EP1544315B1 - Produit corroyé sous forme de tôle laminée et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg - Google Patents

Produit corroyé sous forme de tôle laminée et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg Download PDF

Info

Publication number
EP1544315B1
EP1544315B1 EP04356196A EP04356196A EP1544315B1 EP 1544315 B1 EP1544315 B1 EP 1544315B1 EP 04356196 A EP04356196 A EP 04356196A EP 04356196 A EP04356196 A EP 04356196A EP 1544315 B1 EP1544315 B1 EP 1544315B1
Authority
EP
European Patent Office
Prior art keywords
mpa
alloy
anyone
product according
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04356196A
Other languages
German (de)
English (en)
Other versions
EP1544315A1 (fr
Inventor
Bernard Bes
David Dumont
Jean-Christophe Ehrstrom
Timothy Warner
Vic Dangerfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Constellium Rolled Products Ravenswood LLC
Original Assignee
Constellium France SAS
Constellium Rolled Products Ravenswood LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium France SAS, Constellium Rolled Products Ravenswood LLC filed Critical Constellium France SAS
Publication of EP1544315A1 publication Critical patent/EP1544315A1/fr
Application granted granted Critical
Publication of EP1544315B1 publication Critical patent/EP1544315B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the invention relates to Al-Zn-Cu-Mg alloy rolled products treated by dissolving, quenching, cold working and tempering, and in particular structural elements made from such products and intended for the construction of aircraft. .
  • 7xxx alloys are used for the structural elements (except for the undersides) of the wing.
  • the patent application WO 02/052053 discloses three Al-Zn-Cu-Mg type alloys of composition (a) Zn 7.3 + Cu 1.6; (b) Zn 6.7 + Cu 1.9; (c) Zn 7.4 + Cu 1.9; each of these three alloys also containing Mg 1.5 + Zr 0.11. It also describes thermomechanical treatment processes suitable for the manufacture of structural elements for aircraft.
  • Also known alloy 7040 whose standardized chemical composition is: Zn 5.7 - 6.7 Mg 1.7 - 2.4 Cu 1,5 - 2,3 Zr 0.05 - 0.12 If ⁇ 0.10 Fe ⁇ 0.13 Ti ⁇ 0.06 Mn ⁇ 0.04 other elements ⁇ 0.05 each and ⁇ 0.15 in total.
  • Alloy 7475 is also known whose standardized chemical composition is: Zn 5.2 - 6.2 Mg 1.9-2.6 Cu 1.2-1.9 Cr 0.18-0.25 If ⁇ 0.10 Fe ⁇ 0.12 Ti ⁇ 0.06 Mn ⁇ 0.06 other elements ⁇ 0.05 each and ⁇ 0.15 in total.
  • alloys of the 2xxx series for example alloy 2324 are commonly used.
  • the alloys conventionally used for the fuselage structure elements belong to the 2xxx series, for example the alloy 2024.
  • the object of the present invention is to obtain elements of aircraft structure, and in particular fuselage elements, made of Al-Zn-Cu-Mg alloy, having, compared to the prior art, improved mechanical strength, for comparable damage tolerance and sufficient formability.
  • the subject of the invention is a wrought product as defined in claim 1.
  • the subject of the invention is also a structural element for aircraft construction, in particular an aircraft fuselage element, or an aircraft wing-bottom element, or an integral aircraft structural element, manufactured from a wrought product, and especially from such a rolled or spun product.
  • the static mechanical characteristics ie the ultimate tensile strength R m , the yield strength R p0,2 and the elongation at break A, are determined by a tensile test according to the standard EN 10002-1, the location and direction of specimen collection being defined in EN 485-1.
  • the fatigue strength is determined by a test according to ASTM E 466, and the fatigue crack growth rate (so-called da / dn test) according to ASTM E 647.
  • the curve R is determined according to ASTM standard E 561. From the curve R, the critical stress intensity factor K c is calculated, ie the intensity factor which causes the instability of the crack. .
  • the stress intensity factor K CO is also calculated by assigning to the critical load the initial length of the crack at the beginning of the monotonic loading. These two values are calculated for a specimen of the desired shape. K app means the Kco corresponding to the test piece used for the R curve test.
  • the size of the crack at the end of the fatigue pre-cracking step is W / 4 for the test pieces of the type M (T), and W / 2 for CT type specimens, where W is the specimen width as defined in ASTM E 561.
  • spun product includes so-called “stretched” products, i.e., products that are made by spinning followed by stretching.
  • structural element or “structural element” of a mechanical construction a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • integral structure refers to the structure of a portion of an aircraft that has been designed to provide as much continuity as possible over as large a dimension as possible to reduce the number of assembly points mechanical.
  • An integral structure can be manufactured either by machining in the mass, or by using shaped parts obtained for example by spinning, forging or molding, or by welding structural elements made of weldable alloys. This results in structure elements of larger size and in one piece, without mechanical assembly or with a reduced number of mechanical assembly points compared to an assembled structure in which sheets, thin or strong depending on the destination of the structural element (for example: fuselage element or wing element), are fixed, usually by riveting, on stiffeners and / or frames (which can be manufactured by machining from spun or rolled products).
  • the present invention applies to an aluminum alloy containing between 6.7% and 7.3% zinc.
  • the zinc content must be high enough to ensure good mechanical properties, but if it is too high, the sensitivity of the alloy to the quenching increases, which risks, in particular for thick products, to degrade the compromise properties referred.
  • the product is a strong sheet with a thickness greater than 20 mm.
  • the chemical composition of the Al-Zn-Cu-Mg alloy has been chosen so that the Mg / Cu ratio of the alloy which is the subject of the invention is less than 1. Preferably, this ratio is maintained at a value less than 0.9. A value of less than 0.85 or even about 0.8 is preferred.
  • the Applicant has found that a zirconium content of between 0.07 and 0.12% gives access for this composition to Al-Zn-Cu-Mg major elements, to a better compromise between R p0.2 , toughness ( at ambient or cold temperature) and fatigue resistance (in particular speed of propagation of fatigue cracks). Above 0.12%, there is a significant risk of forming Al 3 Zr type primary phases, unless the cooling is sufficiently rapid; in the case of semi-continuous casting, such a sufficient speed can be achieved, especially when casting billets.
  • the Zr content must be less than 0.12%, and the best results have been obtained with a content of between 0.07 and 0.09%.
  • the silicon and iron contents must be maintained each below 0.15%, and preferably below 0.10%, to have good toughness.
  • the iron content does not exceed 0.07%, and the silicon content does not exceed 0.06%.
  • the alloy according to the invention can be cast according to one of the techniques known to those skilled in the art to obtain a raw form, such as a rolling plate.
  • This raw form optionally after scalping, is then homogenized, typically for a period of 15 to 16 hours at a temperature between 470 and 485 ° C.
  • the raw form is then hot processed to form hot-rolled sheets.
  • the hot rolling of thick products according to the invention can be carried out at a temperature of about 350 ° C, much lower than that traditionally practiced for this type of product (which is about 415 to 440 ° C), without affecting the compromise of properties required for thick products used in aircraft structures.
  • the hot transformation can optionally be followed by a cold transformation. It is also possible to carry out one or more cold rolling passes.
  • This dissolution can be done in any suitable oven, such as air oven (horizontal or vertical), or salt bath oven. This dissolution is carried out at a temperature between 470 and 480 ° C, and preferably between 475 and 480 ° C for a period of at least 4 hours.
  • the products are quenched, preferably in a liquid medium such as water, said liquid preferably having a temperature not exceeding 40 ° C.
  • the products are then generally subjected to controlled traction with a permanent elongation of the order of 1 to 5%, and preferably 1.5 to 3%.
  • the products are subjected to a treatment of income, which influences in a big way on the final properties of the product.
  • income which influences in a big way on the final properties of the product.
  • the product according to the invention leads to new products which have particularly interesting characteristics for aeronautical construction.
  • These products are in the form of sheets, including fuselage sheets, thick sheets for intrados or integral structures.
  • K app LT
  • the value of K app (LT) is stable, or even higher, cold compared to its temperature value. room. More specifically, this value is slightly increased from room temperature when measured at -54 ° C. This is particularly interesting since -54 ° C is about the typical temperature reached by the structural elements during the flight of a civilian jet aircraft.
  • the products according to the invention advantageously replace the alloy structure elements known in alloys 2x24, for example alloy 2024 or 2324.
  • alloys 2x24 for example alloy 2024 or 2324.
  • laminated products with a thickness greater than about 40 mm can be used for the fabrication of structural elements by integral machining, as described below.
  • Rolled products with a thickness greater than about 60 mm can be used for the manufacture of stiffeners or frames, especially for high capacity aircraft.
  • the products according to the invention can be plated on at least one face according to the methods and with the alloys usually used for plating the products of Al-Zn-Cu-Mg type alloys. This is particularly interesting for the plates used for the manufacture of aircraft fuselage elements, which must resist corrosion.
  • a useable plating alloy is 7072.
  • a particularly advantageous use of the products according to the invention is related to the concept of the integral structure in aeronautical construction.
  • a large part of the aircraft structures are dimensioned according to a compromise between the damage tolerance and the resistance to static loads.
  • the requirements of tolerance to damage are specified for example in the article "Damage Tolerance Certification of Commercial Aircraft” by T. Swift, ASM Handbook vol. 19 (1996), pp 566-576 .
  • Sizing under static loadings is explained for example in the book “Airframe Stress Analysis and Sizing” by Niu, Hong Kong Conmilit Press Ltd, 1999, in particular pages 607-654 . From the point of view of the material, it is known that, generally, the damage tolerance of the 7xxx series alloys, and in particular their toughness, decreases when their yield strength increases.
  • the damage tolerance is the sizing parameter for a part essentially stressed in compression and vice versa.
  • a toughness gain of x% to constant yield strength as with the alloy according to the invention can result in a weight gain of the same level, or even higher if the fact of allowing a higher load on the part in question also allows the lightening of other components.
  • a yield strength gain of x%, with a constant damage tolerance can result in a weight gain of the order of x / 3% to x%.
  • x is typically between 15 and 30%.
  • the continuity between the stiffeners and the skin means that the damage tolerance becomes more critical than in a component assembled by riveting. Indeed, given stress, the stress intensity factor increases sharply when the stiffener is crossed by a crack, since it must be admitted that this stiffener will necessarily be cracked.
  • the present inventors have found that products with high tenacity, for a given elastic limit, are particularly well suited to the manufacture of integral structures.
  • fuselage barge panels or wing covers are manufactured by integral machining of products according to one of the preceding embodiments, given that said products, and in particular the plates for machining advantageously have a thickness of at least 40 mm; this value also depends on the type of aircraft, and especially its size.
  • the product according to the invention with a yield strength R p0.2 (L) at half thickness of at least 540 MPa and a K app toughness (LT) measured on a specimen of type M (T).
  • the Applicant has found that refining the grain at a reduced level compared to the usual practice during casting provides a compromise of properties, including a level of tenacity, particularly interesting.
  • a TiC refining agent for example adding A13% Ti0.15% C thread
  • the solidification germ obtained with this approach having a different germination-growth compromise germs obtained by refining for example with A15% Ti1% B (ie a seed type TiB 2 ).
  • the level of this refining can be quantified by the amount of C added, since it corresponds indirectly to the amount of added solidification nuclei, as well as by the amount of free Ti (not combined with C) in the alloy.
  • the stoichiometry of the seed is not definitively quantified, it can be considered that the seed is composed of TiC, each C atom combining with a Ti atom to form said seeds.
  • Al - x% Ti - y% C affinants There are different types of Al - x% Ti - y% C affinants, usually Ti being added in excess of C.
  • the amount of sprouts added is proportional to the amount of refining (in kilograms) added per ton. of liquid metal multiplied by y%, that is to say proportional to A (number of kilograms of affine added per tonne of metal) xy%.
  • the addition of seeds can thus be quantified by specifying 3 g / t of added C (2 ⁇ 0, 0015 kg / t).
  • a refining agent containing titanium and carbon is thus added, so that the amount of carbon added is between 0.4 and 3 g / t of carbon, preferentially between 0, 6 and 2 g / t, and so that the total content of Ti in the final product is between 50 and 500 ppm (by weight), preferably between 150 and 300 ppm.
  • N-alloy was developed whose chemical composition corresponds to that of a product according to the invention.
  • the liquid metal was first treated in a gas injection holding furnace using an Irma® type rotor, and then in a pocket type Alpur ®, these two brands belonging to the plaintiff.
  • the refining was done online, ie in the channel between the holding oven and the Alpur ® bag, at a rate of 1.1 kg / ton of Al-3% Ti-0.15 yarn. % C (diameter 9.5 mm).
  • An industrial-sized plate was cast. It was relaxed for 10 hours at 350 ° C.
  • the product thus cast was homogenized after scalping for 15 hours at a temperature of between 471 ° C and 482 ° C (880 ° F to 900 ° F), and then hot rolled to a thickness of 5 mm (0. 2 inches) (thickness outside the invention).
  • the start-up temperature was 450 ° C (840 ° F)
  • the end-of-rolling temperature was 349 ° C (660 ° F).
  • Sheets of width 178 mm (7 inches) and length 508 mm (20 inches) were taken. These coupons were dissolved in a salt bath oven for 1 hour at 472 ° C, then quenched with water, and triturated until a permanent deformation of 2%.
  • the coupons thus obtained then underwent a two-stage artificial aging treatment, the first bearing being 6 hours at 105 ° C., the second bearing being 18 hours at 155 ° C., in order to reach the peak of mechanical properties.
  • the alloy was cast by treating the liquid metal first in a gas injection holding furnace using an Irma ® type rotor, and then in an Alpur ® type pouch.
  • the refining was done online, that is to say in the channel between the holding furnace and the Alpur ® pocket, at a rate of 0.7 kg / tonne of AT5B wire (diameter 9.5 mm).
  • the plates were relaxed for 10h at 350 ° C. These plates were homogenized for 12 hours at 500 ° C. and then hot rolled (end of rolling temperature between 230 and 255 ° C.) to a thickness of 6 mm (thickness outside the invention).
  • a solution bath treatment was then carried out in a salt bath oven for 1 hour at 500 ° C on 600 mm by 200 mm coupons. This operation was followed by quenching with cold water at about 20 ° C. and pulling until a permanent deformation of 2% (state T351).
  • 7xxx alloy plates according to the prior art were also cast (reference G) in the same foundry device as the 2xxx alloy sheets described above.
  • a plate was obtained which was then homogenized for 24 hours at 470 ° C and then 24 hours at 495 ° C and then hot rolled (rolling end temperature between 230 and 255 ° C) to a thickness of 6. mm (thickness outside the invention).
  • a solution treatment of 1 hour at 450 ° C. in a salt bath oven was then carried out on a coupon of 600 mm by 200 mm. This operation was followed by quenching with water and traction to obtain a permanent deformation of 2%.
  • the coupon was then subjected to an artificial aging treatment of 5 hours at 100 ° C. and then 6 hours at 155 ° C., in order to reach the peak of mechanical properties (state T6).
  • An AA7475 alloy plate was also cast (reference H) according to the conventional methods of the prior art.
  • the plate thus obtained was homogenized for 9 hours at 480.degree. C. and then co-laminated at a temperature of about 270.degree. C., with a 7072 sheet, until a thickness of plated plate 4.5 was obtained. mm (thickness outside the invention).
  • the 7072 plating was about 2% of the final thickness.
  • the product thus obtained was dissolved in a salt bath oven for 45 minutes at 478 ° C, then quenched with water at a temperature of about 20 ° C, and then it was pulled to obtain a deformation permanent 2%. He then suffered a double-stage income operation for 4 hours at 120 ° C, then 24 hours at 162 ° C (condition T76).
  • Table 1 Chemical Composition Alloy Yes Fe Cu mn mg Zn Zr Cr NOT 0.05 0.06 2.05 - 1.64 7.08 0.08 - Y 0.04 0.05 2.16 - 1.80 6.76 0.09 - E (2024A) ⁇ 0.06 0.06 4.12 0.4 1.37 - - - BOY WUT 0.05 0.08 1.47 - 1.56 4.27 0.11 - H (7475) 0.03 0.06 1.5 - 2.22 5.73 - 0.21 Plating (7072) 0.15 0.35 ⁇ 0.02 ⁇ 0.05 ⁇ 0.10 1.05 ⁇ 0.03 ⁇ 0.03
  • the tensile strength R m (in MPa), the conventional yield stress at 0.2% elongation R p0.2 (in MPa) and the elongation at break A (in%) were measured by a tensile test according to EN 10002-1.
  • Table 2 Static mechanical characteristics sheet metal Thickness [mm] Meaning L TL direction R m [MPa] R p0.2 [MPa] AT [%] R m [MPa] R p0.2 [MPa] AT [%] NOT 5.08 539 508 13.9 541 495 13.9 Y 6 557 530 13.9 555 519 13.6 E 6.35 482 365 22.8 466 319 23.5 BOY WUT 6.35 435 373 15.1 436 366 14.8 H 4.6 475 414 13.3 484 414 12.5
  • the sheet whose composition corresponds to that of a product according to the invention has in both directions measured a breaking strength and a yield strength much higher than those of 2xxx alloy sheets.
  • the elongation of the sheet whose composition corresponds to that of a product according to the invention is lower than that of the sheet E, but sufficient compared to the intended applications.
  • the alloy whose composition corresponds to that of a product according to the invention has in both directions measured a significantly improved resistance to fracture and yield strength. , for comparable lengthening.
  • the sheet whose composition corresponds to that of a product according to the invention has a Kapp much greater than the alloy sheets 7xxx of the prior art, and of the same order of magnitude as 2xxx alloy sheets.
  • Fatigue behavior according to ASTM E 647 was also tested by measuring the crack growth rate in sheet N in comparison with sheets E, F and G.
  • the test pieces used were of type C (T), with W 76.2 mm (3 inches).
  • the comparative results are shown in Table 4.
  • the sheet Y had a thickness of 6 mm.
  • the sheet whose composition corresponds to that of a product according to the invention behaves at least as well in fatigue as the sheets according to the prior art.
  • a 3.2 mm thick Y sheet had da / dN (10) TL of 1.7 10 -4 mm / cycles, da / dN (30) TL of 10 -4 mm / cycles, and ⁇ K at 100 ⁇ inch. / cycle of 28.3 MPa ⁇ m.
  • An alloy M was prepared whose chemical composition was in accordance with that of a product according to the invention.
  • an alloy plate 2324 according to the prior art (reference I) was developed according to a conventional casting process.
  • the chemical compositions of alloys M and I measured on a spectrometric counter taken from the casting channel, are collated in the table: Table 5: Chemical Composition Alloy Yes Fe Cu mn mg Zn Zr M 0.05 0.06 2.05 - 1.64 7.08 0.08 I (AA2324) ⁇ 0.10 ⁇ 0.12 3.8-4.4 0.3-0.9 1.2-1.8 ⁇ 0.20 ⁇ 0.05
  • the M alloy plates were homogenized for 15 hours at 479 ° C, then slowly cooled to 420-440 ° C and rolled to a thickness of 25.4 mm.
  • the output temperature of the hot rolling mill was 354 ° C, which is significantly lower than that usually used for this type of product.
  • the sheets thus obtained were then subjected to solution treatment at 479 ° C. for 4 hours (total time, about 1/3 of which was spent at the temperature rise), then quenched, and triturated so that the permanent deformation resulting therefrom that is 2%.
  • the sheets were then artificially treated for 8 hours at 160 ° C.
  • the alloy 1 (AA2324) was subjected to a conventional range until an alloy sheet AA 2324, thickness 25.4 mm in the T39 state, that is to say a homogenization step, was obtained. hot rolling, followed by dissolution and quenching, followed by cold working by about 9%, and controlled pulling to obtain a permanent deformation of between 1.5 and 3 %.
  • Table 6 Static mechanical characteristics sheet metal Thickness [mm] Meaning L R m [MPa] R p0.2 [MPa] AT [%] M 25.4 570 540 12.3 I 25.4 490 470 14
  • the tensile strength and yield strength of the sheet according to the invention are substantially higher than those of the sheet I generally used for these applications, and for quite comparable elongations.
  • the alloy whose composition corresponds to that of a product according to the invention has under all conditions a toughness better than the conventional alloy 1. Moreover, and surprisingly, the alloy whose composition corresponds to that of a product according to the invention has a Kapp (LT) at -54 ° C which is of the same order as at room temperature.
  • Table 8 Fatigue Results sheet metal Number of cycles (Log average over 5 tests) Notched test tube Number of cycles (Log average over 5 tests) Double-hole test tube M 299213 330737 I 181402 337730
  • the fatigue behavior according to ASTM E 647 was also tested by measuring the crack growth rate in sheet M compared to sheet I.
  • the test pieces used were of type C (T), with B equal to 9 , 52 mm (0.375 inches), and W equal to 101.6 mm (4 inches).
  • the exfoliating corrosion behavior of the plates of this test was evaluated according to the ASTM G34 standard; this test was made at the surface, and at mid-thickness, under the conditions adapted to the alloys 7xxx for the sheet metal M according to the invention, and under the conditions adapted to the alloys 2xxx for the sheet I.
  • the sample M according to the The invention has been classified EA, both at the surface and at mid-thickness, while the sample I according to the prior art has been classified EA at the surface, and EB at mid-thickness.
  • the sheet according to the invention is therefore at least as powerful, if not more efficient, in resistance to exfoliating corrosion, than the sheet according to the prior art.
  • the sheet M is better for each of the following physical parameters: static mechanical characteristics, K app , fatigue resistance, crack propagation speed.
  • a P alloy similar to the M alloy of Example 2 was produced. From this alloy, using a manufacturing range similar to that of Example 2, hot-rolled plates (FIG. inlet temperature: 420 - 440 ° C) with a thickness of 75 mm.
  • Table 10 summarizes the mechanical characteristics obtained: Table 10: Process R p0.2 (L) [MPa] R m (L) [MPa] A (L) [%] K IC (LT) [MPa ⁇ m] K app (LT) [MPa ⁇ m] AT 542 561 9.7 30.1 57.1 B 525 549 10.2 32.8 63.2 VS 507 537 11.3 34.6 72.5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

    Domaine de l'invention
  • L'invention concerne des produits laminés en alliage Al-Zn-Cu-Mg traités par mise en solution, trempe, écrouissage à froid et revenu, et notamment des éléments de structure élaborés à partir de tels produits et destinés à la construction d'aéronefs.
  • Etat de la technique
  • On sait que lors de la fabrication de demi-produits et éléments structuraux pour construction aéronautique, les diverses propriétés recherchées ne peuvent pas être optimisées toutes en même temps et les unes indépendamment des autres. Lorsque l'on modifie la composition chimique de l'alliage ou les paramètres des procédés d'élaboration des produits, plusieurs propriétés critiques peuvent même montrer des tendances antagonistes. Tel est parfois le cas des propriétés rassemblées sous le terme « résistance mécanique statique » (notamment la résistance à la rupture Rm et la limite d'élasticité Rp0.2) d'une part, et des propriétés rassemblées sous le terme « tolérance aux dommages » (notamment la ténacité et la résistance à la propagation des fissures) d'autre part. Certaines propriétés d'usage comme la résistance à la fatigue, la résistance à la corrosion, l'aptitude à la mise en forme et l'allongement à rupture sont liées d'une façon compliquée et souvent imprévisible aux propriétés (ou « caractéristiques ») mécaniques. L'optimisation de l'ensemble des propriétés d'un matériau pour construction aéronautique fait donc très souvent intervenir un compromis entre plusieurs paramètres-clé.
  • Typiquement, on utilise pour les éléments de structure (sauf pour les intrados) de voilure des alliages de type 7xxx.
  • Le brevet US 5 865 911 (Aluminum Company of America) divulgue un alliage de type Al-Zn-Cu-Mg de composition

            Zn 5,9 - 6,7 , Mg 1,6 - 1,86 , Cu 1,8 - 2,4 , Zr 0,08 - 0,15

       pour la fabrication d'éléments de structure pour avions. Ces éléments de structure sont optimisés pour montrer une forte résistance mécanique, ténacité et résistance à la fatigue.
  • La demande de brevet WO 02/052053 décrit trois alliages de type Al-Zn-Cu-Mg de composition (a) Zn 7,3 + Cu 1,6 ; (b) Zn 6,7 + Cu 1,9 ; (c) Zn 7,4 + Cu 1,9 ; chacun de ces trois alliages contenant également Mg 1,5 + Zr 0,11 . Elle décrit également des procédés de traitement thermomécanique appropriés pour la fabrication d'éléments de structure pour avions.
  • On connaît par ailleurs l'alliage 7040 dont la composition chimique normalisée est :
    Zn 5,7 - 6,7 Mg 1,7 - 2,4 Cu 1,5 - 2,3 Zr 0,05 - 0,12
    Si ≤ 0,10 Fe ≤ 0,13 Ti ≤ 0,06 Mn ≤ 0,04
        autres éléments ≤ 0,05 chaque et ≤ 0,15 au total.
  • On connaît également l'alliage 7475 dont la composition chimique normalisée est :
    Zn 5,2 - 6,2 Mg 1,9-2,6 Cu 1,2-1,9 Cr 0,18-0,25
    Si ≤ 0,10 Fe ≤ 0,12 Ti ≤ 0,06 Mn ≤ 0,06
        autres éléments ≤ 0,05 chaque et ≤ 0,15 au total.
  • Pour certains éléments de structure entrant dans la construction des ailes des avions civils, tels que les intrados d'ailes, on utilise couramment des alliages de la série 2xxx, par exemple l'alliage 2324.
  • Les alliages classiquement utilisés pour les éléments de structure de fuselage appartiennent à la série 2xxx, par exemple l'alliage 2024.
  • La présente invention a pour but d'obtenir des éléments de structure d'avion, et notamment des éléments de fuselage, en alliage Al-Zn-Cu-Mg, présentant, par rapport à l'art antérieur, une résistance mécanique améliorée, pour une tolérance aux dommages comparable, et une formabilité suffisante.
  • Elle a aussi pour but d'obtenir des éléments de structure d'avion, et notamment des éléments pour intrados d'ailes d'avion ou pour l'usinage de structures intégrales, en alliage Al-Zn-Cu-Mg, présentant, par rapport à l'art antérieur, un compromis amélioré entre les propriétés de résistance mécanique, de ténacité, et de résistance à la fatigue.
  • Objet de l'invention
  • L'invention a pour objet un produit corroyé tel que défini à la revendication 1.
  • L'invention a également pour objet un élément de structure pour construction aéronautique, notamment un élément de fuselage d'aéronef, ou un élément d'intrados d'aile pour aéronef, ou encore un élément de structure intégrale pour aéronef, fabriqué à partir d'un produit corroyé, et notamment à partir d'un tel produit laminé ou filé.
  • Description de l'invention a) Définitions
  • Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. Lorsque la teneur d'un élément est donnée en ppm (parts per million), cela se réfère à teneur massique et non pas atomique. La désignation des alliages suit les règles de THE ALUMINUM ASSOCIATION, connues de l'homme du métier. Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2 et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans la norme EN 485-1. La résistance à la fatigue est déterminée par un essai selon ASTM E 466, et la vitesse de propagation de fissures en fatigue (essai dit da/dn) selon ASTM E 647.
  • La courbe R est déterminée selon la norme ASTM E 561. A partir de la courbe R, on calcule le facteur d'intensité de contrainte critique Kc , c'est à dire le facteur d'intensité qui provoque l'instabilité de la fissure. On calcule également le facteur d'intensité de contrainte KCO, en affectant à la charge critique la longueur initiale de la fissure, au début du chargement monotone. Ces deux valeurs sont calculées pour une éprouvette de forme voulue. Kapp désigne le Kco correspondant à l'éprouvette ayant servi à faire le test de courbe R. Sauf mention contraire, la taille de la fissure à la fin de l'étape de préfissuration par fatigue est de W/4 pour les éprouvettes de type M(T), et de W/2 pour les éprouvettes de type CT, où W est la largeur d'éprouvette telle que définie dans la norme ASTM E 561.
  • Le terme « produit filé » inclut les produits dits « étirés », c'est-à-dire des produits qui sont élaborés par filage suivi d'un étirage.
  • Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent.
  • On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.
  • On appelle ici « structure intégrale » la structure d'une partie d'un avion qui a été conçue de manière à assurer autant que possible la continuité de la matière sur une dimension aussi grande que possible afin de réduire le nombre de points d'assemblage mécaniques. Une structure intégrale peut être fabriquée soit par usinage dans la masse, soit par utilisation de pièces de forme obtenues par exemple par filage, forgeage ou moulage, soit encore par soudage d'éléments de structure réalisés en alliages soudables. On obtient ainsi des éléments de structure de taille plus importante et en une seule pièce, sans assemblage mécanique ou avec un nombre de points d'assemblage mécanique réduit comparé à une structure assemblée dans laquelle des tôles, minces ou fortes selon la destination de l'élément de structure (par exemple : élément de fuselage ou élément de voilure), sont fixées, le plus souvent par rivetage, sur des raidisseurs et / ou cadres (qui peuvent être fabriqués par usinage à partir de produits filés ou laminés).
  • b) Description détaillée de l'invention
  • La présente invention s'applique à un alliage d'aluminium contenant entre 6,7 % et 7,3 % de zinc. La teneur en zinc doit être suffisamment élevée pour assurer de bonnes propriétés mécaniques, mais si elle est trop élevée, la sensibilité de l'alliage à la trempe augmente, ce qui risque, en particulier pour les produits épais, de dégrader le compromis des propriétés visées. Le produit est une tôle forte d'épaisseur supérieure à 20 mm.
  • La composition chimique de l'alliage Al-Zn-Cu-Mg a été choisie de manière à ce que le rapport Mg/Cu de l'alliage objet de l'invention est inférieur à 1. De manière préférée, ce rapport est maintenu à une valeur inférieure à 0,9. Une valeur inférieure à 0,85, voire même d'environ 0,8 est préférée.
  • Le meilleur compromis a été trouvé lorsque le cuivre est maintenu à des teneurs comprises entre 2,0 et 2,3 %, tandis que le magnésium est fixé à des teneurs comprises entre 1,5 et 1,8%.
  • La demanderesse a constaté qu'une teneur en zirconium comprise entre 0,07 et 0,12 % permettait d'accéder pour cette composition en éléments majeurs Al-Zn-Cu-Mg, à un meilleur compromis entre Rp0.2, ténacité (à température ambiante ou à froid) et résistance à la fatigue (notamment vitesse de propagation de fissures en fatigue). Au-dessus de 0,12%, on observe un risque significatif de former des phases primaires de type Al3Zr, sauf si le refroidissement est suffisamment rapide ; dans le cas de la coulée semi-continue, une telle vitesse suffisante peut être atteinte notamment lorsque l'on coule des billettes.
  • Pour les produits laminés, la teneur en Zr doit être inférieure à 0,12 %, et les meilleurs résultats ont été obtenus avec une teneur comprise entre 0,07 et 0,09 %.
  • En tous les cas, les teneurs en silicium et en fer doivent être maintenues chacune en-dessous de 0,15%, et de préférence en-dessous de 0,10%, pour avoir une bonne ténacité. Dans une réalisation particulièrement préférée de l'invention, la teneur en fer ne dépasse pas 0,07%, et la teneur en silicium ne dépasse pas 0,06%.
  • L'alliage selon l'invention peut être coulé selon l'une des techniques connues de l'homme du métier pour obtenir une forme brute, tel qu'une plaque de laminage. Cette forme brute, éventuellement après scalpage, est ensuite homogénéisée, typiquement pendant une durée de 15 à 16 heures à une température comprise entre 470 et 485°C.
  • La forme brute est ensuite transformée à chaud pour former des tôles laminées à chaud. Dans une réalisation préférée de l'invention, la demanderesse a constaté que, de manière surprenante, le laminage à chaud de produits épais selon l'invention pouvait se réaliser à une température d'environ 350°C, très inférieure à celle traditionnellement pratiquée pour ce type de produit (qui est d'environ 415 à 440°C), sans affecter le compromis de propriétés requis pour des produits épais utilisés dans des structures d'aéronefs.
  • La transformation à chaud peut éventuellement être suivie d'une transformation à froid. On peut aussi procéder à une ou plusieurs passes de laminage à froid.
  • Les produits obtenus sont ensuite mis en solution. Cette mise en solution peut se faire dans tout four approprié, tels que four à air (horizontal ou vertical), ou four à bain de sels. Cette mise en solution est réalisée à une température comprise entre 470 et 480 °C, et préférentiellement entre 475 et 480°C pendant une durée d'au moins 4 heures.
  • Ensuite les produits sont trempés, de préférence dans un milieu liquide tel que l'eau, ledit liquide ayant préférentiellement une température ne dépassant pas 40°C.
  • Les produits sont ensuite généralement soumis à une traction contrôlée avec un allongement permanent de l'ordre de 1 à 5%, et préférentiellement de 1,5 à 3%.
  • Enfin les produits sont soumis à un traitement de revenu, qui influe de manière importante sur les propriétés finales du produit. Suivant le compromis souhaité, on peut préférer un revenu bi-palier ou un revenu mono-palier.
  • Le produit selon l'invention conduit à des produits nouveaux qui ont des caractéristiques particulièrement intéressantes pour la construction aéronautique. Ces produits se présentent sous forme de tôles, notamment tôles de fuselage, tôles épaisses pour intrados ou pour structures intégrales.
  • Selon l'invention, on prépare une tôle avec une épaisseur supérieure à 20 mm présentant les caractéristiquessuivantes:
    1. (a) Rm(L) > 540 MPa ;
    2. (b) Rp0.2(L) > 535 MPa ;
    3. (c) Kapp(L-T) > 100 MPa√m (mesurée à la température ambiante sur éprouvette C(T) avec W=127 mm et B = 7,6 mm) ;
    4. (d) ΔK à une vitesse de propagation de fissure de 2,54 µm / cycle > 28 MPa√m ; et
    5. (e) KIC(L-T) > 28 MPa√m.
  • Un autre avantage important du produit selon l'invention est le fait que, de manière surprenante, la valeur de Kapp(L-T) , comme déterminée ci-dessus, est stable, voire plus haute, à froid par rapport à sa valeur à température ambiante. Plus précisément, cette valeur est légèrement augmentée par rapport à ce qu'elle est à température ambiante, lorsqu'on l'évalue à -54°C. Ceci est particulièrement intéressant, puisque -54°C est environ la température typique atteinte par les éléments de structure lors du vol d'un avion civil à réaction. Or, on sait que dans certains alliages de la série 7xxx, la ténacité décroît avec la température. A titre d'exemple, il a été décrit que des tôles en 7475 T7651 montrent une baisse de 25 % de la ténacité (déterminée à partir de courbes R sur des panneaux d'épaisseur B = 6 mm au sens L-T) entre environ 20°C et environ -50°C (voir P.R. Abelkis et al., Proceedings of « Fatigue at Low Températures », Louisville, Kentucky, 10 mai 1983, pages 257 - 273 (éditeur ASTM)). Dans les mêmes conditions, des tôles fortes en 7050 T7451 montrent une baisse de KIC ou Kq au sens L-T ou T-L d'au moins 5% (voir W.F. Brown et al., Aerospace Materials Handbook, published by CINDAS (USAF CRDA Handbook Opération, Purdue University, 1997). La demanderesse a constaté une baisse de KIC également pour des tôles fortes en AA7075 T7351, AA7475 T 7351, AA7475 T7651, et AA7475 sous-revenu ; cette baisse est de l'ordre de 2 % à 10 %. Alors qu'il est connu que les caractéristiques mécaniques statiques Rp0.2 et Rm des alliages de la série 7xxx tendent à augmenter lorsque la température baisse d'environ 20°C à environ -50°C, ce qui assure une sécurité complémentaire de la structure à cette température, la baisse de la ténacité des alliages de la série 7xxx selon l'état de la technique doit être prise en compte lors du dimensionnement des éléments de structure. Le produit selon l'invention ne montre pas de baisse significative (c'est-à-dire supérieure à 2 %) de la ténacité à basse température, et dans certains cas, il montre même une légère augmentation de la ténacité à basse température.
  • En tant qu'éléments de structure pour intrados d'ailes d'avions, les produits selon l'invention remplacent avantageusement les éléments de structure en alliage connus en alliages 2x24, par exemple en alliage 2024 ou 2324. A titre d'exemple, des produits laminés d'une épaisseur supérieure à environ 40 mm peuvent servir pour la fabrication d'éléments de structure par usinage intégral, comme décrit ci-dessous. Des produits laminés d'une épaisseur supérieure à environ 60 mm peuvent servir pour la fabrication de raidisseurs ou cadres, notamment pour des avions de grande capacité.
  • Les produits selon l'invention peuvent être plaqués sur au moins une face selon les méthodes et avec les alliages habituellement utilisés pour plaquer les produits en alliages de type Al-Zn-Cu-Mg. Cela est particulièrement intéressant pour les tôles utilisées pour la fabrication d'élément de fuselage d'avions, qui doivent résister à la corrosion. Un alliage de placage utilisable est le 7072.
  • Une utilisation particulièrement avantageuse des produits selon l'invention est liée au concept de la structure intégrale en construction aéronautique. Une grande partie des structures d'avions sont dimensionnées en fonction d'un compromis entre la tolérance au dommage et la résistance aux charges statiques. Les exigences de tolérance au dommage sont précisées par exemple dans l'article « Damage Tolerance Certification of Commercial Aircraft » de T. Swift, ASM Handbook vol. 19 (1996), pp 566 - 576. Le dimensionnement sous les chargements statiques est expliqué par exemple dans le livre « Airframe Stress Analysis and Sizing » de M. Niu, Hong Kong Conmilit Press Ltd, 1999, notamment pages 607 à 654. Du point de vue du matériau, il est connu que, généralement, la tolérance au dommage des alliages de la série 7xxx, et notamment leur ténacité, décroît lorsque leur limite d'élasticité augmente. Ce phénomène entraîne une spécialisation des alliages à haute tolérance au dommage - notamment les alliages de la série 2xxx - vers les pièces sollicitées très fortement en traction, sachant que la certification en tolérance nécessite d'admettre la présence de fissures et, à l'inverse, des alliages à haute limite d'élasticité - notamment les alliages de la série 7xxx, vers les pièces sollicitées très fortement en compression. En réalité, les pièces sollicitées très fortement en compression comme les extrados de voilure et les barques de fuselage subissent aussi des charges de traction qui, bien que moins fortes, nécessitent que le matériau ait une certaine tolérance au dommage. Réciproquement, des pièces comme les intrados de voilure ou les pavillons de fuselage, sollicitées très fortement en traction, ont besoin d'avoir une certaine résistance en compression. Ainsi, il arrive fréquemment que la tolérance au dommage soit le paramètre dimensionnant pour une pièce essentiellement sollicitée en compression et réciproquement. Alors, par exemple, un gain de ténacité de x% à limite d'élasticité constante comme avec l'alliage selon l'invention peut se traduire par un gain de poids du même niveau, voire supérieur si le fait d'autoriser une charge plus forte sur la pièce considérée autorise aussi l'allégement d'autres composants. De même, un gain de limite d'élasticité de x%, à tolérance au dommage constante, peut se traduire par un gain de poids de l'ordre de x/3 % à x %. Pour les produits selon l'invention, x est typiquement compris entre 15 et 30%.
  • Dans une structure intégrale, la continuité entre les raidisseurs et la peau fait que la tolérance au dommage devient plus critique que dans un composant assemblé par rivetage. En effet, à contrainte donnée, le facteur d'intensité de contrainte croît fortement lorsque le raidisseur est franchi par une fissure, puisqu'on doit admettre que ce raidisseur sera nécessairement fissuré. Les présents inventeurs ont trouvé que des produits à forte ténacité, pour une limite d'élasticité donnée, sont particulièrement bien adaptés à la fabrication de structures intégrales. Dans un mode de réalisation particulièrement avantageux de cet aspect de la présente invention, on fabrique des panneaux de barque de fuselage ou des revêtements de voilure par usinage intégral de produits selon l'un des modes de réalisations précédentes, sachant que lesdits produits, et notamment les tôles fortes, destinées à l'usinage ont avantageusement une épaisseur d'au moins 40 mm ; cette valeur dépend aussi du type d'avion, et notamment de sa taille. Selon les constatations des inventeurs, on peut ainsi réaliser un gain de poids qui est du même ordre grandeur que le gain en ténacité, soit environ 10%, par rapport à une structure intégrale réalisée dans un alliage de type AA7475 selon l'état de la technique. Plus précisément, le produit selon l'invention, avec une limite d'élasticité Rp0.2(L) à mi-épaisseur d'au moins 540 MPa et une ténacité Kapp(LT) mesurée sur un spécimen de type M(T) avec une largeur W de 16 pouces (environ 406 mm) d'au moins 140 MPa√m, permet de réaliser des éléments de structure pour construction aéronautique, tels qu'un élément de peau de voilure, avec un gain de poids d'au moins 10% par rapport à la même pièce, de même forme et taille, réalisée en alliage 7475 selon l'état de la technique et présentant typiquement un Rp0.2(L) à mi-épaisseur de 475 MPa, et un Kapp(LT) mesurée sur un spécimen de type M(T) avec une largeur W de 16 pouces (environ 406 mm) de 125 MPa√m.
  • La demanderesse a constaté qu'un affinage du grain à un niveau réduit par rapport à la pratique habituelle pendant la coulée permet d'obtenir un compromis de propriétés, et notamment un niveau de ténacité, particulièrement intéressant. L'utilisation d'un affinant au TiC (par exemple ajout d'un fil A13%Ti0.15%C) dans des doses contrôlées s'avère particulièrement bénéfique, le germe de solidification obtenu avec cette approche présentant un compromis germination - croissance différent des germes obtenus en affinant par exemple avec l'A15%Ti1%B (c'est à dire un germe de type TiB2). Le niveau de cet affinage peut être quantifié par la quantité de C ajouté, car il correspond indirectement à la quantité de germes de solidification ajoutée, ainsi que par la quantité de Ti libre (non combiné avec le C) dans l'alliage. Bien que la stoechiométrie du germe ne soit pas quantifiée de façon définitive, on peut considérer que le germe est composé de TiC, chaque atome de C se combinant avec un atome de Ti pour former lesdits germes.
  • Il existe différents type d'affinants Al - x%Ti - y%C, en général le Ti étant ajouté en excès par rapport au C. La quantité de germes ajoutés est proportionnelle à la quantité d'affinant (en kilogrammes) ajouté par tonne de métal liquide multipliée par y %, c'est-à-dire proportionnelle à A (nombre de kilogrammes d'affinant ajouté par tonne de métal) x y%.
  • A titre d'exemple, pour l'ajout de 2 kg/t d'Al-3%Ti0,15%C, l'ajout de germes peut ainsi être quantifié en spécifiant 3 g/t de C ajouté (2 x 0,0015 kg/t).
  • Il convient de noter qu'il y a d'autres manières que l'ajout d'Al-3%Ti-0,15%C pour arriver à l'ajout de la même quantité de germes, par exemple en ajoutant deux fois plus d'un affinant à concentration deux fois moindres de C.
  • Dans un mode de réalisation avantageux de la présente invention, on ajoute ainsi un affinant contenant du titane et du carbone, de manière à ce la quantité de carbone ajoutée se situe entre 0,4 et 3 g/t de carbone, préférentiellement entre 0,6 et 2 g/t, et de manière à ce que la teneur totale en Ti dans le produit final se situe entre 50 et 500 ppm (en poids), préférentiellement entre 150 et 300 ppm.
  • D'autres modes de réalisation avantageux sont décrits dans les revendications.
  • Dans les exemples qui suivent, on décrit à titre d'illustration des modes de réalisation avantageux de l'invention. Ces exemples n'ont pas de caractère limitatif.
  • Exemples Exemple 1 (hors invention)
  • On a élaboré un alliage N dont la composition chimique correspond à celle de'un produit selon l'invention. Le métal liquide a été traité d'abord dans un four de maintien par injection de gaz à l'aide d'un rotor de type Irma ®, et puis dans une poche de type Alpur ®, ces deux marques appartenant à la demanderesse. L'affinage a été fait en ligne, c'est-à-dire dans le chenal entre le four de maintien et la poche Alpur ®, à raison de 1,1 kg/tonne de fil Al-3%Ti-0,15%C (diamètre 9.5 mm). On a coulé une plaque de taille industrielle. Elle a été détendue pendant 10 h à 350°C .
  • Le produit ainsi coulé a été homogénéisé après scalpage pendant 15 heures à une température comprise entre 471°C et 482 °C (entre 880°F et 900 °F), puis laminé à chaud jusqu'à une épaisseur de 5 mm (0,2 inches) (épaisseur hors invention). La température de début de laminage était de 450°C (840°F), et la température de fin de laminage était de 349°C (660°F). Des tôles de largeur 178 mm (7 inches) et de longueur 508 mm (20 inches) ont été prélevées. Ces coupons ont été mises en solution dans un four à bain de sel pendant 1 heure à 472°C, puis trempées à l'eau, et tractionnées jusqu'à obtenir une déformation permanente de 2%. Les coupons ainsi obtenus ont ensuite subi un traitement de vieillissement artificiel bi-palier, le premier palier étant de 6 heures à 105°C, le deuxième palier étant de 18 heures à 155°C, afin d'atteindre le pic de propriétés mécaniques.
  • On a également élaboré, selon un procédé similaire, des tôles d'épaisseurs 6 mm (épaisseur hors invention) et 3,2 mm en alliage Y (épaisseur hors invention).
  • Des plaques en alliages de type 2xxx (références E et F, hors invention) ont également été élaborées selon le procédé suivant :
  • On a coulé l'alliage en traitant le métal liquide d'abord dans un four de maintien par injection de gaz à l'aide d'un rotor de type Irma ®, et puis dans une poche de type Alpur ®. L'affinage a été fait en ligne, c'est-à-dire dans le chenal entre le four de maintien et la poche Alpur ®, à raison de 0,7 kg/tonne de fil AT5B (diamètre 9.5 mm). Les plaques ont été détendues pendant 10h à 350°C. Ces plaques ont subi une homogénéisation pendant 12 heures à 500°C, puis un laminage à chaud (température de fin de laminage comprise entre 230 et 255°C) jusqu'à une épaisseur de 6 mm (épaisseur hors invention). On a ensuite effectué un traitement de mise en solution dans un four à bain de sel pendant 1 heure à 500°C sur des coupons de 600 mm sur 200 mm. Cette opération a été suivie d'une trempe à l'eau froide à environ 20°C et d'une traction jusqu'à obtenir une déformation permanente de 2% (état T351).
  • Des plaques en alliage 7xxx selon l'art antérieur ont été aussi coulées (référence G), dans le même dispositif de fonderie que les tôles en alliage 2xxx décrites précédemment. On a obtenu une plaque qui a ensuite été homogénéisée pendant 24 heures à 470°C puis 24 heures à 495°C, puis laminée à chaud (température de fin de laminage comprise entre 230 et 255°C) jusqu'à une épaisseur de 6 mm (épaisseur hors invention). Un traitement de mise en solution de 1 heure à 450° C dans un four à bain de sel a été ensuite effectué sur un coupon de 600 mm par 200 mm. Cette opération a été suivie d'une trempe à l'eau et d'une traction pour obtenir une déformation permanente de 2%. Le coupon a ensuite subi un traitement de vieillissement artificiel de 5 heures à 100°C puis 6 heures à 155°C, afin d'atteindre le pic de propriétés mécaniques (état T6).
  • Une plaque en alliage AA7475 a également été coulée (référence H) suivant les procédés classiques de l'art antérieur. La plaque ainsi obtenue a été homogénéisée pendant 9 heures à 480°C, puis co-laminée à chaud à une température d'environ 270°C, avec une tôle en 7072, jusqu'à obtenir une tôle plaquée d'épaisseur 4,5 mm (épaisseur hors invention). Le placage en 7072 correspondait à environ 2% de l'épaisseur finale. Le produit ainsi obtenu a été mis en solution dans un four à bain de sel pendant 45 minutes à 478°C, puis trempé à l'eau à une température d'environ 20°C, puis il a subi une traction pour obtenir une déformation permanente de 2%. Il a ensuite subi une opération de revenu bi-palier de 4 heures à 120°C, puis de 24 heures à 162°C (état T76).
  • Les compositions chimiques des alliages N, Y, E, F, G et H mesurées sur un pion de spectrométrie prélevé dans le chenal de coulée, sont rassemblées dans le tableau 1 : Tableau 1 : Composition chimique
    Alliage Si Fe Cu Mn Mg Zn Zr Cr
    N 0,05 0,06 2,05 - 1,64 7,08 0,08 -
    Y 0,04 0,05 2,16 - 1,80 6,76 0,09 -
    E (2024A) <0,06 0,06 4,12 0,4 1,37 - - -
    G 0,05 0,08 1,47 - 1,56 4,27 0,11 -
    H (7475) 0,03 0,06 1,5 - 2,22 5,73 - 0,21
    Placage (7072) 0,15 0,35 <0,02 <0,05 <0,10 1,05 <0,03 <0,03
  • On a mesuré la résistance à la rupture Rm (en MPa), la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 (en MPa) et l'allongement à la rupture A (en %) par un essai de traction selon EN 10002-1.
  • Les résultats des mesures des caractéristiques mécaniques statiques à l'état T6 pour les tôles N et Y qui présentent une composition qui correspond à celle d'un produit selon l'invention, et à l'état T351 pour les tôles E, F et G selon l'art antérieur sont présentés dans le tableau 2 : Tableau 2 : Caractéristiques mécaniques statiques
    Tôle Epaisseur [mm] Sens L Sens TL
    Rm [MPa] Rp0,2 [MPa] A [%] Rm [MPa] Rp0,2 [MPa] A [%]
    N 5,08 539 508 13,9 541 495 13,9
    Y 6 557 530 13,9 555 519 13,6
    E 6,35 482 365 22,8 466 319 23,5
    G 6,35 435 373 15,1 436 366 14,8
    H 4,6 475 414 13,3 484 414 12,5
  • On constate que la tôle dont la composition correspond à celle d'un produit selon l'invention présente dans les deux directions mesurées une résistance à la rupture et une limite d'élasticité très supérieures à celles des tôles en alliage 2xxx. L'allongement de la tôle dont la composition correspond à celle d'un produit selon l'invention est moins élevé que celui de la tôle E, mais suffisant par rapport aux applications visées. Par rapport aux alliages 7xxx de l'art antérieur G et H, l'alliage dont la composition correspond à celle d'un produit selon l'invention présente dans les deux directions mesurées une résistance à la rupture et une limite d'élasticité significativement améliorées, pour un allongement comparable.
  • Les tôles N, E, F,G et H ont fait l'objet d'une évaluation de la ténacité, mesurée par la détermination des facteurs d'intensité de contrainte Kc0 ou Kapp, selon la norme ASTM 561 ; cette détermination a été effectuée dans la direction T-L, sur des éprouvettes C(T) avec W= 127 mm (5 inches) et B=5,5 mm..
    Les résultats sont reportés dans le tableau 3 ci-dessous. Tableau 3 : mesures de Kapp
    Tôle Kapp [MPa√m]
    N 107
    E (2024 A) 105
    G 97
    H (7475 plaqué) 87
  • La tôle Y en épaisseur 6 mm présentait une ténacité Kapp de 150 MPa√m (W = 760 mm) ou 134 MPa√m (W = 406 mm) dans la direction L-T, et de 128 MPa√m (W = 760 mm) ou 110 MPa√m (W = 406 mm) dans la direction T-L.
  • La tôle dont la composition correspond à celle d'un produit selon l'invention présente un Kapp largement supérieur aux tôles en alliage 7xxx de l'art antérieur, et du même ordre de grandeur que les tôles en alliage 2xxx.
  • On a également testé le comportement en fatigue selon la norme ASTM E 647, en mesurant la vitesse de propagation de fissures dans la tôle N par comparaison aux tôles E, F et G. Les éprouvettes utilisées étaient de type C(T), avec W de 76,2 mm (3 inches).
  • Les résultats de vitesse de propagation de fissure da/dN pour un ΔK de 10 MPa√m , puis de 30 MPa√m ont été mesurés ; le ΔK pour une vitesse de propagation de 100 µinch/cycle (ou 2,54 µm/cycle) a été mesuré. Les résultats comparatifs sont présentés au tableau 4. La tôle Y avait une épaisseur de 6 mm. Tableau 4 : Résultats de fatigue
    Tôle da/dN (10) T-L (10-4 mm/cycles) da/dN (30) T-L (10-4 mm/cycles) ΔK à 100µ inch/cycle [MPa√m]
    N 1,4 29 27,5
    Y 1,3 33 27
    E (2024A) 1,4 30 27
    G 1,1 38 25,9
  • La tôle dont la composition correspond à celle d'un produit selon l'invention se comporte au moins aussi bien en fatigue que les tôles selon l'art antérieur.
  • Une tôle Y d'épaisseur 3,2 mm avait da/dN (10) T-L de 1,7 10-4 mm/cycles, da/dN (30)T-L de 30 10-4 mm/cycles, et ΔK à 100µ inch/cycle de 28,3 MPa√m.
  • A titre de comparaison, on a élaboré dans les mêmes conditions une tôle d'épaisseur de 6mm en alliage Zn 9,24 ; Mg 1,60 ; Cu 2,13 ; Zr 0,06 ; Si 0,03 ; Fe 0,04 à partir d'une plaque de laminage homogénéisée à 470°C pendant 48 heures, qui a été laminée à chaud, mises en solution (465°C pendant 60 minutes), trempées, et tractionnées (1,5% d'allogement permanent). On a obtenu à l'état T76 les caractéristiques mécaniques suivantes :
    • Rm(L) 548 MPa, Rp0.2(L) 524 MPa, A(L) 13,6%, Rm(TL) 545 MPa, Rp0.2(TL) 511 MPa, A(TL) 12,9%, Kapp(L-T) 128 MPa√m avec W = 760 mm, KC(L-T) 154 MPa√m avec W = 760 mm, Kapp(T-L) 80 MPa√m, KC(T-L) 84 MPa√m.
    Exemple 2
  • On a élaboré un alliage M dont la composition chimique était conforme à celle d'un produit selon l'invention. A titre de comparaison, une plaque en alliage 2324 selon l'art antérieur (référence I) a été élaborée selon un procédé de coulée classique. Les compositions chimiques des alliages M et I, mesurées sur un pion de spectrométrie prélevé dans le chenal de coulée, sont rassemblées dans le tableau : Tableau 5: Composition chimique
    Alliage Si Fe Cu Mn Mg Zn Zr
    M 0.05 0.06 2,05 - 1,64 7,08 0,08
    I (AA2324) <0,10 <0,12 3,8-4,4 0,3-0,9 1,2-1,8 <0,20 <0,05
  • Après scalpage, les plaques en alliage M ont été homogénéisées pendant 15 heures à 479°C, puis refroidies lentement jusqu'à 420 - 440°C et laminées jusqu'à une épaisseur de 25,4 mm. La température de sortie du laminoir à chaud était de 354°C, ce qui est significativement plus bas que celle qui est habituellement pratiquée pour ce type de produit.
  • Les tôles ainsi obtenues ont ensuite été soumises à traitement de mise en solution à 479°C pendant 4 heures (temps total dont environ 1/3 passé à la montée en température), puis trempées, et tractionnées de sorte que la déformation permanente en résultant soit de 2%. Les tôles ont ensuite subi un traitement de revenu artificiel pendant 8 heures à 160°C.
  • On a mesuré la résistance à la rupture Rm (en MPa), la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 (en MPa) et l'allongement à la rupture A (en %) par un essai de traction selon EN 10002-1, pour la tôle selon l'invention, et pour la tôle selon l'art antérieur. Les résultats correspondants sont reportés dans le tableau 6 ci-dessous.
  • L'alliage 1 (AA2324) a subi une gamme classique jusqu'à obtenir une tôle en alliage AA 2324, d'épaisseur 25,4 mm à l'état T39, c'est-à-dire une étape d'homogénéisation, suivie d'un laminage à chaud, puis d'une mise en solution et trempe, suivis d'un écrouissage à froid d'environ 9%, et d'une traction contrôlée permettant d'obtenir une déformation permanente comprise entre 1,5 et 3%. Tableau 6 : Caractéristiques mécaniques statiques
    Tôle Epaisseur [mm] Sens L
    Rm [MPa] Rp0,2 [MPa] A [%]
    M 25,4 570 540 12,3
    I 25,4 490 470 14
  • On constate que la résistance à la rupture et la limite d'élasticité de la tôle selon l'invention sont sensiblement plus élevées que celles de la tôle I utilisée généralement pour ces applications, et ce pour des allongements tout à fait comparables.
  • Les tôles M et I ont également fait l'objet d'une évaluation de la ténacité, mesurée par la détermination des facteurs d'intensité de contrainte critique Kc et KC0 ou Kapp, selon la norme ASTM 561 ; cette détermination a été effectuée à la température ambiante dans la direction L-T, sur des éprouvettes M(T) avec B = 6,35mm (0.25 inches) et W=406,4mm (16 inches), ainsi que sur des éprouvettes C(T), avec B = 7,6mm (0,3 inches) et W=127mm (5 inches). On a également déterminé Kapp sur une éprouvette C(T) avec B = 7,6 mm et W = 127 mm dans la direction L-T à une température de -54°C. Les résultats sont reportés dans le tableau 7 ci-dessous. Tableau 7 : mesures de Kc et Kapp
    Tôle KC (L-T) éprouvette M(T) [MPa√m] température ambiante Kapp (L-T) éprouvette M(T) [MPa√m] température ambiante Kapp (L-T) éprouvette C(T) [MPa√m] température ambiante Kapp (L-T) éprouvette C(T) [MPa√m] à -54°C Kapp (L-T) éprouvette M(T) [MPa√m] à -54°C
    M 199 140 118 124 126
    I 177 121 96 99 -
  • On constate que l'alliage dont la composition correspond à celle d'un produit selon l'invention présente dans toutes les conditions une ténacité meilleure que l'alliage 1 classique. De plus, et de manière surprenante, l'alliage dont la composition correspond à celle d'un produit selon l'invention présente un Kapp(L-T) à -54°C qui est du même ordre qu'à température ambiante.
  • Les tôles M et I ont également été testées en résistance à la fatigue suivant la direction L, suivant les deux protocoles suivants issus de la norme ASTM E 466 :
    1. 1) On utilise une éprouvette dite « à encoche », d'épaisseur 5 mm, de largeur 38,1 mm, et de longueur 254 mm, présentant deux encoches circulaires de rayon 43,2 mm, usinées symétriquement par rapport au centre de l'éprouvette à une distance de 12,7 mm du centre. Le test se fait suivant la norme ASTM E 466, en appliquant une contrainte cyclique telle que la contrainte maximum soit égale à 270 MPa, et la contrainte minimum soit égale à 27 MPa (R=0,1), et ce à une fréquence de 15 Hz.
    2. 2) On utilise une éprouvette dite « à double trous », d'épaisseur 2,54 mm, de largeur 25,4 mm et de longueur 209 mm, présentant deux trous circulaires de diamètre 4,8 mm, situés sur la ligne médiane de l'éprouvette, à égale distance du centre de l'éprouvette, dont les centres sont distants de 19 mm. Le test se fait suivant la norme ASTM E 466, en appliquant une contrainte cyclique telle que la contrainte maximum soit égale à 140 MPa, et la contrainte minimum soit égale à 14 MPa (R=0,1 ), et ce à une fréquence de 15Hz.
  • Ce test a été réalisé sur 5 éprouvettes pour chaque protocole, et la moyenne logarithmique des 5 tests a été calculée.
  • Les résultats de ces deux protocoles de tests sur les deux tôles M et I sont présentés dans le tableau 8 ci-dessous : Tableau 8 : Résultats de fatigue
    Tôle Nombre de cycles (moyenne Log sur 5 tests) Eprouvette « à encoches » Nombre de cycles (moyenne Log sur 5 tests) Eprouvette « à double trou »
    M 299213 330737
    I 181402 337730
  • La variabilité de ce test est généralement assez grande, mais l'on constate sur ce test que la tôle selon l'invention et la tôle habituellement utilisée se situent dans les mêmes ordres de grandeur en terme de durée de vie en fatigue.
  • On a également testé le comportement en fatigue selon la norme ASTM E 647, en mesurant la vitesse de propagation de fissures dans la tôle M par comparaison à la tôle I. Les éprouvettes utilisées étaient de type C(T), avec B égal à 9,52 mm (0,375 inches), et W égal à 101,6 mm (4 inches).
  • La courbe vitesse de propagation de fissure en fonction de ΔK a été traçée, et le ΔK à une vitesse de 2,54µm/cycle (10-4 inch/cycle) a été mesuré; les résultats comparatifs sont présentés au tableau 9 : Tableau 9 : Résultats de fatigue Valeurs de ΔK pour une vitesse de fissuration donnée
    Tôle ΔK à 2,54µm/cycle (10-4 inch/cycle) [MPa√m]
    M 30,8
    I 26,8
  • Enfin, le comportement en corrosion exfoliante des tôles de cet essai a été évalué selon la norme ASTM G34 ; ce test a été fait en surface, et à mi-épaisseur, dans les conditions adaptées aux alliages 7xxx pour la tôle M selon l'invention, et dans les conditions adaptées aux alliages 2xxx pour la tôle I. L'échantillon M selon l'invention a été classé EA, à la fois en surface et à mi-épaisseur, tandis que l'échantillon I selon l'art antérieur a été classé EA en surface, et EB à mi-épaisseur. La tôle selon l'invention est donc au moins aussi performante, sinon plus performante, en tenue à la corrosion exfoliante, que la tôle selon l'art antérieur.
  • On constate que la tôle M est meilleure pour chacun des paramètres physiques suivants : caractéristiques mécaniques statiques, Kapp, résistance à la fatigue, vitesse de propagation de fissures.
  • Exemple 3 (hors invention)
  • On a élaboré un alliage P similaire à l'alliage M de l'exemple 2. On a élaboré à partir de cet alliage, en suivant une gamme de fabrication similaire à celle de l'exemple 2, des tôles fortes laminées intégralement à chaud (température d'entrée : 420 - 440°C) d'une épaisseur de 75 mm.
  • Après mise en solution et trempe comme indiqué dans l'exemple 2, les tôles ont été soumises aux procédés de revenu à deux paliers suivants :
    • Premier palier : montée en température de 30 °C / heure jusqu'à 120°C et un maintien pendant 6 heures à cette température de 120°C.
    • Deuxième palier : montée en température de 15°C / heure jusqu'à 160°C et un maintien pendant 5 heures (procédé A), 10 heures (procédé B) ou 15 heures (procédé C) à cette température de 160°C.
    Les valeurs de Kapp(L-T) ont été déterminées sur des éprouvettes de type C(T) avec W = 127 mm et B = 7,6 mm.
  • Le tableau 10 résume les caractéristiques mécaniques obtenues : Tableau 10 :
    Procédé Rp0.2 (L) [MPa] Rm (L) [MPa] A (L) [%] KIC(L-T) [MPa√m] Kapp(L-T) [MPa√m]
    A 542 561 9,7 30,1 57,1
    B 525 549 10,2 32,8 63,2
    C 507 537 11,3 34,6 72,5

Claims (10)

  1. Produit corroyé, laminé sous forme de tôle avec une épaisseur supérieure à 20 mm, en alliage de type AlZnCuMg,
    caractérisé en ce qu'il comporte (% en poids) :
    Zn 6,7-7,3 % Cu 2,0-2,3 % Mg 1,5 - 1,8 % Zr 0,07- 0,12 % Fe<0,15% Si<0,15%
    autres éléments ne dépassant pas 0,05 %chacun et 0,15 % au total,
    le reste aluminium,
    ledit produit étant traité par mise en solution, trempe, écrouissage à froid, et revenu, et ledit produit présentant les caractéristiques
    (a) Rm(L) > 540 MPa ;
    (b) Rp0.2(L) > 535 MPa ;
    (c) Kapp(L-T) > 100 MPa√m (mesurée à la température ambiante sur éprouvette C(T) avec W=127 mm et B = 7,6 mm) ;
    (d) ΔK à une vitesse de propagation de fissure de 2,54 µm / cycle > 28 MPa√m ;
    (e) KIC(L-T) > 28 MPa√m.
  2. Produit selon la revendication 1, caractérisé en ce que Zr 0,07 - 0,09 %.
  3. Produit selon une quelconque des revendications 1 à 2, caractérisé en ce que Mg / Cu ≤ 0,80.
  4. Produit selon une quelconque des revendications 1 à 3, caractérisé en ce que l'alliage contient entre 50 et 500 ppm de titane, et préférentiellement entre 150 et 300 ppm de titane.
  5. Produit selon une quelconque des revendications 1 à 4, caractérisé en ce qu'il a été élaboré à partir d'un métal affiné avec un affinant qui contient du Ti et du C.
  6. Produit selon une quelconque des revendications 1 à 5, caractérisé en ce qu'il a été élaboré à partir d'un métal liquide auquel on a ajouté un affinant contenant du titane et du carbone, de manière à ce la quantité de carbone ajoutée se situe entre 0,4 et 3 g/t de carbone, préférentiellement entre 0,6 et 2 g/t, et de manière à ce que la teneur totale en Ti dans le produit final se situe entre 50 et 500 ppm (en poids), préférentiellement entre 150 et 300 ppm.
  7. Elément de structure pour construction aéronautique fabriqué à partir d'au moins un produit selon une quelconque des revendications 1 à 6.
  8. Structure intégrale pour construction aéronautique incorporant un ou plusieurs produits selon une quelconque des revendications 1 à 6.
  9. Utilisation d'un produit, laminé, selon une quelconque des revendications 1 à 6 d'une épaisseur supérieure à 40 mm pour la fabrication par usinage d'éléments de structure d'avions.
  10. Utilisation d'un produit, laminé, selon une quelconque des revendications 1 à 6 d'une épaisseur supérieure à 60 mm pour la fabrication de raidisseurs ou cadres d'avions.
EP04356196A 2003-12-16 2004-12-15 Produit corroyé sous forme de tôle laminée et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg Active EP1544315B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52959403P 2003-12-16 2003-12-16
US529594P 2003-12-16

Publications (2)

Publication Number Publication Date
EP1544315A1 EP1544315A1 (fr) 2005-06-22
EP1544315B1 true EP1544315B1 (fr) 2012-08-22

Family

ID=34520278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04356196A Active EP1544315B1 (fr) 2003-12-16 2004-12-15 Produit corroyé sous forme de tôle laminée et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg

Country Status (3)

Country Link
US (1) US20050150578A1 (fr)
EP (1) EP1544315B1 (fr)
ES (1) ES2393706T3 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721811B2 (en) 2005-10-28 2014-05-13 Automotive Casting Technology, Inc. Method of creating a cast automotive product having an improved critical fracture strain
US10835942B2 (en) 2016-08-26 2020-11-17 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854276B1 (en) * 2003-06-19 2005-02-15 Superpower, Inc Method and apparatus of cryogenic cooling for high temperature superconductor devices
ES2292075T5 (es) * 2005-01-19 2010-12-17 Otto Fuchs Kg Aleacion de aluminio no sensible al enfriamiento brusco, asi como procedimiento para fabricar un producto semiacabado a partir de esta aleacion.
WO2006086534A2 (fr) * 2005-02-10 2006-08-17 Alcan Rolled Products - Ravenswood Llc Alliages a base d'aluminium al-zn-cu-mg et procedes de production et d'utilisation
US8840737B2 (en) 2007-05-14 2014-09-23 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8673209B2 (en) * 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
EP2379765B2 (fr) * 2009-01-16 2016-10-12 Aleris Rolled Products Germany GmbH Procédé de fabrication de produit plat en alliage d'aluminium doté de faibles niveaux de contraintes résiduelles
US9314826B2 (en) 2009-01-16 2016-04-19 Aleris Rolled Products Germany Gmbh Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
US8206517B1 (en) 2009-01-20 2012-06-26 Alcoa Inc. Aluminum alloys having improved ballistics and armor protection performance
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
KR101974913B1 (ko) * 2017-04-13 2019-05-07 한국기계연구원 알루미늄-아연-구리(Al-Zn-Cu) 합금 및 이의 제조방법
FR3068370B1 (fr) 2017-07-03 2019-08-02 Constellium Issoire Alliages al- zn-cu-mg et procede de fabrication
FR3071513B1 (fr) * 2017-09-26 2022-02-11 Constellium Issoire Alliages al-zn-cu-mg a haute resistance et procede de fabrication
EP3670690A1 (fr) 2018-12-20 2020-06-24 Constellium Issoire Alliages al-zn-cu-mg et leur procédé de fabrication
CN114107759B (zh) * 2020-08-26 2022-08-16 宝山钢铁股份有限公司 一种7xxx铝合金薄带及其制造方法
CN115233008A (zh) * 2022-08-30 2022-10-25 西南铝业(集团)有限责任公司 一种铸锭成分控制方法和应用
WO2024126341A1 (fr) 2022-12-12 2024-06-20 Constellium Rolled Products Ravenswood, Llc Produits corroyés 7xxx présentant un compromis amélioré des propriétés de traction et de ténacité et procédé de production
EP4386097A1 (fr) 2022-12-12 2024-06-19 Constellium Rolled Products Ravenswood, LLC Produits ecrouis en alliage 7xxx avec un compromis amélioré de propriétés de traction et de ténacité et procédé de production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
CA1173277A (fr) * 1979-09-29 1984-08-28 Yoshio Baba Materiau pour lisses d'aeronef, et methode de production connexe
US5312498A (en) * 1992-08-13 1994-05-17 Reynolds Metals Company Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness
FR2695942B1 (fr) * 1992-09-22 1994-11-18 Gerzat Metallurg Alliage d'aluminium pour corps creux sous pression.
US5865911A (en) * 1995-05-26 1999-02-02 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
IL156386A0 (en) * 2000-12-21 2004-01-04 Alcoa Inc Aluminum alloy products and artificial aging method
JP4285916B2 (ja) * 2001-02-16 2009-06-24 株式会社神戸製鋼所 高強度、高耐食性構造用アルミニウム合金板の製造方法
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy
US7452429B2 (en) * 2003-06-24 2008-11-18 Pechiney Rhenalu Products made of Al-Zn-Mg-Cu alloys with an improved compromise between static mechanical characteristics and damage tolerance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721811B2 (en) 2005-10-28 2014-05-13 Automotive Casting Technology, Inc. Method of creating a cast automotive product having an improved critical fracture strain
US9353430B2 (en) 2005-10-28 2016-05-31 Shipston Aluminum Technologies (Michigan), Inc. Lightweight, crash-sensitive automotive component
US10835942B2 (en) 2016-08-26 2020-11-17 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components

Also Published As

Publication number Publication date
US20050150578A1 (en) 2005-07-14
EP1544315A1 (fr) 2005-06-22
ES2393706T3 (es) 2012-12-27

Similar Documents

Publication Publication Date Title
EP1544315B1 (fr) Produit corroyé sous forme de tôle laminée et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg
EP2235224B1 (fr) PROCÉDÉ DE FABRICATION D&#39;UN PRODUIT LAMINÉ EN Al-Li POUR DES APPLICATIONS AÉRONAUTIQUES
EP1966402B1 (fr) Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d&#39;avion
EP1766102B1 (fr) Procede de fabrication de produits en alliage d&#39;aluminium a haute tenacite et haute resistance a la fatigue
EP2449142B1 (fr) Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
EP2364378B1 (fr) Produits en alliage aluminium-cuivre-lithium
FR2907466A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
FR3068370B1 (fr) Alliages al- zn-cu-mg et procede de fabrication
FR2907796A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
FR2853666A1 (fr) ALLIAGE Al-Zn A HAUTE RESISTANCE,PROCEDE DE PRODUCTION DE PRODUITS EN UN TEL ALLIAGE, ET PRODUITS OBTENUS SELON CE PROCEDE
EP1382698B1 (fr) Produit corroyé en alliage Al-Cu-Mg pour élément de structure d&#39;avion
CA2798480C (fr) Alliage aluminium-cuivre-lithium pour element d&#39;intrados
CA2528614C (fr) Produits en alliages al-zn-mg-cu a compromis caracteristiques mecaniques statiques/tolerance aux dommages ameliore
CA2923109C (fr) Tole d&#39;intrados a proprietes de tolerance aux dommages ameliorees
EP3411508B1 (fr) Tôles épaisses en alliage al cu li à propriétés en fatigue améliorées
EP1544316B1 (fr) Tôle épaisse en alliage Al-Zn-Cu-Mg recristallisée à faible teneur en Zr
EP3610048B1 (fr) Produits en alliage aluminium-cuivre-lithium a faible densite
EP3610047B1 (fr) Produits en alliage aluminium-cuivre-lithium
WO2019211546A1 (fr) Procede de fabrication d&#39;un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
WO2017064407A1 (fr) Toles minces en alliage aluminium-magnesium-zirconium pour applications aerospatiales

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20051013

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

Owner name: PECHINEY ROLLED PRODUCTS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

Owner name: ALCAN ROLLED PRODUCTS - RAVENSWOOD, LLC

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC

Owner name: ALCAN RHENALU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

Owner name: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: WROUGHT PRODUCT IN THE FORM OF A ROLLED PLATE AND STRUCTURAL PART FOR AIRCRAFT IN AL-ZN-CU-MG ALLOY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004039009

Country of ref document: DE

Owner name: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, R, US

Free format text: FORMER OWNERS: PECHINEY RHENALU, PARIS, FR; PECHINEY ROLLED PRODUCTS, RAVENSWOOD, W.VA., US

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004039009

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNERS: PECHINEY RHENALU, PARIS, FR; PECHINEY ROLLED PRODUCTS, RAVENSWOOD, W.VA., US

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 572071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004039009

Country of ref document: DE

Effective date: 20121018

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120822

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2393706

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 572071

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120822

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC

Effective date: 20121231

Owner name: CONSTELLIUM FRANCE

Effective date: 20121231

26N No opposition filed

Effective date: 20130523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121122

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004039009

Country of ref document: DE

Effective date: 20130523

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, US

Effective date: 20150910

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150910

Ref country code: FR

Ref legal event code: CA

Effective date: 20150910

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, FR

Free format text: FORMER OWNER: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004039009

Country of ref document: DE

Owner name: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, R, US

Free format text: FORMER OWNERS: CONSTELLIUM FRANCE, PARIS, FR; CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, RAVENSWOOD, W.VA., US

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004039009

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNERS: CONSTELLIUM FRANCE, PARIS, FR; CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, RAVENSWOOD, W.VA., US

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151215

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200102

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 20

Ref country code: CH

Payment date: 20240102

Year of fee payment: 20