EP1026270B1 - AlCuMg alloy product for aircraft body member - Google Patents

AlCuMg alloy product for aircraft body member Download PDF

Info

Publication number
EP1026270B1
EP1026270B1 EP00420020A EP00420020A EP1026270B1 EP 1026270 B1 EP1026270 B1 EP 1026270B1 EP 00420020 A EP00420020 A EP 00420020A EP 00420020 A EP00420020 A EP 00420020A EP 1026270 B1 EP1026270 B1 EP 1026270B1
Authority
EP
European Patent Office
Prior art keywords
mpa
measured
thickness
product
quenched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00420020A
Other languages
German (de)
French (fr)
Other versions
EP1026270A1 (en
Inventor
Timothy Warner
Philippe Lassince
Philippe Lequeu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26234808&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1026270(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR9901468A external-priority patent/FR2789405A1/en
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP1026270A1 publication Critical patent/EP1026270A1/en
Application granted granted Critical
Publication of EP1026270B1 publication Critical patent/EP1026270B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium

Definitions

  • the invention relates to rolled, spun or forged products made from hardened AlCuMg alloys and tractionned for the manufacture of aircraft structural elements, in particular skin panels and underside stiffeners of wing, and having, for example, compared to the products of the prior art used for the same application, a improved compromise between the properties of mechanical strength, formability, toughness, tolerance to damage and residual stresses.
  • the designation of alloys and metallurgical states corresponds to the nomenclature of Aluminum Association, adopted by European standards EN 515 and EN 573.
  • Large commercial aircraft wings have an upper section (or extrados) consisting of a skin made from thick alloy plates 7150 to the T651 state, or 7055 alloy to the T7751 state or 7449 to the T7951 state, and stiffeners made from profiles of the same alloy, and a lower part (or intrados) consisting of a skin made from thick 2024 alloy state T351 or 2324 in state T39, and stiffeners made from same alloy. Both parts are assembled by longitudinal members and ribs.
  • the alloy 2024 according to the designation of the Aluminum Association or the standard EN 573-3 has the following chemical composition (% by weight): If ⁇ 0.5 Fe ⁇ 0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr ⁇ 0.10 Zn ⁇ 0.25 Ti ⁇ 0 15
  • Patent Application EP 0731185 of the Applicant relates to an alloy, registered subsequently under No. 2024A, of composition: Si ⁇ 0.25 Fe ⁇ 0.25 Cu: 3.5 - 5 Mg: 1 - 2 Mn ⁇ 0.55 with the relation: 0 ⁇ Mn - 2Fe ⁇ 0.2
  • the thick plates of this alloy have both improved toughness and reduced level of residual stresses, without loss on the other properties.
  • US Pat. No. 5,863,359 and US Pat. No. 5,865,914 to Alcoa relate respectively to an aircraft wing comprising an alloy intrados of composition: Cu: 3.6 - 4 Mg: 1 - 1.6 (pref: 1.15 - 1.5) Mn: 0.3 - 0.7 (pref: 0.5 - 0.6) Zr: 0, 05 - 0.25 and preferably Fe ⁇ 0.07 and Si ⁇ 0.05 having both the following properties: R 0.2 (LT)> 60 ksi (414 MPa) and K 1c (LT)> 38 ksi ⁇ inch (42 MPa ⁇ m), and a method of manufacturing a lower surface element having an R 0.2 (LT)> 60 ksi comprising casting an alloy of the above composition, homogenizing at 471 to 482 ° C, a temperature> 399 ° C., dissolution above 488 ° C., quenching, cold working preferably of more than 9% and traction of at least 1%.
  • the object of the invention is therefore to provide AlCuMg alloy products in the state quenched and cold deformed, intended for the manufacture of the underside of aircraft wings, and having, compared to similar products of the prior art, a compromise more favorable for all the properties of use: mechanical resistance, speed of crack propagation, toughness, fatigue resistance, and stress ratio residual.
  • the subject of the invention is a rolled, spun or forged product made of AlCuMg alloy, treated by homogenization, heat-treated with an outlet temperature greater than 420 ° C., so as to obtain a recrystallization rate at a quarter-thickness less than 20%, dissolving, quenching, cold drawing and aging, intended for the manufacture of aircraft structural elements, composition (% by weight): Fe ⁇ 0.15 If ⁇ 0.15 Cu: 4.0 - 4.3 Mg: 1.0 - 1.5 Mn: 0.5 - 0.8 Zr: 0.08 - 0.15 other elements: ⁇ 0.05 each and ⁇ 0.15 in total, having a ratio R m (L) / R 0.2 (L) of the breaking strength in the L direction at the yield stress in the L direction greater than 1 , 25 (and preferably at 1.30).
  • This sheet also has a level of residual stresses such that the arrow f measured in the L and TL directions after machining at mid-thickness of a bar resting on two supports distant by a length l is such that: f ⁇ (0.14 l 2 ) / ef being measured in microns, the thickness e of the sheet and the length 1 being expressed in mm.
  • the chemical composition of the product differs from that of the usual 2024 by a reduced in iron and silicon, a higher manganese content and an addition of zirconium. Compared to 2034, we have a lower manganese content and a lower slightly reduced copper content. Compared to the composition of the alloys described in US Pat. No. 5,863,359 and US Pat. No. 5,865,914, the copper content is higher; which makes it possible to compensate, for the mechanical strength, cold working less high after quenching. Surprisingly, this narrow domain of composition (notably with regard to manganese), associated with changes in the range of manufacture, leads, compared to the prior art, to an improvement significant compromise between mechanical strength, elongation and tolerance damage to the operating conditions of a large civil aircraft.
  • the manufacturing method comprises the casting of plates, in the case where the product to be manufactured is a rolled sheet, or billets in the case where it is a spun section or a forged part.
  • the plate or the billet is scalped, then homogenized between 450 and 500 ° C.
  • the hot transformation is then carried out by rolling, spinning or forging. This transformation is preferably carried out at a temperature higher than the temperatures usually used, the outlet temperature being greater than 420 ° C. and preferably 440 ° C. so as to obtain a little recrystallized structure on the treated product, with a rate of recrystallization at a quarter thickness less than 20%, and preferably 10%.
  • the laminated, spun or forged half-product is then dissolved between 480 and 505 ° C., so that this dissolution is as complete as possible, that is to say that the maximum of potentially soluble phases, in particular the Al 2 Cu and Al 2 CuMg precipitates are actually in solid solution.
  • the quality of the dissolution can be assessed by differential enthalpy analysis (AED) by measuring the specific energy using the area of the peak on the thermogram. This specific energy must preferably be less than 2 J / g.
  • the products according to the invention have significantly improved static mechanical characteristics compared to the alloy 2024-T351, currently used for aircraft wing-backs, and only slightly lower than those of 2034-T351.
  • the high plastic gap and elongation of the material result in excellent cold forming ability.
  • the tenacity, measured by the critical stress stress factors K c and K oc, is more than 10% greater than that of 2024 and 2034, and the crack propagation rate da / dn is significantly improved by compared to these two alloys, especially for the high values of ⁇ K, and for variable amplitude loadings.
  • the fatigue life times, measured on notched specimens taken at mid-thickness in the L direction, are also improved by more than 20% compared to 2024 and 2034.
  • alloy 2024, 2034 and alloy according to the invention Three plates 1450 mm wide and 446 mm thick were cast in alloy 2024, 2034 and alloy according to the invention respectively.
  • the chemical compositions (% by weight) of the alloys are given in Table 1: alloy Yes Fe Cu mg mn Zr 2024 0.12 0.20 4.06 1.36 0.54 0,002 2034 0.05 0.07 4.30 1.34 0.98 0.104 invention 0.06 0.08 4.14 1.26 0.65 0,102
  • the sheets was then hot rolled to a thickness of 40 mm by successive passes of the order of 20 mm. Another part of the sheets has been rolled hot up to 15 mm.
  • the inlet temperature at hot rolling was 467 ° C
  • Fatigue tests according to the Airbus AITM 1-0011 specification have been carried out on test pieces with a hole length 230 mm, width 50 mm and thickness 7.94 mm, taken at mid-thickness of the L-shaped plate.
  • the diameter of the hole is 7.94 mm.
  • a mean full test stress of 80 MPa with 4 levels was applied of alternating stresses: 85 MPa, 55 MPa, 45 MPa and 35 MPa for the plates of 40 mm, 110, 85, 55 and 45 MPa for 15 mm sheets, with 2 test pieces per level.
  • the arrow f is measured as follows. We take from the thick sheet e two bars, one called bar L sense, length b in the direction of the length sheet metal (L-direction), width 25 mm in the width direction of the sheet (TL direction) and of thickness e according to the full thickness of the sheet (TC direction), the other, called bar TL direction, having 25 mm in the L direction, b in the TL direction and e in the TC direction.
  • Each bar is machined to mid-thickness and the arrow is measured at mid-length of the bar.
  • This arrow is representative of the level of internal stresses of the sheet and its ability not to deform at machining.
  • the distance 1 between the supports was 180 mm and the length b of the bars 200 mm. Machining is a progressive mechanical machining with passes of about 2 mm.
  • the measurement of the arrow at mid-length is carried out using a comparator with a resolution of one micron. Results for arrows and recrystallization rates are given in Table 6.

Description

Domaine techniqueTechnical area

L'invention concerne des produits laminés, filés ou forgés en alliage AlCuMg trempés et tractionnés, destinés à la fabrication d'éléments de structure d'avion, notamment des panneaux de peau et des raidisseurs d'intrados de voilure, et présentant, par rapport aux produits de l'art antérieur utilisés pour la même application, un compromis amélioré entre les propriétés de résistance mécanique, de formabilité, de ténacité, de tolérance aux dommages et contraintes résiduelles. La désignation des alliages et des états métallurgiques correspond à la nomenclature de l'Aluminum Association, reprise par les normes européennes EN 515 et EN 573.The invention relates to rolled, spun or forged products made from hardened AlCuMg alloys and tractionned for the manufacture of aircraft structural elements, in particular skin panels and underside stiffeners of wing, and having, for example, compared to the products of the prior art used for the same application, a improved compromise between the properties of mechanical strength, formability, toughness, tolerance to damage and residual stresses. The designation of alloys and metallurgical states corresponds to the nomenclature of Aluminum Association, adopted by European standards EN 515 and EN 573.

Etat de la techniqueState of the art

Les ailes d'avions commerciaux de grande capacité comportent une partie supérieure (ou extrados) constituée d'une peau fabriquée à partir de tôles épaisses en alliage 7150 à l'état T651, ou en alliage 7055 à l'état T7751 ou 7449 à l'état T7951, et de raidisseurs fabriqués à partir de profilés du même alliage, et une partie inférieure (ou intrados) constituée d'une peau fabriquée à partir de tôles épaisses en alliage 2024 à l'état T351 ou 2324 à l'état T39, et de raidisseurs fabriqués à partir de profilés du même alliage. Les deux parties sont assemblées par des longerons et des nervures.Large commercial aircraft wings have an upper section (or extrados) consisting of a skin made from thick alloy plates 7150 to the T651 state, or 7055 alloy to the T7751 state or 7449 to the T7951 state, and stiffeners made from profiles of the same alloy, and a lower part (or intrados) consisting of a skin made from thick 2024 alloy state T351 or 2324 in state T39, and stiffeners made from same alloy. Both parts are assembled by longitudinal members and ribs.

L'alliage 2024 selon la désignation de l'Aluminum Association ou la norme EN 573-3 a la composition chimique suivante (% en poids) :
Si < 0,5   Fe < 0,5   Cu : 3,8 - 4,9   Mg : 1,2 - 1,8   Mn : 0,3 - 0,9 Cr < 0,10   Zn < 0,25   Ti < 0,15
The alloy 2024 according to the designation of the Aluminum Association or the standard EN 573-3 has the following chemical composition (% by weight):
If <0.5 Fe <0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr <0.10 Zn <0.25 Ti <0 15

Différentes variantes ont été développées et déposées à l'Aluminum Association sous les désignations 2224, 2324 et 2424, avec notamment des teneurs plus limitées en silicium et en fer. L'alliage 2324 à l'état T39 a fait l'objet du brevet EP 0038605 (= US 4294625) de Boeing, dans lequel l'amélioration de la limite d'élasticité est obtenue par écrouissage à l'aide d'une passe de laminage à froid après trempe. Cet écrouissage tend à diminuer la ténacité et, pour compenser la baisse de ténacité, on diminue les teneurs en Fe, Si, Cu et Mg. Boeing a également développé l'alliage 2034 de composition :
Si < 0,10   Fe < 0,12   Cu : 4,2 - 4,8   Mg : 1,3 - 1,9 Mn : 0,8 - 1,3   Cr < 0,05   Zn < 0,20   Ti < 0,15   Zr : 0,08 - 0,15
Various variants have been developed and filed with the Aluminum Association under the designations 2224, 2324 and 2424, including more limited grades of silicon and iron. The alloy 2324 in the T39 state has been the subject of patent EP 0038605 (= US 4294625) to Boeing, in which the improvement of the elastic limit is obtained by hardening using a pass of cold rolling after quenching. This hardening tends to decrease the tenacity and, to compensate for the decrease in toughness, the contents of Fe, Si, Cu and Mg are reduced. Boeing also developed the alloy 2034 of composition:
If <0.10 Fe <0.12 Cu: 4.2 - 4.8 Mg: 1.3 - 1.9 Mn: 0.8 - 1.3 Cr <0.05 Zn <0.20 Ti <0 , 15 Zr: 0.08 - 0.15

Cet alliage a fait l'objet du brevet EP 0031605 (= US 4336075). Il présente, par rapport au 2024 à l'état T351, une meilleure limite d'élasticité spécifique due à l'augmentation de la teneur en manganèse et à l'ajout d'un autre antirecristallisant (Zr), ainsi qu'une ténacité et une résistance à la fatigue améliorées.This alloy was the subject of patent EP 0031605 (= US 4336075). He presents, by compared to 2024 in the T351 state, a better specific yield strength due to the increase in the manganese content and the addition of another antirecrystallizer (Zr), as well as improved toughness and fatigue resistance.

Le brevet EP 0473122 (= US 5213639) d'Alcoa décrit un alliage, enregistré à l'Aluminum Association comme 2524, de composition: Si < 0,10   Fe < 0,12 Cu : 3,8 - 4,5   Mg : 1,2 - 1,8   Mn : 0,3 - 0,9 pouvant contenir éventuellement un autre antirecristallisant (Zr, V, Hf, Cr, Ag ou Sc). Cet alliage est destiné plus particulièrement aux tôles minces pour fuselage et présente une ténacité et une résistance à la propagation de fissures améliorées par rapport au 2024.EP 0473122 (= US Pat. No. 5,223,639) to Alcoa discloses an alloy, registered at the Aluminum Association as 2524, of composition: Si <0.10 Fe <0.12 Cu: 3.8 - 4.5 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 may contain possibly another antirecrystallizer (Zr, V, Hf, Cr, Ag or Sc). This alloy is intended more particularly for thin sheets for fuselage and has a tenacity and improved crack propagation resistance over 2024.

La demande de brevet EP 0731185 de la demanderesse concerne un alliage, enregistré ultérieurement sous le n° 2024A, de composition: Si < 0,25   Fe < 0,25 Cu : 3,5 - 5   Mg : 1 - 2   Mn < 0,55 avec la relation : 0 < Mn - 2Fe < 0,2 Les tôles épaisses en cet alliage présentent à la fois une tenacité améliorée et un niveau réduit de contraintes résiduelles, sans perte sur les autres propriétés.Patent Application EP 0731185 of the Applicant relates to an alloy, registered subsequently under No. 2024A, of composition: Si <0.25 Fe <0.25 Cu: 3.5 - 5 Mg: 1 - 2 Mn <0.55 with the relation: 0 <Mn - 2Fe <0.2 The thick plates of this alloy have both improved toughness and reduced level of residual stresses, without loss on the other properties.

Les brevets US 5863359 et US 5865914 d'Alcoa concernent respectivement une aile d'avion comportant un intrados en alliage de composition :
Cu : 3,6 - 4   Mg : 1 - 1,6 (préf : 1,15 - 1,5)   Mn : 0,3 - 0,7 (préf. : 0,5 - 0,6) Zr : 0,05 - 0,25 et préférentiellement Fe < 0,07 et Si < 0,05
présentant à la fois les propriétés suivantes : R0,2(LT) > 60 ksi (414 MPa) et K1c(L-T) > 38 ksi√inch (42 MPa√m),
et un procédé de fabrication d'un élément d'intrados ayant un R0,2(LT) > 60 ksi comprenant la coulée d'un alliage de la composition précédente, une homogénéisation entre 471 et 482°C, une transformation à chaud à une température > 399°C, une mise en solution au dessus de 488°C, une trempe, un écrouissage à froid de préférence de plus de 9% et une traction d'au moins 1%.
US Pat. No. 5,863,359 and US Pat. No. 5,865,914 to Alcoa relate respectively to an aircraft wing comprising an alloy intrados of composition:
Cu: 3.6 - 4 Mg: 1 - 1.6 (pref: 1.15 - 1.5) Mn: 0.3 - 0.7 (pref: 0.5 - 0.6) Zr: 0, 05 - 0.25 and preferably Fe <0.07 and Si <0.05
having both the following properties: R 0.2 (LT)> 60 ksi (414 MPa) and K 1c (LT)> 38 ksi√inch (42 MPa√m),
and a method of manufacturing a lower surface element having an R 0.2 (LT)> 60 ksi comprising casting an alloy of the above composition, homogenizing at 471 to 482 ° C, a temperature> 399 ° C., dissolution above 488 ° C., quenching, cold working preferably of more than 9% and traction of at least 1%.

Problème poséProblem

Pour la construction de nouveaux avions commerciaux de grande capacité, il est certes impératif de limiter le poids, de sorte que les cahiers des charges des constructeurs imposent des contraintes typiques plus élevées pour les panneaux de voilure, ce qui entraíne des valeurs minimales plus élevées pour les caractéristiques mécaniques statiques et la tolérance aux dommages des produits en alliage d'aluminium utilisés. L'utilisation de produits écrouis à l'état T39, tels que ceux préconisés dans les brevets US 5863359 et US 5865914, si elle conduit à des limites d'élasticité R0,2 élevées, présente cependant un certain nombre d'inconvénients pour d'autres propriétés d'emploi importantes dans l'application visée. En effet, il en résulte un écart plastique, c'est-à-dire une différence entre la résistance à la rupture Rm et la limite d'élasticité R0,2, très réduit, ce qui entraíne une formabilité à froid plus faible et une moins bonne tenue en propagation de fissures de fatigue avec chargement à amplitude variable. En effet, le ralentissement de la propagation des fissures après surcharge partielle est moins important si l'écart plastique est réduit.For the construction of new commercial high-capacity aircraft, it is certainly imperative to limit the weight, so that the specifications of the manufacturers impose higher typical constraints for the wing panels, which leads to higher minimum values for the static mechanical characteristics and the damage tolerance of the aluminum alloy products used. The use of products hardened in the T39 state, such as those recommended in US Pat. No. 5,863,359 and US Pat. No. 5,865,914, if it leads to high yield strengths R 0,2 , however, has a certain number of disadvantages for use with other important employment properties in the intended application. Indeed, this results in a plastic gap, that is to say a difference between the breaking strength R m and the yield strength R 0.2 , very reduced, resulting in a lower cold formability and less good resistance in propagation of fatigue cracks with variable amplitude loading. Indeed, the slowing of crack propagation after partial overload is less important if the plastic gap is reduced.

De plus, des pièces de plus grande dimension doivent être usinées sans distorsion dans des tôles plus épaisses, ce qui implique une meilleure maítrise du niveau de contraintes résiduelles. Or, l'état T39 s'est révélé peu favorable de ce point de vue.In addition, larger parts must be machined without distortion in thicker sheets, which implies a better control of the level of constraints residual. However, state T39 has proved to be unfavorable from this point of view.

Le but de l'invention est donc de fournir des produits en alliage AlCuMg à l'état trempé et déformé à froid, destinés à la fabrication d'intrados d'ailes d'avion, et présentant, par rapport aux produits similaires de l'art antérieur, un compromis plus favorable pour l'ensemble des propriétés d'emploi : résistance mécanique, vitesse de propagation de fissures, ténacité, résistance à la fatigue, et taux de contraintes résiduelles.The object of the invention is therefore to provide AlCuMg alloy products in the state quenched and cold deformed, intended for the manufacture of the underside of aircraft wings, and having, compared to similar products of the prior art, a compromise more favorable for all the properties of use: mechanical resistance, speed of crack propagation, toughness, fatigue resistance, and stress ratio residual.

Objet de l'inventionObject of the invention

L'invention a pour objet un produit laminé, filé ou forgé en alliage AlCuMg, traité par homogénéisation, transformation à chaud avec une température de sortie supérieure à 420°C, de manière à obtenir un taux de recristallisation au quart d'épaisseur inférieur à 20%, mise en solution, trempe, traction à froid et vieillissement, destiné à la fabrication d'éléments de structure d'avion, de composition (% en poids) :
Fe < 0,15   Si < 0, 15   Cu : 4,0 - 4,3   Mg: 1,0 - 1,5 Mn : 0,5 - 0,8 Zr : 0,08 - 0,15   autres éléments: < 0,05 chacun et < 0,15 au total, présentant un rapport Rm(L)/R0,2(L) de la résistance à la rupture dans le sens L à la limite élastique dans le sens L, supérieur à 1,25 (et de préférence à 1,30).
The subject of the invention is a rolled, spun or forged product made of AlCuMg alloy, treated by homogenization, heat-treated with an outlet temperature greater than 420 ° C., so as to obtain a recrystallization rate at a quarter-thickness less than 20%, dissolving, quenching, cold drawing and aging, intended for the manufacture of aircraft structural elements, composition (% by weight):
Fe <0.15 If <0.15 Cu: 4.0 - 4.3 Mg: 1.0 - 1.5 Mn: 0.5 - 0.8 Zr: 0.08 - 0.15 other elements: < 0.05 each and <0.15 in total, having a ratio R m (L) / R 0.2 (L) of the breaking strength in the L direction at the yield stress in the L direction greater than 1 , 25 (and preferably at 1.30).

Elle a également pour objet un produit laminé (une tôle) de même composition d'épaisseur comprise entre 6 et 60 mm et présentant à l'état trempé et tractionné l'un au moins des groupes de propriétés suivantes ;

  • a) Résistance à la rupture Rm(L) > 475 Mpa et limite d'élasticité R0,2(L) > 370 MPa
  • b) Ecart plastique Rm - R0,2 sens L et TL > 100 MPa
  • c) Facteur d'intensité critique (sens L-T) Kc > 170 MPa√m et Kco > 120 MPa√m (mesurés selon la norme ASTM E561 sur des éprouvettes entaillées prélevées à quart-épaisseur avec les paramètres B = 5 mm, W = 500 et 2a0 = 165 mm)
  • d) Vitesse de propagation de fissures (L-T) da/dn, mesurée selon la norme ASTM E 647 sur des éprouvettes entaillées prélevées à quart-épaisseur avec W = 200 mm et B = 5mm :
  • < 10-4 mm/cycle pour ΔK = 10 MPa√m
  • < 2,5 10-4 mm/cycle pour ΔK = 15 MPa√m
  • < 5 10-4 mm/cycle pour ΔK = 20 MPa√m
  • It also relates to a laminated product (a sheet) of the same composition of thickness between 6 and 60 mm and having in the quenched and tracted state at least one of the following groups of properties;
  • a) Breaking strength R m (L) > 475 MPa and yield strength R 0.2 (L) > 370 MPa
  • b) Plastic gap R m - R 0,2 direction L and TL> 100 MPa
  • c) Critical intensity factor (LT direction) K c > 170 MPa√m and K oc > 120 MPa√m (measured according to ASTM E561 on notched specimens taken at quarter thickness with parameters B = 5 mm, W = 500 and 2a 0 = 165 mm)
  • d) Crack propagation velocity (LT) da / dn, measured according to ASTM E 647 on notched specimens taken at quarter thickness with W = 200 mm and B = 5 mm:
  • <10 -4 mm / cycle for ΔK = 10 MPa√m
  • <2.5 × 10 -4 mm / cycle for ΔK = 15 MPa√m
  • <5 10 -4 mm / cycle for ΔK = 20 MPa√m
  • Cette tôle présente également un niveau de contraintes résiduelles tel que la flèche f mesurée dans les sens L et TL après usinage à mi-épaisseur d'un barreau reposant sur deux supports distants d'une longueur l est telle que :
       f < (0,14 l2)/e f étant mesurée en microns, l'épaisseur e de la tôle et la longueur 1 étant exprimées en mm.
    This sheet also has a level of residual stresses such that the arrow f measured in the L and TL directions after machining at mid-thickness of a bar resting on two supports distant by a length l is such that:
    f <(0.14 l 2 ) / ef being measured in microns, the thickness e of the sheet and the length 1 being expressed in mm.

    L'invention a aussi pour objet un procédé de fabrication d'un produit laminé, filé ou forgé selon l'invention comportant les étapes suivantes :

    • coulée d'une plaque ou d'une billette de la composition indiquée,
    • homogénéisation de cette plaque ou billette entre 450 et 500°C,
    • transformation à chaud et éventuellement à froid jusqu'au produit désiré,
    • mise en solution à une température comprise entre 480 et 505°C,
    • trempe à l'eau froide,
    • traction à froid avec au moins 1,5% de déformation permanente,
    • vieillissement naturel à l'ambiante.
    The subject of the invention is also a process for manufacturing a rolled, spun or forged product according to the invention comprising the following steps:
    • pouring a plate or a billet of the indicated composition,
    • homogenization of this plate or billet between 450 and 500 ° C,
    • transformation hot and possibly cold to the desired product,
    • solution at a temperature between 480 and 505 ° C,
    • quenched with cold water,
    • cold draft with at least 1.5% permanent deformation,
    • natural aging at ambient temperature.

    Description de l'inventionDescription of the invention

    La composition chimique du produit diffère de celle du 2024 habituel par une teneur réduite en fer et silicium, une teneur plus élevée en manganèse et une addition de zirconium. Par rapport au 2034, on a une teneur en manganèse plus basse et une teneur en cuivre légèrement réduite. Par rapport à la composition des alliages décrits dans les brevets US 5863359 et US 5865914, la teneur en cuivre est plus élevée, ce qui permet de compenser, pour la résistance mécanique, l'écrouissage à froid moins élevé après trempe. D'une manière surprenante, ce domaine étroit de composition (notamment en ce qui concerne le manganèse), associé à des modifications de la gamme de fabrication, conduit, par rapport à l'art antérieur, à une amélioration significative du compromis entre la résistance mécanique, l'allongement et la tolérance aux dommages dans les conditions d'exploitation d'un avion civil de grande capacité.The chemical composition of the product differs from that of the usual 2024 by a reduced in iron and silicon, a higher manganese content and an addition of zirconium. Compared to 2034, we have a lower manganese content and a lower slightly reduced copper content. Compared to the composition of the alloys described in US Pat. No. 5,863,359 and US Pat. No. 5,865,914, the copper content is higher; which makes it possible to compensate, for the mechanical strength, cold working less high after quenching. Surprisingly, this narrow domain of composition (notably with regard to manganese), associated with changes in the range of manufacture, leads, compared to the prior art, to an improvement significant compromise between mechanical strength, elongation and tolerance damage to the operating conditions of a large civil aircraft.

    De plus, et de manière tout à fait inattendue, on observe, pour les produits épais, un faible taux de contraintes résiduelles, permettant un usinage sans distorsion de pièces de grande dimension.Moreover, and quite unexpectedly, we observe, for thick products, a low residual stress ratio, allowing machining without distortion of parts large size.

    Le procédé de fabrication comporte la coulée de plaques, dans le cas où le produit à fabriquer est une tôle laminée, ou de billettes dans le cas où il s'agit d'un profilé filé ou d'une pièce forgée. La plaque ou la billette est scalpée, puis homogénéisée entre 450 et 500°C. On effectue ensuite la transformation à chaud par laminage, filage ou forgeage. Cette transformation se fait de préférence à une température plus élevée que les températures habituellement utilisées, la température de sortie étant supérieure à 420°C et de préférence à 440°C de manière à obtenir sur le produit traité une structure peu recristallisée, avec un taux de recristallisation au quart épaisseur inférieur à 20%, et de préférence à 10%. Le demi-produit laminé, filé ou forgé est ensuite mis en solution entre 480 et 505°C, de manière que cette mise en solution soit aussi complète que possible, c'est-à-dire que le maximum de phases potentiellement solubles, notamment les précipités Al2Cu et Al2CuMg, soit effectivement en solution solide. La qualité de la mise en solution peut être appréciée par analyse enthalpique différentielle (AED) en mesurant l'énergie spécifique à l'aide de l'aire du pic sur le thermogramme. Cette énergie spécifique doit être, de préférence, inférieure à 2 J/g. The manufacturing method comprises the casting of plates, in the case where the product to be manufactured is a rolled sheet, or billets in the case where it is a spun section or a forged part. The plate or the billet is scalped, then homogenized between 450 and 500 ° C. The hot transformation is then carried out by rolling, spinning or forging. This transformation is preferably carried out at a temperature higher than the temperatures usually used, the outlet temperature being greater than 420 ° C. and preferably 440 ° C. so as to obtain a little recrystallized structure on the treated product, with a rate of recrystallization at a quarter thickness less than 20%, and preferably 10%. The laminated, spun or forged half-product is then dissolved between 480 and 505 ° C., so that this dissolution is as complete as possible, that is to say that the maximum of potentially soluble phases, in particular the Al 2 Cu and Al 2 CuMg precipitates are actually in solid solution. The quality of the dissolution can be assessed by differential enthalpy analysis (AED) by measuring the specific energy using the area of the peak on the thermogram. This specific energy must preferably be less than 2 J / g.

    Puis on procède à la trempe à l'eau froide, et à une traction contrôlée conduisant à un allongement permanent d'au moins 1,5%. Le produit subit enfin un vieillissement naturel à température ambiante.Then the quenching with cold water, and a controlled pulling leading to a permanent elongation of at least 1.5%. The product finally undergoes aging natural at room temperature.

    Les produits selon l'invention présentent des caractéristiques mécaniques statiques nettement améliorées par rapport à l'alliage 2024-T351, utilisé actuellement pour les intrados d'aile d'avion, et à peine plus faibles que celles du 2034-T351. L'écart plastique et l'allongement élevés du matériau entraínent une excellente aptitude au formage à froid. La ténacité, mesurée par les facteurs d'intensité critique de contrainte en contrainte plane Kc et Kco est supérieure de plus de 10% à celle du 2024 et du 2034, et la vitesse de propagation de fissure da/dn est nettement améliorée par rapport à ces deux alliages, notamment pour les valeurs élevées de ΔK, et pour des chargements à amplitude variable. Les durées de vie en fatigue, mesurées sur des éprouvettes entaillées prélevées à mi-épaisseur dans le sens L, sont également améliorées de plus de 20% par rapport au 2024 et au 2034. Enfin, le niveau de contraintes résiduelles, mesuré par la flèche f après usinage à mi-épaisseur d'un barreau reposant sur deux supports distants d'une longueur l, est plutôt bas, alors qu'on aurait pu s'attendre au contraire avec une structure fibrée. Cette flèche, mesurée en microns, est toujours inférieure au quotient (0,14 l2)/e, la longueur l et l'épaisseur e de la tôle étant exprimées en mm.The products according to the invention have significantly improved static mechanical characteristics compared to the alloy 2024-T351, currently used for aircraft wing-backs, and only slightly lower than those of 2034-T351. The high plastic gap and elongation of the material result in excellent cold forming ability. The tenacity, measured by the critical stress stress factors K c and K oc, is more than 10% greater than that of 2024 and 2034, and the crack propagation rate da / dn is significantly improved by compared to these two alloys, especially for the high values of ΔK, and for variable amplitude loadings. The fatigue life times, measured on notched specimens taken at mid-thickness in the L direction, are also improved by more than 20% compared to 2024 and 2034. Finally, the level of residual stresses, measured by the deflection f after machining at mid-thickness of a bar resting on two distant supports of a length l, is rather low, whereas one could have expected on the contrary with a fibered structure. This arrow, measured in microns, is always less than the quotient (0.14 l 2 ) / e, the length l and the thickness e of the sheet being expressed in mm.

    L'ensemble de ces propriétés font que les produits selon l'invention sont particulièrement bien adaptés à la fabrication d'éléments de structure d'avions, notamment des intrados d'ailes, mais également des profilés pour caisson de voilure, pour semelles de longerons et nervures assemblés et des peaux et raidisseurs de fuselage.All of these properties make the products according to the invention particularly well suited to the manufacture of aircraft structural elements, including wing bottoms, but also wing box sections, for sill soles and ribs assembled and skins and stiffeners of fuselage.

    ExemplesExamples

    On a coulé 3 plaques de largeur 1450 mm et d'épaisseur 446 mm respectivement en alliage 2024, 2034 et alliage selon l'invention. Les compositions chimiques (% en poids) des alliages sont données au tableau 1: alliage Si Fe Cu Mg Mn Zr 2024 0,12 0,20 4,06 1,36 0,54 0,002 2034 0,05 0,07 4,30 1,34 0,98 0,104 invention 0,06 0,08 4,14 1,26 0,65 0,102 Three plates 1450 mm wide and 446 mm thick were cast in alloy 2024, 2034 and alloy according to the invention respectively. The chemical compositions (% by weight) of the alloys are given in Table 1: alloy Yes Fe Cu mg mn Zr 2024 0.12 0.20 4.06 1.36 0.54 0,002 2034 0.05 0.07 4.30 1.34 0.98 0.104 invention 0.06 0.08 4.14 1.26 0.65 0,102

    Les plaques ont été scalpées, puis homogénéisées dans les conditions suivantes :

  • Pour le 2024, 2h à 495°C puis 5h à 460°C
  • Pour le 2034, 5 h à 497°C
  • Pour l'alliage selon l'invention, montée en 12 h et maintien de 6h à 483°C
  • The plates were scalped and then homogenized under the following conditions:
  • For the 2024, 2h at 495 ° C then 5h at 460 ° C
  • For the 2034, 5 h at 497 ° C
  • For the alloy according to the invention, mounted in 12 hours and maintained for 6 hours at 483 ° C.
  • Une partie des tôles a été ensuite laminée à chaud jusqu'à une épaisseur de 40 mm par passes successives de l'ordre de 20 mm. Une autre partie des tôles a été laminée à chaud jusqu'à 15 mm. Pour l'alliage selon l'invention, la température d'entrée au laminage à chaud était de 467°C, la température de sortie à 40 mm de 465°C et celle à 15 mm de 444°C.Part of the sheets was then hot rolled to a thickness of 40 mm by successive passes of the order of 20 mm. Another part of the sheets has been rolled hot up to 15 mm. For the alloy according to the invention, the inlet temperature at hot rolling was 467 ° C, the outlet temperature at 40 mm of 465 ° C and that at 15 mm of 444 ° C.

    Les tôles ont été mises en solution dans les conditions suivantes :

  • 3h et 6h à 497°C pour les tôles en 2024 d'épaisseur respective 15 et 40 mm,
  • 2h et 5h à 499°C pour les tôles en 2034 d'épaisseur 15 et 40 mm
  • 9h à 497°C pour les tôles selon l'invention.
  • The sheets were dissolved in the following conditions:
  • 3h and 6h at 497 ° C for the sheets in 2024 of thickness 15 and 40 mm respectively,
  • 2h and 5h at 499 ° C for 2034 sheets of 15 and 40 mm thickness
  • 9h at 497 ° C for the sheets according to the invention.
  • Après trempe à l'eau froide, toutes les tôles ont subi ensuite une traction contrôlée à 2% d'allongement permanent.After quenching with cold water, all the sheets were then subjected to controlled traction at 2% permanent elongation.

    On a mesuré sur les tôles les caractéristiques mécaniques statiques dans les sens L et TL, à savoir la résistance à la rupture Rm (en MPa), la limite d'élasticité conventionnelle à 0,2% R0,2 (en MPa) et l'allongement à la rupture A (en %). Les résultats sont rassemblés au tableau 2 : Alliage Epaisseur Sens Rm R0,2 A 2024 40 L 468 362 20,0 2024 40 TL 469 330 17,4 2024 15 L 462 360 21,2 2024 15 TL 467 325 17,6 2034 40 L 534 416 11,2 2034 40 TL 529 393 12,0 2034 15 L 548 431 13,8 2034 15 TL 531 395 14,6 Invention 40 L 510 384 15,4 Invention 40 TL 475 336 18,9 Invention 15 L 501 390 16,7 Invention 15 TL 491 351 19,1 The static mechanical characteristics in the L and TL directions were measured on the plates, namely the breaking strength R m (in MPa) and the conventional yield strength at 0.2% R 0.2 (in MPa). and elongation at break A (in%). The results are summarized in Table 2: Alloy Thickness Meaning R m R 0.2 AT 2024 40 The 468 362 20.0 2024 40 TL 469 330 17.4 2024 15 The 462 360 21.2 2024 15 TL 467 325 17.6 2034 40 The 534 416 11.2 2034 40 TL 529 393 12.0 2034 15 The 548 431 13.8 2034 15 TL 531 395 14.6 Invention 40 The 510 384 15.4 Invention 40 TL 475 336 18.9 Invention 15 The 501 390 16.7 Invention 15 TL 491 351 19.1

    On a mesuré également la ténacité par les facteurs d'intensité critique en contrainte plane Kc et Kc0 (en MPa√m) dans le sens L-T, selon la norme ASTM E 561, sur des éprouvettes CCT, prélevées à quart-épaisseur, de largeur W = 500 mm, d'épaisseur B = 5 mm, et une entaille centrale usinée par électroérosion 2a0 = 165 mm, agrandie par essai de fatigue jusqu'à 170 mm. Les résultats sont donnés au tableau 3 : Alliage Epaisseur Kc Kc0 2024 40 143,4 105,2 2034 40 128,8 97,8 Invention 40 179,7 122 2034 15 136,4 103,7 Invention 15 173,6 124,3 Was also measured by the toughness of critical intensity factors K c and K c0 plane stress (in MPa m) in the LT direction, according to ASTM E 561, on CCT test pieces sampled at a quarter-thickness, width W = 500 mm, thickness B = 5 mm, and an electro-erosion machined center notch 2a 0 = 165 mm, enlarged by fatigue test up to 170 mm. The results are given in Table 3: Alloy Thickness K c K c0 2024 40 143.4 105.2 2034 40 128.8 97.8 Invention 40 179.7 122 2034 15 136.4 103.7 Invention 15 173.6 124.3

    On a mesuré également la vitesse de propagation de fissure de fatigue da/dn dans le sens L-T (en mm/cycle) pour différentes valeurs de ΔK (en MPa√m) selon la norme ASTM E 647. On utilise pour cela 2 éprouvettes CCT de largeur W = 200 mm et d'épaisseur B = 5 mm, prélevées à quart épaisseur de tôle dans le sens L-T. La longueur de l'entaille centrale usinée par électroérosion est de 30 mm, et cette entaille est agrandie par essai de fatigue à 40 mm. L'essai de mesure de vitesse de fissuration est effectué sur une machine MTS avec une sollicitation en R = 0,05 et une contrainte de 40 MPa, calculée pour obtenir une valeur de ΔK de 10 MPa√m pour la longueur d'entaille de départ de 40 mm (résultats au tableau 4). Alliage Ep. ΔK = 10 ΔK = 12 ΔK = 15 ΔK = 20 ΔK = 25 2024 40 9 10-5 1,5 10-4 3,0 10-4 6 10-4 9 10-3 2034 40 8 10-5 1,5 10-4 3 10-4 5,7 10-4 1,7 10-3 Inv. 40 5,5 10-5 1,7 10-4 2,0 10-4 4,0 10-4 7,8 10-4 2034 15 8 10-5 1,5 10-4 3 10-4 5,2 10-4 2,1 10-3 Inv. 15 4,9 10-5 6,0 10-5 1,3 10-4 2,5 10-4 5,4 10-4 The fatigue crack propagation speed da / dn in the LT direction (in mm / cycle) was also measured for different values of ΔK (in MPa√m) according to the ASTM E 647 standard. Two CCT test pieces were used for this purpose. width W = 200 mm and thickness B = 5 mm, taken at quarter sheet thickness in the direction LT. The length of the central notch machined by electroerosion is 30 mm, and this notch is enlarged by fatigue test to 40 mm. The crack velocity measurement test is carried out on an MTS machine with a stress in R = 0.05 and a stress of 40 MPa, calculated to obtain a value of ΔK of 10 MPa√m for the notch length. starting from 40 mm (results in table 4). Alloy Ep. ΔK = 10 ΔK = 12 ΔK = 15 ΔK = 20 ΔK = 25 2024 40 9 10 -5 1.5 10 -4 3.0 10 -4 6 10 -4 9 10 -3 2034 40 8 10 -5 1.5 10 -4 3 10 -4 5.7 10 -4 1.7 10 -3 Inv. 40 5.5 10 -5 1.7 10 -4 2.0 10 -4 4.0 10 -4 7.8 10 -4 2034 15 8 10 -5 1.5 10 -4 3 10 -4 5.2 10 -4 2.1 10 -3 Inv. 15 4.9 10 -5 6.0 10 -5 1.3 10 -4 2.5 10 -4 5.4 10 -4

    Des essais de fatigue selon la spécification Airbus AITM 1-0011 ont été réalisés sur des éprouvettes à trou de longueur 230 mm, de largeur 50 mm et d'épaisseur 7,94 mm, prélevée à mi-épaisseur de la tôle sens L. Le diamètre du trou est de 7,94 mm.Fatigue tests according to the Airbus AITM 1-0011 specification have been carried out on test pieces with a hole length 230 mm, width 50 mm and thickness 7.94 mm, taken at mid-thickness of the L-shaped plate. The diameter of the hole is 7.94 mm.

    On a appliqué une contrainte moyenne pleine éprouvette de 80 MPa avec 4 niveaux de contraintes alternées: 85 MPa, 55 MPa, 45 MPa et 35 MPa pour les tôles de 40 mm, 110, 85, 55 et 45 MPa pour les tôles de 15 mm, avec 2 éprouvettes par niveau.A mean full test stress of 80 MPa with 4 levels was applied of alternating stresses: 85 MPa, 55 MPa, 45 MPa and 35 MPa for the plates of 40 mm, 110, 85, 55 and 45 MPa for 15 mm sheets, with 2 test pieces per level.

    Les valeurs moyennes de durée de vie (en nombre de cycles) sont indiqués au tableau 5. On constate que, pour des éprouvettes avec un facteur d'entaille Kt = 2,5, la durée de vie en fatigue est améliorée de plus de 20% par rapport à l'alliage 2024. alliage Epaisseur mm 80 ± 85 MPa 80 ± 55 MPa 80 ± 45 MPa 80 ± 35 MPa 2024 40 36044 159721 2034 40 30640 125565 340126 839340 invention 40 42933 219753 392680 1018240 2034 15 41040 204038 352957 invention 15 45841 241932 429895 The average lifetime values (in number of cycles) are given in Table 5. It can be seen that, for test pieces with a notch factor K t = 2.5, the fatigue life is improved by more than 20% with respect to alloy 2024. alloy Thickness mm 80 ± 85 MPa 80 ± 55 MPa 80 ± 45 MPa 80 ± 35 MPa 2024 40 36044 159721 2034 40 30640 125565 340126 839340 invention 40 42933 219753 392680 1018240 2034 15 41040 204038 352957 invention 15 45841 241932 429895

    On a mesuré enfin les flèches f dans le sens L et TL, ainsi que le taux de recristallisation (en %) en surface, à quart-épaisseur et à mi-épaisseur, déterminé par analyse d'image après attaque chimique de l'échantillon.Finally, the arrows f in the direction L and TL were measured, as well as the recrystallization (in%) at the surface, at quarter-thickness and at mid-thickness, determined by image analysis after etching of the sample.

    La flèche f est mesurée de la manière suivante. On prélève dans la tôle d'épaisseur e deux barreaux, l'un appelé barreau sens L, de longueur b dans le sens de la longueur de la tôle (sens L), de largeur 25 mm dans le sens de la largeur de la tôle (sens TL) et d'épaisseur e selon la pleine épaisseur de la tôle (sens TC), l'autre, appelé barreau sens TL, ayant 25 mm dans le sens L, b dans le sens TL et e dans le sens TC.The arrow f is measured as follows. We take from the thick sheet e two bars, one called bar L sense, length b in the direction of the length sheet metal (L-direction), width 25 mm in the width direction of the sheet (TL direction) and of thickness e according to the full thickness of the sheet (TC direction), the other, called bar TL direction, having 25 mm in the L direction, b in the TL direction and e in the TC direction.

    On usine chaque barreau jusqu'à mi-épaisseur et on mesure la flèche à mi-longueur du barreau. Cette flèche est représentative du niveau de contraintes internes de la tôle et de son aptitude à ne pas se déformer à l'usinage. La distance 1 entre les supports était de 180 mm et la longueur b des barreaux de 200 mm. L'usinage est un usinage mécanique progressif avec des passes d'environ 2 mm. La mesure de la flèche à mi-longueur s'effectue à l'aide d'un comparateur d'une résolution d'un micron. Les résultats concernant les flèches et les taux de recristallisation sont donnés au tableau 6. alliage Epaisseur fL (µm) fTL (µm) Taux recr. (Surf.) % Taux recr. (¼ ép.) % Taux recr. (½ ép.) % 2024 40 210 120 79 58 30 2034 40 147 129 12 0 0 Invention 40 86 75 46 5 2 Each bar is machined to mid-thickness and the arrow is measured at mid-length of the bar. This arrow is representative of the level of internal stresses of the sheet and its ability not to deform at machining. The distance 1 between the supports was 180 mm and the length b of the bars 200 mm. Machining is a progressive mechanical machining with passes of about 2 mm. The measurement of the arrow at mid-length is carried out using a comparator with a resolution of one micron. Results for arrows and recrystallization rates are given in Table 6. alloy Thickness f L (μm) f TL (μm) Recr. (Surf.)% Recr. (¼ year)% Recr. (½ ep.)% 2024 40 210 120 79 58 30 2034 40 147 129 12 0 0 Invention 40 86 75 46 5 2

    Claims (10)

    1. Rolled, extruded or forged product made of an AlCuMg alloy processed by homogenisation, hot transformation at an exit temperature above 420°C in order to obtain a recrystallisation rate below 20% (measured at quarter thickness) solution heat treatment, quenching cold stretching and ageing, to be used in the manufacture of aircraft structural elements, with the following composition (% by weight):
         Fe<0.15   Si<0.15   Fe + Si < 0.15   Cu: 4.0-4.3
         Mg:1-1.5   Mn:0.5-0.8   Zr:0.08-0.15
      other elements: < 0.05 each and < 0.15 total with a ratio Rm(L) /R0.2(L) > 1.25 (and preferably > 1.30).
    2. Rolled product from 6 to 60 mm thick according to claim 1, with an ultimate tensile strength Rm(L) in the quenched and stretched temper > 475 MPa and yield stress R0.2(L) > 370 MPa.
    3. Rolled product from 6 to 60 mm thick according to any one of claims 1 or 2, with a plastic range between the ultimate tensile strength Rm and the yield stress R0.2 in the L and TL directions in the quenched and stretched temper > 100 MPa.
    4. Rolled product from 6 to 60 mm thick according to any one of claims 1 to 3, for which the critical intensity factor (L-T direction) Kc in the quenched and stretched temper > 170 MPa√m and Kco > 120 MPa√m measured according to ASTM standard E 561 on notched test pieces sampled at a quarter thickness with parameters W = 500 mm, B = 5 mm and 2B0 = 165 mm.
    5. Rolled product from 6 to 60 mm thick according to any one of claims 1 to 4 characterized in that the crack propagation rate (L-T direction) da/dn in the quenched and stretched temper, measured according to ASTM standard E 647 on notched test pieces sampled at a quarter thickness with parameters W = 200 mm and B = 5 mm) is as follows:
      <10-4 mm/cycle for ΔK = 10 MPa√m
      <2.5 10-4 mm/cycle for ΔK = 15 MPa√m
      and <5 10-4 mm/cycle for ΔK = 20 MPa√m
    6. Rolled product according to any one of claims 1 to 5, characterized in that deflection f measured in the L and TL directions after machining a bar supported on two supports separated by a length 1 to its mid-thickness is below (0.14 l2)/e, where f is measured in microns, e is the thickness of the plate and 1 is the length measured in mm.
    7. Process according to any one of claims 1 to 6 for manufacturing a product comprising the following steps:
      cast a plate with the indicated composition,
      homogenize this plate between 450 and 500°C,
      hot transformation, and possibly cold transformation by rolling, extrusion or forging, until the required product is obtained,
      solution heat treatment at a temperature of between 480 and 505°C,
      quench in cold water,
      cold stretching to at least 1.5% permanent deformation,
      natural aging under ambient conditions.
    8. Process according to claim 7, characterized in that the hot transformation takes place with an exit temperature > 420°C and preferably > 440°C.
    9. Use of plates according to one of claims 2 to 6 for manufacturing the skin of an aircraft lower wing.
    10. Use of profiles according to claim 1, for manufacturing aircraft lower wings or fuselage stringers.
    EP00420020A 1999-02-04 2000-02-01 AlCuMg alloy product for aircraft body member Expired - Lifetime EP1026270B1 (en)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    FR9901468A FR2789405A1 (en) 1999-02-04 1999-02-04 New quenched and stretched aluminum-copper-magnesium alloy product, for aircraft wing intrados skin and wing or fuselage intrados strut manufacture has a large plastic deformation range
    FR9901468 1999-02-04
    FR9910682 1999-08-18
    FR9910682A FR2789406B1 (en) 1999-02-04 1999-08-18 ALCuMg ALLOY PRODUCT FOR AIRCRAFT STRUCTURAL ELEMENT

    Publications (2)

    Publication Number Publication Date
    EP1026270A1 EP1026270A1 (en) 2000-08-09
    EP1026270B1 true EP1026270B1 (en) 2005-04-27

    Family

    ID=26234808

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00420020A Expired - Lifetime EP1026270B1 (en) 1999-02-04 2000-02-01 AlCuMg alloy product for aircraft body member

    Country Status (5)

    Country Link
    US (2) US6602361B2 (en)
    EP (1) EP1026270B1 (en)
    DE (1) DE60019655T2 (en)
    FR (1) FR2789406B1 (en)
    GB (1) GB2346381A (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
    US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
    US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof

    Families Citing this family (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6325869B1 (en) * 1999-01-15 2001-12-04 Alcoa Inc. Aluminum alloy extrusions having a substantially unrecrystallized structure
    US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
    US7604704B2 (en) * 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
    US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
    US7666267B2 (en) * 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
    RU2353693C2 (en) 2003-04-10 2009-04-27 Корус Алюминиум Вальцпродукте Гмбх ALLOY Al-Zn-Mg-Cu
    US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
    US20060032560A1 (en) * 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
    US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
    US20070204937A1 (en) * 2005-07-21 2007-09-06 Aleris Koblenz Aluminum Gmbh Wrought aluminium aa7000-series alloy product and method of producing said product
    RU2524288C2 (en) 2009-01-22 2014-07-27 Алкоа Инк. Perfected aluminium-copper alloys containing vanadium
    JP6057855B2 (en) * 2013-07-31 2017-01-11 株式会社神戸製鋼所 Aluminum alloy extruded material for cutting
    FR3011252B1 (en) 2013-09-30 2015-10-09 Constellium France INTRADOS SHEET HAS PROPERTIES OF TOLERANCE TO IMPROVED DAMAGE
    US11384418B2 (en) * 2017-05-11 2022-07-12 Aleris Aluminum Duffel Bvba Method of manufacturing an Al—Si—Mg alloy rolled sheet product with excellent formability
    US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
    CN108704967A (en) * 2018-04-25 2018-10-26 南京航空航天大学 A kind of aluminium alloy electric pulse newly quenching formed technique and device

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3826688A (en) * 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
    US4294625A (en) * 1978-12-29 1981-10-13 The Boeing Company Aluminum alloy products and methods
    US4336075A (en) * 1979-12-28 1982-06-22 The Boeing Company Aluminum alloy products and method of making same
    US5213639A (en) * 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
    CA2049840C (en) * 1990-08-27 2002-04-23 Edward L. Colvin Damage tolerant aluminum alloy sheet for aircraft skin
    CA2056750A1 (en) * 1990-12-03 1992-06-04 Delbert M. Naser Aircraft sheet
    FR2731440B1 (en) * 1995-03-10 1997-04-18 Pechiney Rhenalu AL-CU-MG ALLOY SHEETS WITH LOW LEVEL OF RESIDUAL CONSTRAINTS
    JP3053352B2 (en) * 1995-04-14 2000-06-19 株式会社神戸製鋼所 Heat-treated Al alloy with excellent fracture toughness, fatigue properties and formability
    US5863359A (en) * 1995-06-09 1999-01-26 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
    US6077363A (en) * 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
    US6325869B1 (en) * 1999-01-15 2001-12-04 Alcoa Inc. Aluminum alloy extrusions having a substantially unrecrystallized structure

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
    US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
    US8088234B2 (en) 2006-07-07 2012-01-03 Aleris Aluminum Koblenz Gmbh AA2000-series aluminum alloy products and a method of manufacturing thereof
    US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof

    Also Published As

    Publication number Publication date
    FR2789406A1 (en) 2000-08-11
    FR2789406B1 (en) 2001-03-23
    US6602361B2 (en) 2003-08-05
    US20020014288A1 (en) 2002-02-07
    US20030217793A1 (en) 2003-11-27
    DE60019655T2 (en) 2006-02-02
    EP1026270A1 (en) 2000-08-09
    GB2346381A (en) 2000-08-09
    DE60019655D1 (en) 2005-06-02
    GB9924277D0 (en) 1999-12-15

    Similar Documents

    Publication Publication Date Title
    EP1026270B1 (en) AlCuMg alloy product for aircraft body member
    EP1114877B1 (en) Al-Cu-Mg alloy aircraft structural element
    FR2853667A1 (en) IMPROVED AL-AN-MG-CU ALLOY AS REGARDS ITS COMBINED PROPERTIES OF DAMAGE TOLERANCE AND MECHANICAL STRENGTH
    EP1966402B1 (en) Sheet made of high-toughness aluminium alloy containing copper and lithium for an aircraft fuselage
    EP2364378B1 (en) Products in aluminium-copper-lithium alloy
    EP1231290A1 (en) Method for making a high strength, wrought AlZnMgCu alloy product
    FR2855834A1 (en) High strength aluminum alloy products with high fatigue resistance for use as the sheets and panels of aircraft structural components for the fuselage and wings
    FR2838135A1 (en) PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
    EP1382698B1 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
    FR2907467A1 (en) PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
    EP2235224A1 (en) Rolled product made of aluminum-lithium alloy for aeronautical applications
    FR2838136A1 (en) ALLOY PRODUCTS A1-Zn-Mg-Cu HAS COMPROMISED STATISTICAL CHARACTERISTICS / DAMAGE TOLERANCE IMPROVED
    EP3201372A1 (en) Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
    WO2016051060A1 (en) Wrought product made of a magnesium-lithium-aluminum alloy
    WO2014162068A1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
    EP3526358A1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
    EP3052669A1 (en) Underwing sheet metal with improved damage tolerance properties
    EP3635146A1 (en) Aluminium alloy comprising lithium with improved fatigue properties
    FR2789405A1 (en) New quenched and stretched aluminum-copper-magnesium alloy product, for aircraft wing intrados skin and wing or fuselage intrados strut manufacture has a large plastic deformation range
    FR3065011A1 (en) ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS
    FR3026410B1 (en) CORROYE PRODUCT ALLOY ALUMINUM MAGNESIUM LITHIUM
    FR3132306A1 (en) Aluminum-Copper-Lithium Alloy Enhanced Thin Sheet

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    GBC Gb: translation of claims filed (gb section 78(7)/1977)
    17P Request for examination filed

    Effective date: 20001002

    AKX Designation fees paid

    Free format text: DE FR GB

    17Q First examination report despatched

    Effective date: 20030820

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60019655

    Country of ref document: DE

    Date of ref document: 20050602

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050902

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH ET AL.

    Effective date: 20060127

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH ET AL.

    Effective date: 20060127

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ALCAN RHENALU

    PLCK Communication despatched that opposition was rejected

    Free format text: ORIGINAL CODE: EPIDOSNREJ1

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

    Effective date: 20060127

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    PLBN Opposition rejected

    Free format text: ORIGINAL CODE: 0009273

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION REJECTED

    27O Opposition rejected

    Effective date: 20101125

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: CONSTELLIUM FRANCE, FR

    Effective date: 20111123

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60019655

    Country of ref document: DE

    Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60019655

    Country of ref document: DE

    Owner name: CONSTELLIUM FRANCE, FR

    Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR

    Effective date: 20120622

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60019655

    Country of ref document: DE

    Representative=s name: BEETZ & PARTNER MBB, DE

    Effective date: 20120622

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60019655

    Country of ref document: DE

    Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

    Effective date: 20120622

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60019655

    Country of ref document: DE

    Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

    Effective date: 20120622

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60019655

    Country of ref document: DE

    Owner name: CONSTELLIUM ISSOIRE, FR

    Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR

    Effective date: 20120622

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60019655

    Country of ref document: DE

    Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

    Effective date: 20120622

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CA

    Effective date: 20150915

    Ref country code: FR

    Ref legal event code: CD

    Owner name: CONSTELLIUM ISSOIRE, FR

    Effective date: 20150915

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60019655

    Country of ref document: DE

    Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60019655

    Country of ref document: DE

    Owner name: CONSTELLIUM ISSOIRE, FR

    Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60019655

    Country of ref document: DE

    Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20190227

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20190227

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20190225

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 60019655

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20200131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20200131