EP1231290A1 - Method for making a high strength, wrought AlZnMgCu alloy product - Google Patents

Method for making a high strength, wrought AlZnMgCu alloy product Download PDF

Info

Publication number
EP1231290A1
EP1231290A1 EP02356018A EP02356018A EP1231290A1 EP 1231290 A1 EP1231290 A1 EP 1231290A1 EP 02356018 A EP02356018 A EP 02356018A EP 02356018 A EP02356018 A EP 02356018A EP 1231290 A1 EP1231290 A1 EP 1231290A1
Authority
EP
European Patent Office
Prior art keywords
temperature
alloy
tempering
duration
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02356018A
Other languages
German (de)
French (fr)
Inventor
Timothy Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP1231290A1 publication Critical patent/EP1231290A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • the invention relates to the manufacture of wrought products by rolling, spinning or forging of aluminum alloy of the AlZnMgCu type with high mechanical resistance, used in particular in aeronautical construction, in particular for the upper surfaces of airplane wings.
  • Alloys of the Al-Zn-Mg-Cu type have been used for more than 50 years in the aeronautical construction, and in particular for the wing upper surfaces. So we used alloys 7075, 7178, 7050, 7150 and, more recently, alloys 7055 and 7449. These alloys were most often used in the T6 state, i.e. at an income corresponding to the maximum of the elastic limit in traction, or to an over-income state T76, T79 or T77 to obtain better corrosion resistance.
  • the state of the art shows on the one hand that the mechanical resistance to compression is an essential property for the upper surfaces of fenders, and that, share the manufacturers of high resistance alloys offer for this application produced either in the T6 state, corresponding to the peak of elastic limit in tension, or an over-tempered T7 state with better corrosion resistance, but with a loss of mechanical strength.
  • the invention aims to further improve the mechanical strength in compression high resistance 7000 alloy products intended in particular for upper surfaces of aircraft wings without loss on other properties of use
  • Another subject of the invention is the rolled, spun or forged product obtained by said process.
  • Yet another object of the invention is the structural element for construction mechanical, and in particular aeronautical, made from at least one product laminated, spun or forged obtained by said process.
  • Figure 1 represents the typical properties, namely the elastic limit in tension (direction L), the tensile strength (direction L), the elastic limit in compression (direction L) and the corrosion threshold under tension (direction ST), of sheets thickness between 15 and 40 mm in alloys 7150-T651, 7449-T651 and 7449-T7951 according to the prior art.
  • FIG. 2 represents the time-temperature domain of the income of the process according to the invention.
  • FIG. 3 represents the breaking strength and the elastic limit in tension of 38 mm thick sheets of alloy 7449 of Example 1 as a function of time equivalent to 120 ° C of tempering for different tempering temperatures.
  • Figure 4 shows the tensile strength (direction L) and the limit tensile and compressive strength (L direction) of 38 mm 7449 alloy sheets of example 2 as a function of the time equivalent to 120 ° C. of the income.
  • FIG. 5 represents the compressive elastic limit of the sheets of alloys A and
  • Example 3 as a function of the time equivalent to 120 ° C. of the income.
  • the invention is based on highlighting a difference between the resistance peak mechanical tensile obtained income, which corresponds to what is called usually the state T6, and the peak of mechanical resistance in compression.
  • the metallurgists have always used tensile strength to define the T6 state of maximum resistance to income.
  • the process according to the invention applies to alloys of the Al-Zn-Mg-Cu type with a content high in zinc, between 7 and 11%, with a magnesium content included between 1.8 and 3%, and preferably between 1.8 and 2.4%, and a copper content between 1.2 and 2.6% and preferably between 1.6 and 2.2%.
  • a zinc content of 7% the invention seems to be of little interest because it is no longer used in construction aeronautics of such alloys for the manufacture of structural elements used in compression.
  • a zinc content of 11% we encounter difficulties during the industrial casting of sufficiently large plates or billets for the production of sheets, profiles or forgings suitable for the manufacture of said structural elements.
  • the process according to the invention applies in particular to the alloys used for the manufacture of aircraft wing upper surface elements, for example alloys 7055, 7349 and 7449, in the form of wrought products, that is to say rolled, extruded or forged.
  • This method comprises, in known manner, the manufacture of a blank, namely a plate for rolled products, a billet for extruded products or a block of forge for forged products.
  • This blank is preferably homogenized to a temperature close to the starting melting temperature of the alloy, such as indicated in patent application EP 0670377. It is then transformed by hot rolling, spinning or forging, to the desired size.
  • the product obtained is dissolved, also at a temperature fairly close to the temperature of starting melting of the alloy, this temperature being controlled by analysis differential enthalpy. Dissolution is followed by quenching, generally with cold water. The quenched product is preferably subjected to controlled traction leading to a permanent elongation of between 1 and 5%.
  • the product then undergoes an income to obtain the elastic limit peak in compression direction L.
  • the income can be mono-level, that is to say comprising a temperature rise ramp, linear or not as a function of time, a constant temperature within the temperature tolerance limit of the oven used, and a cooling to room temperature.
  • the bearing is at a temperature between 120 and 150 ° C, and of a duration included in the AEFG parallelogram in FIG. 2, and preferably between 120 and 145 ° C of a duration included in the parallelogram ABCD of figure 2.
  • the income can also be bi-level, with a first level at a temperature between 80 and 120 ° C, and a second level at a higher temperature, between 120 and 160 ° C.
  • It can also be tri-level, with a first and a second level within the same limits as two-level income, and a third level at a temperature lower than the second, between 100 and 140 ° C. Considering of the time required, in industrial ovens, for temperature rises, it it is hardly possible to have stages of less than 2 hours duration, and preferably at 5 a.m.
  • t (eq) ⁇ exp (-16000 / T) dt exp (-16000 / T ref ) in which T is the temperature of the tempering stage in ° K, t the treatment time in hours and T ref the reference temperature taken here at 120 ° C, or 393 ° K.
  • the duration of the tempering is between 100 and 250 h of time equivalent to 120 ° C., and 50 to 200 h longer than the equivalent time corresponding to the tempering T651.
  • the duration of tempering necessary to reach the peak in compression depends on the composition of the alloy, and in particular on the Cu / Mg ratio, the necessary duration increasing with this ratio.
  • the wrought product, and in particular the rolled, extruded or forged product obtained by the process according to the invention can be advantageously used for manufacturing structural elements, particularly in aircraft construction. Thanks to the increase in the elastic limit in compression which results from the process according to the invention, a structural element made from at least one spun, laminated product or forged according to the invention, shows with respect to a structural element of the same dimension and made from wrought, extruded or forged products according to the prior art better resistance during compressive stress. In an achievement preferred of the invention, the structural element is an aircraft wing upper surface.
  • the sheets have undergone a pre-enlargement to pass from a plate width of 1100 mm to 2500 mm, hot rolling up to 38 mm with exit temperature at 378 ° C, dissolution at 475 ° C, quenching in cold water, and traction controlled at 2.8% permanent elongation after waiting 1 hour after quenching.
  • R m to less than 5 MPa, while remaining industrially acceptable. In this case, it is a 48 h treatment at 120 ° C.
  • the income leading to the peak of elastic limit in compression is located at an equivalent time of the order of 150 h, that is to say at a time intermediate equivalent between a T651 income and a T7951 income.
  • the beach interesting is between 100 and 250 h of time equivalent to 120 ° C, or 50 to 200 h more than that of T651 income.
  • This income at peak compression leads to a gain 19 MPa compared to T651 income and 25 MPa compared to T7951 income.
  • the sheets were made from two alloys 7449, the thicknesses and compositions of which are given in Table 4. Alloy e (mm) Yes Fe Cu mg Zn Zr Ti AT 30 0.049 0,075 1.87 2.35 8.38 0.11 0.03 B 23 0,045 0.068 1.95 2.27 8.31 0.10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)

Abstract

Fabrication of a welded aluminum alloy product comprises: casting of a blank in alloy of a given composition; possibly the homogenization of the blank; hot transformation of the blank by rolling, drawing or forging; putting in solution and hardening of the product obtained; possibly the application of a controlled traction leading to a permanent elongation of 1-5 %; tempering of the product at a temperature and a duration such that the product attains the peak elasticity limit in compression. The composition of the Al-Zn-Mg-Cu alloy is (% by wt.): (a) Zn : 7.0 - 11.0; (b) Mg : 1.8 - 3.0; (c) Cu : 1.2 - 2.6; (d) one at least of the elements Mn (0.05 - 0.4), Cr (0.05 - 0.3), Zr (0.05 - 0.20), Hf (0.05 - 0.5), V (0.05 - 0.3), Ti (0.01 - 0.2) and Sc (0.05 - 0.3); (e) the rest being Al and inevitable impurities.

Description

Domaine de l'inventionField of the invention

L'invention concerne la fabrication de produits corroyés par laminage, filage ou forgeage en alliage d'aluminium du type AlZnMgCu à haute résistance mécanique, utilisés notamment dans la construction aéronautique, en particulier pour les extrados d'ailes d'avions.The invention relates to the manufacture of wrought products by rolling, spinning or forging of aluminum alloy of the AlZnMgCu type with high mechanical resistance, used in particular in aeronautical construction, in particular for the upper surfaces of airplane wings.

Etat de la techniqueState of the art

Les alliages du type Al-Zn-Mg-Cu sont utilisés depuis plus de 50 ans dans la construction aéronautique, et notamment pour les extrados d'ailes. On a utilisé ainsi les alliages 7075, 7178, 7050, 7150 et, plus récemment les alliages 7055 et 7449. Ces alliages ont été le plus souvent utilisés à l'état T6, c'est-à-dire à un revenu correspondant au maximum de la limite d'élasticité en traction, ou à un état sur-revenu T76, T79 ou T77 pour obtenir une meilleure résistance à la corrosion. A titre d'illustration de cet état de la technique, on peut citer les brevets EP 0020505 de Boeing relatif à l'alliage 7150, les brevets US 4,477,292, US 4,832,758, US 4,863,528 et US 5,108,520 d'Alcoa sur le traitement T77, le brevet EP 0377779 d'Alcoa relatif à un procédé de fabrication de l'alliage 7055, et la demande de brevet EP 0670377 de la demanderesse décrivant un procédé de fabrication de tôles en alliage 7449.Alloys of the Al-Zn-Mg-Cu type have been used for more than 50 years in the aeronautical construction, and in particular for the wing upper surfaces. So we used alloys 7075, 7178, 7050, 7150 and, more recently, alloys 7055 and 7449. These alloys were most often used in the T6 state, i.e. at an income corresponding to the maximum of the elastic limit in traction, or to an over-income state T76, T79 or T77 to obtain better corrosion resistance. As Illustrative of this state of the art, there may be mentioned EP 0020505 patents Boeing relating to alloy 7150, US patents 4,477,292, US 4,832,758, US 4,863,528 and US 5,108,520 from Alcoa on the T77 treatment, patent EP 0377779 Alcoa relating to a manufacturing process for alloy 7055, and the patent application EP 0670377 from the applicant describing a process for the manufacture of sheet metal alloy 7449.

Les propriétés de l'alliage 7449 développé par la demanderesse pour les tôles destinées aux extrados de voilure sont étudiées dans la communication de T. Warner et al. « Aluminium alloy developments for affordable airframe structures », Conférence on Synthesis, Processing and Modelling of Advanced Materials, ASM International, Paris, 25-27 juin 1997, pp.77-88. La figure 2 de l'article, reproduite comme figure 1 ci-après, représente les propriétés typiques de tôles d'épaisseur comprise entre 15 et 40 mm en cet alliage, à savoir la résistance à la rupture et la limite d'élasticité sens L en traction, la limite d'élasticité en compression sens L et le seuil de corrosion sous tension (sens ST), à l'état T651 et à un état T7x51 à résistance à la corrosion amélioré. Cet état a été identifié dans des publications ultérieures des mêmes auteurs comme T7951 (ou T79511 pour les produits filés), par exemple dans la communication de F. Heymès et al. «New aluminium semi-products for airframe application», METEC Congress, Düsseldorf, juin 1999, qui reprend la même figure. La figure 1 ci-après montre que la limite d'élasticité en compression à l'état T79 est inférieure à celle à l'état T6. A cet état T7951, les tôles en 7449 présentent, par rapport au 7150 à l'état T651 utilisé habituellement pour les extrados d'ailes d'avions commerciaux, un gain de 10% en limite d'élasticité en compression, une résistance améliorée à la corrosion feuilletante et sous tension et à la fatigue, sans diminution de la tolérance aux dommages.The properties of alloy 7449 developed by the applicant for sheets for the upper surface of the sails are studied in the communication by T. Warner et al. "Aluminum alloy developments for affordable airframe structures", Conference on Synthesis, Processing and Modeling of Advanced Materials, ASM International, Paris, June 25-27, 1997, pp. 77-88. Figure 2 of the article, reproduced as figure 1 below, represents the typical properties of thick sheets between 15 and 40 mm in this alloy, namely the breaking strength and the elastic limit in direction L in tension, the elastic limit in compression in direction L and the voltage corrosion threshold (direction ST), in state T651 and in state T7x51 at improved corrosion resistance. This condition has been identified in publications by the same authors as T7951 (or T79511 for spun products), by example in the communication by F. Heymès et al. "New aluminum semi-products for airframe application ”, METEC Congress, Düsseldorf, June 1999, which takes the same figure. Figure 1 below shows that the elastic limit in compression in state T79 is less than in state T6. In this state T7951, the sheets in 7449, compared to 7150 in the T651 state usually used for extrados of commercial aircraft wings, a 10% gain in elasticity limit in compression, improved resistance to flaking and stress corrosion and fatigue, without reducing tolerance to damage.

En résumé, l'état de la technique montre d'une part que la résistance mécanique à la compression est une propriété essentielle pour les extrados d'ailes, et que, d'autre part les fabricants d'alliages à haute résistance proposent pour cette application des produits soit à l'état T6, correspondant au pic de limite d'élasticité en traction, soit à un état T7 sur-revenu avec une meilleure résistance à la corrosion, mais avec une perte de résistance mécanique.In summary, the state of the art shows on the one hand that the mechanical resistance to compression is an essential property for the upper surfaces of fenders, and that, share the manufacturers of high resistance alloys offer for this application produced either in the T6 state, corresponding to the peak of elastic limit in tension, or an over-tempered T7 state with better corrosion resistance, but with a loss of mechanical strength.

Objet de l'inventionSubject of the invention

L'invention a pour but d'améliorer encore la résistance mécanique en compression des produits en alliages 7000 à haute résistance destinés notamment aux extrados d'ailes d'avions sans perte sur les autres propriétés d'emploiThe invention aims to further improve the mechanical strength in compression high resistance 7000 alloy products intended in particular for upper surfaces of aircraft wings without loss on other properties of use

L'invention a pour objet un procédé de fabrication d'un produit corroyé en alliage d'aluminium Al-Zn-Mg-Cu à haute résistance mécanique, comportant

  • la coulée d'une ébauche en alliage de composition (% en poids) : Zn : 7,0 - 11,0 Mg : 1,8 - 3,0 Cu : 1,2 - 2,6 l'un au moins des éléments Mn (0,05 - 0,4), Cr (0,05 - 0,30), Zr (0,05 - 0,20), Hf (0,05 - 0,5), V (0,05 - 0,3), TI (0,01 - 0,2) et Sc (0,05 - 0,3), reste aluminium et impuretés inévitables,
  • éventuellement l'homogénéisation de cette ébauche,
  • la transformation à chaud de cette ébauche par laminage, filage ou forgeage,
  • la mise en solution et la trempe du produit obtenu,
  • éventuellement une traction contrôlée conduisant à un allongement permanent compris entre 1 et 5 %,
  • le revenu du produit à une température et d'une durée telles que le produit atteigne le pic de limite d'élasticité sens L en compression.
The subject of the invention is a method of manufacturing a wrought product of aluminum alloy Al-Zn-Mg-Cu with high mechanical strength, comprising
  • casting an alloy alloy blank (% by weight): Zn: 7.0 - 11.0 Mg: 1.8 - 3.0 Cu: 1.2 - 2.6 at least one of the elements Mn (0.05 - 0.4), Cr (0.05 - 0.30), Zr (0.05 - 0.20), Hf (0.05 - 0.5), V (0.05 - 0.3), TI (0.01 - 0.2) and Sc (0.05 - 0.3), aluminum residue and unavoidable impurities,
  • possibly the homogenization of this draft,
  • the hot transformation of this blank by rolling, spinning or forging,
  • dissolving and quenching the product obtained,
  • possibly controlled traction leading to permanent elongation of between 1 and 5%,
  • the income of the product at a temperature and a duration such that the product reaches the peak of elastic limit direction L in compression.

Un autre objet de l'invention est le produit laminé, filé ou forgé obtenu par ledit procédé.Another subject of the invention is the rolled, spun or forged product obtained by said process.

Encore un autre objet de l'invention est l'élément structural pour construction mécanique, et notamment aéronautique, fabriqué à partir d'au moins un produit laminé, filé ou forgé obtenu par ledit procédé.Yet another object of the invention is the structural element for construction mechanical, and in particular aeronautical, made from at least one product laminated, spun or forged obtained by said process.

Description des figuresDescription of the figures

La figure 1 représente les propriétés typiques, à savoir la limite élastique en traction (sens L), la résistance à la rupture en traction (sens L), la limite d'élasticité en compression (sens L) et le seuil de corrosion sous tension (sens ST), de tôles d'épaisseur comprise entre 15 et 40 mm en alliages 7150-T651, 7449-T651 et 7449-T7951 selon l'art antérieur.Figure 1 represents the typical properties, namely the elastic limit in tension (direction L), the tensile strength (direction L), the elastic limit in compression (direction L) and the corrosion threshold under tension (direction ST), of sheets thickness between 15 and 40 mm in alloys 7150-T651, 7449-T651 and 7449-T7951 according to the prior art.

La figure 2 représente le domaine temps-température du revenu du procédé selon l'invention.FIG. 2 represents the time-temperature domain of the income of the process according to the invention.

La figure 3 représente la résistance à la rupture et la limite élastique en traction de tôles d'épaisseur 38 mm en alliage 7449 de l'exemple 1 en fonction du temps équivalent à 120°C du revenu pour différentes températures de revenu.FIG. 3 represents the breaking strength and the elastic limit in tension of 38 mm thick sheets of alloy 7449 of Example 1 as a function of time equivalent to 120 ° C of tempering for different tempering temperatures.

La figure 4 représente la résistance à la rupture en traction (sens L) et la limite d'élasticité en traction et en compression (sens L) de tôles de 38 mm en alliage 7449 de l'exemple 2 en fonction du temps équivalent à 120°C du revenu.Figure 4 shows the tensile strength (direction L) and the limit tensile and compressive strength (L direction) of 38 mm 7449 alloy sheets of example 2 as a function of the time equivalent to 120 ° C. of the income.

La figure 5 représente la limite d'élasticité en compression des tôles en alliages A etFIG. 5 represents the compressive elastic limit of the sheets of alloys A and

B de l'exemple 3 en fonction du temps équivalent à 120°C du revenu. B of Example 3 as a function of the time equivalent to 120 ° C. of the income.

Description de l'inventionDescription of the invention

L'invention repose sur la mise en évidence d'un décalage entre le pic de résistance mécanique en traction obtenu au revenu, qui correspond à ce qu'on nomme habituellement l'état T6, et le pic de résistance mécanique en compression. Bien qu'il soit connu depuis très longtemps que les extrados d'ailes travaillent surtout en compression, et que donc la limite d'élasticité en compression est une propriété dimensionnante pour les éléments de structure de cette partie d'aile, les métallurgistes ont toujours utilisé la résistance en traction pour définir l'état T6 de résistance maximale atteinte au revenu.The invention is based on highlighting a difference between the resistance peak mechanical tensile obtained income, which corresponds to what is called usually the state T6, and the peak of mechanical resistance in compression. Well that it has been known for a very long time that the extrados of wings work especially in compression, and that therefore the elastic limit in compression is a property dimensioning for the structural elements of this wing part, the metallurgists have always used tensile strength to define the T6 state of maximum resistance to income.

Les inventeurs ont trouvé qu'entre les états T6 et T79 de l'art antérieur, il existait un état métallurgique pour lequel la limite d'élasticité en compression passe par un pic se situant entre 20 à 25 MPa au-dessus des limites d'élasticité en compression de ces deux états.The inventors have found that between states T6 and T79 of the prior art, there exists a metallurgical state for which the elastic limit in compression passes through a peak lying between 20 to 25 MPa above the compressive elasticity limits of these two states.

Le procédé selon l'invention s'applique aux alliages du type Al-Zn-Mg-Cu à teneur élevée en zinc, comprise entre 7 et 11%, avec une teneur en magnésium comprise entre 1,8 et 3%, et de préférence entre 1,8 et 2,4%, et une teneur en cuivre entre 1,2 et 2,6% et de préférence entre 1,6 et 2,2%. Au-dessous d'une teneur en zinc de 7 %, l'invention semble présenter peu d'intérêt car on n'utilise plus en construction aéronautique de tels alliages pour la fabrication d'éléments structuraux sollicités en compression. Au-dessus d'une teneur en zinc de 11 %, on rencontre des difficultés lors de la coulée industrielle de plaques ou billettes de taille suffisamment grande pour la production de tôles, profilés ou pièces forgées aptes à la fabrication desdits éléments structuraux.The process according to the invention applies to alloys of the Al-Zn-Mg-Cu type with a content high in zinc, between 7 and 11%, with a magnesium content included between 1.8 and 3%, and preferably between 1.8 and 2.4%, and a copper content between 1.2 and 2.6% and preferably between 1.6 and 2.2%. Below a zinc content of 7%, the invention seems to be of little interest because it is no longer used in construction aeronautics of such alloys for the manufacture of structural elements used in compression. Above a zinc content of 11%, we encounter difficulties during the industrial casting of sufficiently large plates or billets for the production of sheets, profiles or forgings suitable for the manufacture of said structural elements.

Le procédé selon l'invention s'applique en particulier aux alliages utilisés pour la fabrication d'éléments d'extrados d'ailes d'avions, par exemple les alliages 7055, 7349 et 7449, sous forme de produits corroyés, c'est-à-dire laminés, filés ou forgés. Ce procédé comporte, de manière connue, la fabrication d'une ébauche, à savoir une plaque pour les produits laminés, une billette pour les produits filés ou un bloc de forge pour les produits forgés. Cette ébauche est, de préférence, homogénéisée à une température proche de la température de fusion commençante de l'alliage, comme indiqué dans la demande de brevet EP 0670377. Elle est ensuite transformée par laminage à chaud, filage ou forgeage, à la dimension désirée. Le produit obtenu est mis en solution, également à une température assez proche de la température de fusion commençante de l'alliage, cette température étant contrôlée par analyse enthalpique différentielle. La mise en solution est suivie d'une trempe, généralement à l'eau froide. Le produit trempé est soumis, de préférence, à une traction contrôlée conduisant à un allongement permanent compris entre 1 et 5 %.The process according to the invention applies in particular to the alloys used for the manufacture of aircraft wing upper surface elements, for example alloys 7055, 7349 and 7449, in the form of wrought products, that is to say rolled, extruded or forged. This method comprises, in known manner, the manufacture of a blank, namely a plate for rolled products, a billet for extruded products or a block of forge for forged products. This blank is preferably homogenized to a temperature close to the starting melting temperature of the alloy, such as indicated in patent application EP 0670377. It is then transformed by hot rolling, spinning or forging, to the desired size. The product obtained is dissolved, also at a temperature fairly close to the temperature of starting melting of the alloy, this temperature being controlled by analysis differential enthalpy. Dissolution is followed by quenching, generally with cold water. The quenched product is preferably subjected to controlled traction leading to a permanent elongation of between 1 and 5%.

Le produit subit ensuite un revenu pour obtenir le pic de limite d'élasticité en compression sens L. Le revenu peut être mono-palier, c'est-à-dire comportant une rampe de montée en température, linéaire ou non en fonction du temps, un palier à température constante dans la limite de tolérance de température du four utilisé, et un refroidissement jusqu'à la température ambiante. Dans le cas d'un revenu mono-palier, le palier est à une température comprise entre 120 et 150°C, et d'une durée comprise dans le parallélogramme AEFG de la figure 2, et de préférence entre 120 et 145°C d'une durée comprise dans le parallélogramme ABCD de la figure 2. Le revenu peut également être bi-palier, avec un premier palier à une température comprise entre 80 et 120°C, et un second palier à une température plus élevée, comprise entre 120 et 160°C. Il peut également être tri-palier, avec un premier et un second palier dans les mêmes limites que le revenu bi-palier, et un troisième palier à une température plus basse que le second, comprise entre 100 et 140°C. Compte tenu du temps nécessaire, dans les fours industriels, pour les montées en température, il n'est guère envisageable d'avoir des paliers d'une durée inférieure à 2 h, et de préférence à 5 h.The product then undergoes an income to obtain the elastic limit peak in compression direction L. The income can be mono-level, that is to say comprising a temperature rise ramp, linear or not as a function of time, a constant temperature within the temperature tolerance limit of the oven used, and a cooling to room temperature. In the case of a single-tier income, the bearing is at a temperature between 120 and 150 ° C, and of a duration included in the AEFG parallelogram in FIG. 2, and preferably between 120 and 145 ° C of a duration included in the parallelogram ABCD of figure 2. The income can also be bi-level, with a first level at a temperature between 80 and 120 ° C, and a second level at a higher temperature, between 120 and 160 ° C. It can also be tri-level, with a first and a second level within the same limits as two-level income, and a third level at a temperature lower than the second, between 100 and 140 ° C. Considering of the time required, in industrial ovens, for temperature rises, it it is hardly possible to have stages of less than 2 hours duration, and preferably at 5 a.m.

Dans tous les cas, on peut ramener les deux paramètres température et durée à un paramètre unique, le temps équivalent à 120°C, défini par la formule : t(eq) = ∫exp(-16000 / T)dtexp(-16000 / Tref) dans laquelle T est la température du palier de revenu en °K, t la durée de traitement en heures et Tref la température de référence prise ici à 120°C, soit 393°K. La durée du revenu est comprise entre 100 et 250 h de temps équivalent à 120°C, et de 50 à 200h de plus que le temps équivalent correspondant au revenu T651. La durée de revenu nécessaire pour atteindre le pic en compression dépend de la composition de l'alliage, et notamment du rapport Cu/Mg, la durée nécessaire croissant avec ce rapport.In all cases, we can reduce the two parameters temperature and duration to a single parameter, the time equivalent to 120 ° C, defined by the formula: t (eq) = ∫exp (-16000 / T) dt exp (-16000 / T ref ) in which T is the temperature of the tempering stage in ° K, t the treatment time in hours and T ref the reference temperature taken here at 120 ° C, or 393 ° K. The duration of the tempering is between 100 and 250 h of time equivalent to 120 ° C., and 50 to 200 h longer than the equivalent time corresponding to the tempering T651. The duration of tempering necessary to reach the peak in compression depends on the composition of the alloy, and in particular on the Cu / Mg ratio, the necessary duration increasing with this ratio.

Le produit corroyé, et notamment le produit laminé, filé ou forgé obtenu par le procédé selon l'invention peut être avantageusement utilisé pour la fabrication d'éléments structuraux, notamment en construction aéronautique. Grâce à l'augmentation de la limite d'élasticité en compression qui résulte du procédé selon l'invention, un élément structural fabriqué à partir d'au moins un produit filé, laminé ou forgé selon l'invention, montre par rapport à un élément structural de même dimension et réalisé à partir de produits corroyés, filés ou forgés selon l'art antérieur une meilleure résistance lors d'une sollicitation en compression. Dans une réalisation préférée de l'invention, l'élément structural est un extrados d'aile d'avion.The wrought product, and in particular the rolled, extruded or forged product obtained by the process according to the invention can be advantageously used for manufacturing structural elements, particularly in aircraft construction. Thanks to the increase in the elastic limit in compression which results from the process according to the invention, a structural element made from at least one spun, laminated product or forged according to the invention, shows with respect to a structural element of the same dimension and made from wrought, extruded or forged products according to the prior art better resistance during compressive stress. In an achievement preferred of the invention, the structural element is an aircraft wing upper surface.

ExemplesExamples Exemple 1Example 1

On a réalisé des tôles en alliage 7449 d'épaisseur 38 mm. La composition de l'alliage était la suivante (% en poids) : Zn = 8,11 Mg = 2,19 Cu = 1,94 Si = 0,04 Fe = 0,07 Zr = 0,09 Cr = 0,005 Ti = 0,025 reste aluminium et impuretés (< 0,05 chacune).7449 alloy sheets 38 mm thick were produced. The composition of the alloy was as follows (% by weight): Zn = 8.11 Mg = 2.19 Cu = 1.94 Si = 0.04 Fe = 0.07 Zr = 0.09 Cr = 0.005 Ti = 0.025 aluminum residue and impurities (<0.05 each).

Les tôles ont subi un pré-élargissement pour passer d'une largeur de plaque de 1100 mm à 2500 mm, un laminage à chaud jusqu'à 38 mm avec une température de sortie à 378°C, une mise en solution à 475°C, une trempe à l'eau froide, et une traction contrôlée à 2,8% d'allongement permanent après une attente de 1 h après trempe.The sheets have undergone a pre-enlargement to pass from a plate width of 1100 mm to 2500 mm, hot rolling up to 38 mm with exit temperature at 378 ° C, dissolution at 475 ° C, quenching in cold water, and traction controlled at 2.8% permanent elongation after waiting 1 hour after quenching.

Des échantillons prélevés à mi-épaisseur des tôles ont été soumis à 11 revenus différents, de type mono- ou bi-palier, mentionnés au tableau 1. Les rampes de montée et de descente entre paliers étaient respectivement de 16°C/h et 65°C/h, correspondant à des vitesses observables sur des fours industriels de traitement thermique. Pour chaque revenu, on a calculé le temps équivalent à 120°C téq selon la formule : t(eq) = ∫exp(-16000 / T)dtexp(-16000 / Tref) dans laquelle T est la température du palier de revenu en °K, t la durée de traitement en heures et Tref la température de référence prise ici à 120°C, soit 393°K.Samples taken at mid-thickness of the sheets were subjected to 11 different incomes, of the mono- or bi-bearing type, mentioned in Table 1. The ramps of ascent and descent between bearings were respectively 16 ° C / h and 65 ° C / h, corresponding to observable speeds on industrial heat treatment furnaces. For each income, the time equivalent to 120 ° C t eq was calculated according to the formula: t (eq) = ∫exp (-16000 / T) dt exp (-16000 / T ref ) in which T is the temperature of the tempering stage in ° K, t the treatment time in hours and T ref the reference temperature taken here at 120 ° C, or 393 ° K.

Les 11 revenus essayés sont compris entre le revenu T651 et le revenu T7951 de l'art antérieur, et leurs paramètres, ainsi que les temps équivalents correspondants, sont indiqués au tableau 1.The 11 revenues tested are between T651 income and T7951 art income previous, and their parameters, as well as the corresponding equivalent times, are shown in Table 1.

On a mesuré dans chaque cas les caractéristiques statiques en traction dans le sens L (résistance à la rupture Rm, limite d'élasticité R0,2 et allongement A) sur des éprouvettes TOR 6 prélevées à coeur des tôles. Les résultats sont la moyenne d'au moins deux mesures ; ils sont indiqués au tableau 1, ainsi que sur la figure 3. Revenu
1er palier
Revenu
2ème palier
Teq à 120°C
(h)
R0,2(L)
(Mpa)
Rm(L)
(MPa)
A
(%)
24h-120°C 24 617 661 12 48h-120°C 48 623 661 12 96h-120°C 96 624 655 12 6h-135°C 29 616 655 12 12h-135°C 55 619 651 11 24h-135°C 108 619 651 11 48h-135°C 215 611 642 11 24h-120°C 5h-150°C 125 620 649 11 24h-120°C 9h-150°C 196 613 642 11 24h-120°C 13h-150°C 265 607 636 10 24h-120°C 17h-150°C 336 595 627 10
In each case, the static characteristics in tension in the L direction were measured (tensile strength R m , elastic limit R 0.2 and elongation A) on TOR 6 test pieces taken from the core of the sheets. The results are the average of at least two measurements; they are shown in Table 1, as well as in Figure 3. Returned
1st level
Returned
2 nd level
Teq at 120 ° C
(H)
R 0.2 (L)
(Mpa)
R m (L)
(MPa)
AT
(%)
24h-120 ° C 24 617 661 12 48h-120 ° C 48 623 661 12 96h-120 ° C 96 624 655 12 6h-135 ° C 29 616 655 12 12h-135 ° C 55 619 651 11 24h-135 ° C 108 619 651 11 48h-135 ° C 215 611 642 11 24h-120 ° C 5h-150 ° C 125 620 649 11 24h-120 ° C 9h-150 ° C 196 613 642 11 24h-120 ° C 13h-150 ° C 265 607 636 10 24h-120 ° C 17h-150 ° C 336 595 627 10

On constate qu'au voisinage du pic, ce sont les revenus à plus basse température, c'est-à-dire à 120°C, qui conduisent aux valeurs de R0,2 et Rm les plus élevées. En ce qui concerne les revenus bi-palier, c'est la température du second palier qui est déterminante pour cet effet. Par ailleurs, les pics pour R0,2 et Rm sont voisins, mais pas exactement au même endroit. On peut définir le traitement T651 au pic comme le traitement permettant de s'approcher de la valeur maximum potentielle de R0,2 et deIt can be seen that in the vicinity of the peak, it is the incomes at lower temperature, that is to say at 120 ° C., which lead to the highest values of R 0.2 and R m . With regard to two-tier income, it is the temperature of the second tier which is decisive for this effect. Furthermore, the peaks for R 0.2 and R m are neighboring, but not exactly in the same place. We can define the treatment T651 at the peak as the treatment allowing to approach the maximum potential value of R 0.2 and

Rm à moins de 5 MPa près, tour en restant industriellement acceptable. Dans le cas présent, il s'agit du traitement de 48 h à 120°C.R m to less than 5 MPa, while remaining industrially acceptable. In this case, it is a 48 h treatment at 120 ° C.

Exemple 2Example 2

On a réalisé, de la même manière que dans l'exemple 1, des échantillons prélevés dans des tôles de 38 mm d'épaisseur en alliage 7449 de composition : Zn = 8,38 Mg = 2,15 Cu = 1,96 Si = 0,04 Fe = 0,06 Zr = 0,11 reste aluminium et impuretés (< 0,5% chacune).In the same way as in Example 1, samples were taken in 38 mm thick sheets of alloy 7449 of composition: Zn = 8.38 Mg = 2.15 Cu = 1.96 Si = 0.04 Fe = 0.06 Zr = 0.11 remains aluminum and impurities (<0.5% each).

Ces échantillons sont soumis à 8 revenus différents, compris entre le revenu T651 défini à l'exemple 1 et le revenu T7951. Les températures et durées de ces 8 revenus, ainsi que les temps équivalents à 120°C correspondants, sont indiqués au tableau 2. Revenu Paramètres Temps équivalent A (T651) 48h-120°C 48 B 12h-135°C 48 C 18h-135°C 78 D 24h-135°C 102 E 30h-135°C 130 F 24h-120°C + 5,5h-150°C 130 G 24h-120°C + 11h-150°C 222 H (T7951) 24h-120°C + 17h-150°C 321 These samples are subjected to 8 different incomes, between the T651 income defined in example 1 and the T7951 income. The temperatures and durations of these 8 returns, as well as the corresponding times at 120 ° C., are shown in Table 2. Returned Settings Equivalent time A (T651) 48h-120 ° C 48 B 12h-135 ° C 48 VS 18h-135 ° C 78 D 24h-135 ° C 102 E 30h-135 ° C 130 F 24h-120 ° C + 5.5h-150 ° C 130 G 24h-120 ° C + 11h-150 ° C 222 H (T7951) 24h-120 ° C + 17h-150 ° C 321

En plus des caractéristiques mécaniques de traction, on a mesuré la limite d'élasticité en compression dans le sens L sur des éprouvettes de diamètre 13 mm et de longueur 25 mm, ainsi que la conductivité électrique sur des échantillons prélevés en surface. Les résultats, moyennes de deux mesures, sont indiqués au tableau 3, et sur la figure 4 pour Rm et R0,2 en traction, et R0,2 en compression. Revenu Rm trac.
(MPa)
R0,2 trac.
(MPa)
A
(%)
R0,2
comp(MPa)
Conduct.
(MS/m)
A 638 676 12,4 596 18,4 B 639 673 11,8 599 18,7 C 637 668 12,0 611 19,1 D 634 663 11,0 614 19,7 E 633 663 10,5 615 20,0 F 635 662 11,2 613 20,1 G 619 648 10,5 608 21,2 H 597 621 10,7 590 21,9
In addition to the mechanical tensile characteristics, the compressive elastic limit in the L direction was measured on test specimens with a diameter of 13 mm and a length of 25 mm, as well as the electrical conductivity on samples taken from the surface. The results, averages of two measurements, are shown in Table 3, and in Figure 4 for R m and R 0.2 in tension, and R 0.2 in compression. Returned R m jitters.
(MPa)
R 0.2 trac.
(MPa)
AT
(%)
R 0.2
comp (MPa)
Conduct.
(MS / m)
AT 638 676 12.4 596 18.4 B 639 673 11.8 599 18.7 VS 637 668 12.0 611 19.1 D 634 663 11.0 614 19.7 E 633 663 10.5 615 20.0 F 635 662 11.2 613 20.1 G 619 648 10.5 608 21.2 H 597 621 10.7 590 21.9

On constate que le revenu conduisant au pic de limite d'élasticité en compression (sens L) se situe à un temps équivalent de l'ordre de 150 h, c'est-à-dire à un temps équivalent intermédiaire entre un revenu T651 et un revenu T7951. La plage intéressante se situe entre 100 et 250 h de temps équivalent à 120°C, soit 50 à 200 h de plus que celui du revenu T651. Ce revenu au pic en compression conduit à un gain de 19 MPa par rapport au revenu T651 et de 25 MPa par rapport au revenu T7951.It is noted that the income leading to the peak of elastic limit in compression (sense L) is located at an equivalent time of the order of 150 h, that is to say at a time intermediate equivalent between a T651 income and a T7951 income. The beach interesting is between 100 and 250 h of time equivalent to 120 ° C, or 50 to 200 h more than that of T651 income. This income at peak compression leads to a gain 19 MPa compared to T651 income and 25 MPa compared to T7951 income.

Exemple 3Example 3

On a fabriqué, de la même manière que dans les exemples précédents jusqu'à la trempe, des tôles en deux alliages 7449 dont les épaisseurs et les compositions sont indiquées au tableau 4. Alliage e (mm) Si Fe Cu Mg Zn Zr Ti A 30 0,049 0,075 1,87 2,35 8,38 0,11 0,03 B 23 0,045 0,068 1,95 2,27 8,31 0,10 In the same way as in the previous examples, the sheets were made from two alloys 7449, the thicknesses and compositions of which are given in Table 4. Alloy e (mm) Yes Fe Cu mg Zn Zr Ti AT 30 0.049 0,075 1.87 2.35 8.38 0.11 0.03 B 23 0,045 0.068 1.95 2.27 8.31 0.10

On a soumis ces tôles à différents revenus indiqués au tableau 5, les 11 premiers correspondant à l'alliage A et les 7 derniers à l'alliage B. On a mesuré sur des éprouvettes de diamètre 13 mm et de longueur 25 mm, prélevées à coeur des tôles, la limite d'élasticité R0,2 en compression sens L, ainsi que le module d'élasticité en compression, également sens L. Les résultats sont indiqués au tableau 5 et reportés, pour la limite d'élasticité, sur la figure 5 en fonction du temps équivalent à 120°C du revenu. Revenu
1er palier
Revenu
2ème palier
Revenu
3ème palier
R0,2 compr.
(MPa)
Module
(MPa)
24h-80°C 24h-135°C 605 70281 24h-100°C 24h-135°C 602 71200 24h-120°C 24h-135°C 607 72335 24h-100°C 18h-140°C 603 70598 24h-100°C 7h-150°C 601 70618 24h-100°C 2,5h-160°C 607 72302 24h-100°C 30h-140°C 600 72806 24h-100°C 18h-140°C 24h-120°C 616 71621 24h-100°C 7h-150°C 24h-120°C 615 70862 24h-100°C 2,5h-160°C 24h-120°C 622 72569 T7951 587 24h-80°C 24h-135°C 635 72910 24h-120°C 24h-135°C 611 72222 24h-100°C 18h-140°C 614 73244 24h-100°C 7h-150°C 610 72349 24h-100°C 30h-140°C 596 70181 24h-100°C 7h-150°C 24h-120°C 621 71303 T7951 598
These sheets were subjected to different incomes indicated in Table 5, the first 11 corresponding to alloy A and the last 7 to alloy B. We measured on test pieces with a diameter of 13 mm and a length of 25 mm, taken at core of the sheets, the elastic limit R 0.2 in compression direction L, as well as the modulus of elasticity in compression, also direction L. The results are shown in Table 5 and reported, for the elastic limit, on Figure 5 as a function of time equivalent to 120 ° C of the income. Returned
1st level
Returned
2 nd level
Returned
3rd tier
R0.2 compr.
(MPa)
Module
(MPa)
24h-80 ° C 24h-135 ° C 605 70281 24h-100 ° C 24h-135 ° C 602 71200 24h-120 ° C 24h-135 ° C 607 72335 24h-100 ° C 18h-140 ° C 603 70598 24h-100 ° C 7h-150 ° C 601 70618 24h-100 ° C 2,5h-160 ° C 607 72302 24h-100 ° C 30h-140 ° C 600 72806 24h-100 ° C 18h-140 ° C 24h-120 ° C 616 71621 24h-100 ° C 7h-150 ° C 24h-120 ° C 615 70862 24h-100 ° C 2,5h-160 ° C 24h-120 ° C 622 72569 T7951 587 24h-80 ° C 24h-135 ° C 635 72910 24h-120 ° C 24h-135 ° C 611 72222 24h-100 ° C 18h-140 ° C 614 73244 24h-100 ° C 7h-150 ° C 610 72349 24h-100 ° C 30h-140 ° C 596 70181 24h-100 ° C 7h-150 ° C 24h-120 ° C 621 71303 T7951 598

On constate que le pic de limite d'élasticité en compression se situe pour un temps équivalent à 120°C compris entre 100 et 200 h, et que les revenus tri-palier conduisent à des valeurs plus élevées. Par ailleurs, on note par rapport au revenu T7951 une augmentation de la limite d'élasticité en compression de l'ordre de 15 MPa pour les revenus bi-palier, et de 25 MPa pour les revenus tri-palier.It is noted that the peak of elastic limit in compression is located for a time equivalent to 120 ° C between 100 and 200 h, and that tri-level revenues lead to higher values. In addition, we note in relation to income T7951 an increase in the elastic limit in compression of the order of 15 MPa for two-tier revenues, and 25 MPa for tri-tier revenues.

Claims (13)

Procédé de fabrication d'un produit corroyé en alliage d'aluminium Al-Zn-Mg-Cu à haute résistance mécanique, comportant la coulée d'une ébauche en alliage de composition (% en poids) : Zn : 7,0 - 11,0 Mg : 1,8 - 3,0 Cu : 1,2 - 2,6 l'un au moins des éléments Mn (0,05 - 0,4), Cr (0,05 - 0,3), Zr (0,05 - 0,20), Hf (0,05 - 0,5), V (0,05 - 0,3), Ti (0,01 - 0,2) et Sc (0,05 - 0,3), reste aluminium et impuretés inévitables, éventuellement l'homogénéisation de cette ébauche, la transformation à chaud de cette ébauche par laminage, filage ou forgeage, la mise en solution et la trempe du produit obtenu, éventuellement une traction contrôlée conduisant à un allongement permanent compris entre 1 et 5 %, le revenu du produit à une température et d'une durée telles que le produit atteigne le pic de limite d'élasticité sens L en compression. Method for manufacturing a wrought product of aluminum alloy Al-Zn-Mg-Cu with high mechanical strength, comprising casting an alloy alloy blank (% by weight): Zn: 7.0 - 11.0 Mg: 1.8 - 3.0 Cu: 1.2 - 2.6 at least one of the elements Mn (0.05 - 0.4), Cr (0.05 - 0.3), Zr (0.05 - 0.20), Hf (0.05 - 0.5), V (0.05 - 0.3), Ti (0.01 - 0.2) and Sc (0.05 - 0.3), aluminum residue and unavoidable impurities, possibly the homogenization of this draft, the hot transformation of this blank by rolling, spinning or forging, dissolving and quenching the product obtained, possibly controlled traction leading to permanent elongation of between 1 and 5%, the income of the product at a temperature and a duration such that the product reaches the peak of elastic limit direction L in compression. Procédé selon la revendication 1, caractérisé en ce que la teneur en magnésium de l'alliage est comprise entre 1,8 et 2,4%.Process according to claim 1, characterized in that the magnesium content of the alloy is between 1.8 and 2.4%. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la teneur en cuivre de l'alliage est comprise entre 1,6 et 2,2%.Method according to one of claims 1 or 2, characterized in that the copper content of the alloy is between 1.6 and 2.2%. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'alliage est le 7349 ou le 7449.Method according to one of claims 1 to 3, characterized in that the alloy is 7349 or 7449. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'alliage est le 7055.Method according to one of claims 1 to 3, characterized in that the alloy is 7055. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le revenu est un revenu mono-palier à une température et une durée comprises dans le parallélogramme AEFG dont les sommets ont, dans un diagramme température - durée, les coordonnées suivantes : A : 120°C - 100 h E : 150°C - 5 h F : 150°C - 40 h G : 120°C -700 h Method according to one of claims 1 to 5, characterized in that the tempering is a single-stage tempering at a temperature and a duration included in the AEFG parallelogram whose vertices have, in a temperature-duration diagram, the following coordinates: A: 120 ° C - 100 h E: 150 ° C - 5 h F: 150 ° C - 40 h G: 120 ° C -700 h Procédé selon la revendications 6, caractérisé en ce que le revenu est un revenu mono-palier à une température et une durée comprises dans le parallélogramme ABCD dont les sommets ont, dans un diagramme température - durée, les coordonnées suivantes : A : 120°C - 100 h B : 145°C - 9 h C : 145°C - 22 h D : 120°C - 230 h Method according to claims 6, characterized in that the income is a single-stage income at a temperature and a duration included in the parallelogram ABCD whose vertices have, in a temperature-duration diagram, the following coordinates: A: 120 ° C - 100 h B: 145 ° C - 9 h C: 145 ° C - 22 h D: 120 ° C - 230 h Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le revenu a une durée en temps équivalent à 120°C comprise entre 100 et 250 h.Method according to one of claims 1 to 5, characterized in that the tempering has a duration in time equivalent to 120 ° C of between 100 and 250 h. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le revenu a une durée en temps équivalent à 120°C supérieure de 50 à 200 h à celle correspondant à l'état T651.Method according to one of claims 1 to 5, characterized in that the tempering has a duration in time equivalent to 120 ° C greater by 50 to 200 h than that corresponding to the state T651. Procédé selon l'une des revendications 8 ou 9, caractérisé en ce que le revenu est un revenu bi-palier, comportant un premier palier à une température comprise entre 80 °C et 120 °C, et un second palier à une température comprise entre 120 °C et 160 °C.Method according to one of claims 8 or 9, characterized in that the tempering is a two-stage tempering, comprising a first stage at a temperature between 80 ° C and 120 ° C, and a second stage at a temperature between 120 ° C and 160 ° C. Procédé selon l'une des revendications 8 ou 9, caractérisé en ce que le revenu est un revenu tri-palier, comportant un premier palier à une température comprise entre 80 °C et 120 °C, un second palier à une température comprise entre 120 °C et 160 °C, et un troisième palier à une température plus basse que le second et comprise entre 100 °C et 140 °C.Method according to one of claims 8 or 9, characterized in that the tempering is a tri-level tempering, comprising a first stage at a temperature between 80 ° C and 120 ° C, a second stage at a temperature between 120 ° C and 160 ° C, and a third level at a lower temperature than the second and between 100 ° C and 140 ° C. Produit laminé, filé ou forgé obtenu par le procédé selon l'une quelconque des revendications 1 à 11. Rolled, extruded or forged product obtained by the process according to any one of claims 1 to 11. Elément structural pour construction mécanique et notamment aéronautique, fabriqué à partir d'au moins un produit laminé, filé ou forgé obtenu par le procédé selon l'une des revendications 1 à 11.Structural element for mechanical construction and in particular aeronautics, made from at least one rolled, spun or forged product obtained by the method according to one of claims 1 to 11.
EP02356018A 2001-02-07 2002-02-05 Method for making a high strength, wrought AlZnMgCu alloy product Ceased EP1231290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0101617 2001-02-07
FR0101617A FR2820438B1 (en) 2001-02-07 2001-02-07 PROCESS FOR THE MANUFACTURE OF A CORROSIVE PRODUCT WITH HIGH RESISTANCE IN ALZNMAGCU ALLOY

Publications (1)

Publication Number Publication Date
EP1231290A1 true EP1231290A1 (en) 2002-08-14

Family

ID=8859702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02356018A Ceased EP1231290A1 (en) 2001-02-07 2002-02-05 Method for making a high strength, wrought AlZnMgCu alloy product

Country Status (4)

Country Link
US (1) US20020162609A1 (en)
EP (1) EP1231290A1 (en)
DE (1) DE1231290T1 (en)
FR (1) FR2820438B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838136A1 (en) * 2002-04-05 2003-10-10 Pechiney Rhenalu ALLOY PRODUCTS A1-Zn-Mg-Cu HAS COMPROMISED STATISTICAL CHARACTERISTICS / DAMAGE TOLERANCE IMPROVED
FR2879217A1 (en) * 2004-12-13 2006-06-16 Pechiney Rhenalu Sa STRONG ALLOY SHEETS AI-ZN-CU-MG WITH LOW INTERNAL CONSTRAINTS
WO2008003506A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Aa7000-series aluminium alloy products and a method of manufacturing thereof
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
RU2443793C1 (en) * 2010-10-08 2012-02-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") High-strength aluminium-based alloy and method for obtaining items from it
CN104404321A (en) * 2014-11-26 2015-03-11 中国石油天然气集团公司 Super-strength aluminum alloy drill rod pipe body for super-deep well and manufacturing method for super-strength aluminum alloy drill rod pipe body
CN104532090A (en) * 2014-12-31 2015-04-22 中国石油天然气集团公司 580Mpa-level aluminum alloy pipe for drill stem and manufacturing method thereof
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy
US7214281B2 (en) * 2002-09-21 2007-05-08 Universal Alloy Corporation Aluminum-zinc-magnesium-copper alloy extrusion
US7060139B2 (en) * 2002-11-08 2006-06-13 Ues, Inc. High strength aluminum alloy composition
US20050056353A1 (en) * 2003-04-23 2005-03-17 Brooks Charles E. High strength aluminum alloys and process for making the same
DE102005045341A1 (en) * 2004-10-05 2006-07-20 Corus Aluminium Walzprodukte Gmbh High strength, high strength Al-Zn alloy product and method of making such a product
EP1683882B2 (en) 2005-01-19 2010-07-21 Otto Fuchs KG Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
EP1848835A2 (en) * 2005-02-01 2007-10-31 Timothy Langan Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US9410229B2 (en) 2005-03-24 2016-08-09 Kaiser Aluminum Fabricated Products, Llc High strength aluminum alloys and process for making the same
US20060213591A1 (en) * 2005-03-24 2006-09-28 Brooks Charles E High strength aluminum alloys and process for making the same
US8157932B2 (en) * 2005-05-25 2012-04-17 Alcoa Inc. Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings
US20060289093A1 (en) * 2005-05-25 2006-12-28 Howmet Corporation Al-Zn-Mg-Ag high-strength alloy for aerospace and automotive castings
US20070204937A1 (en) * 2005-07-21 2007-09-06 Aleris Koblenz Aluminum Gmbh Wrought aluminium aa7000-series alloy product and method of producing said product
US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
CN102002615B (en) * 2010-10-21 2012-11-21 哈尔滨工业大学 Ultrahigh-strength aluminum alloy material and preparation method of pipe blank for preparing internal cylinder of separator
CN102732761B (en) * 2012-06-18 2014-01-08 中国航空工业集团公司北京航空材料研究院 7000 series aluminum alloy material and preparation method thereof
CN104561700B (en) * 2014-12-31 2018-02-02 中国石油天然气集团公司 A kind of 620MPa levels aluminium drill pipe body and its manufacture method
CN104805342B (en) * 2015-05-21 2017-08-11 湖南稀土金属材料研究院 Aluminum alloy materials and its preparation method and application
CN107058829A (en) * 2017-06-27 2017-08-18 桂林理工大学 High-performance with ultra-fine grained structure contains the high zinc wrought aluminium alloy of scandium and preparation method
CN108746447B (en) * 2018-05-16 2020-03-17 江苏理工学院 Manufacturing process of high-strength corrosion-resistant aluminum alloy forging
CN108687160B (en) * 2018-05-16 2020-02-14 江苏理工学院 Aluminum alloy plate treatment process
CN108890218B (en) * 2018-05-16 2020-02-14 江苏理工学院 Manufacturing process of high-strength heat-resistant aluminum alloy forging
CN108642410B (en) * 2018-05-16 2020-01-03 江苏理工学院 Process method for improving comprehensive mechanical property of aluminum alloy plate
CN110129640B (en) * 2019-06-28 2020-05-05 江西理工大学 7000 series aluminum alloy wire for additive manufacturing and preparation method thereof
CN110396629B (en) * 2019-08-16 2021-04-20 中国航发北京航空材料研究院 800 MPa-grade aluminum alloy extruded section and preparation method thereof
CN110484791B (en) * 2019-08-16 2021-03-02 西安铝轻新材料科技有限公司 High-strength high-toughness aluminum alloy for passenger car frame and preparation method thereof
CN111440974B (en) * 2020-04-28 2021-04-16 北京工业大学 High-strength aluminum alloy and manufacturing method thereof
CN112281032B (en) * 2020-10-20 2022-04-19 中国兵器科学研究院宁波分院 Preparation method of aluminum alloy welding material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477292A (en) * 1973-10-26 1984-10-16 Aluminum Company Of America Three-step aging to obtain high strength and corrosion resistance in Al-Zn-Mg-Cu alloys
US4832758A (en) * 1973-10-26 1989-05-23 Aluminum Company Of America Producing combined high strength and high corrosion resistance in Al-Zn-MG-CU alloys
EP0377779A1 (en) * 1989-01-13 1990-07-18 Aluminum Company Of America Aluminium alloy product having improved combinations of strength, toughness and corrosion resistance
US5108520A (en) * 1980-02-27 1992-04-28 Aluminum Company Of America Heat treatment of precipitation hardening alloys

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954188A (en) * 1981-12-23 1990-09-04 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
JP3705320B2 (en) * 1997-04-18 2005-10-12 株式会社神戸製鋼所 High strength heat treatment type 7000 series aluminum alloy with excellent corrosion resistance
CN1489637A (en) * 2000-12-21 2004-04-14 �Ƹ��� Aluminum alloy products and artificial aging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477292A (en) * 1973-10-26 1984-10-16 Aluminum Company Of America Three-step aging to obtain high strength and corrosion resistance in Al-Zn-Mg-Cu alloys
US4832758A (en) * 1973-10-26 1989-05-23 Aluminum Company Of America Producing combined high strength and high corrosion resistance in Al-Zn-MG-CU alloys
US5108520A (en) * 1980-02-27 1992-04-28 Aluminum Company Of America Heat treatment of precipitation hardening alloys
EP0377779A1 (en) * 1989-01-13 1990-07-18 Aluminum Company Of America Aluminium alloy product having improved combinations of strength, toughness and corrosion resistance

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 133, no. 26, 25 December 2000, Columbus, Ohio, US; abstract no. 364991, HEYMES, F. ET AL: "New aluminum semi-products for airframe application" XP002185362 *
INT. CONF. NEW DEV. METALL. PROCESS TECHNOL., PROC. (1999), 417-422 PUBLISHER: VEREIN DEUTSCHER EISENHUETTENLEUTE, DUESSELDORF, GERMANY., 1999 *
J,E,HATCH: "Aluminium", 1984, ASM, OHIO, US, XP002185361 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085145A2 (en) * 2002-04-05 2003-10-16 Pechiney Rhenalu Al-zn-mg-cu alloy products displaying an improved compromise between static mechanical properties and tolerance to damage
WO2003085145A3 (en) * 2002-04-05 2004-04-01 Pechiney Rhenalu Al-zn-mg-cu alloy products displaying an improved compromise between static mechanical properties and tolerance to damage
FR2838136A1 (en) * 2002-04-05 2003-10-10 Pechiney Rhenalu ALLOY PRODUCTS A1-Zn-Mg-Cu HAS COMPROMISED STATISTICAL CHARACTERISTICS / DAMAGE TOLERANCE IMPROVED
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
WO2006064113A1 (en) * 2004-12-13 2006-06-22 Alcan Rhenalu High strength sheet made from al-zn-cu-mg alloy with low internal stresses
FR2879217A1 (en) * 2004-12-13 2006-06-16 Pechiney Rhenalu Sa STRONG ALLOY SHEETS AI-ZN-CU-MG WITH LOW INTERNAL CONSTRAINTS
WO2008003506A3 (en) * 2006-07-07 2008-04-17 Aleris Aluminum Koblenz Gmbh Aa7000-series aluminium alloy products and a method of manufacturing thereof
WO2008003506A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Aa7000-series aluminium alloy products and a method of manufacturing thereof
US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8088234B2 (en) 2006-07-07 2012-01-03 Aleris Aluminum Koblenz Gmbh AA2000-series aluminum alloy products and a method of manufacturing thereof
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
RU2443793C1 (en) * 2010-10-08 2012-02-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") High-strength aluminium-based alloy and method for obtaining items from it
CN104404321A (en) * 2014-11-26 2015-03-11 中国石油天然气集团公司 Super-strength aluminum alloy drill rod pipe body for super-deep well and manufacturing method for super-strength aluminum alloy drill rod pipe body
CN104404321B (en) * 2014-11-26 2016-08-24 中国石油天然气集团公司 A kind of ultradeep well ultrahigh-strength aluminum alloy drill pipe body and manufacture method thereof
CN104532090A (en) * 2014-12-31 2015-04-22 中国石油天然气集团公司 580Mpa-level aluminum alloy pipe for drill stem and manufacturing method thereof

Also Published As

Publication number Publication date
US20020162609A1 (en) 2002-11-07
FR2820438B1 (en) 2003-03-07
FR2820438A1 (en) 2002-08-09
DE1231290T1 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
EP1231290A1 (en) Method for making a high strength, wrought AlZnMgCu alloy product
EP1114877B1 (en) Al-Cu-Mg alloy aircraft structural element
EP1966402B1 (en) Sheet made of high-toughness aluminium alloy containing copper and lithium for an aircraft fuselage
EP1838891B1 (en) High strength sheet made from al-zn-cu-mg alloy with low internal stresses
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
FR2853667A1 (en) IMPROVED AL-AN-MG-CU ALLOY AS REGARDS ITS COMBINED PROPERTIES OF DAMAGE TOLERANCE AND MECHANICAL STRENGTH
FR2838135A1 (en) PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
WO1996012829A1 (en) METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE
FR2855834A1 (en) High strength aluminum alloy products with high fatigue resistance for use as the sheets and panels of aircraft structural components for the fuselage and wings
EP1026270B1 (en) AlCuMg alloy product for aircraft body member
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP1382698B1 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
WO2015011346A1 (en) Extrados structural element made from an aluminium copper lithium alloy
WO2016051061A1 (en) Method for manufacturing products made of magnesium-lithium-aluminum alloy
CA2152402C (en) Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same
EP0876514A1 (en) THICK AlZnMgCu ALLOY PRODUCTS HAVING IMPROVED PROPERTIES
EP3052669B1 (en) Underwing sheet metal with improved damage tolerance properties
EP1143027B1 (en) Process for making avionic structural elements from an Al-Si-Mg alloy
CA3013955A1 (en) Al-cu-li-mg-mn-zn alloy wrought product
EP3728667A1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture
EP3635146B1 (en) Aluminium alloy comprising lithium with improved fatigue properties
FR2789405A1 (en) New quenched and stretched aluminum-copper-magnesium alloy product, for aircraft wing intrados skin and wing or fuselage intrados strut manufacture has a large plastic deformation range
FR3132306A1 (en) Aluminum-Copper-Lithium Alloy Enhanced Thin Sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GBC Gb: translation of claims filed (gb section 78(7)/1977)
DET De: translation of patent claims
17P Request for examination filed

Effective date: 20030205

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060914

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAV Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNE

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20101005