EP1114877A1 - Element de structure d'avion en alliage Al-Cu-Mg - Google Patents

Element de structure d'avion en alliage Al-Cu-Mg Download PDF

Info

Publication number
EP1114877A1
EP1114877A1 EP00420263A EP00420263A EP1114877A1 EP 1114877 A1 EP1114877 A1 EP 1114877A1 EP 00420263 A EP00420263 A EP 00420263A EP 00420263 A EP00420263 A EP 00420263A EP 1114877 A1 EP1114877 A1 EP 1114877A1
Authority
EP
European Patent Office
Prior art keywords
structural element
element according
product
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00420263A
Other languages
German (de)
English (en)
Other versions
EP1114877B1 (fr
Inventor
Timothy Warner
Philippe Lassince
Philippe Leqeu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9553940&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1114877(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP1114877A1 publication Critical patent/EP1114877A1/fr
Application granted granted Critical
Publication of EP1114877B1 publication Critical patent/EP1114877B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the invention relates to aircraft structural elements, in particular wing skin and stiffeners for large commercial aircraft capacity, produced from rolled, extruded or forged products in AlCuMg alloy at the state treated by dissolving, quenching and tempering, and having, with respect to prior art products used for the same application, an improved compromise between the different properties of use required.
  • alloys and metallurgical states used below corresponds to the Aluminum Association nomenclature, taken up by European standards EN 515 and EN 573 part 3.
  • the wings of large commercial aircraft have a top (or upper surface) made of a skin made from thick alloy sheets 7150 in state T651, or in alloy 7055 in state T7751 or 7449 in state T7951, and stiffeners made from profiles of the same alloy, and a lower part (or lower surface) made of a skin made from thick sheets of alloy 2024 to state T351 or 2324 in state T39, and stiffeners made from profiles of same alloy.
  • the two parts are assembled by side members and ribs.
  • Alloy 2024 according to the designation of the Aluminum Association or standard EN 573-3 has the following chemical composition (% by weight): If ⁇ 0.5 Fe ⁇ 0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr ⁇ 0.10 Zn ⁇ 0.25 Ti ⁇ 0 , 15
  • US patent 5652063 (Alcoa) relates to an airplane structure element produced from an alloy of composition (% by weight): Cu: 4.85 - 5.3 Mg: 0.51 - 1.0 Mn: 0.4 - 0.8 Ag: 0.2 - 0.8 Si ⁇ 0.1 Fe ⁇ 0.1 Zr ⁇ 0, 25 with Cu / Mg between 5 and 9.
  • the sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa).
  • the alloy is particularly intended for supersonic aircraft.
  • the alloy can also contain: Zr ⁇ 0.20% V ⁇ 0.20% Mn ⁇ 0.80% Ti ⁇ 0.05% Fe ⁇ 0.15% Si ⁇ 0.10%
  • the current trend is to use growing of very thick products, in the mass of which the structural elements are machined.
  • the skins of wings are machined from relatively thick sheets to allow machining in the mass of the wing stiffeners, while these are usually made from folded sections or sheets, and are then mechanically fixed to the skin.
  • the integral machining in the mass of the skin-stiffener assembly leads to a reduction in manufacturing costs, since the number of parts is reduced and that we avoid assembly.
  • the use of an unassembled structure allows a reduction in the weight of the whole.
  • the sheets have homogeneous mechanical characteristics over the entire thickness, i.e. the properties do not vary so significant depending on the thickness, typically between 10 and 120 mm.
  • the more machining is used the more desirable the machining stability, which is obtained by a low level of internal stresses.
  • the mechanical characteristics are all the more homogeneous, and the internal stresses all the more reduced, as the sheet has a low sensitivity to quenching.
  • aircraft wings especially large capacity aircraft, have a curved wing profile, with a curvature both in the longitudinal direction and in the transverse direction.
  • This complex form can be obtained during the operation of returned to an autoclave, by forming on a mold, by depressing the face sheet metal on the mold side with respect to the opposite face, using a partial vacuum. he this operation must be successful, to avoid costly scrap of a part with high added value, especially for large parts.
  • the pledge of success lies in the lowest possible elastic return for a form of mold given, because the elastic return is most often difficult to control.
  • the object of the present invention is to provide structural elements for aircraft having properties at least equivalent to those of the same elements produced in alloy 2024 in state T351 with regard to mechanical characteristics static, toughness, crack propagation speed and resistance to corrosion, using rolled, extruded or forged products with low level of residual stresses, low sensitivity to hardening and good income training skills.
  • the subject of the invention is a structural element, in particular an aircraft wing underside element, produced from a rolled, spun or forged product, made of an alloy of composition (% by weight): Cu: 4.6 - 5.3 Mg: 0.10 - 0.50 Mn: 0.15 - 0.45 Si ⁇ 0.10 Fe ⁇ 0.15 Zn ⁇ 0.20 Cr ⁇ 0.10 other elements ⁇ 0.05 each and ⁇ 0.15 in total, Al remains treated by dissolving, quenching, controlled traction to more than 1.5% permanent deformation and tempering.
  • the entry temperature for hot rolling is preferably at least 40 ° C lower, and more preferably at least 40 ° C 50 ° C, at the solution temperature.
  • the invention is based on the observation that an alloy of the 2001 type, with certain composition changes and a suitable manufacturing range, could present a set of properties making it suitable for use in structures aircraft, and more particularly in the lower surfaces of commercial aircraft wings high capacity, with interesting properties in terms of low sensitivity to quenching, low residual stresses and tempering.
  • the copper content range is clearly shifted towards the low, while remaining higher than that of the 2024 or 2034 alloys for lower surface, for compensate, in its influence on the mechanical resistance, the low content of magnesium. It is preferable to choose a copper content higher than 4.8%, or even at 4.9% or even 5%.
  • the magnesium content is of the same order as in the alloy 2001, and preferably between 0.20 and 0.40%.
  • the Cu / Mg ratio is thus almost always greater than 10, contrary to the teaching of the US patent 5652063, which recommends a Cu / Mg ratio between 5 and 9.
  • the manganese content is controlled within a relatively narrow range. Below 0.15%, we would risk having a grain too large; above 0.45%, we obtain a non-recrystallized structure which is not favorable for the control of constraints residual. A preferred range is between 0.25 and 0.40%. Note that, for the same reason, and contrary to the teaching of US Pat. No. 5,593,516, the alloy does not contain any other anti-recrystallizing element such as vanadium or zirconium.
  • the iron and silicon contents are maintained respectively below 0.15 and 0.10%, and preferably below 0.09 and 0.08%, to guarantee good tenacity.
  • the alloy can contain up to 0.2% zinc, this addition having an effect favorable on mechanical resistance, without risk for other properties, such as corrosion resistance.
  • the transformation range includes the casting of a plate or a billet, a reheating or homogenization to a temperature close to the temperature of beginning alloy melting and hot transformation by rolling, spinning or forging. In the case of rolling, this may include a pass, called widening, in the direction perpendicular to that of the other passes, and intended for improve the isotropy of the product.
  • the hot transformation temperature is located, preferably at a level slightly lower than that which the man of profession with reference to the solution temperature. So, with regard to the rolling, the inlet temperature is preferably at least 40 ° C, or even 50 ° C, below the solution temperature, and the outlet temperature of 20 to 30 ° C below the inlet temperature.
  • the product is then subjected to a solution as complete as possible, to a temperature close, for example less than 10 ° C below, the temperature of beginning of the alloy, while avoiding burns. This temperature is between 520 and 535 ° C.
  • the quality of the solution can be checked by analysis differential enthalpy.
  • the product is then soaked, for example by immersion in cold water, so as to ensure a cooling rate of between 10 and 50 ° C / s. After quenching, the product is pulled up to deformation permanent of at least 1.5%, so as to relax it and improve its flatness.
  • this traction also has the effect of improving, by a work hardening effect, the elastic limit after tempering, so that one can qualify the state obtained from state T851, as if it were a specific pass hardening after quenching.
  • income itself can be performed at the same time as the shaping of the lower surface. This income is preferably performed at a temperature above 160 ° C (and above preferably> 170 ° C), of a duration allowing to reach the limit peak of elasticity, as for a state T6.
  • a time income equivalent to that corresponding to 12 to 24 h at a temperature of 173 ° C is carried out; all time-temperature combination to reach the peak of alloy income is usable.
  • the metallurgical structure obtained is, unlike that of the alloys 2024 and 2034, highly recrystallized, with a recrystallization rate always exceeding 70%, and the more often 90%, over the entire thickness.
  • the structural elements according to the invention exhibit a compromise of properties (static mechanical characteristics, toughness, speed of crack propagation, corrosion resistance) which make them suitable for use in construction aeronautics, and in particular the manufacture of lower surfaces of wings.
  • these elements can be easily made by machining and formed in tempering.
  • the alloy used is easily weldable by conventional techniques, which can allow reduce the number of riveted connections.
  • Alloy A is a 2024-T3 alloy of usual composition for the lower surface application of the airfoil.
  • Alloy B is an alloy falling within the composition range described in US Pat. No. 5,652,063, but without the addition of silver.
  • Alloy C is in accordance with the invention. Alloys D and E differ from alloy C only by a higher silicon for D, a higher manganese and copper for E and F, and an addition of zirconium for F.
  • Cast plates with a 380 x 120 mm section were homogenized, hot rolled to a thickness of 22 mm, dissolved, quenched in cold water, drawn to 2.3% permanent deformation and returned.
  • the parameters for homogenization, hot rolling (inlet temperatures), dissolution and tempering are shown in Table 2. Alloy Homogenized neization Hot Rolling (entry) Dissolution Returned AT 4h 490 ° C 467 ° C 3h at 497 ° C - B 4h 490 ° C 467 ° C 3h at 518 ° C 4 p.m. at 173 ° C VS 4h 490 ° C 467 ° C 6h at 527 ° C 4 p.m.
  • the toughness was also measured by the critical stress intensity factor K 1c (in MPa ⁇ m) measured, according to standard ASTM E 399, on CT20 test pieces taken at quarter thickness in the directions LT and TL (2 test pieces per case).
  • the alloy C according to the invention leads to an elastic limit significantly higher than that of 2024, and slightly lower than that of alloys B, E and F.
  • the elongation is lower than for 2024, but better than that of alloys B, D, E and F.
  • the toughness is the best of all the alloys tested. So we have a favorable compromise of these various properties. In particular, the results show the unfavorable effect, both on toughness and elongation, of a increased silicon and manganese content, as well as an addition of zirconium.
  • the alloy according to the invention has the second best resistance to inter-crystalline corrosion on the surface, and the best at heart.
  • the difference between core and surface results is low, which is a favorable property when the structural element is manufactured by machining.
  • the residual stress level was measured on 40 mm thick sheets of alloy 2024, 2034 and according to the invention, all three treated in the same state T351.
  • the compositions (% by weight) are given in Table 6: Alloy Yes Fe Cu Mn Mg Ti Zr 2024 0.12 0.20 4.06 0.54 1.36 0.02 2034 0.05 0.07 4.30 0.98 1.34 0.02 0.10 Invent. 0.05 0.07 5.12 0.35 0.29 0.02
  • the method for measuring residual stresses is the bar method described in the applicant's patent EP 0731185.
  • the arrows f L and f TL were measured in the directions L and TL (in microns) and the quotient fe / l 2 was calculated in both cases, the thickness e and the length l of the bar being expressed in mm.
  • the results are given in Table 7: alloy e (mm) 1 (mm) f L ( ⁇ m) f L e / l 2 f TL ( ⁇ m) f TL e / l 2 2024 40 180 210 0.26 120 015 2034 40 180 147 0.18 129 0.16 invention 40 180 46 0.06 4 0.005 invention 80 385 84 0.05 136 0.07
  • those according to the invention have a deflection such that the product fe is less than 0.10 l 2 , which is, as can be seen in the patent EP 0731185 mentioned above, the indication of a low rate of internal stresses.
  • the alloy according to the invention has, in the treated state, a structure completely recrystallized throughout the thickness of the product.
  • These sheets are particularly suitable for the manufacture of wing lower elements of aircraft by a manufacturing range comprising machining and one or more shaping operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention a pour objet un élément de structure, notamment un élément d'intrados d'aile d'avion, réalisé à partir d'un produit laminé, filé ou forgé, en alliage de composition (% en poids) : Cu : 4,6-5,3Mg : 0,10-0,50Mn : 0,15-0,45Si < 0,10Fe < 0,15 Zn < 0,20Cr < 0,10autres éléments < 0,05 chacun et < 0,15 au total, reste A1 traité par mise en solution, trempe, traction contrôlée à plus de 1,5% de déformation permanente et revenu.

Description

Domaine de l'invention
L'invention concerne des éléments de structure d'avion, notamment des panneaux de peau et des raidisseurs d'intrados de voilure pour avions commerciaux de grande capacité, réalisés à partir de produits laminés, filés ou forgés en alliage AlCuMg à l'état traité par mise en solution, trempe et revenu, et présentant, par rapport aux produits de l'art antérieur utilisés pour la même application, un compromis amélioré entre les différentes propriétés d'emploi requises.
La désignation des alliages et des états métallurgiques utilisée ci-après correspond à la nomenclature de l'Aluminum Association, reprise par les normes européennes EN 515 et EN 573 partie 3.
Etat de la technique
Les ailes d'avions commerciaux de grande capacité comportent une partie supérieure (ou extrados) constituée d'une peau fabriquée à partir de tôles épaisses en alliage 7150 à l'état T651, ou en alliage 7055 à l'état T7751 ou 7449 à l'état T7951, et de raidisseurs fabriqués à partir de profilés du même alliage, et une partie inférieure (ou intrados) constituée d'une peau fabriquée à partir de tôles épaisses en alliage 2024 à l'état T351 ou 2324 à l'état T39, et de raidisseurs fabriqués à partir de profilés du même alliage. Les deux parties sont assemblées par des longerons et des nervures.
L'alliage 2024 selon la désignation de l'Aluminum Association ou la norme EN 573-3 a la composition chimique suivante (% en poids) :
Si < 0,5  Fe < 0,5  Cu : 3,8 - 4,9  Mg : 1,2 - 1,8  Mn : 0,3 - 0,9 Cr < 0,10  Zn < 0,25  Ti < 0,15
Dans le but d'améliorer le compromis entre les différentes propriétés requises, notamment la résistance mécanique et la ténacité, diverses solutions alternatives ont été proposées. Boeing a développé l'alliage 2034 de composition :
Si < 0,10  Fe < 0,12  Cu : 4,2 - 4,8  Mg : 1,3 - 1,9 Mn : 0,8 - 1,3  Cr < 0,05  Zn < 0,20  Ti < 0,15  Zr : 0,08 - 0,15
Cet alliage a fait l'objet du brevet EP 0031605 (= US 4336075). Il présente, par rapport au 2024 à l'état T351, une meilleure limite d'élasticité spécifique due à l'augmentation de la teneur en manganèse et à l'ajout d'un autre antirecristallisant (Zr), ainsi qu'une ténacité et une résistance à la fatigue améliorées.
Le brevet US 5652063 (Alcoa) concerne un élément de structure d'avion réalisé à partir d'un alliage de composition (% en poids) :
Cu : 4,85 - 5,3  Mg : 0,51 - 1,0  Mn : 0,4 - 0,8  Ag : 0,2 - 0,8 Si < 0,1  Fe < 0,1  Zr < 0,25  avec Cu/Mg compris entre 5 et 9.
La tôle de cet alliage à l'état T8 présente une limite d'élasticité > 77 ksi (531 MPa). L'alliage est particulièrement destiné aux avions supersoniques.
Le brevet US 5593516 (Reynolds) concerne un alliage pour applications aéronautiques contenant de 2,5 à 5,5% Cu et 0,1 à 2,3% Mg, dans lequel les teneurs en Cu et Mg sont maintenues en dessous de leur limite de solubilité dans l'aluminium, et sont liées par les équations :
Cumax = 5,59 - 0,91 Mg et Cumin = 4,59 - 0,91Mg
L'alliage peut contenir également : Zr < 0,20%  V < 0,20%  Mn < 0,80% Ti < 0,05%  Fe < 0,15%  Si < 0,10%
Les brevets US 5376192 et US 5512112, issus de la même demande initiale, concernent des alliages de ce type contenant de 0,1 à 1% d'argent. On peut remarquer que l'utilisation d'argent dans ce type d'alliage conduit à une augmentation du coût d'élaboration et des difficultés pour le recyclage des chutes de fabrication.
Par ailleurs, on connaít depuis de nombreuses années des alliages du type « AU6MGT » selon l'ancienne désignation des alliages en France. Le brevet FR 1379764, déposé en 1963 par Pechiney, concerne l'utilisation d'un alliage de ce type de composition : Cu : 5 - 7 Mg : 0,10 - 0,50 Mn 0,05 - 0,50 Si < 0,30 Fe < 0,50 Ti : 0,05 - 0,25 pour la fabrication de bouteilles pour gaz comprimés.
L'Aluminum Association a enregistré en 1976 l'alliage 2001 de composition :
Cu : 5,2 - 6  Mg : 0,20 - 0,45  Mn : 0,15 - 0,50  Si < 0,20  Fe < 0,20 Cr < 0,10  Zn < 0,10  Ni < 0,05  Ti < 0,20  Zr < 0,05
A la connaissance des inventeurs, il n'existe pas d'autre utilisation industrielle de cet alliage que les bouteilles de gaz comprimés fabriquées par filage inverse.
Problème posé
Dans la construction d'avions commerciaux, la tendance actuelle est à l'utilisation croissante de produits très épais, dans la masse desquels les éléments de structure sont usinés. Par exemple, pour certains avions de petite dimension, les peaux de voilure sont usinées à partir de tôles relativement épaisses afin de permettre l'usinage dans la masse des raidisseurs de voilure, alors que ceux-ci sont habituellement réalisés à partir de profilés ou de tôles pliées, et sont ensuite fixées mécaniquement à la peau. L'usinage intégral dans la masse de l'ensemble peau-raidisseurs conduit à une réduction des coûts de fabrication, puisque le nombre de pièces est réduit et qu'on évite l'assemblage. Par ailleurs, l'utilisation d'une structure non assemblée permet une réduction du poids de l'ensemble.
Il est donc souhaitable qu'en plus des propriétés habituellement recherchées pour les éléments de structure d'avions, à savoir une résistance mécanique élevée, une bonne tolérance aux dommages et une bonne résistance à la fatigue et aux différentes formes de corrosion, les tôles présentent des caractéristiques mécaniques homogènes sur toute l'épaisseur, c'est-à-dire que les propriétés ne varient pas de manière significative en fonction de l'épaisseur, typiquement entre 10 et 120 mm. D'autre part, plus on recourt à l'usinage, plus la stabilité à l'usinage est souhaitable, ce qui s'obtient par un faible niveau de contraintes internes. Or, il est connu que, pour une tôle épaisse, les caractéristiques mécaniques sont d'autant plus homogènes, et les contraintes internes d'autant plus réduites, que la tôle présente une faible sensibilité à la trempe.
Enfin, les ailes d'avions, notamment les avions de grande capacité, présentent un profil d'aile galbé, avec une courbure à la fois dans le sens longitudinal et dans le sens transversal. Cette forme complexe peut être obtenue pendant l'opération de revenu dans un autoclave, par formage sur un moule, en mettant en dépression la face de la tôle du côté du moule par rapport à la face opposée, à l'aide d'un vide partiel. Il est impératif que cette opération soit réussie, pour éviter le rebut coûteux d'une pièce à forte valeur ajoutée, notamment pour les pièces de grande dimension. Le gage du succès réside dans un retour élastique le plus faible possible pour une forme de moule donnée, car le retour élastique est le plus souvent difficile à contrôler.
Le but de la présente invention est de fournir des éléments de structure d'avions présentant des propriétés au moins équivalentes à celles des mêmes éléments réalisés en alliage 2024 à l'état T351 en ce qui concerne les caractéristiques mécaniques statiques, la ténacité, la vitesse de propagation de fissures et la résistance à la corrosion, en utilisant des produits laminés, filés ou forgés présentant un faible niveau de contraintes résiduelles, une faible sensibilité à la trempe et une bonne aptitude au formage au revenu.
Objet de l'invention
L'invention a pour objet un élément de structure, notamment un élément d'intrados d'aile d'avion, réalisé à partir d'un produit laminé, filé ou forgé, en alliage de composition (% en poids) :
Cu : 4,6 - 5,3 Mg : 0,10 - 0,50 Mn : 0,15 - 0,45 Si < 0,10 Fe < 0,15 Zn < 0,20 Cr < 0,10 autres éléments < 0,05 chacun et < 0,15 au total, reste Al traité par mise en solution, trempe, traction contrôlée à plus de 1,5% de déformation permanente et revenu.
Cet élément présente l'une au moins des propriétés suivantes :
  • limite d'élasticité R0,2 (sens TL) > 350 MPa, de préférence > 370 MPa,
  • ténacité K1c (sens L-T) > 42 MPa√m
  • résistance à la corrosion intercristalline de type P selon la norme ASTM G110.
L'invention a également pour objet un procédé de fabrication d'un élément de structure comportant :
  • a) la coulée d'une plaque ou d'une billette de la composition mentionnée ci-dessus,
  • b) l'homogénéisation de cette plaque ou billette,
  • c) la transformation à chaud de cette plaque par laminage ou de cette billette par filage ou forgeage pour obtenir un produit d'épaisseur supérieure à 10 mm,
  • d) la trempe du produit transformé à chaud,
  • e) la mise en solution de ce produit, de préférence à une température inférieure de moins de 10°C à la température de fusion commençante de l'alliage,
  • f) la traction contrôlée du produit jusqu'à une déformation permanente de plus de 1,5%,
  • g) le revenu du produit à une température supérieure à 160°C, éventuellement associé à un formage,
  • h) l'usinage du produit éventuellement formé jusqu'à la forme finale de l'élément de structure.
  • Dans le cas où le produit est une tôle, la température d'entrée au laminage à chaud est de préférence inférieure d'au moins 40°C, et plus préférentiellement d'au moins 50°C, à la température de mise en solution.
    Description de l'invention
    L'invention repose sur la constatation qu'un alliage de type 2001, avec certaines modifications de composition et une gamme de fabrication appropriée, pouvait présenter un ensemble de propriétés le rendant apte à l'utilisation dans des structures d'avions, et plus particulièrement dans les intrados d'ailes d'avions commerciaux de grande capacité, avec en plus des propriétés intéressantes en matière de faible sensibilité à le trempe, de faibles contraintes résiduelles et de formage au revenu.
    Par rapport à l'alliage 2001, la plage de teneur en cuivre est nettement décalée vers le bas, tout en restant supérieure à celle des alliages 2024 ou 2034 pour intrados, pour compenser, dans son influence sur la résistance mécanique, la faible teneur en magnésium. Il est préférable de choisir une teneur en cuivre supérieure à 4,8%, voire à 4,9% ou même 5%. La teneur en magnésium est du même ordre que dans l'alliage 2001, et de préférence située entre 0,20 et 0,40%. Le rapport Cu/Mg est ainsi pratiquement toujours supérieur à 10, contrairement à l'enseignement du brevet US 5652063, qui préconise un rapport Cu/Mg compris entre 5 et 9.
    La teneur en manganèse est contrôlée dans une plage relativement étroite. En dessous de 0,15%, on risquerait d'avoir un grain trop gros ; au-dessus de 0,45%, on obtient une structure non recristallisée qui n'est pas favorable à la maítrise des contraintes résiduelles. Un domaine préférentiel est compris entre 0,25 et 0,40%. Il est à noter que, pour la même raison, et contrairement à l'enseignement du brevet US 5593516, l'alliage ne comporte aucun autre élément anti-recristallisant tel que le vanadium ou le zirconium.
    Les teneurs en fer et en silicium sont maintenues respectivement en dessous de 0,15 et 0,10%, et de préférence en dessous de 0,09 et 0,08%, pour garantir une bonne ténacité. L'alliage peut comporter jusqu'à 0,2% de zinc, cette addition ayant un effet favorable sur la résistance mécanique, sans risque pour d'autres propriétés, comme la résistance à la corrosion.
    La gamme de transformation comporte la coulée d'une plaque ou d'une billette, un réchauffage ou une homogénéisation à une température proche de la température de fusion commençante de l'alliage et une transformation à chaud par laminage, filage ou forgeage. Dans le cas du laminage, celui-ci peut comporter une passe, dite d'élargissement, dans le sens perpendiculaire à celui des autres passes, et destiné à améliorer l'isotropie du produit. La température de transformation à chaud se situe, de préférence, à un niveau légèrement plus bas que celle qu'adopterait l'homme de métier en référence à la température de mise en solution. Ainsi, en ce qui concerne le laminage, la température d'entrée se situe, de préférence, à au moins 40°C, voire 50°C, en dessous de la température de mise en solution, et la température de sortie de 20 à 30°C en dessous de la température d'entrée.
    Le produit est soumis ensuite à une mise en solution aussi complète que possible, à une température proche, par exemple moins de 10°C en dessous, de la température de fusion commençante de l'alliage, tout en évitant la brûlure. Cette température se situe entre 520 et 535°C. La qualité de la mise en solution peut être contrôlée par analyse enthalpique différentielle. Le produit est ensuite trempé, par exemple par immersion dans l'eau froide, de manière à assurer une vitesse de refroidissement comprise entre 10 et 50°C/s. Après la trempe, le produit est tractionné jusqu'à une déformation permanente d'au moins 1,5%, de manière à le détensionner et à améliorer sa planéité.
    Pour l'alliage selon l'invention, cette traction a également pour effet d'améliorer, par un effet d'écrouissage, la limite d'élasticité après revenu, de sorte qu'on peut qualifier l'état obtenu d'état T851, comme s'il s'agissait d'une passe spécifique d'écrouissage après trempe. Comme indiqué plus haut, le revenu proprement dit peut s'effectuer en même temps que la mise en forme du galbe de l'intrados. Ce revenu est effectué de préférence à une température supérieure à 160°C (et plus préférentiellement > 170°C), d'une durée permettant d'atteindre le pic de limite d'élasticité, comme pour un état T6. Typiquement, un revenu de temps équivalent à celui correspondant à 12 à 24 h à une température de 173°C est effectué ; toute combinaison temps-température permettant d'atteindre le pic de revenu de l'alliage est utilisable.
    La structure métallurgique obtenue est, à l'inverse de celle des alliages 2024 et 2034, fortement recristallisée, avec un taux de recristallisation dépassant toujours 70%, et le plus souvent 90%, sur toute l'épaisseur.
    Les éléments de structure selon l'invention présentent un compromis de propriétés (caractéristiques mécaniques statiques, ténacité, vitesse de propagation de fissures, résistance à la corrosion) qui les rendent aptes à être utilisés dans la construction aéronautique, et notamment à la fabrication d'intrados d'ailes. De plus, ces éléments peuvent être aisément réalisés par usinage et formés au revenu. Enfin, l'alliage utilisé se révèle facilement soudable par les techniques habituelles, ce qui peut permettre de réduire le nombre des assemblages rivetés.
    Exemples Exemple 1
    On a préparé 6 alliages dont la composition est indiquée au tableau 1. L'alliage A est un alliage 2024-T3 de composition habituelle pour l'application intrados de voilure. L'alliage B est un alliage entrant dans le domaine de composition décrit dans le brevet US 5652063, mais sans addition d'argent. L'alliage C est conforme à l'invention. Les alliages D et E ne diffèrent de l'alliage C que par un silicium plus élevé pour D, un manganèse et un cuivre plus élevés pour E et F, et une addition de zirconium pour F.
    Alliage Si Fe Cu Mn Mg Ti Zr
    A 0,07 0,07 4,11 0,53 1,28 0,008
    B 0,06 0,08 4,73 0,30 0,67 0,065
    C 0,05 0,08 5,26 0,30 0,28 0,062
    D 0,15 0,08 5,28 0,30 0,31 0,065
    E 0,07 0,10 5,64 0,99 0,29 0,012
    F 0,06 0,08 5,47 0,67 0,29 0,014 0,11
    Des plaques coulées de section 380 x 120 mm ont été homogénéisées, laminées à chaud à l'épaisseur 22 mm, mises en solution, trempées à l'eau froide, tractionnées à 2,3% de déformation permanente et revenues. Les paramètres de l'homogénéisation, du laminage à chaud (températures d'entrée), de mise en solution et de revenu sont indiqués au tableau 2.
    Alliage Homogé néisation Laminage à Chaud (entrée) Mise en Solution Revenu
    A 4h 490°C 467°C 3h à 497°C -
    B 4h 490°C 467°C 3h à 518°C 16h à 173°C
    C 4h 490°C 467°C 6h à 527°C 16h à 173°C
    D 4h 490°C 472°C 6h à 527°C 16h à 173°C
    E 1h 520°C 479°C 6h à 527°C 16h à 173°C
    F 1h 520°C 474°C 6h à 527°C 16h à 173°C
    On a mesuré sur les tôles traitées les caractéristiques mécaniques : résistance à la rupture Rm (en MPa), limite d'élasticité conventionnelle à 0,2% R0,2 (en MPa) et allongement à la rupture A (en %), sur des éprouvettes de traction de section circulaire selon la norme ASTM B 557, prélevées à mi-épaisseur dans les sens L et TL (3 éprouvettes par cas).
    On a mesuré également la ténacité par le facteur d'intensité critique de contrainte K1c (en MPa√m) mesuré, selon la norme ASTM E 399, sur des éprouvettes CT20 prélevées à quart-épaisseur dans les sens L-T et T-L (2 éprouvettes par cas).
    L'ensemble des résultats est regroupé au tableau 3.
    Alliage Rm (L) R0,2 (L) A (L) Rm (TL) R0,2 (TL) A (TL) K1c (L-T) K1c (T-L)
    A 472 362 21,3 467 321 21,4 41,8 40,5
    B 476 439 12,5 475 427 11,2 41,3 34,6
    C 458 396 13,9 463 384 12,6 45,4 42,9
    D 460 397 13,6 465 387 12,2 40,5 36,4
    E 488 423 10,5 480 403 9,4 36,8 29,3
    F 480 418 11,6 481 402 10,1 40,2 33,6
    On constate que l'alliage C selon l'invention conduit à une limite d'élasticité nettement supérieure à celle du 2024, et un peu plus faible que celle des alliages B, E et F. L'allongement est plus faible que pour le 2024, mais meilleur que celui des alliages B, D, E et F. La ténacité est la meilleure de tous les alliages testés. On a donc un compromis favorable de ces diverses propriétés. En particulier, les résultats montrent l'effet défavorable, à la fois sur la ténacité et l'allongement, d'une augmentation de la teneur en silicium et en manganèse, ainsi que d'une addition de zirconium.
    On a procédé par ailleurs à des essais accélérés de corrosion intercristalline sur des échantillons des 6 alliages, à l'état T351 pour l'alliage 2024 (A) et T851 pour les autres, en surface et à coeur, selon la norme ASTM G110. On note le type de corrosion observé : P pour piqûres, I pour corrosion intercristalline et P + I pour les deux. On mesure la profondeur maximum (P max en µm), la profondeur de corrosion intercristalline (P CI en µm) et le pourcentage de corrosion intercristalline sur l'échantillon. Les résultats sont indiqués au tableau 4 :
    All. Surf. Surf. Surf. Surf. Coeur Coeur Coeur Coeur
    Type P max P CI % CI Type P max P CI % CI
    A I+P 160 70 10 I + P 260 260 60
    B P+I 130 30 10 P+I 160 50 10
    C P 150 - - P 120 - -
    D P 150 - - P 120 - -
    E P 200 - - P 140 - -
    F P 220 - - P 170 - -
    On observe que l'alliage selon l'invention présente la seconde meilleure résistance à la corrosion inter cristalline en surface, et la meilleure à coeur. La différence entre les résultats à coeur et en surface est faible, ce qui est une propriété favorable lorsque l'élément de structure est fabriqué par usinage.
    On a comparé enfin, pour les alliages A et C, les vitesses de propagation de fissures de fatigue da/dn dans la direction T-L, en mm/cycle, pour des valeurs de ΔK comprises entre 15 et 30 MPa√m, selon la norme ASTM E647. Les résultats (2 essais par alliage) sont indiqués au tableau 5.
    Alliage 10 MPa√m 15 MPa√m 20 MPa√m 25 MPa√m 30 MPa√m
    A 6,2 10-5 3,8 10-4 8,3 10-4 1,8 10-3 3,8 10-3
    A 6,3 10-5 3,8 10-4 8,7 10-4 1,9 10-3 3,6 10-3
    C 1,2 10-4 4,0 10-4 8,6 10-4 1,5 10-3 2,6 10-3
    C 1,2 10-4 4,2 10-4 9,5 10-4 1,8 10-3 3,1 10-3
    On observe que les résultats sont à peu près comparables pour les deux alliages.
    Exemple 2
    On a mesuré le niveau de contraintes résiduelles sur des tôles d'épaisseur 40 mm en alliage 2024, 2034 et selon l'invention, traitées toutes trois au même état T351. Les compositions (% en poids) sont données au tableau 6 :
    Alliage Si Fe Cu Mn Mg Ti Zr
    2024 0,12 0,20 4,06 0,54 1,36 0,02
    2034 0,05 0,07 4,30 0,98 1,34 0,02 0,10
    Invent. 0,05 0,07 5,12 0,35 0,29 0,02
    La méthode de mesure des contraintes résiduelles est la méthode du barreau décrite dans le brevet EP 0731185 de la demanderesse. On a mesuré les flèches fL et fTL dans les sens L et TL (en microns) et calculé dans les deux cas le quotient fe/l2, l'épaisseur e et la longueur l du barreau étant exprimés en mm. Les résultats sont donnés au tableau 7 :
    alliage e (mm) 1 (mm) fL (µm) fLe/l2 fTL (µm) fTLe/l2
    2024 40 180 210 0,26 120 015
    2034 40 180 147 0,18 129 0,16
    invention 40 180 46 0,06 4 0,005
    invention 80 385 84 0,05 136 0,07
    On constate que, contrairement aux éprouvettes en alliage 2024 ou 2034, celles selon l'invention présentent une flèche telle que le produit fe est inférieur à 0,10 l2, ce qui est, comme on peut le voir dans le brevet EP 0731185 mentionné ci-dessus, l'indication d'un faible taux de contraintes internes.
    On a mesuré, par analyse d'image sur des micrographies des 4 échantillons précédents, le taux de recristallisation (en %) en surface, à quart-épaisseur et à coeur.
    Les résultats sont indiqués au tableau 8 :
    Alliage e (mm) Surface Taux recrist. (quart-ép.) Taux recrist. (à coeur)
    2024 40 80 60 30
    2034 40 12 0 0
    Inv. 40 100 100 100
    Inv. 80 100 100 100
    On constate que l'alliage selon l'invention présente, à l'état traité, une structure complètement recristallisée dans toute l'épaisseur du produit..
    Exemple 3
    On a mesuré sur des échantillons selon l'invention, d'épaisseur 15, 40 et 80 mm, traités à l'état T851, avec une température d'entrée au laminage à chaud de 475°C, une mise en solution de 2 h à 528°C, et un revenu de 24 h à 173°C, les caractéristiques mécaniques statiques (limite d'élasticité R0,2 et résistance à la rupture Rm en MPa et allongement A en %)) à quart-épaisseur et à mi-épaisseur, dans les sens L et TL. L'ensemble des résultats est reproduit au tableau 9. Ils montrent la faible évolution des propriétés en fonction de l'épaisseur, résultant d'une faible sensibilité à la trempe.
    e (mm) Prélév. R0,2(L) Rm(L) A(L) R0,2(TL) Rm(TL) A(TL)
    15 ½ ép. 400 451 13,6 392 458 12,1
    40 ½ ép. 387 439 13,7 376 448 11,2
    80 ½ ép. 388 436 11,4 376 443 9,8
    80 ¼ ép. 410 466 11,9 467 400 9,7
    Ces tôles sont particulièrement adaptées à la fabrication d'éléments d'intrados d'ailes d'avions par une gamme de fabrication comportant un usinage et une ou plusieurs opérations de mise en forme.

    Claims (24)

    1. Elément de structure, notamment un élément d'intrados d'aile d'avion, réalisé à partir d'un produit laminé, filé ou forgé, en alliage de composition (% en poids) :
      Cu : 4,6 - 5,3  Mg : 0,10 - 0,50  Mn : 0,15 - 0,45  Si < 0,10 Fe < 0,15 Zn < 0,20  Cr < 0,10  autres éléments < 0,05 chacun et < 0,15 au total, reste Al, traité par mise en solution, trempe, traction contrôlée à plus de 1,5% de déformation permanente et revenu.
    2. Elément de structure selon la revendication 1, caractérisé en ce que Si < 0,08%.
    3. Elément de structure selon l'une des revendications 1 ou 2, caractérisé en ce que Fe < 0,09%.
    4. Elément de structure selon l'une des revendications 1 à 3, caractérisé en ce que Cu > 4,8%, et, de préférence, > 4,9%.
    5. Elément de structure selon l'une des revendications 1 à 4, caractérisé en ce que Cu > 5%.
    6. Elément de structure selon l'une des revendications 1 à 5, caractérisé en ce que Mg est compris entre 0,20 et 0,40%.
    7. Elément de structure selon l'une des revendications 1 à 6, caractérisé en ce que Mn est compris entre 0,25 et 0,40%.
    8. Elément de structure selon l'une des revendications 1 à 7, caractérisé en ce qu'il présente une limite d'élasticité R0,2 (sens TL) > 350 MPa, et de préférence > 370 MPa.
    9. Elément de structure selon l'une des revendications 1 à 8, caractérisé en ce qu'il présente une ténacité K1c (sens L-T) > 42 MPa√m.
    10. Elément de structure selon l'une des revendications 1 à 9, caractérisé en ce qu'il présente une résistance à la corrosion intercristalline de type P selon la norme ASTM G110.
    11. Elément de structure selon l'une des revendications 1 à 10, caractérisé en ce que la mise en solution a lieu à une température inférieure de moins de 10°C à la température de fusion commençante de l'alliage.
    12. Elément de structure selon l'une des revendications 1 à 11, caractérisé en ce que le revenu est pratiqué à une température > 160°C (de préférence > 170°C).
    13. Elément de structure selon l'une des revendications 1 à 12, caractérisé en ce que le revenu est pratiqué en même temps qu'une opération de formage.
    14. Elément de structure selon l'une des revendications 1 à 13, caractérisé en ce qu'il présente dans toute l'épaisseur un taux de recristallisation supérieur à 70%, et de préférence à 90%.
    15. Elément de structure selon l'une des revendications 1 à 14, caractérisé en ce qu'il fait partie d'un intrados d'aile d'avion.
    16. Elément de structure selon l'une des revendications 1 à 14, caractérisé en ce qu'il est obtenu par usinage.
    17. Elément d'intrados d'aile d'avion selon la revendication 16, caractérisé en ce que la peau et les raidisseurs sont obtenus par l'usinage d'un même produit de départ.
    18. Elément de structure selon l'une des revendications 16 ou 17, caractérisé en ce qu'il présente, après usinage, une flèche f dans les sens L et TL telle que : fe < 0,10 l2 f étant exprimé en µm, e étant l'épaisseur de l'élément et l la longueur de l'éprouvette en forme de barreau en mm.
    19. Procédé de fabrication d'un élément de structure comportant :
      a) la coulée d'une plaque ou d'une billette de la composition :
      Cu : 4,6 - 5,3 Mg : 0,10 - 0,50 Mn : 0,15 - 0,45 Si < 0,10 Fe < 0,15 Zn < 0,20 Cr < 0,10 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium,
      b) l'homogénéisation de cette plaque ou billette,
      c) la transformation à chaud de cette plaque par laminage ou de cette billette par filage ou forgeage pour obtenir un produit d'épaisseur supérieure à 10 mm,
      d) la trempe du produit transformé à chaud,
      e) la mise en solution de ce produit, de préférence à une température inférieure de moins de 10°C à la température de fusion commençante de l'alliage,
      f) la traction contrôlée du produit jusqu'à une déformation permanente de plus de 1,5%,
      g) le revenu du produit à une température supérieure à 160°C, éventuellement associé à un formage,
      h) l'usinage du produit éventuellement formé jusqu'à la forme finale de l'élément de structure.
    20. Procédé selon la revendication 19, caractérisé en ce que la plaque ou la billette coulée a une teneur en Cu > 4,8%, et de préférence > 4,9%.
    21. Procédé selon la revendication 19 ou 20, caractérisé en ce que la plaque ou la billette coulée a une teneur en Mg comprise entre 0,20 et 0,40%.
    22. Procédé selon l'une des revendications 19 à 21, caractérisé en ce que la plaque ou la billette coulée a une teneur en Mn comprise entre 0,25 et 0,40%.
    23. Procédé selon l'une des revendications 19 à 22, caractérisé en ce que le revenu est effectué à une température > 170°C.
    24. Procédé selon l'une des revendications 19 à 23, caractérisé en ce que produit est une tôle obtenue par laminage à chaud avec une température d'entrée inférieure d'au moins 40°C (et de préférence d'au moins 50°C) à la température de mise en solution.
    EP00420263A 1999-12-28 2000-12-20 Element de structure d'avion en alliage Al-Cu-Mg Revoked EP1114877B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9916610 1999-12-28
    FR9916610A FR2802946B1 (fr) 1999-12-28 1999-12-28 Element de structure d'avion en alliage al-cu-mg

    Publications (2)

    Publication Number Publication Date
    EP1114877A1 true EP1114877A1 (fr) 2001-07-11
    EP1114877B1 EP1114877B1 (fr) 2005-02-02

    Family

    ID=9553940

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00420263A Revoked EP1114877B1 (fr) 1999-12-28 2000-12-20 Element de structure d'avion en alliage Al-Cu-Mg

    Country Status (4)

    Country Link
    US (2) US6569542B2 (fr)
    EP (1) EP1114877B1 (fr)
    DE (1) DE60017868T2 (fr)
    FR (1) FR2802946B1 (fr)

    Cited By (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2848480A1 (fr) * 2002-12-17 2004-06-18 Pechiney Rhenalu Procede de fabrication d'elements structuraux par usinage de toles epaisses
    WO2004056501A2 (fr) * 2002-12-17 2004-07-08 Pechiney Rhenalu Procede de fabrication d'elements de structure par usinage de toles epaisses
    WO2004111282A1 (fr) * 2003-06-06 2004-12-23 Corus Aluminium Walzprodukte Gmbh Alliage d'aluminium presentant une haute tolerance aux dommages convenant en particulier pour les applications aerospatiales
    WO2008003504A2 (fr) 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Produits en alliage d'aluminium série aa7000, et procédé de fabrication correspondant
    US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
    US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
    US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
    US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
    WO2015044538A1 (fr) * 2013-09-30 2015-04-02 Constellium France Tôle d'intrados à propriétés de tolérance aux dommages améliorées
    WO2017037391A1 (fr) * 2015-09-03 2017-03-09 Constellium Issoire Produit extrude en alliage al-cu-mg a compromis ameliore entre resistance mecanique et tenacite
    CN106513638A (zh) * 2016-11-18 2017-03-22 喀左金牛铸造有限公司 2a12铝合金铸造工艺
    CN110205446A (zh) * 2019-06-17 2019-09-06 西安理工大学 一种g520马氏体沉淀硬化不锈钢热处理方法
    US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
    CN110724866A (zh) * 2019-11-28 2020-01-24 西南铝业(集团)有限责任公司 一种2014铝合金航空精密轮毂模锻件的无锆毛坯

    Families Citing this family (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    BRPI0408432B1 (pt) * 2003-03-17 2015-07-21 Corus Aluminium Walzprod Gmbh Método para produção de uma estrutura integrada de alumínio monolítico e produto de alumínio usinado daquela estrutura
    US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
    DE10332003B3 (de) * 2003-07-14 2004-12-16 Eads Deutschland Gmbh Geschweißtes Aluminium-Strukturbauteil mit Aluminium-Guss-Werkstoffelementen
    FR2858984B1 (fr) * 2003-08-19 2007-01-19 Corus Aluminium Walzprod Gmbh Produit en alliage ai-cu a haute tenacite et son procede de production
    US20060032560A1 (en) * 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
    US20050098245A1 (en) * 2003-11-12 2005-05-12 Venema Gregory B. Method of manufacturing near-net shape alloy product
    US7883591B2 (en) * 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
    US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
    US20070204937A1 (en) * 2005-07-21 2007-09-06 Aleris Koblenz Aluminum Gmbh Wrought aluminium aa7000-series alloy product and method of producing said product
    RU2418876C2 (ru) * 2005-10-25 2011-05-20 Алерис Алюминум Кобленц Гмбх СПЛАВ Al-Cu-Mg, ПОДХОДЯЩИЙ ДЛЯ АВИАЦИОННО-КОСМИЧЕСКОГО ПРИМЕНЕНИЯ
    US20070151637A1 (en) * 2005-10-28 2007-07-05 Aleris Aluminum Koblenz Gmbh Al-Cu-Mg ALLOY SUITABLE FOR AEROSPACE APPLICATION
    FR2907796B1 (fr) * 2006-07-07 2011-06-10 Aleris Aluminum Koblenz Gmbh Produits en alliage d'aluminium de la serie aa7000 et leur procede de fabrication
    WO2010081889A1 (fr) 2009-01-16 2010-07-22 Aleris Aluminum Koblenz Gmbh Procédé de fabrication d'un produit de type tôle d'alliage d'aluminium présentant de faibles taux de contrainte résiduelle
    US9314826B2 (en) 2009-01-16 2016-04-19 Aleris Rolled Products Germany Gmbh Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
    CN102108476B (zh) * 2010-12-28 2012-02-22 重庆市宇一机械有限公司 一种高强高韧铝合金航空安全件改性制备方法
    US9123930B1 (en) 2011-04-29 2015-09-01 Greatbatch Ltd. Dual glass to metal seal cell
    CN103805924B (zh) * 2012-11-14 2016-01-20 北京有色金属研究总院 一种适用于镁合金铸锭的均匀化处理及后续加工的方法
    CN103103370A (zh) * 2012-12-11 2013-05-15 龙口市丛林铝材有限公司 用于刹车片铝合金型材生产工艺
    FR3047253B1 (fr) * 2016-02-03 2018-01-12 Constellium Issoire Toles epaisses en alliage al - cu - li a proprietes en fatigue ameliorees
    MX2019001802A (es) 2016-08-26 2019-07-04 Shape Corp Proceso de modelacion en caliente y aparato para flexion transversal de una viga de aluminio extrudida para modelar en caliente un componente estructural del vehiculo.
    EP3529394A4 (fr) 2016-10-24 2020-06-24 Shape Corp. Procédé de formage et de traitement thermique d'un alliage d'aluminium en plusieurs étapes pour la production de composants pour véhicules
    CN107309658B (zh) * 2017-06-19 2019-05-14 江西洪都航空工业集团有限责任公司 一种窄长蒙皮零件加工工装及工艺
    CN107090569A (zh) * 2017-07-07 2017-08-25 哈尔滨中飞新技术股份有限公司 制备高强度硬铝合金的热处理工艺
    US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
    CN114293077B (zh) * 2021-12-29 2022-09-30 北京理工大学 一种用于航空航天结构件的高强铝铜合金及制备方法
    CN115786787B (zh) * 2022-07-18 2024-02-23 山东浩信机械有限公司 一种高强韧Al-Cu系铸造铝合金及其制备方法

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1379764A (fr) * 1963-10-17 1964-11-27 Pechiney Prod Chimiques Sa Application nouvelle d'un alliage léger
    FR2472618A1 (fr) * 1979-11-07 1981-07-03 Showa Aluminium Ind Barre coulee en alliage d'aluminium pour produits travailles presentant des proprietes mecaniques et une " travaillabilite " ameliorees, et procede de fabrication
    US4610733A (en) * 1984-12-18 1986-09-09 Aluminum Company Of America High strength weldable aluminum base alloy product and method of making same
    US5376192A (en) * 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3874213A (en) * 1974-05-23 1975-04-01 Alusuisse Extrusion method for high strength heat treatable aluminum alloys
    JPS5669346A (en) 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for working and its manufacture
    FR2731440B1 (fr) * 1995-03-10 1997-04-18 Pechiney Rhenalu Toles en alliage al-cu-mg a faible niveau de contraintes residuelles

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1379764A (fr) * 1963-10-17 1964-11-27 Pechiney Prod Chimiques Sa Application nouvelle d'un alliage léger
    FR2472618A1 (fr) * 1979-11-07 1981-07-03 Showa Aluminium Ind Barre coulee en alliage d'aluminium pour produits travailles presentant des proprietes mecaniques et une " travaillabilite " ameliorees, et procede de fabrication
    US4610733A (en) * 1984-12-18 1986-09-09 Aluminum Company Of America High strength weldable aluminum base alloy product and method of making same
    US5376192A (en) * 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy

    Cited By (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
    US7815758B2 (en) 2002-08-20 2010-10-19 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
    US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
    US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
    US7763128B2 (en) 2002-12-17 2010-07-27 Alcan Rhenalu Process for manufacturing structural components by machining plates
    CN1729308B (zh) * 2002-12-17 2010-04-14 皮奇尼何纳吕公司 通过加工厚板材制造结构件的方法
    US7837808B2 (en) 2002-12-17 2010-11-23 Alcan Rhenalu Process for manufacturing structural components by machining plates
    WO2004056501A2 (fr) * 2002-12-17 2004-07-08 Pechiney Rhenalu Procede de fabrication d'elements de structure par usinage de toles epaisses
    FR2848480A1 (fr) * 2002-12-17 2004-06-18 Pechiney Rhenalu Procede de fabrication d'elements structuraux par usinage de toles epaisses
    WO2004056501A3 (fr) * 2002-12-17 2004-08-19 Pechiney Rhenalu Procede de fabrication d'elements de structure par usinage de toles epaisses
    DE112004000603B4 (de) 2003-04-10 2022-11-17 Novelis Koblenz Gmbh AI-Zn-Mg-Cu-Legierung
    US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
    US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
    CN100503861C (zh) * 2003-06-06 2009-06-24 克里斯铝轧制品有限公司 尤其适用于航空航天应用的高损伤容限铝合金产品
    GB2419891A (en) * 2003-06-06 2006-05-10 Corus Aluminium Walzprod Gmbh High-damage tolerant aluminium alloy product in particular for aerospace applications
    WO2004111282A1 (fr) * 2003-06-06 2004-12-23 Corus Aluminium Walzprodukte Gmbh Alliage d'aluminium presentant une haute tolerance aux dommages convenant en particulier pour les applications aerospatiales
    ES2293814A1 (es) * 2003-06-06 2008-03-16 Corus Aluminium Walzprodukte Gmbh Producto de aleacion de aluminio de alta tolerancia al daño para, en particular, aplicaciones aeroespaciales.
    US8043445B2 (en) 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
    GB2419891B (en) * 2003-06-06 2007-08-22 Corus Aluminium Walzprod Gmbh High-damage tolerant aluminium alloy product in particular for aerospace applications
    WO2008003504A2 (fr) 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Produits en alliage d'aluminium série aa7000, et procédé de fabrication correspondant
    WO2015044538A1 (fr) * 2013-09-30 2015-04-02 Constellium France Tôle d'intrados à propriétés de tolérance aux dommages améliorées
    FR3011252A1 (fr) * 2013-09-30 2015-04-03 Constellium France Tole d'intrados a proprietes de tolerance aux dommages ameliorees
    WO2017037391A1 (fr) * 2015-09-03 2017-03-09 Constellium Issoire Produit extrude en alliage al-cu-mg a compromis ameliore entre resistance mecanique et tenacite
    FR3040711A1 (fr) * 2015-09-03 2017-03-10 Constellium Issoire Produit extrude en alliage al-cu-mg a compromis ameliore entre resistance mecanique et tenacite
    CN106513638B (zh) * 2016-11-18 2019-07-12 喀左金牛铸造有限公司 2a12铝合金铸造工艺
    CN106513638A (zh) * 2016-11-18 2017-03-22 喀左金牛铸造有限公司 2a12铝合金铸造工艺
    CN110205446A (zh) * 2019-06-17 2019-09-06 西安理工大学 一种g520马氏体沉淀硬化不锈钢热处理方法
    CN110724866A (zh) * 2019-11-28 2020-01-24 西南铝业(集团)有限责任公司 一种2014铝合金航空精密轮毂模锻件的无锆毛坯

    Also Published As

    Publication number Publication date
    US6692589B2 (en) 2004-02-17
    FR2802946A1 (fr) 2001-06-29
    US20010006082A1 (en) 2001-07-05
    FR2802946B1 (fr) 2002-02-15
    US6569542B2 (en) 2003-05-27
    DE60017868T2 (de) 2005-12-29
    EP1114877B1 (fr) 2005-02-02
    DE60017868D1 (de) 2005-03-10
    US20030207141A1 (en) 2003-11-06

    Similar Documents

    Publication Publication Date Title
    EP1114877B1 (fr) Element de structure d&#39;avion en alliage Al-Cu-Mg
    FR2855834A1 (fr) Produit ouvre en alliage a grande tolerance aux dommages, en particulier pour des applications dans le domaine aerospatial
    EP1170118B1 (fr) Tôles en alliage d&#39;aluminium plaquées pour éléments de structure d&#39;aéronefs
    EP1891247B1 (fr) Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d&#39;avion
    FR2853667A1 (fr) Alliage al-an-mg-cu ameliore en ce qui concerne ses proprietes combinees de tolerance aux dommages et de resistance mecanique
    FR3068370B1 (fr) Alliages al- zn-cu-mg et procede de fabrication
    FR2902442A1 (fr) Alliage de la serie aa6xxx, a grande tolerance aux dommages pour l&#39;industrie aerospatiale
    CA2907854C (fr) Toles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
    FR2853666A1 (fr) ALLIAGE Al-Zn A HAUTE RESISTANCE,PROCEDE DE PRODUCTION DE PRODUITS EN UN TEL ALLIAGE, ET PRODUITS OBTENUS SELON CE PROCEDE
    CA2961712C (fr) Toles isotropes en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
    EP2235224A1 (fr) Produit lamine en alliage aluminium-lithium pour applications aeronautiques
    EP1644546B1 (fr) Utilisation de tubes en alliages al-zn-mg-cu ayant un compromis ameliore entre des caracteristiques mecaniques statiques et la tolerance aux dommages
    EP1026270B1 (fr) Produit en alliage ALCuMg pour élément de structure d&#39;avions
    EP1544315B1 (fr) Produit corroyé sous forme de tôle laminée et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg
    WO2020016506A1 (fr) Procede de fabrication de toles minces en alliage d&#39;aluminium 7xxx aptes a la mise en forme et a l&#39;assemblage
    CA2907807A1 (fr) Toles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
    CA3012956C (fr) Toles epaisses en alliage al-cu-li a proprietes en fatigue ameliorees
    EP1143027A1 (fr) Procédé de fabrication d&#39;éléments de structure d&#39;avions en alliage d&#39;aluminium Al-Si-Mg
    FR2889542A1 (fr) Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d&#39;avion
    EP3802897B1 (fr) Toles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
    WO2023144492A1 (fr) Tole mince amelioree en alliage d&#39;aluminium-cuivre-lithium
    FR2789405A1 (fr) PRODUIT EN ALLIAGE AlCuMg POUR ELEMENT DE STRUCTURE D&#39;AVION
    WO2021111069A1 (fr) Tôles minces en alliage d&#39;aluminium-cuivre-lithium à tenacite ameliorée et procédé de fabrication d&#39;une tôle mince en alliage d&#39;aluminium-cuivre-lithium
    FR2892424A1 (fr) Produit en alliage d&#39;aluminium al-cu-mg corroye et procede de fabrication d&#39;un tel produit

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010929

    AKX Designation fees paid

    Free format text: DE FR GB

    17Q First examination report despatched

    Effective date: 20040206

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60017868

    Country of ref document: DE

    Date of ref document: 20050310

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050422

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20051102

    Opponent name: ALCOA INC.

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20051102

    Opponent name: ALCOA INC.

    Effective date: 20051102

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ALCAN RHENALU

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    RDAD Information modified related to despatch of communication that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSCREV1

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: ALCOA INC.

    Effective date: 20051102

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20051102

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090202

    Year of fee payment: 9

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081229

    Year of fee payment: 9

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081217

    Year of fee payment: 9

    27W Patent revoked

    Effective date: 20090604

    GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

    Effective date: 20090604