EP1114877A1 - Al-Cu-Mg alloy aircraft structural element - Google Patents
Al-Cu-Mg alloy aircraft structural element Download PDFInfo
- Publication number
- EP1114877A1 EP1114877A1 EP00420263A EP00420263A EP1114877A1 EP 1114877 A1 EP1114877 A1 EP 1114877A1 EP 00420263 A EP00420263 A EP 00420263A EP 00420263 A EP00420263 A EP 00420263A EP 1114877 A1 EP1114877 A1 EP 1114877A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- structural element
- element according
- product
- alloy
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/923—Physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12229—Intermediate article [e.g., blank, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/12764—Next to Al-base component
Definitions
- the invention relates to aircraft structural elements, in particular wing skin and stiffeners for large commercial aircraft capacity, produced from rolled, extruded or forged products in AlCuMg alloy at the state treated by dissolving, quenching and tempering, and having, with respect to prior art products used for the same application, an improved compromise between the different properties of use required.
- alloys and metallurgical states used below corresponds to the Aluminum Association nomenclature, taken up by European standards EN 515 and EN 573 part 3.
- the wings of large commercial aircraft have a top (or upper surface) made of a skin made from thick alloy sheets 7150 in state T651, or in alloy 7055 in state T7751 or 7449 in state T7951, and stiffeners made from profiles of the same alloy, and a lower part (or lower surface) made of a skin made from thick sheets of alloy 2024 to state T351 or 2324 in state T39, and stiffeners made from profiles of same alloy.
- the two parts are assembled by side members and ribs.
- Alloy 2024 according to the designation of the Aluminum Association or standard EN 573-3 has the following chemical composition (% by weight): If ⁇ 0.5 Fe ⁇ 0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr ⁇ 0.10 Zn ⁇ 0.25 Ti ⁇ 0 , 15
- US patent 5652063 (Alcoa) relates to an airplane structure element produced from an alloy of composition (% by weight): Cu: 4.85 - 5.3 Mg: 0.51 - 1.0 Mn: 0.4 - 0.8 Ag: 0.2 - 0.8 Si ⁇ 0.1 Fe ⁇ 0.1 Zr ⁇ 0, 25 with Cu / Mg between 5 and 9.
- the sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa).
- the alloy is particularly intended for supersonic aircraft.
- the alloy can also contain: Zr ⁇ 0.20% V ⁇ 0.20% Mn ⁇ 0.80% Ti ⁇ 0.05% Fe ⁇ 0.15% Si ⁇ 0.10%
- the current trend is to use growing of very thick products, in the mass of which the structural elements are machined.
- the skins of wings are machined from relatively thick sheets to allow machining in the mass of the wing stiffeners, while these are usually made from folded sections or sheets, and are then mechanically fixed to the skin.
- the integral machining in the mass of the skin-stiffener assembly leads to a reduction in manufacturing costs, since the number of parts is reduced and that we avoid assembly.
- the use of an unassembled structure allows a reduction in the weight of the whole.
- the sheets have homogeneous mechanical characteristics over the entire thickness, i.e. the properties do not vary so significant depending on the thickness, typically between 10 and 120 mm.
- the more machining is used the more desirable the machining stability, which is obtained by a low level of internal stresses.
- the mechanical characteristics are all the more homogeneous, and the internal stresses all the more reduced, as the sheet has a low sensitivity to quenching.
- aircraft wings especially large capacity aircraft, have a curved wing profile, with a curvature both in the longitudinal direction and in the transverse direction.
- This complex form can be obtained during the operation of returned to an autoclave, by forming on a mold, by depressing the face sheet metal on the mold side with respect to the opposite face, using a partial vacuum. he this operation must be successful, to avoid costly scrap of a part with high added value, especially for large parts.
- the pledge of success lies in the lowest possible elastic return for a form of mold given, because the elastic return is most often difficult to control.
- the object of the present invention is to provide structural elements for aircraft having properties at least equivalent to those of the same elements produced in alloy 2024 in state T351 with regard to mechanical characteristics static, toughness, crack propagation speed and resistance to corrosion, using rolled, extruded or forged products with low level of residual stresses, low sensitivity to hardening and good income training skills.
- the subject of the invention is a structural element, in particular an aircraft wing underside element, produced from a rolled, spun or forged product, made of an alloy of composition (% by weight): Cu: 4.6 - 5.3 Mg: 0.10 - 0.50 Mn: 0.15 - 0.45 Si ⁇ 0.10 Fe ⁇ 0.15 Zn ⁇ 0.20 Cr ⁇ 0.10 other elements ⁇ 0.05 each and ⁇ 0.15 in total, Al remains treated by dissolving, quenching, controlled traction to more than 1.5% permanent deformation and tempering.
- the entry temperature for hot rolling is preferably at least 40 ° C lower, and more preferably at least 40 ° C 50 ° C, at the solution temperature.
- the invention is based on the observation that an alloy of the 2001 type, with certain composition changes and a suitable manufacturing range, could present a set of properties making it suitable for use in structures aircraft, and more particularly in the lower surfaces of commercial aircraft wings high capacity, with interesting properties in terms of low sensitivity to quenching, low residual stresses and tempering.
- the copper content range is clearly shifted towards the low, while remaining higher than that of the 2024 or 2034 alloys for lower surface, for compensate, in its influence on the mechanical resistance, the low content of magnesium. It is preferable to choose a copper content higher than 4.8%, or even at 4.9% or even 5%.
- the magnesium content is of the same order as in the alloy 2001, and preferably between 0.20 and 0.40%.
- the Cu / Mg ratio is thus almost always greater than 10, contrary to the teaching of the US patent 5652063, which recommends a Cu / Mg ratio between 5 and 9.
- the manganese content is controlled within a relatively narrow range. Below 0.15%, we would risk having a grain too large; above 0.45%, we obtain a non-recrystallized structure which is not favorable for the control of constraints residual. A preferred range is between 0.25 and 0.40%. Note that, for the same reason, and contrary to the teaching of US Pat. No. 5,593,516, the alloy does not contain any other anti-recrystallizing element such as vanadium or zirconium.
- the iron and silicon contents are maintained respectively below 0.15 and 0.10%, and preferably below 0.09 and 0.08%, to guarantee good tenacity.
- the alloy can contain up to 0.2% zinc, this addition having an effect favorable on mechanical resistance, without risk for other properties, such as corrosion resistance.
- the transformation range includes the casting of a plate or a billet, a reheating or homogenization to a temperature close to the temperature of beginning alloy melting and hot transformation by rolling, spinning or forging. In the case of rolling, this may include a pass, called widening, in the direction perpendicular to that of the other passes, and intended for improve the isotropy of the product.
- the hot transformation temperature is located, preferably at a level slightly lower than that which the man of profession with reference to the solution temperature. So, with regard to the rolling, the inlet temperature is preferably at least 40 ° C, or even 50 ° C, below the solution temperature, and the outlet temperature of 20 to 30 ° C below the inlet temperature.
- the product is then subjected to a solution as complete as possible, to a temperature close, for example less than 10 ° C below, the temperature of beginning of the alloy, while avoiding burns. This temperature is between 520 and 535 ° C.
- the quality of the solution can be checked by analysis differential enthalpy.
- the product is then soaked, for example by immersion in cold water, so as to ensure a cooling rate of between 10 and 50 ° C / s. After quenching, the product is pulled up to deformation permanent of at least 1.5%, so as to relax it and improve its flatness.
- this traction also has the effect of improving, by a work hardening effect, the elastic limit after tempering, so that one can qualify the state obtained from state T851, as if it were a specific pass hardening after quenching.
- income itself can be performed at the same time as the shaping of the lower surface. This income is preferably performed at a temperature above 160 ° C (and above preferably> 170 ° C), of a duration allowing to reach the limit peak of elasticity, as for a state T6.
- a time income equivalent to that corresponding to 12 to 24 h at a temperature of 173 ° C is carried out; all time-temperature combination to reach the peak of alloy income is usable.
- the metallurgical structure obtained is, unlike that of the alloys 2024 and 2034, highly recrystallized, with a recrystallization rate always exceeding 70%, and the more often 90%, over the entire thickness.
- the structural elements according to the invention exhibit a compromise of properties (static mechanical characteristics, toughness, speed of crack propagation, corrosion resistance) which make them suitable for use in construction aeronautics, and in particular the manufacture of lower surfaces of wings.
- these elements can be easily made by machining and formed in tempering.
- the alloy used is easily weldable by conventional techniques, which can allow reduce the number of riveted connections.
- Alloy A is a 2024-T3 alloy of usual composition for the lower surface application of the airfoil.
- Alloy B is an alloy falling within the composition range described in US Pat. No. 5,652,063, but without the addition of silver.
- Alloy C is in accordance with the invention. Alloys D and E differ from alloy C only by a higher silicon for D, a higher manganese and copper for E and F, and an addition of zirconium for F.
- Cast plates with a 380 x 120 mm section were homogenized, hot rolled to a thickness of 22 mm, dissolved, quenched in cold water, drawn to 2.3% permanent deformation and returned.
- the parameters for homogenization, hot rolling (inlet temperatures), dissolution and tempering are shown in Table 2. Alloy Homogenized neization Hot Rolling (entry) Dissolution Returned AT 4h 490 ° C 467 ° C 3h at 497 ° C - B 4h 490 ° C 467 ° C 3h at 518 ° C 4 p.m. at 173 ° C VS 4h 490 ° C 467 ° C 6h at 527 ° C 4 p.m.
- the toughness was also measured by the critical stress intensity factor K 1c (in MPa ⁇ m) measured, according to standard ASTM E 399, on CT20 test pieces taken at quarter thickness in the directions LT and TL (2 test pieces per case).
- the alloy C according to the invention leads to an elastic limit significantly higher than that of 2024, and slightly lower than that of alloys B, E and F.
- the elongation is lower than for 2024, but better than that of alloys B, D, E and F.
- the toughness is the best of all the alloys tested. So we have a favorable compromise of these various properties. In particular, the results show the unfavorable effect, both on toughness and elongation, of a increased silicon and manganese content, as well as an addition of zirconium.
- the alloy according to the invention has the second best resistance to inter-crystalline corrosion on the surface, and the best at heart.
- the difference between core and surface results is low, which is a favorable property when the structural element is manufactured by machining.
- the residual stress level was measured on 40 mm thick sheets of alloy 2024, 2034 and according to the invention, all three treated in the same state T351.
- the compositions (% by weight) are given in Table 6: Alloy Yes Fe Cu Mn Mg Ti Zr 2024 0.12 0.20 4.06 0.54 1.36 0.02 2034 0.05 0.07 4.30 0.98 1.34 0.02 0.10 Invent. 0.05 0.07 5.12 0.35 0.29 0.02
- the method for measuring residual stresses is the bar method described in the applicant's patent EP 0731185.
- the arrows f L and f TL were measured in the directions L and TL (in microns) and the quotient fe / l 2 was calculated in both cases, the thickness e and the length l of the bar being expressed in mm.
- the results are given in Table 7: alloy e (mm) 1 (mm) f L ( ⁇ m) f L e / l 2 f TL ( ⁇ m) f TL e / l 2 2024 40 180 210 0.26 120 015 2034 40 180 147 0.18 129 0.16 invention 40 180 46 0.06 4 0.005 invention 80 385 84 0.05 136 0.07
- those according to the invention have a deflection such that the product fe is less than 0.10 l 2 , which is, as can be seen in the patent EP 0731185 mentioned above, the indication of a low rate of internal stresses.
- the alloy according to the invention has, in the treated state, a structure completely recrystallized throughout the thickness of the product.
- These sheets are particularly suitable for the manufacture of wing lower elements of aircraft by a manufacturing range comprising machining and one or more shaping operations.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
L'invention concerne des éléments de structure d'avion, notamment des panneaux de peau et des raidisseurs d'intrados de voilure pour avions commerciaux de grande capacité, réalisés à partir de produits laminés, filés ou forgés en alliage AlCuMg à l'état traité par mise en solution, trempe et revenu, et présentant, par rapport aux produits de l'art antérieur utilisés pour la même application, un compromis amélioré entre les différentes propriétés d'emploi requises.The invention relates to aircraft structural elements, in particular wing skin and stiffeners for large commercial aircraft capacity, produced from rolled, extruded or forged products in AlCuMg alloy at the state treated by dissolving, quenching and tempering, and having, with respect to prior art products used for the same application, an improved compromise between the different properties of use required.
La désignation des alliages et des états métallurgiques utilisée ci-après correspond à la nomenclature de l'Aluminum Association, reprise par les normes européennes EN 515 et EN 573 partie 3.The designation of alloys and metallurgical states used below corresponds to the Aluminum Association nomenclature, taken up by European standards EN 515 and EN 573 part 3.
Les ailes d'avions commerciaux de grande capacité comportent une partie supérieure (ou extrados) constituée d'une peau fabriquée à partir de tôles épaisses en alliage 7150 à l'état T651, ou en alliage 7055 à l'état T7751 ou 7449 à l'état T7951, et de raidisseurs fabriqués à partir de profilés du même alliage, et une partie inférieure (ou intrados) constituée d'une peau fabriquée à partir de tôles épaisses en alliage 2024 à l'état T351 ou 2324 à l'état T39, et de raidisseurs fabriqués à partir de profilés du même alliage. Les deux parties sont assemblées par des longerons et des nervures.The wings of large commercial aircraft have a top (or upper surface) made of a skin made from thick alloy sheets 7150 in state T651, or in alloy 7055 in state T7751 or 7449 in state T7951, and stiffeners made from profiles of the same alloy, and a lower part (or lower surface) made of a skin made from thick sheets of alloy 2024 to state T351 or 2324 in state T39, and stiffeners made from profiles of same alloy. The two parts are assembled by side members and ribs.
L'alliage 2024 selon la désignation de l'Aluminum Association ou la norme EN 573-3
a la composition chimique suivante (% en poids) :
Si < 0,5 Fe < 0,5 Cu : 3,8 - 4,9 Mg : 1,2 - 1,8 Mn : 0,3 - 0,9
Cr < 0,10 Zn < 0,25 Ti < 0,15Alloy 2024 according to the designation of the Aluminum Association or standard EN 573-3 has the following chemical composition (% by weight):
If <0.5 Fe <0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr <0.10 Zn <0.25 Ti <0 , 15
Dans le but d'améliorer le compromis entre les différentes propriétés requises,
notamment la résistance mécanique et la ténacité, diverses solutions alternatives ont
été proposées. Boeing a développé l'alliage 2034 de composition :
Si < 0,10 Fe < 0,12 Cu : 4,2 - 4,8 Mg : 1,3 - 1,9
Mn : 0,8 - 1,3 Cr < 0,05 Zn < 0,20 Ti < 0,15 Zr : 0,08 - 0,15In order to improve the compromise between the different properties required, in particular mechanical strength and toughness, various alternative solutions have been proposed. Boeing has developed the composition 2034 alloy:
If <0.10 Fe <0.12 Cu: 4.2 - 4.8 Mg: 1.3 - 1.9 Mn: 0.8 - 1.3 Cr <0.05 Zn <0.20 Ti <0 , 15 Zr: 0.08 - 0.15
Cet alliage a fait l'objet du brevet EP 0031605 (= US 4336075). Il présente, par rapport au 2024 à l'état T351, une meilleure limite d'élasticité spécifique due à l'augmentation de la teneur en manganèse et à l'ajout d'un autre antirecristallisant (Zr), ainsi qu'une ténacité et une résistance à la fatigue améliorées.This alloy was the subject of patent EP 0031605 (= US 4,336,075). He presents, by compared to 2024 in state T351, a better specific elastic limit due to increasing the manganese content and adding another anti-recrystallizer (Zr), as well as improved toughness and fatigue resistance.
Le brevet US 5652063 (Alcoa) concerne un élément de structure d'avion réalisé à
partir d'un alliage de composition (% en poids) :
Cu : 4,85 - 5,3 Mg : 0,51 - 1,0 Mn : 0,4 - 0,8 Ag : 0,2 - 0,8
Si < 0,1 Fe < 0,1 Zr < 0,25 avec Cu/Mg compris entre 5 et 9.US patent 5652063 (Alcoa) relates to an airplane structure element produced from an alloy of composition (% by weight):
Cu: 4.85 - 5.3 Mg: 0.51 - 1.0 Mn: 0.4 - 0.8 Ag: 0.2 - 0.8 Si <0.1 Fe <0.1 Zr <0, 25 with Cu / Mg between 5 and 9.
La tôle de cet alliage à l'état T8 présente une limite d'élasticité > 77 ksi (531 MPa). L'alliage est particulièrement destiné aux avions supersoniques.The sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa). The alloy is particularly intended for supersonic aircraft.
Le brevet US 5593516 (Reynolds) concerne un alliage pour applications
aéronautiques contenant de 2,5 à 5,5% Cu et 0,1 à 2,3% Mg, dans lequel les teneurs
en Cu et Mg sont maintenues en dessous de leur limite de solubilité dans
l'aluminium, et sont liées par les équations :
Cumax = 5,59 - 0,91 Mg et Cumin = 4,59 - 0,91MgUS patent 5593516 (Reynolds) relates to an alloy for aeronautical applications containing from 2.5 to 5.5% Cu and 0.1 to 2.3% Mg, in which the contents of Cu and Mg are kept below their limit of solubility in aluminum, and are linked by the equations:
Cu max = 5.59 - 0.91 Mg and Cu min = 4.59 - 0.91Mg
L'alliage peut contenir également : Zr < 0,20% V < 0,20% Mn < 0,80% Ti < 0,05% Fe < 0,15% Si < 0,10%The alloy can also contain: Zr <0.20% V <0.20% Mn <0.80% Ti <0.05% Fe <0.15% Si <0.10%
Les brevets US 5376192 et US 5512112, issus de la même demande initiale, concernent des alliages de ce type contenant de 0,1 à 1% d'argent. On peut remarquer que l'utilisation d'argent dans ce type d'alliage conduit à une augmentation du coût d'élaboration et des difficultés pour le recyclage des chutes de fabrication.US patents 5,376,192 and US 5,512,112, issued from the same initial application, relate to alloys of this type containing 0.1 to 1% silver. We can notice that the use of silver in this type of alloy leads to an increase in the cost of development and difficulties for the recycling of manufacturing scraps.
Par ailleurs, on connaít depuis de nombreuses années des alliages du type « AU6MGT » selon l'ancienne désignation des alliages en France. Le brevet FR 1379764, déposé en 1963 par Pechiney, concerne l'utilisation d'un alliage de ce type de composition : Cu : 5 - 7 Mg : 0,10 - 0,50 Mn 0,05 - 0,50 Si < 0,30 Fe < 0,50 Ti : 0,05 - 0,25 pour la fabrication de bouteilles pour gaz comprimés.In addition, we have known for many years alloys of the type "AU6MGT" according to the old designation of alloys in France. The FR patent 1379764, deposited in 1963 by Pechiney, concerns the use of an alloy of this type composition: Cu: 5 - 7 Mg: 0.10 - 0.50 Mn 0.05 - 0.50 Si <0.30 Fe <0.50 Ti: 0.05 - 0.25 for the manufacture of cylinders for compressed gases.
L'Aluminum Association a enregistré en 1976 l'alliage 2001 de composition :
Cu : 5,2 - 6 Mg : 0,20 - 0,45 Mn : 0,15 - 0,50 Si < 0,20 Fe < 0,20
Cr < 0,10 Zn < 0,10 Ni < 0,05 Ti < 0,20 Zr < 0,05 The Aluminum Association registered in 1976 the alloy 2001 of composition:
Cu: 5.2 - 6 Mg: 0.20 - 0.45 Mn: 0.15 - 0.50 Si <0.20 Fe <0.20 Cr <0.10 Zn <0.10 Ni <0.05 Ti <0.20 Zr <0.05
A la connaissance des inventeurs, il n'existe pas d'autre utilisation industrielle de cet alliage que les bouteilles de gaz comprimés fabriquées par filage inverse.To the knowledge of the inventors, there is no other industrial use of this alloy than compressed gas cylinders produced by reverse spinning.
Dans la construction d'avions commerciaux, la tendance actuelle est à l'utilisation croissante de produits très épais, dans la masse desquels les éléments de structure sont usinés. Par exemple, pour certains avions de petite dimension, les peaux de voilure sont usinées à partir de tôles relativement épaisses afin de permettre l'usinage dans la masse des raidisseurs de voilure, alors que ceux-ci sont habituellement réalisés à partir de profilés ou de tôles pliées, et sont ensuite fixées mécaniquement à la peau. L'usinage intégral dans la masse de l'ensemble peau-raidisseurs conduit à une réduction des coûts de fabrication, puisque le nombre de pièces est réduit et qu'on évite l'assemblage. Par ailleurs, l'utilisation d'une structure non assemblée permet une réduction du poids de l'ensemble.In commercial aircraft construction, the current trend is to use growing of very thick products, in the mass of which the structural elements are machined. For example, for some small planes, the skins of wings are machined from relatively thick sheets to allow machining in the mass of the wing stiffeners, while these are usually made from folded sections or sheets, and are then mechanically fixed to the skin. The integral machining in the mass of the skin-stiffener assembly leads to a reduction in manufacturing costs, since the number of parts is reduced and that we avoid assembly. In addition, the use of an unassembled structure allows a reduction in the weight of the whole.
Il est donc souhaitable qu'en plus des propriétés habituellement recherchées pour les éléments de structure d'avions, à savoir une résistance mécanique élevée, une bonne tolérance aux dommages et une bonne résistance à la fatigue et aux différentes formes de corrosion, les tôles présentent des caractéristiques mécaniques homogènes sur toute l'épaisseur, c'est-à-dire que les propriétés ne varient pas de manière significative en fonction de l'épaisseur, typiquement entre 10 et 120 mm. D'autre part, plus on recourt à l'usinage, plus la stabilité à l'usinage est souhaitable, ce qui s'obtient par un faible niveau de contraintes internes. Or, il est connu que, pour une tôle épaisse, les caractéristiques mécaniques sont d'autant plus homogènes, et les contraintes internes d'autant plus réduites, que la tôle présente une faible sensibilité à la trempe.It is therefore desirable that in addition to the properties usually sought for structural elements of aircraft, namely high mechanical strength, good tolerance to damage and good resistance to fatigue and various forms of corrosion, the sheets have homogeneous mechanical characteristics over the entire thickness, i.e. the properties do not vary so significant depending on the thickness, typically between 10 and 120 mm. Else On the other hand, the more machining is used, the more desirable the machining stability, which is obtained by a low level of internal stresses. However, it is known that, for a thick sheet, the mechanical characteristics are all the more homogeneous, and the internal stresses all the more reduced, as the sheet has a low sensitivity to quenching.
Enfin, les ailes d'avions, notamment les avions de grande capacité, présentent un profil d'aile galbé, avec une courbure à la fois dans le sens longitudinal et dans le sens transversal. Cette forme complexe peut être obtenue pendant l'opération de revenu dans un autoclave, par formage sur un moule, en mettant en dépression la face de la tôle du côté du moule par rapport à la face opposée, à l'aide d'un vide partiel. Il est impératif que cette opération soit réussie, pour éviter le rebut coûteux d'une pièce à forte valeur ajoutée, notamment pour les pièces de grande dimension. Le gage du succès réside dans un retour élastique le plus faible possible pour une forme de moule donnée, car le retour élastique est le plus souvent difficile à contrôler.Finally, aircraft wings, especially large capacity aircraft, have a curved wing profile, with a curvature both in the longitudinal direction and in the transverse direction. This complex form can be obtained during the operation of returned to an autoclave, by forming on a mold, by depressing the face sheet metal on the mold side with respect to the opposite face, using a partial vacuum. he this operation must be successful, to avoid costly scrap of a part with high added value, especially for large parts. The pledge of success lies in the lowest possible elastic return for a form of mold given, because the elastic return is most often difficult to control.
Le but de la présente invention est de fournir des éléments de structure d'avions présentant des propriétés au moins équivalentes à celles des mêmes éléments réalisés en alliage 2024 à l'état T351 en ce qui concerne les caractéristiques mécaniques statiques, la ténacité, la vitesse de propagation de fissures et la résistance à la corrosion, en utilisant des produits laminés, filés ou forgés présentant un faible niveau de contraintes résiduelles, une faible sensibilité à la trempe et une bonne aptitude au formage au revenu.The object of the present invention is to provide structural elements for aircraft having properties at least equivalent to those of the same elements produced in alloy 2024 in state T351 with regard to mechanical characteristics static, toughness, crack propagation speed and resistance to corrosion, using rolled, extruded or forged products with low level of residual stresses, low sensitivity to hardening and good income training skills.
L'invention a pour objet un élément de structure, notamment un élément d'intrados
d'aile d'avion, réalisé à partir d'un produit laminé, filé ou forgé, en alliage de
composition (% en poids) :
Cu : 4,6 - 5,3 Mg : 0,10 - 0,50 Mn : 0,15 - 0,45 Si < 0,10 Fe < 0,15
Zn < 0,20 Cr < 0,10 autres éléments < 0,05 chacun et < 0,15 au total, reste Al
traité par mise en solution, trempe, traction contrôlée à plus de 1,5% de déformation
permanente et revenu.The subject of the invention is a structural element, in particular an aircraft wing underside element, produced from a rolled, spun or forged product, made of an alloy of composition (% by weight):
Cu: 4.6 - 5.3 Mg: 0.10 - 0.50 Mn: 0.15 - 0.45 Si <0.10 Fe <0.15 Zn <0.20 Cr <0.10 other elements < 0.05 each and <0.15 in total, Al remains treated by dissolving, quenching, controlled traction to more than 1.5% permanent deformation and tempering.
Cet élément présente l'une au moins des propriétés suivantes :
- limite d'élasticité R0,2 (sens TL) > 350 MPa, de préférence > 370 MPa,
- ténacité K1c (sens L-T) > 42 MPa√m
- résistance à la corrosion intercristalline de type P selon la norme ASTM G110.
- yield point R 0.2 (TL direction)> 350 MPa, preferably> 370 MPa,
- toughness K 1c (LT direction)> 42 MPa√m
- resistance to type P intercrystalline corrosion according to ASTM G110.
L'invention a également pour objet un procédé de fabrication d'un élément de
structure comportant :
Dans le cas où le produit est une tôle, la température d'entrée au laminage à chaud est de préférence inférieure d'au moins 40°C, et plus préférentiellement d'au moins 50°C, à la température de mise en solution.In the case where the product is a sheet, the entry temperature for hot rolling is preferably at least 40 ° C lower, and more preferably at least 40 ° C 50 ° C, at the solution temperature.
L'invention repose sur la constatation qu'un alliage de type 2001, avec certaines modifications de composition et une gamme de fabrication appropriée, pouvait présenter un ensemble de propriétés le rendant apte à l'utilisation dans des structures d'avions, et plus particulièrement dans les intrados d'ailes d'avions commerciaux de grande capacité, avec en plus des propriétés intéressantes en matière de faible sensibilité à le trempe, de faibles contraintes résiduelles et de formage au revenu.The invention is based on the observation that an alloy of the 2001 type, with certain composition changes and a suitable manufacturing range, could present a set of properties making it suitable for use in structures aircraft, and more particularly in the lower surfaces of commercial aircraft wings high capacity, with interesting properties in terms of low sensitivity to quenching, low residual stresses and tempering.
Par rapport à l'alliage 2001, la plage de teneur en cuivre est nettement décalée vers le bas, tout en restant supérieure à celle des alliages 2024 ou 2034 pour intrados, pour compenser, dans son influence sur la résistance mécanique, la faible teneur en magnésium. Il est préférable de choisir une teneur en cuivre supérieure à 4,8%, voire à 4,9% ou même 5%. La teneur en magnésium est du même ordre que dans l'alliage 2001, et de préférence située entre 0,20 et 0,40%. Le rapport Cu/Mg est ainsi pratiquement toujours supérieur à 10, contrairement à l'enseignement du brevet US 5652063, qui préconise un rapport Cu/Mg compris entre 5 et 9.Compared with the 2001 alloy, the copper content range is clearly shifted towards the low, while remaining higher than that of the 2024 or 2034 alloys for lower surface, for compensate, in its influence on the mechanical resistance, the low content of magnesium. It is preferable to choose a copper content higher than 4.8%, or even at 4.9% or even 5%. The magnesium content is of the same order as in the alloy 2001, and preferably between 0.20 and 0.40%. The Cu / Mg ratio is thus almost always greater than 10, contrary to the teaching of the US patent 5652063, which recommends a Cu / Mg ratio between 5 and 9.
La teneur en manganèse est contrôlée dans une plage relativement étroite. En dessous de 0,15%, on risquerait d'avoir un grain trop gros ; au-dessus de 0,45%, on obtient une structure non recristallisée qui n'est pas favorable à la maítrise des contraintes résiduelles. Un domaine préférentiel est compris entre 0,25 et 0,40%. Il est à noter que, pour la même raison, et contrairement à l'enseignement du brevet US 5593516, l'alliage ne comporte aucun autre élément anti-recristallisant tel que le vanadium ou le zirconium.The manganese content is controlled within a relatively narrow range. Below 0.15%, we would risk having a grain too large; above 0.45%, we obtain a non-recrystallized structure which is not favorable for the control of constraints residual. A preferred range is between 0.25 and 0.40%. Note that, for the same reason, and contrary to the teaching of US Pat. No. 5,593,516, the alloy does not contain any other anti-recrystallizing element such as vanadium or zirconium.
Les teneurs en fer et en silicium sont maintenues respectivement en dessous de 0,15 et 0,10%, et de préférence en dessous de 0,09 et 0,08%, pour garantir une bonne ténacité. L'alliage peut comporter jusqu'à 0,2% de zinc, cette addition ayant un effet favorable sur la résistance mécanique, sans risque pour d'autres propriétés, comme la résistance à la corrosion.The iron and silicon contents are maintained respectively below 0.15 and 0.10%, and preferably below 0.09 and 0.08%, to guarantee good tenacity. The alloy can contain up to 0.2% zinc, this addition having an effect favorable on mechanical resistance, without risk for other properties, such as corrosion resistance.
La gamme de transformation comporte la coulée d'une plaque ou d'une billette, un réchauffage ou une homogénéisation à une température proche de la température de fusion commençante de l'alliage et une transformation à chaud par laminage, filage ou forgeage. Dans le cas du laminage, celui-ci peut comporter une passe, dite d'élargissement, dans le sens perpendiculaire à celui des autres passes, et destiné à améliorer l'isotropie du produit. La température de transformation à chaud se situe, de préférence, à un niveau légèrement plus bas que celle qu'adopterait l'homme de métier en référence à la température de mise en solution. Ainsi, en ce qui concerne le laminage, la température d'entrée se situe, de préférence, à au moins 40°C, voire 50°C, en dessous de la température de mise en solution, et la température de sortie de 20 à 30°C en dessous de la température d'entrée.The transformation range includes the casting of a plate or a billet, a reheating or homogenization to a temperature close to the temperature of beginning alloy melting and hot transformation by rolling, spinning or forging. In the case of rolling, this may include a pass, called widening, in the direction perpendicular to that of the other passes, and intended for improve the isotropy of the product. The hot transformation temperature is located, preferably at a level slightly lower than that which the man of profession with reference to the solution temperature. So, with regard to the rolling, the inlet temperature is preferably at least 40 ° C, or even 50 ° C, below the solution temperature, and the outlet temperature of 20 to 30 ° C below the inlet temperature.
Le produit est soumis ensuite à une mise en solution aussi complète que possible, à une température proche, par exemple moins de 10°C en dessous, de la température de fusion commençante de l'alliage, tout en évitant la brûlure. Cette température se situe entre 520 et 535°C. La qualité de la mise en solution peut être contrôlée par analyse enthalpique différentielle. Le produit est ensuite trempé, par exemple par immersion dans l'eau froide, de manière à assurer une vitesse de refroidissement comprise entre 10 et 50°C/s. Après la trempe, le produit est tractionné jusqu'à une déformation permanente d'au moins 1,5%, de manière à le détensionner et à améliorer sa planéité.The product is then subjected to a solution as complete as possible, to a temperature close, for example less than 10 ° C below, the temperature of beginning of the alloy, while avoiding burns. This temperature is between 520 and 535 ° C. The quality of the solution can be checked by analysis differential enthalpy. The product is then soaked, for example by immersion in cold water, so as to ensure a cooling rate of between 10 and 50 ° C / s. After quenching, the product is pulled up to deformation permanent of at least 1.5%, so as to relax it and improve its flatness.
Pour l'alliage selon l'invention, cette traction a également pour effet d'améliorer, par un effet d'écrouissage, la limite d'élasticité après revenu, de sorte qu'on peut qualifier l'état obtenu d'état T851, comme s'il s'agissait d'une passe spécifique d'écrouissage après trempe. Comme indiqué plus haut, le revenu proprement dit peut s'effectuer en même temps que la mise en forme du galbe de l'intrados. Ce revenu est effectué de préférence à une température supérieure à 160°C (et plus préférentiellement > 170°C), d'une durée permettant d'atteindre le pic de limite d'élasticité, comme pour un état T6. Typiquement, un revenu de temps équivalent à celui correspondant à 12 à 24 h à une température de 173°C est effectué ; toute combinaison temps-température permettant d'atteindre le pic de revenu de l'alliage est utilisable.For the alloy according to the invention, this traction also has the effect of improving, by a work hardening effect, the elastic limit after tempering, so that one can qualify the state obtained from state T851, as if it were a specific pass hardening after quenching. As noted above, income itself can be performed at the same time as the shaping of the lower surface. This income is preferably performed at a temperature above 160 ° C (and above preferably> 170 ° C), of a duration allowing to reach the limit peak of elasticity, as for a state T6. Typically, a time income equivalent to that corresponding to 12 to 24 h at a temperature of 173 ° C is carried out; all time-temperature combination to reach the peak of alloy income is usable.
La structure métallurgique obtenue est, à l'inverse de celle des alliages 2024 et 2034, fortement recristallisée, avec un taux de recristallisation dépassant toujours 70%, et le plus souvent 90%, sur toute l'épaisseur.The metallurgical structure obtained is, unlike that of the alloys 2024 and 2034, highly recrystallized, with a recrystallization rate always exceeding 70%, and the more often 90%, over the entire thickness.
Les éléments de structure selon l'invention présentent un compromis de propriétés (caractéristiques mécaniques statiques, ténacité, vitesse de propagation de fissures, résistance à la corrosion) qui les rendent aptes à être utilisés dans la construction aéronautique, et notamment à la fabrication d'intrados d'ailes. De plus, ces éléments peuvent être aisément réalisés par usinage et formés au revenu. Enfin, l'alliage utilisé se révèle facilement soudable par les techniques habituelles, ce qui peut permettre de réduire le nombre des assemblages rivetés.The structural elements according to the invention exhibit a compromise of properties (static mechanical characteristics, toughness, speed of crack propagation, corrosion resistance) which make them suitable for use in construction aeronautics, and in particular the manufacture of lower surfaces of wings. In addition, these elements can be easily made by machining and formed in tempering. Finally, the alloy used is easily weldable by conventional techniques, which can allow reduce the number of riveted connections.
On a préparé 6 alliages dont la composition est indiquée au tableau 1. L'alliage A est
un alliage 2024-T3 de composition habituelle pour l'application intrados de voilure.
L'alliage B est un alliage entrant dans le domaine de composition décrit dans le
brevet US 5652063, mais sans addition d'argent. L'alliage C est conforme à
l'invention. Les alliages D et E ne diffèrent de l'alliage C que par un silicium plus
élevé pour D, un manganèse et un cuivre plus élevés pour E et F, et une addition de
zirconium pour F.
Des plaques coulées de section 380 x 120 mm ont été homogénéisées, laminées à
chaud à l'épaisseur 22 mm, mises en solution, trempées à l'eau froide, tractionnées à
2,3% de déformation permanente et revenues. Les paramètres de l'homogénéisation,
du laminage à chaud (températures d'entrée), de mise en solution et de revenu sont
indiqués au tableau 2.
On a mesuré sur les tôles traitées les caractéristiques mécaniques : résistance à la rupture Rm (en MPa), limite d'élasticité conventionnelle à 0,2% R0,2 (en MPa) et allongement à la rupture A (en %), sur des éprouvettes de traction de section circulaire selon la norme ASTM B 557, prélevées à mi-épaisseur dans les sens L et TL (3 éprouvettes par cas).The mechanical characteristics were measured on the treated sheets: breaking strength R m (in MPa), conventional yield strength at 0.2% R 0.2 (in MPa) and elongation at break A (in%) , on tensile specimens of circular section according to standard ASTM B 557, taken at mid-thickness in the directions L and TL (3 specimens per case).
On a mesuré également la ténacité par le facteur d'intensité critique de contrainte K1c (en MPa√m) mesuré, selon la norme ASTM E 399, sur des éprouvettes CT20 prélevées à quart-épaisseur dans les sens L-T et T-L (2 éprouvettes par cas).The toughness was also measured by the critical stress intensity factor K 1c (in MPa√m) measured, according to standard ASTM E 399, on CT20 test pieces taken at quarter thickness in the directions LT and TL (2 test pieces per case).
L'ensemble des résultats est regroupé au tableau 3.
On constate que l'alliage C selon l'invention conduit à une limite d'élasticité nettement supérieure à celle du 2024, et un peu plus faible que celle des alliages B, E et F. L'allongement est plus faible que pour le 2024, mais meilleur que celui des alliages B, D, E et F. La ténacité est la meilleure de tous les alliages testés. On a donc un compromis favorable de ces diverses propriétés. En particulier, les résultats montrent l'effet défavorable, à la fois sur la ténacité et l'allongement, d'une augmentation de la teneur en silicium et en manganèse, ainsi que d'une addition de zirconium.It is found that the alloy C according to the invention leads to an elastic limit significantly higher than that of 2024, and slightly lower than that of alloys B, E and F. The elongation is lower than for 2024, but better than that of alloys B, D, E and F. The toughness is the best of all the alloys tested. So we have a favorable compromise of these various properties. In particular, the results show the unfavorable effect, both on toughness and elongation, of a increased silicon and manganese content, as well as an addition of zirconium.
On a procédé par ailleurs à des essais accélérés de corrosion intercristalline sur des
échantillons des 6 alliages, à l'état T351 pour l'alliage 2024 (A) et T851 pour les
autres, en surface et à coeur, selon la norme ASTM G110. On note le type de
corrosion observé : P pour piqûres, I pour corrosion intercristalline et P + I pour les
deux. On mesure la profondeur maximum (P max en µm), la profondeur de corrosion
intercristalline (P CI en µm) et le pourcentage de corrosion intercristalline sur
l'échantillon. Les résultats sont indiqués au tableau 4 :
On observe que l'alliage selon l'invention présente la seconde meilleure résistance à la corrosion inter cristalline en surface, et la meilleure à coeur. La différence entre les résultats à coeur et en surface est faible, ce qui est une propriété favorable lorsque l'élément de structure est fabriqué par usinage.It is observed that the alloy according to the invention has the second best resistance to inter-crystalline corrosion on the surface, and the best at heart. The difference between core and surface results is low, which is a favorable property when the structural element is manufactured by machining.
On a comparé enfin, pour les alliages A et C, les vitesses de propagation de fissures
de fatigue da/dn dans la direction T-L, en mm/cycle, pour des valeurs de ΔK
comprises entre 15 et 30 MPa√m, selon la norme ASTM E647. Les résultats (2 essais
par alliage) sont indiqués au tableau 5.
On observe que les résultats sont à peu près comparables pour les deux alliages. We observe that the results are roughly comparable for the two alloys.
On a mesuré le niveau de contraintes résiduelles sur des tôles d'épaisseur 40 mm en
alliage 2024, 2034 et selon l'invention, traitées toutes trois au même état T351. Les
compositions (% en poids) sont données au tableau 6 :
La méthode de mesure des contraintes résiduelles est la méthode du barreau décrite
dans le brevet EP 0731185 de la demanderesse. On a mesuré les flèches fL et fTL dans
les sens L et TL (en microns) et calculé dans les deux cas le quotient fe/l2, l'épaisseur
e et la longueur l du barreau étant exprimés en mm. Les résultats sont donnés au
tableau 7 :
On constate que, contrairement aux éprouvettes en alliage 2024 ou 2034, celles selon l'invention présentent une flèche telle que le produit fe est inférieur à 0,10 l2, ce qui est, comme on peut le voir dans le brevet EP 0731185 mentionné ci-dessus, l'indication d'un faible taux de contraintes internes.It is noted that, unlike the 2024 or 2034 alloy test pieces, those according to the invention have a deflection such that the product fe is less than 0.10 l 2 , which is, as can be seen in the patent EP 0731185 mentioned above, the indication of a low rate of internal stresses.
On a mesuré, par analyse d'image sur des micrographies des 4 échantillons précédents, le taux de recristallisation (en %) en surface, à quart-épaisseur et à coeur.We measured, by image analysis on micrographs of the 4 samples above, the recrystallization rate (in%) at the surface, at quarter thickness and at the core.
Les résultats sont indiqués au tableau 8 :
On constate que l'alliage selon l'invention présente, à l'état traité, une structure complètement recristallisée dans toute l'épaisseur du produit..It is found that the alloy according to the invention has, in the treated state, a structure completely recrystallized throughout the thickness of the product.
On a mesuré sur des échantillons selon l'invention, d'épaisseur 15, 40 et 80 mm,
traités à l'état T851, avec une température d'entrée au laminage à chaud de 475°C,
une mise en solution de 2 h à 528°C, et un revenu de 24 h à 173°C, les
caractéristiques mécaniques statiques (limite d'élasticité R0,2 et résistance à la rupture
Rm en MPa et allongement A en %)) à quart-épaisseur et à mi-épaisseur, dans les sens
L et TL. L'ensemble des résultats est reproduit au tableau 9. Ils montrent la faible
évolution des propriétés en fonction de l'épaisseur, résultant d'une faible sensibilité à
la trempe.
Ces tôles sont particulièrement adaptées à la fabrication d'éléments d'intrados d'ailes d'avions par une gamme de fabrication comportant un usinage et une ou plusieurs opérations de mise en forme.These sheets are particularly suitable for the manufacture of wing lower elements of aircraft by a manufacturing range comprising machining and one or more shaping operations.
Claims (24)
Cu : 4,6 - 5,3 Mg : 0,10 - 0,50 Mn : 0,15 - 0,45 Si < 0,10 Fe < 0,15 Zn < 0,20 Cr < 0,10 autres éléments < 0,05 chacun et < 0,15 au total, reste Al, traité par mise en solution, trempe, traction contrôlée à plus de 1,5% de déformation permanente et revenu.Structural element, in particular an aircraft wing underside element, produced from a rolled, extruded or forged product, made of an alloy of composition (% by weight):
Cu: 4.6 - 5.3 Mg: 0.10 - 0.50 Mn: 0.15 - 0.45 Si <0.10 Fe <0.15 Zn <0.20 Cr <0.10 other elements < 0.05 each and <0.15 in total, Al remainder, treated by dissolution, quenching, controlled traction to more than 1.5% permanent deformation and tempering.
Cu : 4,6 - 5,3 Mg : 0,10 - 0,50 Mn : 0,15 - 0,45 Si < 0,10 Fe < 0,15 Zn < 0,20 Cr < 0,10 autres éléments < 0,05 chacun et < 0,15 au total, reste aluminium,
Cu: 4.6 - 5.3 Mg: 0.10 - 0.50 Mn: 0.15 - 0.45 Si <0.10 Fe <0.15 Zn <0.20 Cr <0.10 other elements < 0.05 each and <0.15 in total, aluminum remains,
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9916610A FR2802946B1 (en) | 1999-12-28 | 1999-12-28 | AL-CU-MG ALLOY AIRCRAFT STRUCTURAL ELEMENT |
FR9916610 | 1999-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1114877A1 true EP1114877A1 (en) | 2001-07-11 |
EP1114877B1 EP1114877B1 (en) | 2005-02-02 |
Family
ID=9553940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00420263A Revoked EP1114877B1 (en) | 1999-12-28 | 2000-12-20 | Al-Cu-Mg alloy aircraft structural element |
Country Status (4)
Country | Link |
---|---|
US (2) | US6569542B2 (en) |
EP (1) | EP1114877B1 (en) |
DE (1) | DE60017868T2 (en) |
FR (1) | FR2802946B1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2848480A1 (en) * | 2002-12-17 | 2004-06-18 | Pechiney Rhenalu | Aluminum alloy aeronautical structural element fabrication involves machining of thick sheets |
WO2004056501A2 (en) * | 2002-12-17 | 2004-07-08 | Pechiney Rhenalu | Method for making structural elements by machining thick plates |
WO2004111282A1 (en) * | 2003-06-06 | 2004-12-23 | Corus Aluminium Walzprodukte Gmbh | High-damage tolerant aluminium alloy product in particular for aerospace applications |
WO2008003504A2 (en) | 2006-07-07 | 2008-01-10 | Aleris Aluminum Koblenz Gmbh | Aa7000-series aluminium alloy products and a method of manufacturing thereof |
US7323068B2 (en) | 2002-08-20 | 2008-01-29 | Aleris Aluminum Koblenz Gmbh | High damage tolerant Al-Cu alloy |
US7494552B2 (en) | 2002-08-20 | 2009-02-24 | Aleris Aluminum Koblenz Gmbh | Al-Cu alloy with high toughness |
US7604704B2 (en) | 2002-08-20 | 2009-10-20 | Aleris Aluminum Koblenz Gmbh | Balanced Al-Cu-Mg-Si alloy product |
US7666267B2 (en) | 2003-04-10 | 2010-02-23 | Aleris Aluminum Koblenz Gmbh | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
WO2015044538A1 (en) * | 2013-09-30 | 2015-04-02 | Constellium France | Underwing sheet metal with improved damage tolerance properties |
WO2017037391A1 (en) * | 2015-09-03 | 2017-03-09 | Constellium Issoire | Extruded product made from al-cu-mg alloy with improved compromise between mechanical resistance and toughness |
CN106513638A (en) * | 2016-11-18 | 2017-03-22 | 喀左金牛铸造有限公司 | 2Al2 aluminum alloy casting process |
CN110205446A (en) * | 2019-06-17 | 2019-09-06 | 西安理工大学 | A kind of G520 martensitic precipitation heat treatment method |
US10472707B2 (en) | 2003-04-10 | 2019-11-12 | Aleris Rolled Products Germany Gmbh | Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties |
CN110724866A (en) * | 2019-11-28 | 2020-01-24 | 西南铝业(集团)有限责任公司 | No zirconium blank of accurate wheel hub die forging of 2014 aluminum alloy aviation |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4932473B2 (en) * | 2003-03-17 | 2012-05-16 | アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング | Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure |
US20050034794A1 (en) * | 2003-04-10 | 2005-02-17 | Rinze Benedictus | High strength Al-Zn alloy and method for producing such an alloy product |
DE10332003B3 (en) * | 2003-07-14 | 2004-12-16 | Eads Deutschland Gmbh | Welded aluminum structural component for aircraft comprises a skin field and a reinforcing element on which a connecting element made from an aluminum cast material is arranged |
FR2858984B1 (en) * | 2003-08-19 | 2007-01-19 | Corus Aluminium Walzprod Gmbh | AL-CU HIGH-TENACITY ALLOY PRODUCT AND PROCESS FOR PRODUCING THE SAME |
US20060032560A1 (en) * | 2003-10-29 | 2006-02-16 | Corus Aluminium Walzprodukte Gmbh | Method for producing a high damage tolerant aluminium alloy |
US20050098245A1 (en) * | 2003-11-12 | 2005-05-12 | Venema Gregory B. | Method of manufacturing near-net shape alloy product |
US7883591B2 (en) * | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
US20070204937A1 (en) * | 2005-07-21 | 2007-09-06 | Aleris Koblenz Aluminum Gmbh | Wrought aluminium aa7000-series alloy product and method of producing said product |
US20070151636A1 (en) * | 2005-07-21 | 2007-07-05 | Corus Aluminium Walzprodukte Gmbh | Wrought aluminium AA7000-series alloy product and method of producing said product |
EP1945825B1 (en) * | 2005-10-25 | 2014-06-25 | Aleris Rolled Products Germany GmbH | Al-cu-mg alloy suitable for aerospace application |
US20070151637A1 (en) * | 2005-10-28 | 2007-07-05 | Aleris Aluminum Koblenz Gmbh | Al-Cu-Mg ALLOY SUITABLE FOR AEROSPACE APPLICATION |
FR2907796B1 (en) * | 2006-07-07 | 2011-06-10 | Aleris Aluminum Koblenz Gmbh | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME |
RU2524291C2 (en) | 2009-01-16 | 2014-07-27 | Алерис Алюминум Кобленц Гмбх | Production of board from aluminium alloy with high residual strain |
US9314826B2 (en) | 2009-01-16 | 2016-04-19 | Aleris Rolled Products Germany Gmbh | Method for the manufacture of an aluminium alloy plate product having low levels of residual stress |
CN102108476B (en) * | 2010-12-28 | 2012-02-22 | 重庆市宇一机械有限公司 | Method for preparing high-strength and high-toughness aluminium alloy aviation safety part through modification |
US9123930B1 (en) | 2011-04-29 | 2015-09-01 | Greatbatch Ltd. | Dual glass to metal seal cell |
CN103805924B (en) * | 2012-11-14 | 2016-01-20 | 北京有色金属研究总院 | A kind ofly be applicable to the Homogenization Treatments of magnesium alloy ingot and the method for following process |
CN103103370A (en) * | 2012-12-11 | 2013-05-15 | 龙口市丛林铝材有限公司 | Production technology of aluminum alloy sections used for brake pad |
FR3047253B1 (en) * | 2016-02-03 | 2018-01-12 | Constellium Issoire | AL-CU-LI THICK-ALLOY TILES WITH IMPROVED FATIGUE PROPERTIES |
CA3032261A1 (en) | 2016-08-26 | 2018-03-01 | Shape Corp. | Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
US11072844B2 (en) | 2016-10-24 | 2021-07-27 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
CN107309658B (en) * | 2017-06-19 | 2019-05-14 | 江西洪都航空工业集团有限责任公司 | A kind of long narrow skin part processing tool and technique |
CN107090569A (en) * | 2017-07-07 | 2017-08-25 | 哈尔滨中飞新技术股份有限公司 | Prepare the Technology for Heating Processing of high-strength hard aluminum alloy |
US20190233921A1 (en) * | 2018-02-01 | 2019-08-01 | Kaiser Aluminum Fabricated Products, Llc | Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application |
CN114293077B (en) * | 2021-12-29 | 2022-09-30 | 北京理工大学 | High-strength aluminum-copper alloy for aerospace structural member and preparation method thereof |
CN115786787B (en) * | 2022-07-18 | 2024-02-23 | 山东浩信机械有限公司 | High-strength and high-toughness Al-Cu cast aluminum alloy and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1379764A (en) * | 1963-10-17 | 1964-11-27 | Pechiney Prod Chimiques Sa | New application of a light alloy |
FR2472618A1 (en) * | 1979-11-07 | 1981-07-03 | Showa Aluminium Ind | ALUMINUM ALLOY CASTING BAR FOR WORK PRODUCTS HAVING IMPROVED MECHANICAL PROPERTIES AND WORKABILITY, AND METHOD OF MANUFACTURING THE SAME |
US4610733A (en) * | 1984-12-18 | 1986-09-09 | Aluminum Company Of America | High strength weldable aluminum base alloy product and method of making same |
US5376192A (en) * | 1992-08-28 | 1994-12-27 | Reynolds Metals Company | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874213A (en) * | 1974-05-23 | 1975-04-01 | Alusuisse | Extrusion method for high strength heat treatable aluminum alloys |
JPS5669346A (en) | 1979-11-07 | 1981-06-10 | Showa Alum Ind Kk | Aluminum alloy for working and its manufacture |
FR2731440B1 (en) * | 1995-03-10 | 1997-04-18 | Pechiney Rhenalu | AL-CU-MG ALLOY SHEETS WITH LOW LEVEL OF RESIDUAL CONSTRAINTS |
-
1999
- 1999-12-28 FR FR9916610A patent/FR2802946B1/en not_active Expired - Fee Related
-
2000
- 2000-12-13 US US09/734,661 patent/US6569542B2/en not_active Expired - Lifetime
- 2000-12-20 EP EP00420263A patent/EP1114877B1/en not_active Revoked
- 2000-12-20 DE DE60017868T patent/DE60017868T2/en not_active Revoked
-
2003
- 2003-04-24 US US10/421,774 patent/US6692589B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1379764A (en) * | 1963-10-17 | 1964-11-27 | Pechiney Prod Chimiques Sa | New application of a light alloy |
FR2472618A1 (en) * | 1979-11-07 | 1981-07-03 | Showa Aluminium Ind | ALUMINUM ALLOY CASTING BAR FOR WORK PRODUCTS HAVING IMPROVED MECHANICAL PROPERTIES AND WORKABILITY, AND METHOD OF MANUFACTURING THE SAME |
US4610733A (en) * | 1984-12-18 | 1986-09-09 | Aluminum Company Of America | High strength weldable aluminum base alloy product and method of making same |
US5376192A (en) * | 1992-08-28 | 1994-12-27 | Reynolds Metals Company | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7323068B2 (en) | 2002-08-20 | 2008-01-29 | Aleris Aluminum Koblenz Gmbh | High damage tolerant Al-Cu alloy |
US7815758B2 (en) | 2002-08-20 | 2010-10-19 | Aleris Aluminum Koblenz Gmbh | High damage tolerant Al-Cu alloy |
US7604704B2 (en) | 2002-08-20 | 2009-10-20 | Aleris Aluminum Koblenz Gmbh | Balanced Al-Cu-Mg-Si alloy product |
US7494552B2 (en) | 2002-08-20 | 2009-02-24 | Aleris Aluminum Koblenz Gmbh | Al-Cu alloy with high toughness |
US7763128B2 (en) | 2002-12-17 | 2010-07-27 | Alcan Rhenalu | Process for manufacturing structural components by machining plates |
CN1729308B (en) * | 2002-12-17 | 2010-04-14 | 皮奇尼何纳吕公司 | Method for producing structural component by machining thick sheet |
US7837808B2 (en) | 2002-12-17 | 2010-11-23 | Alcan Rhenalu | Process for manufacturing structural components by machining plates |
WO2004056501A2 (en) * | 2002-12-17 | 2004-07-08 | Pechiney Rhenalu | Method for making structural elements by machining thick plates |
FR2848480A1 (en) * | 2002-12-17 | 2004-06-18 | Pechiney Rhenalu | Aluminum alloy aeronautical structural element fabrication involves machining of thick sheets |
WO2004056501A3 (en) * | 2002-12-17 | 2004-08-19 | Pechiney Rhenalu | Method for making structural elements by machining thick plates |
DE112004000603B4 (en) | 2003-04-10 | 2022-11-17 | Novelis Koblenz Gmbh | Al-Zn-Mg-Cu alloy |
US10472707B2 (en) | 2003-04-10 | 2019-11-12 | Aleris Rolled Products Germany Gmbh | Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties |
US7666267B2 (en) | 2003-04-10 | 2010-02-23 | Aleris Aluminum Koblenz Gmbh | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
CN100503861C (en) * | 2003-06-06 | 2009-06-24 | 克里斯铝轧制品有限公司 | High-damage tolerant aluminium alloy product in particular for aerospace applications |
GB2419891A (en) * | 2003-06-06 | 2006-05-10 | Corus Aluminium Walzprod Gmbh | High-damage tolerant aluminium alloy product in particular for aerospace applications |
WO2004111282A1 (en) * | 2003-06-06 | 2004-12-23 | Corus Aluminium Walzprodukte Gmbh | High-damage tolerant aluminium alloy product in particular for aerospace applications |
ES2293814A1 (en) * | 2003-06-06 | 2008-03-16 | Corus Aluminium Walzprodukte Gmbh | High-damage tolerant aluminium alloy product in particular for aerospace applications |
US8043445B2 (en) | 2003-06-06 | 2011-10-25 | Aleris Aluminum Koblenz Gmbh | High-damage tolerant alloy product in particular for aerospace applications |
GB2419891B (en) * | 2003-06-06 | 2007-08-22 | Corus Aluminium Walzprod Gmbh | High-damage tolerant aluminium alloy product in particular for aerospace applications |
WO2008003504A2 (en) | 2006-07-07 | 2008-01-10 | Aleris Aluminum Koblenz Gmbh | Aa7000-series aluminium alloy products and a method of manufacturing thereof |
WO2015044538A1 (en) * | 2013-09-30 | 2015-04-02 | Constellium France | Underwing sheet metal with improved damage tolerance properties |
FR3011252A1 (en) * | 2013-09-30 | 2015-04-03 | Constellium France | INTRADOS SHEET HAS IMPROVED DAMAGE TOLERANCE PROPERTIES |
WO2017037391A1 (en) * | 2015-09-03 | 2017-03-09 | Constellium Issoire | Extruded product made from al-cu-mg alloy with improved compromise between mechanical resistance and toughness |
FR3040711A1 (en) * | 2015-09-03 | 2017-03-10 | Constellium Issoire | EXTRUDED AL-CU-MG ALLOY PRODUCT INCREASED BETWEEN MECHANICAL RESISTANCE AND TENACITY |
CN106513638B (en) * | 2016-11-18 | 2019-07-12 | 喀左金牛铸造有限公司 | 2A12 aluminum alloy casting technique |
CN106513638A (en) * | 2016-11-18 | 2017-03-22 | 喀左金牛铸造有限公司 | 2Al2 aluminum alloy casting process |
CN110205446A (en) * | 2019-06-17 | 2019-09-06 | 西安理工大学 | A kind of G520 martensitic precipitation heat treatment method |
CN110724866A (en) * | 2019-11-28 | 2020-01-24 | 西南铝业(集团)有限责任公司 | No zirconium blank of accurate wheel hub die forging of 2014 aluminum alloy aviation |
Also Published As
Publication number | Publication date |
---|---|
US6569542B2 (en) | 2003-05-27 |
FR2802946A1 (en) | 2001-06-29 |
FR2802946B1 (en) | 2002-02-15 |
US20030207141A1 (en) | 2003-11-06 |
US6692589B2 (en) | 2004-02-17 |
US20010006082A1 (en) | 2001-07-05 |
EP1114877B1 (en) | 2005-02-02 |
DE60017868D1 (en) | 2005-03-10 |
DE60017868T2 (en) | 2005-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1114877B1 (en) | Al-Cu-Mg alloy aircraft structural element | |
FR2855834A1 (en) | High strength aluminum alloy products with high fatigue resistance for use as the sheets and panels of aircraft structural components for the fuselage and wings | |
EP1170118B1 (en) | Aluminium alloy plated sheets for structural aircraft elements | |
EP1891247B1 (en) | High-strength aluminum-copper-lithium sheet metal for aircraft fuselages | |
FR2853667A1 (en) | IMPROVED AL-AN-MG-CU ALLOY AS REGARDS ITS COMBINED PROPERTIES OF DAMAGE TOLERANCE AND MECHANICAL STRENGTH | |
FR3068370B1 (en) | AL-ZN-CU-MG ALLOYS AND PROCESS FOR PRODUCING THE SAME | |
FR2902442A1 (en) | ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY | |
CA2907854C (en) | Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages | |
FR2853666A1 (en) | HIGH-STRENGTH Al-Zn ALLOY, PROCESS FOR PRODUCING PRODUCTS IN SUCH AN ALLOY, AND PRODUCTS OBTAINED ACCORDING TO THIS PROCESS | |
CA2961712C (en) | Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages | |
EP2235224A1 (en) | Rolled product made of aluminum-lithium alloy for aeronautical applications | |
EP1644546B1 (en) | Use of pipes made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage | |
EP1026270B1 (en) | AlCuMg alloy product for aircraft body member | |
EP1544315B1 (en) | Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy | |
EP3824110A1 (en) | Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly | |
CA2907807A1 (en) | Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages | |
CA3012956C (en) | Thick plates made of al-cu-li alloy with improved fatigue properties | |
EP1143027A1 (en) | Process for making avionic structural elements from an Al-Si-Mg alloy | |
FR2889542A1 (en) | High strength aluminum-copper-lithium sheet metal production for use in aircraft fuselage panels and stiffeners | |
EP3802897B1 (en) | Thin sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture | |
WO2023144492A1 (en) | Improved thin sheet made of aluminium-copper-lithium alloy | |
FR2789405A1 (en) | New quenched and stretched aluminum-copper-magnesium alloy product, for aircraft wing intrados skin and wing or fuselage intrados strut manufacture has a large plastic deformation range | |
EP4069875A1 (en) | Aluminum-copper-lithium alloy thin sheets with improved toughness, and process for manufacturing an aluminum-copper-lithium alloy thin sheet | |
FR2892424A1 (en) | Welded aluminum alloy product with elevated strength, high rupture tenacity and high corrosion resistance for use in aerospace structural applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010929 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20040206 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60017868 Country of ref document: DE Date of ref document: 20050310 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050422 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20051102 Opponent name: ALCOA INC. |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20051102 Opponent name: ALCOA INC. Effective date: 20051102 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALCAN RHENALU |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAD | Information modified related to despatch of communication that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSCREV1 |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ALCOA INC. Effective date: 20051102 Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20051102 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090202 Year of fee payment: 9 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081229 Year of fee payment: 9 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081217 Year of fee payment: 9 |
|
27W | Patent revoked |
Effective date: 20090604 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20090604 |