sinkt die Ausbreitungsgeschwindigkeit erheblich unter die Lichtgeschwindigkeit ab. Die Absenkung der Ausbreitungsgeschwindigkeit (bzw. der Wellenlänge der Stromverteilung im Leiterstück) richtig sich im einzelnen nach dem Abstand der Leiterabschnitte und der Windungszahl der Antenne (Verhältnis zwischen Länge des Leiterstückes und dem Umfang der Antennenfläche). Erfindungsgemäß werden die überlappenden Leiterabschnitte so geführt, daß man eine Herabsetzung der Ausbreitungsgeschwindigkeit auf etwa das 0,8-Fache derjenigen Ausbreitungsgeschwindigkeit erhält, die sich ohne überlappende Leitungsabschnitte im Leiterstück einstellt.
Durch die Eintstellung der Windungszahl und die Art und Weise der Überlappung der Leiterabschnitte (und den hierdurch erhaltenen Verkürzungsfaktor) kann man dann Antennen realisieren, deren Durchmesser nur 1/20 bis 1/30 der Wellenlänge beträgt. Die Größe einer solchen Antenne ist somit ähnlich klein wie die einer klassischen Loop-Antenne mit Kopfkapazität, wobei aber eine die Güte der Antenne beeinträchtigende Kopfkapazität nicht benötigt wird, vielmehr die magnetische Verkopplung der überlappenden Leiterabschnitte für die Einstellung der Resonanzbedingungen bei kleinen Antennenabmessungen verantwortlich ist.
In der Praxis kann man mit erfindungsgemäßen Antennen so eine Betriebs-Resonanzgüte von 10 bis 300 erhalten.
Damit kann eine erfindungsgemäße Antenne bei Einsatz als Empfangsantennen als verlustarmes Vorfilter mit hoher Betriebs-Resonanzgüte dienen oder bei Einsatz als Sendeantenne als Filter zur Unterdrückung der Ausstrahlung von Ober- und Nebenwellen der Sendefrequenz dienen.
Im Vergleich mit einer Ringantenne ist der Abstrahlwiderstand der erfindungsgemäßen Antenne deutlich höher (im Ohm-Bereich), so daß der Leiterwiderstand lange nicht mehr so kritisch ist. Damit kann man die Antenne auch einfach aus Draht realisieren. Geometrische Toleranzen sind aus dem gleichen Grunde nicht kritisch.
Aufgrund ihrer Eigenschaften läßt sich eine erfindungsgemäße Antenne gut auch noch unter kleinem Abstand (wenige Millimeter) vor einer Metallfläche verwenden, und auch kapazitive Beeinflussungen der Antenne (z.B. durch eine Hand) sind nur klein.
Die Realisierung des im wesentlichen eine Schleife darstellenden Leiterstückes kann durch entsprechend gebogenen Draht, durch gefräste Leiterstücke oder durch gedruckte Leiterbahnen erfolgen, wobei letztere auf einem isolierenden Träger angeordnet sind, der z.B. auch ein Kunststoffgehäuse oder eine Kunststoff-Gehäusedeckel sein kann.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
Bemißt man die Länge des Leiterstückes gemäß Anspruch 2, so erhält man eine gute Herabsetzung der Ausbreitungsgeschwindigkeit der elektromagnetischen Wellen längs des Leiterstückes und damit eine sehr kompakte Geometrie der Antenne bei mechanisch noch einfachem Aufbau der Antenne, die sich somit preisgünstig herstellen läßt.
Auch die Weiterbildung der Erfindung gemäß Anspruch 3 dient dem Erhalten kompakter Abmessungen der Antenne.
Eine Beabstandung der einander überlappenden Abschnitte des Leiterstückes, wie sie im Anspruch 4 angegeben ist, hat sich in der Praxis besonders bewährt. Man erhält eine gute Herabsetzung der Ausbreitungsgeschwindigkeit. Zugleich ist die Antennenstruktur kompakt und die nebeneinander geführten Leiterabschnitte lassen sich präzise führen.
Die Weiterbildung der Erfindung gemäß Anspruch 5 ermöglicht auch die Realisierung von Antennen, bei denen die Gesamtlänge des Leiterstückes ein ganzzahliges Vielfaches der halben Wellenlänge ist. Durch Änderung des Wicklungssinnes jeweils nach der halben Wellenlänge wird erreicht, daß die Magnetfelder, die von den verschiedenen Abschnitten des Leiterstückes erzeugt werden, betragsmäßig addiert werden.
Bei der erfindungsgemäßen Antenne fließt bei den Enden des Leiterstückes kein Strom, so daß man diese Enden wahlweise verbinden (Anspruch 6) oder elektrisch offenlassen kann (Anspruch 7), wie dies aus anderen Gesichtspunkten, z.B. Einfachheit der Herstellung, mechanische Festigkeit der Antenne, wünschenswert ist.
Gemäß Anspruch 8 braucht das Leiterstück zur Einspeisung der Sendeenergie bzw. zum Auskoppeln der empfangenen Energie nicht zusätzlich unterbrochen zu werden. Eine induktive Kopplung mit dem Sender bzw. Empfänger, der mit der Antenne zusammenarbeitet, ist auch im Hinblick auf eine Restanpassung von Antenne und Sender bzw. Empfänger von Vorteil.
Die Geometrien für die Antennenfläche, die im Anspruch 9 angegeben sind, eignen sich besonders gut für die Realsierung von Antennen, die keine ausgeprägte Richtcharakteristik aufweisen, wie dies bei der Funkfernauslesung von Verbrauchsmessern gewünscht wird, da die Einbauorientierung der mit Funkfernauslesung versehenen Verbrauchsmesser im Hinblick auf lokale Erfordernisse (Heizkörperfläche, Wandfläche) erfolgen muß und nicht an die Übertragungsverhältnisse zu einer Fernauslesezentrale angepaßt werden kann.
Alternativ kann man mit den im Anspruch 10 angegebenen Geometrien der Antennenfläche eine Richtcharakteristik der Antenne erzielen.
Nachstehend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher erläutert. In dieser zeigen:
Figur 1:
eine perspektivische Ansicht einer ersten Antenne mit zugeordneter Speiseeinrichtung, wobei Abschnitte des die Antenne bildenden Leiterstückes, dessen Gesamtlänge einer halben Wellenlänge entspricht, axial beabstandet geführt sind;
Figur 2:
eine ähnliche Ansicht wie Figur 1, in welcher jedoch eine abgewandelte Antenne gezeigt ist, bei welcher Abschnitte des die Antenne bildenden Leiterstückes radial beabstandet sind;
Figur 3:
eine ähnliche Ansicht wie Figur 1, bei welcher jedoch die Gesamtlänge des die Antenne bildenden Leiterstückes gleich einer Wellenlänge ist; und
Figur 4:
eine ähnliche Ansicht wie Figur 3, in welche jedoch die Bemaßung eines praktischen Ausführungsbespieles eingetragen ist.
In Figur 1 ist eine magnetische Loop-Antenne eingetragen, welche eine Leiterstück 10 aufweist. Dieses umfaßt 1,75 Windungen, die in axialer Richtung gesehen eine quadratisches Antennenfläche A umschließen. Die Kantenlänge der Antennenfläche A ist mit a bezeichnet.
Die verschiedenen den Kanten der Antennenfläche A zugeordneten Abschnitte 12 des Leiterstückes 10 sind ähnlich geführt, wobei die Ganghöhe der Windungen mit p bezeichnet ist.
Man erkennt, daß sich jeweils zwei Abschnitte 12 des Leiterstückes 10 in axialer Richtung gesehen überlappen, mit Ausnahme des vorne liegenden Abschnittes, der einzeln ist und die Windungsebenen überbrückt.
Der axiale Abstand p der Leiterabschnitte 12 liegt im Bereich von 1 bis 5 Drahtdurchmessern. Damit ergibt sich im Bereich dreier Seiten der Antennenfläche A eine magnetische Kopplung der Leiterabschnitte 12 und damit eine Herabsetzung der Ausbreitungsgeschwindigkeit der elektromagnetischen Strahlung längs des Leiterstückes 10. Der entsprechende Verkürzungsfaktor k (Wellenlänge der Stromverteilung im Leiterstück 10 / Wellenlänge der elektromagnetischen Strahlung im Vakuum) kann zwischen 0,2 und 0,8 gewählt werden, je nach dem, wie klein der Abstand p gewählt wird und wie weit sich die Leiterabschnitte 12 in Umfangsrichtung überlappen.
Damit kann die in Figur 1 gezeigte Antenne kleine Abmessungen aufweisen, obwohl es sich um eine ohne Kapazität in Resonanz arbeitende W/2-Antenne (W = Wellenlänge) handelt.
Zur Speisung der durch das Leiterstück 10 gebildeten Antennenschleife ist eine Koppelschleife 14 vorgesehen, die ebenfalls eine quadratische Fläche begrenzt, die jedoch deutlich kleiner ist als die Antennenfläche A.
Das eine Ende der Koppelschleife 14 ist direkt mit dem einen Anschluß eines Senders 16 verbunden. Der andere Anschluß der Koppelschleife 14 ist über einen Koppelkondensator 18 mit dem zweiten Anschluß des Senders 16 verbunden.
Der Sender 16 wird von einem Verbrauchsmesser 20 her angesteuert und übermittelt in größeren zeitlichen Abständen den Zählerstand des Verbrauchsmessers 20 in serieller binärer Darstellung. Einzelheiten über das Arbeiten eines derartigen Verbrauchsmessers können der DE 195 45 394 A1, der DE 30 44 262 A1, der DE 42 25 042 A1 oder der DE 44 22 281 A1 entnommen werden, auf die diesbezüglich verwiesen wird.
Das Leiterstück 10 ist formstabil und kann z.B. über ein Isolierstück (nicht gezeigt), das die mittleren der doppelt vorgesehenen Leiterabschnitte 12 packt, an einer nicht gezeigten Tragstruktur (z.B. Leiterplatte oder Gehäuse) festgelegt sein.
In Figur 2 ist eine abgewandelte Antennen für die Funkfernauslesung von Verbrauchsmessern gezeigt, die sich von derjenigen nach Figur 1 dadurch unterscheidet, daß die Leiterabsschnitte 12 unter radialem Abstand angeordnet sind. Eine derartige Anordnung eignet sich besonders gut zur Realisierung auf Leiterplatten. Die Leiterstücke 10 können dort einfach aus einer durchgehenden Kupferschicht herausgeätzt werden, ebenso die Koppelschleife 14.
Die Antenne nach Figur 3 unterscheidet sich von derjenigen nach Figur 1 dadurch, daß die Gesamtlänge des Leiterstückes 10 einer Wellenlänge entspricht. Um eine positive Überlagerung der von den Leiterabschnitten 12 erzeugten Teilmagnetfelder zu erzielen, ist das Leiterstück 10 zunächst gefaltet worden und die so erhaltene faltete Leiteranordnung ist dann zusätzlich so geformt, wie in Figur 1 für ein einfaches Leiterstück dargestellt.
Damit wechselt die Stromrichtung an den Stromknoten.
Figur 4 gibt präzise Abmessungen eines praktischen Ausführungsbeispieles. Die Kenngrößen der dort gezeigten W-Antenne sind folgende:
Kantenlänge a 25,00 mm
Drahtdurchmesser d 0,63 mm
Ganghöhe p 6,40 mm
Kantenlänge der Koppelschleife 8,50 mm
Abstand der Koppelschleife 6,60 mm
Koppelkondensator 6,20 pF.
Damit werden folgende Eigenschaften erhalten:
Güte Q0 430
Betriebsgüte QB 215 (Ri = 50 Ohm)
Eingangsimpedanz Ze/Ohm 56 + j x 0
Resonanzfrequenz 433,9 MHz
Strahlungswiderstand Rs 2,79 Ohm
Verlustwiderstand Ra 0,55 Ohm
Wirkungsgrad 83 %
Freiraumwellenlänge l 690 mm
Längenverhältnis a/l 1/27.6.
Die oben beschriebenen Antennen sind somit typische W/2-Antennen, haben aber erheblich geringere Abmessungen als typische bekannte W/2-Antennen. Von den durch Kopfapazitäten abgeschlossenen Loop-Antennen unterscheiden sie sich durch das Fehlen einer Kopfkapazität und durch einen erhebliche verbesserte Güte.
Von den herkömmlichen Helixantennen, die eine Vielzahl von Windungen aufweisen, unterscheiden Sie sich dadurch, daß ihre Gesamtlänge ein ganzzahliges Vielfaches von W ist, daß eine symmetrische Einspeisung erfolgt (bei Helix-Antennen einseitige Einspeisung) und daß der Windungsabstand klein ist, so daß man eine magnetische Verkopplung benachbarter Leiterabschnitte erhält.
Dabei zeichnen sich die oben beschriebenen Antennen durch einen mechanisch einfachen kompakten Aufbau aus.
Bei den oben beschriebenen Ausführungsbeispielen war die Antennenfläche A im wesentlichen quadratisch. Es versteht sich, daß die Begrenzung der Antennenfläche stattdessen auch kreisförmig gewählt sein kann. Solche Antennen haben eine in Umfangsrichtung im wesentlichen konstante Charakterisitk. Wählt man die Antennenfläche A rechteckig oder oval, kann man eine Richtcharakterisitk in Umfangsrichtung veränderliche Richtcharakteristik erzielen.

Claims (10)

  1. Antenne mit einem eine Antennenfläche (A) umschliessenden Leiterstück (10), dessen Länge einem ganzzahligen Vielfachen der halben Wellenlänge der Stromverteilung im Leiterstück (10) entspricht, dadurch gekennzeichnet, daß das Leiterstück (10) eine Länge hat, die mindestens dem 1,5-Fachen des Umfanges der Antennenfläche (A) entspricht und daß sich axial und/oder radial gesehen überlappende Abschnitte (12) des Leiterstückes (10) einander so nahe benachbart sind, daß die Wellenlänge der Stromverteilung im Leiterstück (10) höchstens dem 0,8-fachen der Vakuumwellenlänge des durch die Stromverteilung erzeugten elektromagnetischen Feldes entspricht.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß die Länge des Leiterstückes (10) das 1,75 bis 3,5-fache des Umfanges der Antennenfläche (A) beträgt.
  3. Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wellenlänge der Stromverteilung im Leiterstück (10) nicht kleiner ist als das 0,2-Fache der Vakuumwellenlänge des von der Stromverteilung erzeugten elektromagnetischen Feldes.
  4. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der radiale und/oder axiale Abstand zwischen den radial und/oder axial beabstandeten Abschnitten (12) des Leiterstückes (10) das 1 bis 5-fache der Abmessung des Leiterstückes (10) in der betrachteten Abstandsrichtung beträgt.
  5. Antenne nach einem der Ansprüche 1 bis 4, wobei das ganzzahlige Vielfache > 1 ist, dadurch gekennzeichnet, daß das Leiterstück (10) jeweils nach einer Strecke, die einer halben Wellenlänge der Stromverteilung entspricht, die Wicklungsrichtung wechselt.
  6. Antenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Enden des Leiterstückes (10) miteinander leitend verbunden sind.
  7. Antenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Enden des Leiterstückes (10) elektrisch offen sind.
  8. Antenne nach einem der Ansprüche 1 bis 7, gekennzeichnet durch eine induktive Speiseeinrichtung (14), die mit dem Leiterstück (10) zusammenarbeitet.
  9. Antenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Antennenfläche (A) quadratisch oder kreisförmig ist.
  10. Antenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Antennenfläche A rechteckig oder oval ist.
EP01103315.6A 2000-03-06 2001-02-13 Antenne Expired - Lifetime EP1134840B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010936A DE10010936B4 (de) 2000-03-06 2000-03-06 Antenne
DE10010936 2000-03-06

Publications (3)

Publication Number Publication Date
EP1134840A2 true EP1134840A2 (de) 2001-09-19
EP1134840A3 EP1134840A3 (de) 2004-01-07
EP1134840B1 EP1134840B1 (de) 2017-10-04

Family

ID=7633741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01103315.6A Expired - Lifetime EP1134840B1 (de) 2000-03-06 2001-02-13 Antenne

Country Status (6)

Country Link
EP (1) EP1134840B1 (de)
CZ (1) CZ2001787A3 (de)
DE (1) DE10010936B4 (de)
HU (1) HUP0100955A2 (de)
PL (1) PL346283A1 (de)
SK (1) SK2762001A3 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044892A1 (en) * 2001-11-22 2003-05-30 Valtion Teknillinen Tutkimuskeskus Modified loop antenna with omnidirectional radiation pattern and optimized properties for use in an rfid device
WO2006031785A1 (en) * 2004-09-14 2006-03-23 Kyocera Wireless Corp. Systems and methods for a capacitively-loaded loop antenna
US7274338B2 (en) 2005-10-12 2007-09-25 Kyocera Corporation Meander line capacitively-loaded magnetic dipole antenna
US7408517B1 (en) 2004-09-14 2008-08-05 Kyocera Wireless Corp. Tunable capacitively-loaded magnetic dipole antenna
US7427965B2 (en) 2005-10-12 2008-09-23 Kyocera Corporation Multiple band capacitively-loaded loop antenna
CN110967123A (zh) * 2019-12-18 2020-04-07 福建中电合创电力科技有限公司 一种无线测温传感器测试工装

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991712B2 (en) 2010-08-12 2015-03-31 Féinics Amatech Teoranta Coupling in and to RFID smart cards
US8789762B2 (en) 2010-08-12 2014-07-29 Feinics Amatech Teoranta RFID antenna modules and methods of making
DE102015016233A1 (de) * 2015-12-16 2017-06-22 Karl Storz Gmbh & Co. Kg RFID-Transponder für ein medizinisches Instrument und/oder für ein Endoskop, medizinisches Instrument und/oder Endoskop sowie Montageverfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB157404A (en) 1919-12-02 1922-04-10 Drahtlose Telegraphie Gmbh Improvements in wireless receiving systems
US4751515A (en) 1980-07-09 1988-06-14 Corum James F Electromagnetic structure and method
DE8814993U1 (de) 1988-01-04 1989-03-02 Oppermann, Richard, 7762 Ludwigshafen Antenneneinheit, bestehend aus Antennenschleife, Kondensator und Ankopplung
DE19545394A1 (de) 1995-12-06 1997-06-12 Ziegler Horst Antenneneinheit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284801A (en) * 1964-01-15 1966-11-08 John J Bryant Large loop antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB157404A (en) 1919-12-02 1922-04-10 Drahtlose Telegraphie Gmbh Improvements in wireless receiving systems
US4751515A (en) 1980-07-09 1988-06-14 Corum James F Electromagnetic structure and method
DE8814993U1 (de) 1988-01-04 1989-03-02 Oppermann, Richard, 7762 Ludwigshafen Antenneneinheit, bestehend aus Antennenschleife, Kondensator und Ankopplung
DE19545394A1 (de) 1995-12-06 1997-06-12 Ziegler Horst Antenneneinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SMITH G.S.: "Radiation Efficiency of Electrically Small Multiturn Loop Antennas", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 5, September 1972 (1972-09-01), pages 656 - 657, XP002258976, DOI: doi:10.1109/TAP.1972.1140293

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044892A1 (en) * 2001-11-22 2003-05-30 Valtion Teknillinen Tutkimuskeskus Modified loop antenna with omnidirectional radiation pattern and optimized properties for use in an rfid device
WO2006031785A1 (en) * 2004-09-14 2006-03-23 Kyocera Wireless Corp. Systems and methods for a capacitively-loaded loop antenna
US7239290B2 (en) 2004-09-14 2007-07-03 Kyocera Wireless Corp. Systems and methods for a capacitively-loaded loop antenna
US7408517B1 (en) 2004-09-14 2008-08-05 Kyocera Wireless Corp. Tunable capacitively-loaded magnetic dipole antenna
KR100926886B1 (ko) 2004-09-14 2009-11-16 키오세라 와이어리스 코포레이션 용량성-부하 루프 안테나를 위한 시스템 및 방법
US7760151B2 (en) 2004-09-14 2010-07-20 Kyocera Corporation Systems and methods for a capacitively-loaded loop antenna
US7876270B2 (en) 2004-09-14 2011-01-25 Kyocera Corporation Modem card with balanced antenna
US7274338B2 (en) 2005-10-12 2007-09-25 Kyocera Corporation Meander line capacitively-loaded magnetic dipole antenna
US7427965B2 (en) 2005-10-12 2008-09-23 Kyocera Corporation Multiple band capacitively-loaded loop antenna
CN110967123A (zh) * 2019-12-18 2020-04-07 福建中电合创电力科技有限公司 一种无线测温传感器测试工装

Also Published As

Publication number Publication date
DE10010936A1 (de) 2001-09-27
HU0100955D0 (en) 2001-05-28
DE10010936B4 (de) 2006-11-02
EP1134840B1 (de) 2017-10-04
CZ2001787A3 (cs) 2002-04-17
EP1134840A3 (de) 2004-01-07
SK2762001A3 (en) 2002-04-04
HUP0100955A2 (hu) 2001-11-28
PL346283A1 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
DE69215283T2 (de) Ausfahrbares Antennensystem
DE2656729C3 (de) Breitbanddipolantenne
DE19912465C2 (de) Mehr-Bereichs-Antennenanlage
DE69625054T2 (de) Antennenanordnung
DE10022107A1 (de) Integrierte Antenne für Mobilfunktelefone
DE3709163A1 (de) Niedrigprofil-breitband-monopolantenne
EP1134840B1 (de) Antenne
DE2326359A1 (de) Nicht-reziproke schaltung mit zirkulator
DE2136759C2 (de) Antenne mit metallischem Rahmen und den Rahmen erregendem Unipol
EP1312136B1 (de) Verkürzter schleifen-dipol und schleifen-monopol
DE4007824C2 (de) Fahrzeugantenne für Funkdienste mit einem stabförmigen Antennenelement
WO2004102742A1 (de) Mehrbandfähige antenne
DE2632404C3 (de) Hochfrequenz-Elektronenröhre mit einer Einrichtung zur Dämpfung von Hohlraum-Störwellen
EP1139491B1 (de) Abstrahlendes koaxiales Hochfrequenzkabel
DE60211003T2 (de) Wendelantenne
EP0122391B1 (de) Breitbandiger Mikrowellenstrahler
DE3822081C2 (de)
DE69016446T2 (de) Breitbandige Funkantenne mit kleinem Stehwellenverhältnis.
DE4438136C2 (de) Hybrid- und Breitbandhybridantenne
DE29724042U1 (de) Antennenverbinder
DE2441190C2 (de) Resonator
AT224176B (de) Fernsehempfangsanordnung mit Anschlußsteckdose zum Anschluß von Fernsehgeräten od. dgl. an Antennenanlagen, und Richtkoppler für eine solche Anordnung
AT502158B1 (de) Antennenanordnung
DE2161574C3 (de) Hochfrequenz-Leitung
DE102009023373B4 (de) Antennenvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040706

AKX Designation fees paid

Designated state(s): AT CH DE FR LI

17Q First examination report despatched

Effective date: 20100525

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PROF. ZIEGLER & PARTNER GBR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PROF. DR. HORST ZIEGLER & PARTNER GBR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50116634

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50116634

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: POSTFACH, 8032 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190219

Year of fee payment: 19

Ref country code: CH

Payment date: 20190218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190219

Year of fee payment: 19

Ref country code: AT

Payment date: 20190219

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50116634

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 934816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901