EP3728667A1 - Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture - Google Patents

Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture

Info

Publication number
EP3728667A1
EP3728667A1 EP18833951.9A EP18833951A EP3728667A1 EP 3728667 A1 EP3728667 A1 EP 3728667A1 EP 18833951 A EP18833951 A EP 18833951A EP 3728667 A1 EP3728667 A1 EP 3728667A1
Authority
EP
European Patent Office
Prior art keywords
weight
hours
sheet
less
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18833951.9A
Other languages
German (de)
French (fr)
Other versions
EP3728667B1 (en
Inventor
Pablo LORENZINO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62749025&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3728667(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3728667A1 publication Critical patent/EP3728667A1/en
Application granted granted Critical
Publication of EP3728667B1 publication Critical patent/EP3728667B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the present invention generally relates to manufacturing processes for aluminum-based 2XXX alloy sheets comprising lithium, in particular such improved processes that are particularly suited to the constraints of the aerospace industry.
  • the processes according to the invention are especially suitable for the manufacture of fuselage sheets.
  • Al-Cu-Li alloys are particularly interesting for manufacturing aluminum alloy rolled products, especially fuselage elements, because they offer compromises of properties generally higher than conventional alloys, especially in terms of the compromise between fatigue. , damage tolerance and mechanical resistance. This makes it possible in particular to reduce the thickness of the wrought products of Al-Cu-Li alloy, thus further maximizing the weight reduction they provide.
  • the document EP 1 966 402 B2 discloses in particular fuselage plates with particularly advantageous properties, these sheets being produced using an alloy comprising in particular, in percentage by weight, Cu: 2.1 to 2.8; Li: 1.1 to 1.7; Ag: 0.1 to 0.8; Mg: 0.2 to 0.6; Mn: 0.2 to 0.6; Zr ⁇ 0.04; Fe and Si ⁇ 0.1 each; unavoidable impurities ⁇ 0.05 each and 0.15 in total; remains aluminum.
  • such a product can not be subjected to an optimized manufacturing process in terms of duration of income without a deterioration of its properties, in particular of its compromise between mechanical resistance and toughness.
  • the patent application WO2011 / 141647 describes an aluminum-based alloy comprising, in% by weight, 2.1 to 2.4% Cu, 1.3 to 1.6% Li, 0.1 to 0, Ag, 0.2 to 0.6% Mg, 0.05 to 0.15% Zr, 0.1 to 0.5% Mn, 0.01 to 0.12% Ti, optionally at minus one element selected from Cr, Se, and Hf, the amount of the element, if selected, being from 0.05 to 0.3% for Cr and for Se, 0.05 to 0.5% for Hf, an amount of Fe and Si less than or equal to 0.1 each, and unavoidable impurities at a content less than or equal to 0.05 each and 0.15 in total.
  • the alloy allows the production of spun, rolled and / or forged products particularly suitable for the manufacture of aircraft wing-bottom elements.
  • the temperature used for the income in the examples is 155 ° C.
  • the patent application WO2013 / 054013 relates to the process for manufacturing a laminated product, in particular for the aerospace industry based on aluminum alloy with a composition of 2.1 to 3.9% by weight of Cu, 0.7 to 2.0% by weight of Li, 0.1 to 1.0% by weight of Mg, 0 to 0.6% by weight of Ag, 0 to 1% by weight of Zn, at most 0.20% by weight Fe + Si, at least one element selected from Zr, Mn, Cr, Se, Hf and Ti, the amount of said element, if selected, being 0.05 to 0.18% by weight for Zr, 0, 1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2% by weight for Se, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight in total, the aluminum balance, in which, in particular, planing is carried out and / or a traction with a cumulative deformation of at least
  • the patent application WO2010 / 055225 relates to a process for manufacturing a spun, rolled and / or forged product based on aluminum alloy in which: a bath of liquid metal is produced comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0 , 18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the amount of the element, if chosen, being from 0.05 to 0.3% by weight for Cr and Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the balance being aluminum and unavoidable impurities; casting a raw form from the bath of liquid metal and homogenizing said raw form at a temperature of between 515 ° C and 525 ° C so the time equivalent to 520 ° C for homogenization is between 5 and 20 hours.
  • the subject of the invention is a process for producing a wrought aluminum alloy product comprising the following steps:
  • At. casting an alloy plate comprising, in percent by weight: Cu: 2.1 to 2.8; Li: 1.1 to 1.7; Mg: 0.2 to 0.9; Mn: 0.2 to 0.6; Ag ⁇ 0.1; Zr ⁇ 0.08; Ti 0.01 to 0.2; Fe and Si ⁇ 0.1 each; unavoidable impurities ⁇ 0.05 each and 0.15 in total; remains aluminum;
  • tempered sheet metal by heating at a temperature of at least 160 ° C for a maximum of 30 hours.
  • Another subject of the invention is a product that can be obtained by the process according to the invention, characterized in that among the phases containing lithium it does not contain the phase of but only the Tl phase.
  • Figure 1 R curve in the TL direction (specimen CCT760) for an alloy sheet
  • Figure 2 Tenacity K r6 o (TL) as a function of the elastic limit R p o, 2 (TL) for an alloy sheet AT
  • Figure 3 R curve in the TL direction (specimen CCT760) for an alloy sheet B
  • Figure 4 Tenacity Kq as a function of the temperature of the second income stage during a two-stage income applied to an alloy product 2A97 (According to Zhong et al, 2011)
  • Figure 5 Kq toughness versus tempering temperature applied to an 8090 alloy product (according to Duncan and Martin, 1991)
  • alloys are in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a method of measuring weight. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515 (1993).
  • the static mechanical characteristics in tension in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R P o, 2, and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1 / ASTM E8 - E8M-13, the sampling and the direction of the test being defined by the standard EN 485-1.
  • a curve giving the effective stress intensity factor as a function of the effective crack extension, known as the R curve, is determined according to the standard E561-10 (2010).
  • the critical stress intensity factor Kc in other words the intensity factor that makes the crack unstable, is calculated from the curve R.
  • the stress intensity factor Kco is also calculated by assigning the length initial crack at the beginning of the monotonic load, at the critical load. These two values are calculated for a specimen of the required shape.
  • Ka PP represents the Kco factor corresponding to the specimen that was used to perform the R curve test.
  • K eff represents the Kc factor corresponding to the specimen that was used to perform the R aa curve test.
  • (max) represents the crack extension of the last valid point of the curve R.
  • the length of the curve R - namely the maximum crack extension of the curve - is a parameter in itself important, especially for the design fuselage.
  • KrôQ represents the effective stress intensity factor for effective crack extension Aa eff of 60 mm.
  • the method according to the invention comprises in particular a step of tempering the sheet metal by heating at a temperature of at least 160 ° C. for a maximum duration of 30 hours.
  • the product of particular composition has a tenacity equal to or different from less than 8%, preferentially less than 5%, more preferably still less than 4% or even 2%, of that of the same product.
  • the product of particular composition advantageously has a conventional limit of elasticity Rp0.2 (TL) equal to or different from less than 8%, preferably less than 5%, more preferably still less 4% or even 2%, of that of the same product manufactured according to a conventional process of the prior art, in particular a process identical to that of the invention with the exception of the income which would typically be an income by heating to about l52 ° C for about 48h.
  • TL conventional limit of elasticity
  • the method of manufacturing a wrought aluminum alloy product according to the invention firstly comprises a casting step of a particular alloy plate.
  • the alloy comprises, in percentage by weight, Cu: 2.1 to 2.8; Li: 1.1 to 1.7; Mg: 0.2 to 0.9 ; Mn: 0.2 to 0.6; Ti 0.01 to 0.2; Ag ⁇ 0.1; Zr ⁇ 0.08; Fe and Si ⁇ 0.1 each; unavoidable impurities ⁇ 0.05 each and 0.15 in total; remains aluminum.
  • the aluminum alloy plate comprises from 2.2 to 2.6% by weight of Cu, preferably from 2.3 to 2.5% by weight.
  • the inventors have discovered that if the copper content is greater than 2.8% or even 2.6% or even 2.5% by weight, the toughness properties may in some cases fall rapidly, whereas, if the copper is less than 2.1% or even 2.2% or even 2.3% by weight, the mechanical strength may be too low.
  • the aluminum alloy plate comprises from 1.1 to 1.7% by weight of lithium. Preferably, it comprises from 1.2 to 1.6% by weight of Li, or from 1.25 to 1.55% by weight. A lithium content greater than 1.7% or even 1.6% or even 1.55% by weight can cause thermal stability problems. A lithium content of less than 1.1% or even 1.2% or even 1.25% by weight can result in inadequate mechanical strength and lower density gain.
  • the aluminum alloy plate comprises from 0.2 to 0.9% by weight of magnesium. According to one advantageous embodiment, the aluminum alloy plate comprises from 0.25 to 0.75% by weight of Mg.
  • the aluminum alloy plate comprises from 0.01 to 0.2% by weight of titanium.
  • the addition of titanium in various forms, Ti, TiB or TiC allows in particular to control the granular structure during the cast plate.
  • the aluminum alloy plate comprises from 0.01 to 0.10% by weight of Ti.
  • the plate further comprises less than 0.1% by weight of silver.
  • the aluminum alloy plate comprises less than 0.05% by weight of Ag, preferably less than 0.04% by weight.
  • the aluminum alloy plate comprises from 0.2 to 0.6% by weight of manganese. Preferably, it comprises from 0.25 to 0.45% by weight of Mn.
  • the aluminum alloy plate comprises less than 0.08% by weight of zirconium. In a still more preferred embodiment, it comprises less than 0.05% by weight of Zr, preferably less than 0.04% by weight and, even more preferably, less than 0.03% or even 0.01% by weight. .
  • a low zirconium content makes it possible to improve the toughness of the Al-Cu-Li-Ag-Mg-Mn alloys according to the invention; in particular, the length of the curve R is significantly increased.
  • the use of manganese in place of zirconium to control the granular structure has several additional advantages such as obtaining a recrystallized structure and isotropic properties especially for a thickness of 0.8 to 12.7 mm.
  • the recrystallization rate of the products according to the invention is greater than 80%, preferably greater than 90%.
  • Iron and silicon generally affect toughness properties.
  • the amount of iron should be limited to 0.1% by weight (preferably 0.05% by weight) and the amount of silicon should be limited to 0.1% by weight (preferably 0.05% by weight) ).
  • the unavoidable impurities should be limited to 0.05% by weight each and 0.15% by weight in total.
  • the manufacturing method according to the invention further comprises a step of homogenizing the casting plate at a temperature of 480 to 520 ° C. for 5 to 60 hours and, preferably, this step is carried out between 490 and 5 ° 10 °. C for 8 to 20 hours. Homogenization temperatures above 520 ° C tend to reduce the toughness performance in some cases.
  • the homogenized plate is then hot-rolled and optionally cold-rolled into a sheet.
  • the hot rolling is carried out at an initial temperature of 420 to 490 ° C, preferably 440 to 470 ° C.
  • the hot rolling is preferably carried out to obtain a thickness of between about 4 and 12.7 mm.
  • a cold rolling step may optionally be added, if necessary.
  • the sheet obtained has a thickness of between 0.8 and 12.7 mm, and the invention is more advantageous for sheets of 1.6 to 9 mm thick, and even more advantageous. for sheets 2 to 7 mm thick.
  • the rolled product is then dissolved, preferably by heat treatment at 470 to 520 ° C for 15 minutes to 4 hours, and then typically quenched with water at room temperature.
  • the solution product is then subjected to a traction step in a controlled manner with a permanent deformation of 1 to 6%.
  • traction in a controlled manner is carried out with a permanent deformation of between 2.5 and 5%.
  • the inventors have discovered that the alloy product according to the invention can be manufactured using an optimized process, the income stage of said process being able to be carried out at particularly high temperatures, especially greater than 160.degree. ° C and even more so while the duration of the income can be, consequently, greatly reduced.
  • this process optimization can be carried out without deterioration of the properties of the product, in particular without affecting the conventional yield limit compromise Rp0.2 (LT) - toughness Kapp (T-L).
  • the quenched product is subjected to a tempering step by a particular heating at a temperature of at least 160 ° C for a maximum of 30 hours.
  • the income can even be produced at a temperature of at least 162 ° C., preferably at least 165 ° C. and, more preferably, at least 170 ° C. for a maximum of 30 hours, advantageously 28 hours. even 25h or 20h.
  • the tempering step is carried out at a temperature of at most 200 ° C. and preferably at most 190 ° C. and preferably at most 180 ° C.
  • the income is carried out at a time equivalent h to 165 ° C between 15 and 35 hours, preferably between 20 and 30h.
  • the equivalent time at 165 ° C. is defined by the formula:
  • T in Kelvin
  • T ref a reference temperature set at 428 K.
  • h is expressed in hours.
  • the present inventors have found that the products obtained by the process according to the invention contain, among the phases containing lithium, not the phase of (Af Li) but only the phase T1 (AhCuLi), which is particularly advantageous in this process. which concerns the thermal stability of the product obtained.
  • the product of particular composition has a tenacity Kapp (TL) equal to or different from less than 8%, preferably less than 5%, more preferably less than 4 or even 2%, of that of the same manufactured product according to a conventional method of the prior art, in particular a process identical to that of the invention with the exception of the income which would typically be a revenue by heating to about 152 ° C for about 48 hours.
  • TL tenacity Kapp
  • the product of particular composition also advantageously has a conventional limit of elasticity Rp0.2 (LT) equal to or different from less than 8%, preferably less than 5%, more preferentially from less than 4 or even 2%, that of the same product manufactured according to a conventional process of the prior art, including a process identical to that of the invention with the exception of the income which would typically be a revenue by heating to about l52 ° C for about 48h.
  • LT conventional limit of elasticity
  • the method according to the invention makes it possible to obtain a product having at least one, advantageously at least two or even three or more of the following properties:
  • the method according to the invention makes it possible to obtain a product having a very good thermal stability.
  • the product obtained directly at the end of the process according to the invention that is to say at the end of the income by heating at a temperature of at least 160 ° C. for a maximum duration of 30 hours. and after a heat treatment of 1000h at 85 ° C, has a plane stress toughness, Kapp (TL), and / or an effective stress intensity factor for effective crack extension Aa eff of 60 mm, Kr60 (TL), which does not differ more than 7%, preferably not more than 5% and more preferably still not more than 4% or even 2%.
  • the product according to the invention is a sheet and more preferably a thin sheet, more preferably still a thin fuselage sheet.
  • the product according to the invention can therefore advantageously be used in an aircraft fuselage panel.
  • the alloy A of composition shown in Table 1 is an alloy according to the invention.
  • the process used to manufacture the alloy sheet A was as follows: a plate of thickness about 400 mm of alloy A was cast, homogenized at 508 ° C. for about 12 hours and then scalped. The plate was hot rolled to obtain a sheet having a thickness of 4 mm. It was dissolved at about 500 ° C and then quenched with cold water. The sheet was then fractionated with a permanent elongation of 3 to 4%. The following incomes were made on different samples of the sheet: 48h-l52 ° C, 40h-l55 ° C, 30h-l60 ° C and 25h-l65 ° C. For each of the income conditions, a portion of the sheets was subjected to a thermal stability test of 1000 h at 85 ° C.
  • Samples were taken at full thickness to measure static mechanical tensile properties and toughness in the T-L direction.
  • the specimens used for the tenacity measurement were CCT760 geometry specimens: 760mm (L) x 1250mm (TL).
  • the alloy B of composition shown in Table 4 is a reference alloy, especially known from EP 1 966 402 B2.
  • the method used for the manufacture of the alloy sheet B was as follows: a plate of thickness about 400 mm of alloy B was cast, homogenized at 500 ° C for about 12 hours and then scalped. The plate was hot rolled to obtain a sheet having a thickness of 5 mm. It was dissolved at about 500 ° C and then quenched with cold water. The sheet was then fractionated with a permanent elongation of 1 to 5%. The following incomes were made on different samples of the sheet: 48h-l52 ° C, and 25h-l65 ° C.
  • Samples were taken at full thickness to measure tensile static mechanical characteristics and toughness in the T-L direction.
  • the specimens used for the tenacity measurement were CCT760 geometry specimens: 760mm (L) x 1250mm (TL)
  • the images were acquired either by the Slow Scan CCD camera (high quality digital images thanks to the wide dynamic range and linearity of response), or by the SIT camera ("large field" images at the TV speed), or on film shots (to record diffraction patterns).
  • the acceleration voltage was 120 kV.

Abstract

The subject of the invention is a process for manufacturing a wrought product made of aluminium alloy comprising the following steps : a) casting a plate made of alloy comprising, in percentages by weight, Cu: 2.1 to 2.8; Li: 1.1 to 1.7; Mg: 0.2 to 0.9; Mn: 0.2 to 0.6; Ti: 0.01–0.2; Ag < 0.1; Zr < 0.08; Fe and Si ≤ 0.1 each; unavoidable impurities ≤ 0.05% each and 0.15% in total; remainder aluminium; b) homogenizing said plate at 480-520°C for 5 to 60 hours; c) hot-rolling and optionally cold-rolling said homogenized plate to give a sheet; d) solution annealing the sheet at 470-520°C for 5 minutes to 4 hours; e) quenching the solution-annealed sheet; f) controlled tensioning of the solution-annealed and quenched sheet with a permanent set of 1 to 6%; g) tempering of the tensioned sheet by heating at a temperature of at least 160°C for a maximum time of 30 hours.

Description

PROCEDE DE FABRICATION AMELIORE DE TOLES EN ALLIAGE D’ALUMINIUM-CUIVRE-LITHIUM POUR LA FABRICATION DE FUSELAGE  PROCESS FOR THE IMPROVED PRODUCTION OF ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF FUSELAGE
D’AVION  AIRCRAFT
Domaine de l’invention Field of the invention
La présente invention concerne en général les procédés de fabrication de tôles en alliage 2XXX à base d’aluminium comprenant du lithium, notamment de tels procédés améliorés particulièrement adaptés aux contraintes de l’industrie aéronautique et spatiale. Les procédés selon l’invention sont spécialement appropriés pour la fabrication de tôles de fuselage. The present invention generally relates to manufacturing processes for aluminum-based 2XXX alloy sheets comprising lithium, in particular such improved processes that are particularly suited to the constraints of the aerospace industry. The processes according to the invention are especially suitable for the manufacture of fuselage sheets.
Etat de la technique State of the art
Un effort de recherche continu est réalisé dans l’industrie aéronautique et l’industrie spatiale tant en termes de composition des alliages qu’en termes de procédés de fabrication. Les alliages Al-Cu-Li sont particulièrement intéressants pour fabriquer des produits laminés en alliage d’aluminium, notamment des éléments de fuselage, car ils offrent des compromis de propriétés généralement plus élevés que les alliages conventionnels, notamment en termes de compromis entre la fatigue, la tolérance au dommage et la résistance mécanique. Ceci permet en particulier de réduire l’épaisseur des produits corroyés en alliage Al-Cu-Li, maximisant ainsi plus encore la réduction de poids qu’ils apportent. D’autre part, lors de la fabrication de tels produits, il est important de tenir compte des contraintes de l’industrie aéronautique où tout gain de temps dans la fabrication des produits semi-finis constitue un avantage concurrentiel important. A continuous research effort is made in the aerospace industry and the space industry both in terms of alloy composition and in terms of manufacturing processes. Al-Cu-Li alloys are particularly interesting for manufacturing aluminum alloy rolled products, especially fuselage elements, because they offer compromises of properties generally higher than conventional alloys, especially in terms of the compromise between fatigue. , damage tolerance and mechanical resistance. This makes it possible in particular to reduce the thickness of the wrought products of Al-Cu-Li alloy, thus further maximizing the weight reduction they provide. On the other hand, when manufacturing such products, it is important to take into account the constraints of the aerospace industry where any time saving in the manufacture of semi-finished products is an important competitive advantage.
Le document EP 1 966 402 B2 divulgue en particulier des tôles de fuselage aux propriétés particulièrement avantageuses, ces tôles étant élaborées à l’aide d’un alliage comprenant notamment, en pourcentage en poids, Cu : 2,1 à 2,8 ; Li : 1 ,1 à 1 ,7 ; Ag : 0,1 à 0,8 ; Mg : 0,2 à 0,6 ; Mn : 0,2 à 0,6 ; Zr < 0,04 ; Fe et Si < 0,1 chacun ; impuretés inévitables < 0,05 chacune et 0,15 au total ; reste aluminium. Comme détaillé dans l’exemple 2 ci-après, un tel produit ne peut cependant être soumis à un procédé de fabrication optimisé en termes de durée de revenu sans une détérioration de ses propriétés, notamment de son compromis entre résistance mécanique et ténacité. The document EP 1 966 402 B2 discloses in particular fuselage plates with particularly advantageous properties, these sheets being produced using an alloy comprising in particular, in percentage by weight, Cu: 2.1 to 2.8; Li: 1.1 to 1.7; Ag: 0.1 to 0.8; Mg: 0.2 to 0.6; Mn: 0.2 to 0.6; Zr <0.04; Fe and Si <0.1 each; unavoidable impurities <0.05 each and 0.15 in total; remains aluminum. However, as detailed in example 2 below, such a product can not be subjected to an optimized manufacturing process in terms of duration of income without a deterioration of its properties, in particular of its compromise between mechanical resistance and toughness.
La demande de brevet WO2011/141647 décrit un alliage à base d'aluminium comprenant, en % en poids, 2,1 à 2,4 % de Cu, 1 ,3 à 1,6% de Li, 0,1 à 0,51 de Ag, 0,2 à 0,6 % de Mg, 0,05 à 0,15 % de Zr, 0,1 à 0,5 % de Mn, 0,01 à 0,12 % de Ti, optionnellement au moins un élément choisi parmi Cr, Se, et Hf, la quantité de l’élément, s’il est choisi, étant de 0,05 à 0,3% pour Cr et pour Se, 0,05 à 0,5% pour Hf, une quantité de Fe et de Si inférieure ou égale à 0,1 chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05 chacune et 0,15 au total. L'alliage permet la réalisation de produits filés, laminés et/ou forgés particulièrement adaptés à la fabrication d'éléments d'intrados d'aile d'avion. Dans ce document la température utilisée pour le revenu dans les exemples est de 155 °C.  The patent application WO2011 / 141647 describes an aluminum-based alloy comprising, in% by weight, 2.1 to 2.4% Cu, 1.3 to 1.6% Li, 0.1 to 0, Ag, 0.2 to 0.6% Mg, 0.05 to 0.15% Zr, 0.1 to 0.5% Mn, 0.01 to 0.12% Ti, optionally at minus one element selected from Cr, Se, and Hf, the amount of the element, if selected, being from 0.05 to 0.3% for Cr and for Se, 0.05 to 0.5% for Hf, an amount of Fe and Si less than or equal to 0.1 each, and unavoidable impurities at a content less than or equal to 0.05 each and 0.15 in total. The alloy allows the production of spun, rolled and / or forged products particularly suitable for the manufacture of aircraft wing-bottom elements. In this document the temperature used for the income in the examples is 155 ° C.
La demande de brevet WO2013/054013 concerne le procédé de fabrication d’un produit laminé notamment pour l'industrie aéronautique à base d'alliage d'aluminium de composition 2,1 à 3,9 % en poids de Cu, 0,7 à 2.0 % en poids de Li, 0,1 à 1,0 % en poids de Mg, 0 à 0,6 % en poids d’Ag, 0 à 1% % en poids de Zn, au plus 0,20 % en poids de Fe + Si, au moins un élément choisi parmi Zr, Mn, Cr, Se, Hf et Ti, la quantité dudit élément, s’il est choisi, étant 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Se, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti, les autres éléments au plus 0,05% en poids chacun et 0,15% en poids au total, le reste aluminium, dans lequel, on réalise notamment un planage et/ou une traction avec une déformation cumulée d’au moins 0,5% et inférieure à 3%, et un traitement thermique court dans lequel la tôle atteint une température comprise entre 130 et l70°C pendant 0, 1 à 13 heures. Dans ce document la température utilisée pour le revenu dans les exemples est de 155 °C.  The patent application WO2013 / 054013 relates to the process for manufacturing a laminated product, in particular for the aerospace industry based on aluminum alloy with a composition of 2.1 to 3.9% by weight of Cu, 0.7 to 2.0% by weight of Li, 0.1 to 1.0% by weight of Mg, 0 to 0.6% by weight of Ag, 0 to 1% by weight of Zn, at most 0.20% by weight Fe + Si, at least one element selected from Zr, Mn, Cr, Se, Hf and Ti, the amount of said element, if selected, being 0.05 to 0.18% by weight for Zr, 0, 1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2% by weight for Se, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight in total, the aluminum balance, in which, in particular, planing is carried out and / or a traction with a cumulative deformation of at least 0.5% and less than 3%, and a short heat treatment in which the sheet reaches a temperature between e 130 and 170 ° C for 0.1 to 13 hours. In this document the temperature used for the income in the examples is 155 ° C.
La demande de brevet WO2010/055225 concerne un procédé de fabrication d’un produit filé, laminé et/ou forgé à base d'alliage d'aluminium dans lequel : on élabore un bain de métal liquide comprenant 2,0 à 3,5 % en poids de Cu, 1,4 à 1,8 % en poids de Li, 0,1 à 0,5 % en poids d’Ag, 0, 1 à 1,0 % en poids de Mg, 0,05 à 0,18 % en poids de Zr, 0,2 à 0,6 % en poids de Mn et au moins un élément choisi parmi Cr, Sc, Hf et Ti, la quantité de l’élément, s’il est choisi, étant de 0,05 à 0,3 % en poids pour Cr et pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0, 15 % en poids pour Ti, le reste étant de l’aluminium et des impuretés inévitables; on coule une forme brute à partir du bain de métal liquide et on homogénéise ladite forme brute à une température comprise entre 515 °C et 525°C de façon à ce que le temps équivalent à 520 °C pour l'homogénéisation soit compris entre 5 et 20 heures. Dans ce document la température utilisée pour le revenu dans les exemples est comprise entre 145 °C et 155 °C. The patent application WO2010 / 055225 relates to a process for manufacturing a spun, rolled and / or forged product based on aluminum alloy in which: a bath of liquid metal is produced comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0 , 18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the amount of the element, if chosen, being from 0.05 to 0.3% by weight for Cr and Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the balance being aluminum and unavoidable impurities; casting a raw form from the bath of liquid metal and homogenizing said raw form at a temperature of between 515 ° C and 525 ° C so the time equivalent to 520 ° C for homogenization is between 5 and 20 hours. In this document the temperature used for the yield in the examples is between 145 ° C and 155 ° C.
Il existe un besoin pour des produits en alliage aluminium-cuivre-lithium présentant un excellent compromis de propriétés, en particulier en termes de propriétés antinomiques telles que les propriétés de résistance mécanique statique et celles de ténacité. Lesdits produits doivent également présenter une bonne stabilité thermique, une bonne résistance à la corrosion, tout en pouvant être obtenus par un procédé simple, économique et susceptible de procurer un avantage concurrentiel important. There is a need for aluminum-copper-lithium alloy products having an excellent compromise of properties, particularly in terms of antinomic properties such as static strength and toughness properties. Said products must also have good thermal stability, good corrosion resistance, while being obtainable by a simple, economical and likely to provide a significant competitive advantage.
Objet de l’invention Object of the invention
L’invention a pour objet un procédé de fabrication d’un produit corroyé en alliage d’aluminium comprenant les étapes suivantes : The subject of the invention is a process for producing a wrought aluminum alloy product comprising the following steps:
a. coulée d’une plaque en alliage comprenant, en pourcentage en poids : Cu : 2,1 à 2,8 ; Li : 1,1 à 1,7 ; Mg : 0,2 à 0,9 ; Mn : 0,2 à 0,6 ; Ag < 0,1 ; Zr < 0,08 ; Ti 0,01 à 0,2 ; Fe et Si < 0,1 chacun ; impuretés inévitables < 0,05 chacune et 0,15 au total ; reste aluminium ;  at. casting an alloy plate comprising, in percent by weight: Cu: 2.1 to 2.8; Li: 1.1 to 1.7; Mg: 0.2 to 0.9; Mn: 0.2 to 0.6; Ag <0.1; Zr <0.08; Ti 0.01 to 0.2; Fe and Si <0.1 each; unavoidable impurities <0.05 each and 0.15 in total; remains aluminum;
b. homogénéisation de ladite plaque à 480-520°C pendant 5 à 60 heures ;  b. homogenizing said plate at 480-520 ° C for 5-60 hours;
c. laminage à chaud et optionnellement à froid de ladite plaque homogénéisée en une tôle ;  c. hot rolling and optionally cold rolling of said homogenized plate into a sheet;
d. mise en solution de la tôle à 470-520°C pendant 15 minutes à 4 heures ;  d. solution of the sheet at 470-520 ° C for 15 minutes to 4 hours;
e. trempe de la tôle mise en solution ;  e. quenching of the sheet metal in solution;
f. traction de façon contrôlée de la tôle mise en solution et trempée avec une déformation permanente de 1 à 6% ;  f. controlled traction of the sheet in solution and quenched with a permanent deformation of 1 to 6%;
g. revenu de la tôle tractionnée par chauffage à une température d’au moins l60°C pendant une durée maximale de 30 heures.  g. tempered sheet metal by heating at a temperature of at least 160 ° C for a maximum of 30 hours.
Un autre objet de l’invention est un produit susceptible d’être obtenu par le procédé selon l’invention caractérisé en ce que parmi les phases contenant du lithium il ne contient pas la phase d’ mais uniquement la phase Tl . Description des figures Another subject of the invention is a product that can be obtained by the process according to the invention, characterized in that among the phases containing lithium it does not contain the phase of but only the Tl phase. Description of figures
Figure 1 : Courbe R dans le sens T-L (éprouvette CCT760) pour une tôle en alliage A Figure 2 : Ténacité Kr6o (T-L) en fonction de la limite d’élasticité Rpo,2(TL) pour une tôle en alliage A Figure 1: R curve in the TL direction (specimen CCT760) for an alloy sheet A Figure 2: Tenacity K r6 o (TL) as a function of the elastic limit R p o, 2 (TL) for an alloy sheet AT
Figure 3 : Courbe R dans le sens T-L (éprouvette CCT760) pour une tôle en alliage B Figure 4 : Ténacité Kq en fonction de la température de la seconde étape de revenu lors d’un revenu en deux étapes appliqué à un produit en alliage 2A97 (selon Zhong et al, 2011) Figure 5 : Ténacité Kq en fonction de la température de revenu appliqué à un produit en alliage 8090 (selon Duncan and Martin, 1991)  Figure 3: R curve in the TL direction (specimen CCT760) for an alloy sheet B Figure 4: Tenacity Kq as a function of the temperature of the second income stage during a two-stage income applied to an alloy product 2A97 (According to Zhong et al, 2011) Figure 5: Kq toughness versus tempering temperature applied to an 8090 alloy product (according to Duncan and Martin, 1991)
Description de l’invention Description of the invention
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l’alliage. L’expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l’homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2-13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515 (1993). Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a method of measuring weight. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515 (1993).
Les caractéristiques mécaniques statiques en traction, en d’autres termes la résistance à la rupture Rm, la limite d’élasticité conventionnelle à 0,2% d’allongement RPo,2, et l’allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1 / ASTM E8 - E8M-13, le prélèvement et le sens de l’essai étant définis par la norme EN 485-1. The static mechanical characteristics in tension, in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R P o, 2, and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1 / ASTM E8 - E8M-13, the sampling and the direction of the test being defined by the standard EN 485-1.
Une courbe donnant le facteur d’intensité de contrainte effectif en fonction de l’extension de fissure effective, connue comme la courbe R, est déterminée selon la norme E561-10 (2010). Le facteur d’intensité de contrainte critique Kc, en d’autres termes le facteur d’intensité qui rend la fissure instable, est calculé à partir de la courbe R. Le facteur d’intensité de contrainte Kco est également calculé en attribuant la longueur de fissure initiale au commencement de la charge monotone, à la charge critique. Ces deux valeurs sont calculées pour une éprouvette de la forme requise. KaPP représente le facteur Kco correspondant à l’éprouvette qui a été utilisée pour effectuer l’essai de courbe R. Keff représente le facteur Kc correspondant à l’éprouvette qui a été utilisée pour effectuer l’essai de courbe R. Aaeff(max) représente l’extension de fissure du dernier point valide de la courbe R. La longueur de la courbe R - à savoir l’extension de fissure maximale de la courbe - est un paramètre en lui-même important, notamment pour la conception de fuselage. KrôQ représente le facteur d'intensité de contrainte effectif pour une extension de fissure effective Aaeff de 60 mm. A curve giving the effective stress intensity factor as a function of the effective crack extension, known as the R curve, is determined according to the standard E561-10 (2010). The critical stress intensity factor Kc, in other words the intensity factor that makes the crack unstable, is calculated from the curve R. The stress intensity factor Kco is also calculated by assigning the length initial crack at the beginning of the monotonic load, at the critical load. These two values are calculated for a specimen of the required shape. Ka PP represents the Kco factor corresponding to the specimen that was used to perform the R curve test. K eff represents the Kc factor corresponding to the specimen that was used to perform the R aa curve test. (max) represents the crack extension of the last valid point of the curve R. The length of the curve R - namely the maximum crack extension of the curve - is a parameter in itself important, especially for the design fuselage. KrôQ represents the effective stress intensity factor for effective crack extension Aa eff of 60 mm.
Sauf mention contraire, les définitions de la norme EN 12258 (2012) s’appliquent.  Unless otherwise specified, the definitions of EN 12258 (2012) apply.
Cherchant à optimiser plus encore les produits aptes à être utilisés dans l’industrie aéronautique tant en termes de propriétés que de procédés de fabrication, les inventeurs ont constaté de façon tout à fait surprenante que, contrairement aux autres alliages de la famille 2xxx contenant du Li, il était possible de produire un produit en alliage Al-Cu-Li aux propriétés optimisées à l’aide d’un procédé simple et particulièrement économique. Ainsi, le procédé selon l’invention comprend en particulier une étape de revenu de la tôle tractionnée par chauffage à une température d’au moins l60°C pendant une durée maximale de 30 heures. A l’issue du procédé de l’invention, le produit de composition particulière présente une ténacité égale ou différente de moins de 8%, préférentiellement moins de 5%, plus préférentiellement encore de moins de 4% voire 2%, de celle du même produit fabriqué selon un procédé classique de l’art antérieur, notamment un procédé identique à celui de l’invention à l’exception du revenu qui serait typiquement un revenu par chauffage à environ l52°C pendant environ 48h. A l’issue du procédé de l’invention, le produit de composition particulière présente avantageusement une limite conventionnelle d’élasticité Rp0,2 (TL) égale ou différente de moins de 8%, préférentiellement moins de 5%, plus préférentiellement encore de moins de 4% voire 2%, de celle du même produit fabriqué selon un procédé classique de l’art antérieur, notamment un procédé identique à celui de l’invention à l’exception du revenu qui serait typiquement un revenu par chauffage à environ l52°C pendant environ 48h. Seeking to further optimize the products suitable for use in the aeronautical industry both in terms of properties and manufacturing processes, the inventors have found quite surprisingly that, unlike other alloys of the 2xxx family containing Li it was possible to produce an Al-Cu-Li alloy product with optimized properties using a simple and particularly economical process. Thus, the method according to the invention comprises in particular a step of tempering the sheet metal by heating at a temperature of at least 160 ° C. for a maximum duration of 30 hours. At the end of the process of the invention, the product of particular composition has a tenacity equal to or different from less than 8%, preferentially less than 5%, more preferably still less than 4% or even 2%, of that of the same product. product manufactured according to a conventional process of the prior art, including a process identical to that of the invention with the exception of the income which would typically be a revenue by heating to about 152 ° C for about 48h. At the end of the process of the invention, the product of particular composition advantageously has a conventional limit of elasticity Rp0.2 (TL) equal to or different from less than 8%, preferably less than 5%, more preferably still less 4% or even 2%, of that of the same product manufactured according to a conventional process of the prior art, in particular a process identical to that of the invention with the exception of the income which would typically be an income by heating to about l52 ° C for about 48h.
Le procédé de fabrication d’un produit corroyé en alliage d’aluminium selon l’invention comprend tout d’abord une étape de coulée d’une plaque en alliage particulier. Ainsi, l’alliage comprend, en pourcentage en poids, Cu : 2,1 à 2,8 ; Li : 1,1 à 1,7 ; Mg : 0,2 à 0,9 ; Mn : 0,2 à 0,6 ; Ti 0,01 à 0,2 ; Ag < 0,1 ; Zr < 0,08 ; Fe et Si < 0,1 chacun ; impuretés inévitables < 0,05 chacune et 0,15 au total ; reste aluminium. The method of manufacturing a wrought aluminum alloy product according to the invention firstly comprises a casting step of a particular alloy plate. Thus, the alloy comprises, in percentage by weight, Cu: 2.1 to 2.8; Li: 1.1 to 1.7; Mg: 0.2 to 0.9 ; Mn: 0.2 to 0.6; Ti 0.01 to 0.2; Ag <0.1; Zr <0.08; Fe and Si <0.1 each; unavoidable impurities <0.05 each and 0.15 in total; remains aluminum.
Dans un mode de réalisation avantageux, la plaque en alliage d’aluminium comprend de 2,2 à 2,6% en poids de Cu, préférentiellement de 2,3 à 2,5% en poids. Les inventeurs ont découvert que si la teneur en cuivre est supérieure à 2,8 % ou même 2,6% ou même encore 2,5% en poids, les propriétés de ténacité peuvent dans certains cas chuter rapidement, tandis que, si la teneur en cuivre est inférieure à 2,1 % ou même 2,2% ou même encore 2,3% en poids, la résistance mécanique peut être trop faible.  In an advantageous embodiment, the aluminum alloy plate comprises from 2.2 to 2.6% by weight of Cu, preferably from 2.3 to 2.5% by weight. The inventors have discovered that if the copper content is greater than 2.8% or even 2.6% or even 2.5% by weight, the toughness properties may in some cases fall rapidly, whereas, if the copper is less than 2.1% or even 2.2% or even 2.3% by weight, the mechanical strength may be too low.
La plaque en alliage d’aluminium comprend de 1,1 à 1,7% en poids de lithium. De façon préférée, elle comprend de 1,2 à 1,6% en poids de Li, ou encore de 1,25 à 1,55% en poids. Une teneur en lithium supérieure à 1,7 % ou même 1,6% ou même encore 1,55% en poids peut entraîner des problèmes de stabilité thermique. Une teneur en lithium inférieure à 1,1 % ou même 1,2% ou même encore 1,25% en poids peut entraîner une résistance mécanique inadéquate et un gain inférieur en termes de densité.  The aluminum alloy plate comprises from 1.1 to 1.7% by weight of lithium. Preferably, it comprises from 1.2 to 1.6% by weight of Li, or from 1.25 to 1.55% by weight. A lithium content greater than 1.7% or even 1.6% or even 1.55% by weight can cause thermal stability problems. A lithium content of less than 1.1% or even 1.2% or even 1.25% by weight can result in inadequate mechanical strength and lower density gain.
La plaque en alliage d’aluminium comprend de 0,2 à 0,9% en poids de magnésium. Selon un mode avantageux, la plaque en alliage d’aluminium comprend de 0,25 à 0,75% en poids de Mg.  The aluminum alloy plate comprises from 0.2 to 0.9% by weight of magnesium. According to one advantageous embodiment, the aluminum alloy plate comprises from 0.25 to 0.75% by weight of Mg.
La plaque en alliage d’aluminium comprend de 0,01 à 0,2% en poids de titane. L’ajout de titane sous différentes formes, Ti, TiB ou TiC permet notamment de contrôler la structure granulaire lors de la plaque coulée. Selon un mode avantageux, la plaque en alliage d’aluminium comprend de 0,01 à 0,10% en poids de Ti.  The aluminum alloy plate comprises from 0.01 to 0.2% by weight of titanium. The addition of titanium in various forms, Ti, TiB or TiC allows in particular to control the granular structure during the cast plate. According to an advantageous embodiment, the aluminum alloy plate comprises from 0.01 to 0.10% by weight of Ti.
La plaque comprend en outre moins de 0,1% en poids d’argent. Avantageusement, la plaque en alliage d’aluminium comprend moins de 0,05% en poids d’Ag, préférentiellement moins de 0,04% en poids.  The plate further comprises less than 0.1% by weight of silver. Advantageously, the aluminum alloy plate comprises less than 0.05% by weight of Ag, preferably less than 0.04% by weight.
La plaque en alliage d’aluminium comprend de 0,2 à 0,6% en poids de manganèse. Préférentiellement, elle comprend de 0,25 à 0,45% en poids de Mn. La plaque en alliage d’aluminium comprend moins de 0,08% en poids de zirconium. Dans un mode encore plus préféré, elle comprend moins de 0,05% en poids de Zr, préférentiellement moins de 0,04% en poids et, de manière encore plus préférée, inférieure à 0,03% voire 0,01 % en poids. Une faible teneur en zirconium permet d'améliorer la ténacité des alliages Al-Cu-Li-Ag-Mg- Mn selon l’invention; en particulier, la longueur de la courbe R est augmentée de manière significative. L'utilisation de manganèse à la place du zirconium afin de contrôler la structure granulaire présente plusieurs avantages supplémentaires tels que l’obtention d’une structure recristallisée et des propriétés isotropes notamment pour une épaisseur de 0,8 à 12,7 mm. D’une manière avantageuse, le taux de recristallisation des produits selon l’invention est supérieur à 80%, préférentiellement supérieur à 90%. The aluminum alloy plate comprises from 0.2 to 0.6% by weight of manganese. Preferably, it comprises from 0.25 to 0.45% by weight of Mn. The aluminum alloy plate comprises less than 0.08% by weight of zirconium. In a still more preferred embodiment, it comprises less than 0.05% by weight of Zr, preferably less than 0.04% by weight and, even more preferably, less than 0.03% or even 0.01% by weight. . A low zirconium content makes it possible to improve the toughness of the Al-Cu-Li-Ag-Mg-Mn alloys according to the invention; in particular, the length of the curve R is significantly increased. The use of manganese in place of zirconium to control the granular structure has several additional advantages such as obtaining a recrystallized structure and isotropic properties especially for a thickness of 0.8 to 12.7 mm. Advantageously, the recrystallization rate of the products according to the invention is greater than 80%, preferably greater than 90%.
Le fer et le silicium affectent généralement les propriétés de ténacité. La quantité de fer doit être limitée à 0, 1 % en poids (de préférence à 0,05 % en poids) et la quantité de silicium doit être limitée à 0,1 % en poids (de préférence à 0,05 % en poids).  Iron and silicon generally affect toughness properties. The amount of iron should be limited to 0.1% by weight (preferably 0.05% by weight) and the amount of silicon should be limited to 0.1% by weight (preferably 0.05% by weight) ).
Les impuretés inévitables doivent être limitées à 0,05 % en poids chacune et 0,15 % en poids au total.  The unavoidable impurities should be limited to 0.05% by weight each and 0.15% by weight in total.
Le procédé de fabrication selon l’invention comprend en outre une étape d’homogénéisation de la plaque de coulée à température de 480 à 520°C pendant 5 à 60 heures et, de manière préférée, cette étape est réalisée entre 490 et 5 lO°C pendant 8 à 20 heures. Les températures d’homogénéisation supérieures à 520°C tendent en effet à réduire la performance de ténacité dans certains cas. The manufacturing method according to the invention further comprises a step of homogenizing the casting plate at a temperature of 480 to 520 ° C. for 5 to 60 hours and, preferably, this step is carried out between 490 and 5 ° 10 °. C for 8 to 20 hours. Homogenization temperatures above 520 ° C tend to reduce the toughness performance in some cases.
La plaque homogénéisée est ensuite laminée à chaud et optionnellement à froid en une tôle. Dans un mode de réalisation avantageux, le laminage à chaud est réalisé à une température initiale de 420 à 490°C, préférentiellement de 440 à 470°C. Le laminage à chaud est de préférence réalisé pour obtenir une épaisseur comprise entre environ 4 et 12,7 mm. Pour une épaisseur d’ approximativement 4 mm ou moins, une étape de laminage à froid peut être optionnellement ajoutée, si nécessaire. Dans le cas de fabrication de tôles, la tôle obtenue a une épaisseur comprise entre 0,8 et 12,7 mm, et l’invention est plus avantageuse pour des tôles de 1,6 à 9 mm d’épaisseur, et encore plus avantageuse pour des tôles de 2 à 7 mm d'épaisseur. The homogenized plate is then hot-rolled and optionally cold-rolled into a sheet. In an advantageous embodiment, the hot rolling is carried out at an initial temperature of 420 to 490 ° C, preferably 440 to 470 ° C. The hot rolling is preferably carried out to obtain a thickness of between about 4 and 12.7 mm. For a thickness of approximately 4 mm or less, a cold rolling step may optionally be added, if necessary. In the case of sheet metal production, the sheet obtained has a thickness of between 0.8 and 12.7 mm, and the invention is more advantageous for sheets of 1.6 to 9 mm thick, and even more advantageous. for sheets 2 to 7 mm thick.
Le produit laminé est ensuite mis en solution, de préférence par traitement thermique à une température de 470 à 520°C pendant 15 min à 4 heures, puis trempé typiquement avec de l’eau à température ambiante. The rolled product is then dissolved, preferably by heat treatment at 470 to 520 ° C for 15 minutes to 4 hours, and then typically quenched with water at room temperature.
Le produit mis en solution est ensuite soumis à une étape de traction de façon contrôlée avec une déformation permanente de 1 à 6%. De préférence, la traction de façon contrôlée est réalisée avec une déformation permanente comprise entre 2,5 et 5%. De manière inattendue, les inventeurs ont découvert que le produit en alliage selon l’invention peut être fabriqué à l’aide d’un procédé optimisé, l’étape de revenu dudit procédé pouvant être réalisée à des températures particulièrement élevées, notamment supérieures à l60°C et même d’avantage alors que la durée du revenu peut être, par voie de conséquence, fortement réduite. De façon tout à fait surprenante, cette optimisation de procédé peut être réalisée sans détérioration des propriétés du produit, en particulier sans affecter le compromis limite conventionnelle d’élasticité Rp0,2 (LT) - ténacité Kapp (T- L). The solution product is then subjected to a traction step in a controlled manner with a permanent deformation of 1 to 6%. Preferably, traction in a controlled manner is carried out with a permanent deformation of between 2.5 and 5%. Unexpectedly, the inventors have discovered that the alloy product according to the invention can be manufactured using an optimized process, the income stage of said process being able to be carried out at particularly high temperatures, especially greater than 160.degree. ° C and even more so while the duration of the income can be, consequently, greatly reduced. Surprisingly, this process optimization can be carried out without deterioration of the properties of the product, in particular without affecting the conventional yield limit compromise Rp0.2 (LT) - toughness Kapp (T-L).
Ainsi, le produit tractionné est soumis à une étape de revenu par un chauffage particulier à une température d’au moins l60°C pendant une durée maximale de 30 heures. Préférentiellement le revenu peut même être réalisé à une température d’au moins l62°C, préférentiellement d’au moins l65°C et, plus préférentiellement encore, d’au moins l70°C pendant une durée maximale de 30 heures, avantageusement 28 heures voire même 25h ou 20h. Avantageusement l’étape de revenu est réalisée à une température d’au plus 200°C et de préférence d’au plus l90°C et préférentiellement d’au plus 180 °C.  Thus, the quenched product is subjected to a tempering step by a particular heating at a temperature of at least 160 ° C for a maximum of 30 hours. Preferably, the income can even be produced at a temperature of at least 162 ° C., preferably at least 165 ° C. and, more preferably, at least 170 ° C. for a maximum of 30 hours, advantageously 28 hours. even 25h or 20h. Advantageously, the tempering step is carried out at a temperature of at most 200 ° C. and preferably at most 190 ° C. and preferably at most 180 ° C.
Dans un mode de réalisation préféré, le revenu est effectué à un temps équivalent h à l65°C compris entre 15 et 35 heures, préférentiellement entre 20 et 30h. Le temps équivalent t,· à 165 °C est défini par la formule :  In a preferred embodiment, the income is carried out at a time equivalent h to 165 ° C between 15 and 35 hours, preferably between 20 and 30h. The equivalent time at 165 ° C. is defined by the formula:
Jexp(-l6400 / T) dt  Jexp (-l6400 / T) dt
ti _ exp(-l6400 / Tr f) _ t i exp (-l6400 / Tr f)
où T (en Kelvin) est la température instantanée de traitement du métal, qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 428 K. h est exprimé en heures. La constante Q/R = 16400 K est dérivée de l’énergie d’activation pour la diffusion du Cu, pour laquelle la valeur Q = 136100 J/mol a été utilisée. where T (in Kelvin) is the instantaneous processing temperature of the metal, which changes with time t (in hours), and T ref is a reference temperature set at 428 K. h is expressed in hours. The Q / R constant = 16400 K is derived from the activation energy for Cu diffusion, for which Q = 136100 J / mol was used.
Les présents inventeurs ont constaté que les produits obtenus par le procédé selon l’invention ne contiennent, parmi les phases contenant du lithium, pas la phase d’ (Af Li) mais uniquement la phase Tl (AhCuLi) ce qui est avantageux notamment en ce qui concerne la stabilité thermique du produit obtenu. The present inventors have found that the products obtained by the process according to the invention contain, among the phases containing lithium, not the phase of (Af Li) but only the phase T1 (AhCuLi), which is particularly advantageous in this process. which concerns the thermal stability of the product obtained.
A l’issue du procédé selon l’invention, le produit de composition particulière présente une ténacité Kapp (T-L) égale ou différente de moins de 8%, préférentiellement moins de 5%, plus préférentiellement encore de moins de 4 voire 2%, de celle du même produit fabriqué selon un procédé classique de l’art antérieur, notamment un procédé identique à celui de l’invention à l’exception du revenu qui serait typiquement un revenu par chauffage à environ l52°C pendant environ 48h. A l’issue du procédé de l’invention, le produit de composition particulière présente également avantageusement une limite conventionnelle d’élasticité Rp0,2 (LT) égale ou différente de moins de 8%, préférentiellement moins de 5%, plus préférentiellement encore de moins de 4 voire 2%, de celle du même produit fabriqué selon un procédé classique de l’art antérieur, notamment un procédé identique à celui de l’invention à l’exception du revenu qui serait typiquement un revenu par chauffage à environ l52°C pendant environ 48h. At the end of the process according to the invention, the product of particular composition has a tenacity Kapp (TL) equal to or different from less than 8%, preferably less than 5%, more preferably less than 4 or even 2%, of that of the same manufactured product according to a conventional method of the prior art, in particular a process identical to that of the invention with the exception of the income which would typically be a revenue by heating to about 152 ° C for about 48 hours. At the end of the process of the invention, the product of particular composition also advantageously has a conventional limit of elasticity Rp0.2 (LT) equal to or different from less than 8%, preferably less than 5%, more preferentially from less than 4 or even 2%, that of the same product manufactured according to a conventional process of the prior art, including a process identical to that of the invention with the exception of the income which would typically be a revenue by heating to about l52 ° C for about 48h.
Selon un mode de réalisation préféré, le procédé selon l’invention permet l’obtention d’un produit présentant au moins Tune, avantageusement au moins deux voire trois ou plus des propriétés suivantes :  According to a preferred embodiment, the method according to the invention makes it possible to obtain a product having at least one, advantageously at least two or even three or more of the following properties:
limite conventionnelle d’élasticité, Rp0,2 (L), d’au moins 330 MPa, préférentiellement au moins 335 MPa et, plus préférentiellement encore, au moins 340 MPa ;  the conventional yield strength, Rp0.2 (L), of at least 330 MPa, preferably at least 335 MPa and, more preferably still, at least 340 MPa;
limite conventionnelle d’élasticité, Rp0,2 (LT), d’au moins 325 MPa ; préférentiellement au moins 330 MPa et, plus préférentiellement encore, au moins 335 MPa ;  yield strength, Rp0.2 (LT), of at least 325 MPa; preferably at least 330 MPa and, more preferably still, at least 335 MPa;
ténacité en contrainte plane, Kapp (T-L), d’au moins 130 MPaVm ; préférentiellement au moins 135 MPaVm et, plus préférentiellement encore, au moins 140 MPaVm ;  toughness in plane stress, Kapp (T-L), of at least 130 MPaVm; preferably at least 135 MPaVm and, more preferably still, at least 140 MPaVm;
facteur d'intensité de contrainte effectif pour une extension de fissure effective Aaeff de 60 mm, Kr60 (T-L), d’au moins 175 MPaVm ; préférentiellement au moins 180 MPaVm et, plus préférentiellement encore, au moins 185 MPaVm. effective stress intensity factor for effective crack extension Aa eff of 60 mm, Kr60 (TL), of at least 175 MPaVm; preferably at least 180 MPaVm and, more preferably still, at least 185 MPaVm.
En outre, selon un mode de réalisation préféré compatible avec les modes précédents, le procédé selon l’invention permet l’obtention d’un produit présentant une très bonne stabilité thermique. Ainsi, avantageusement le produit obtenu directement à l’issue du procédé selon l’invention, c’est-à-dire à l’issue du revenu par chauffage à une température d’au moins l60°C pendant une durée maximale de 30 heures, et à l’issue d’un traitement thermique de lOOOh à 85°C, présente une ténacité en contrainte plane, Kapp (T-L), et/ou un facteur d'intensité de contrainte effectif pour une extension de fissure effective Aaeff de 60 mm, Kr60 (T-L), qui ne diffère pas plus de 7%, préférentiellement pas plus de 5% et, plus préférentiellement encore pas plus de 4% voire 2%. In addition, according to a preferred embodiment compatible with the preceding modes, the method according to the invention makes it possible to obtain a product having a very good thermal stability. Thus, advantageously the product obtained directly at the end of the process according to the invention, that is to say at the end of the income by heating at a temperature of at least 160 ° C. for a maximum duration of 30 hours. and after a heat treatment of 1000h at 85 ° C, has a plane stress toughness, Kapp (TL), and / or an effective stress intensity factor for effective crack extension Aa eff of 60 mm, Kr60 (TL), which does not differ more than 7%, preferably not more than 5% and more preferably still not more than 4% or even 2%.
Avantageusement le produit selon l’invention est une tôle et plus préférentiellement une tôle mince, plus préférentiellement encore une tôle mince de fuselage. Le produit selon l’invention peut donc avantageusement être utilisé dans un panneau de fuselage pour aéronef. Advantageously, the product according to the invention is a sheet and more preferably a thin sheet, more preferably still a thin fuselage sheet. The product according to the invention can therefore advantageously be used in an aircraft fuselage panel.
Ces aspects, ainsi que d’autres de l’invention sont expliqués plus en détails à l’aide des exemples illustratifs et non limitants suivants. These and other aspects of the invention are explained in more detail with the aid of the following illustrative and non-limiting examples.
Exemples Examples
Exemple 1 Example 1
L’alliage A de composition présentée dans le tableau 1 est un alliage selon l’invention. The alloy A of composition shown in Table 1 is an alloy according to the invention.
Tableau 1- Composition chimique (% en poids) Table 1- Chemical composition (% by weight)
Analyse sur solide SOES (spectrométrie d’émission optique par étincelles). Moyenne sur trois échantillons.  SOES solid analysis (optical emission spectrometry by spark). Average over three samples.
Le procédé utilisé pour la fabrication de la tôle en alliage A a été le suivant : une plaque d’épaisseur environ 400 mm en alliage A a été coulée, homogénéisée à 508 °C pendant environ 12 heures puis scalpée. La plaque a été laminée à chaud pour obtenir une tôle ayant une épaisseur de 4 mm. Elle a été mise en solution à environ 500 °C puis trempée à l’eau froide. La tôle a ensuite été fractionnée avec un allongement permanent de 3 à 4%. Les revenus suivants ont été effectués sur différents échantillons de la tôle : 48h-l52°C, 40h-l55°C, 30h-l60°C et 25h-l65°C. Pour chacune des conditions de revenu, une partie des tôles a été soumise à un test de stabilité thermique de lOOOh à 85°C. The process used to manufacture the alloy sheet A was as follows: a plate of thickness about 400 mm of alloy A was cast, homogenized at 508 ° C. for about 12 hours and then scalped. The plate was hot rolled to obtain a sheet having a thickness of 4 mm. It was dissolved at about 500 ° C and then quenched with cold water. The sheet was then fractionated with a permanent elongation of 3 to 4%. The following incomes were made on different samples of the sheet: 48h-l52 ° C, 40h-l55 ° C, 30h-l60 ° C and 25h-l65 ° C. For each of the income conditions, a portion of the sheets was subjected to a thermal stability test of 1000 h at 85 ° C.
La ténacité des tôles a été caractérisée par des essais de courbe R suivant la norme ASTM E561-10 (2010). Les essais ont été effectués avec une éprouvette CCT (W=760 mm, 2a0=253 mm) pleine épaisseur. L’ensemble de résultats est reporté dans le tableau 2 et illustré par la figure 1. The tenacity of the sheets was characterized by R curve tests according to ASTM E561-10 (2010). The tests were carried out with a CCT test specimen (W = 760 mm, 2a0 = 253 mm) full thickness. The result set is reported in Table 2 and illustrated in Figure 1.
Tableau 2 - Données de résumé de la courbe R Table 2 - R curve summary data
Des échantillons ont été prélevés à pleine épaisseur pour mesurer les caractéristiques mécaniques statiques en traction et la ténacité dans la direction T-L. Les éprouvettes utilisées pour la mesure de ténacité étaient des éprouvettes de géométrie CCT760 : 760mm (L) x 1250 mm (TL). Samples were taken at full thickness to measure static mechanical tensile properties and toughness in the T-L direction. The specimens used for the tenacity measurement were CCT760 geometry specimens: 760mm (L) x 1250mm (TL).
Les résultats sont reportés dans le tableau 3 et illustrés par la figure 2. La figure 2 témoigne du maintien d’un bon compromis entre la limite d’élasticité et la ténacité, notamment du maintien d’une excellente ténacité quelles que soit les conditions de revenu.  The results are reported in Table 3 and illustrated in Figure 2. Figure 2 shows the maintenance of a good compromise between yield strength and toughness, including the maintenance of excellent toughness whatever the conditions of returned.
Tableau 3 - Propriétés mécaniques et essais de ténacité Table 3 - Mechanical properties and toughness tests
Exemple 2 Example 2
L’alliage B de composition présentée dans le tableau 4 est un alliage de référence notamment connu du document EP 1 966 402 B2. The alloy B of composition shown in Table 4 is a reference alloy, especially known from EP 1 966 402 B2.
Tableau 4 - Composition chimique (% en poids) Table 4 - Chemical Composition (% by weight)
Analyse sur solide SOES (spectrométrie d’émission optique par étincelles). Moyenne sur trois échantillons.  SOES solid analysis (optical emission spectrometry by spark). Average over three samples.
Le procédé utilisé pour la fabrication de la tôle en alliage B a été le suivant : une plaque d’épaisseur environ 400 mm en alliage B a été coulée, homogénéisée à 500 °C pendant environ 12 heures puis scalpée. La plaque a été laminée à chaud pour obtenir une tôle ayant une épaisseur de 5 mm. Elle a été mise en solution à environ 500 °C puis trempée à l’eau froide. La tôle a ensuite été fractionnée avec un allongement permanent de 1 à 5%. Les revenus suivants ont été effectués sur différents échantillons de la tôle : 48h-l52°C, et 25h-l65°C. The method used for the manufacture of the alloy sheet B was as follows: a plate of thickness about 400 mm of alloy B was cast, homogenized at 500 ° C for about 12 hours and then scalped. The plate was hot rolled to obtain a sheet having a thickness of 5 mm. It was dissolved at about 500 ° C and then quenched with cold water. The sheet was then fractionated with a permanent elongation of 1 to 5%. The following incomes were made on different samples of the sheet: 48h-l52 ° C, and 25h-l65 ° C.
La ténacité des tôles a été caractérisée par des essais de courbes R suivant la norme ASTM E561-10 (2010). Les essais ont été effectués avec une éprouvette CCT (W=760 mm, 2a0=253 mm) pleine épaisseur. L’ensemble de résultats est reporté dans le tableau 5 et illustré par la figure 3. Tableau 5 - Données de résumé de la courbe R The toughness of the sheets was characterized by R-curve tests according to ASTM E561-10 (2010). The tests were carried out with a CCT test specimen (W = 760 mm, 2a0 = 253 mm) full thickness. The result set is reported in Table 5 and illustrated in Figure 3. Table 5 - R curve summary data
Des échantillons ont été prélevés à pleine épaisseur pour mesurer les caractéristiques mécaniques statiques en traction et la ténacité dans la direction T-L, Les éprouvettes utilisées pour la mesure de ténacité étaient des éprouvettes de géométrie CCT760 : 760mm (L) x 1250 mm (TL) Samples were taken at full thickness to measure tensile static mechanical characteristics and toughness in the T-L direction. The specimens used for the tenacity measurement were CCT760 geometry specimens: 760mm (L) x 1250mm (TL)
Les résultats sont reportés dans le tableau 6. The results are reported in Table 6.
Tableau 6 - Propriétés mécaniques et essais de ténacité Table 6 - Mechanical properties and toughness tests
Exemple 3 Example 3
Les effets d’un revenu haute température ont également été étudiés dans la littérature. Cet exemple reprend les données présentées dans les articles ci-après cités mettant en évidence l’impact connu sur la ténacité d’un revenu haute température tel que celui de l’invention sur des alliages d’aluminium comprenant en particulier du cuivre et du lithium : The effects of high temperature income have also been studied in the literature. This example repeats the data presented in the articles cited below, highlighting the known impact on the toughness of a high temperature recipe such as that of the invention on aluminum alloys, in particular comprising copper and lithium. :
_ Effects of aging treatment on strength and fracture toughness of 2A97 aluminum- lithium alloy, S. Zhong et al., The Chinese Journal of Nonferrous Metals, Vol 21, n3,Effects of aging treatment on strength and fracture toughness of 2A97 aluminum-lithium alloy, S. Zhong et al., The Chinese Journal of Nonferrous Metals, Vol 21, No. 3,
2011 _ The effect of ageing température on the fracture toughness of an 8090 Al-Li alloy, K. J. Duncan and J. W. Martin, Journal of Materials Science Letters, Vol 10, Issue 18, pp 1098-1100, 1991 2011 The effect of aging on the fracture toughness of an 8090 Al-Li alloy, Duncan KJ and Martin JW, Journal of Materials Science Letters, Vol 10, Issue 18, pp 1098-1100, 1991
L’article de Zhong et al. est relatif à l’alliage Al-Cu-Li 2A97. Il met en évidence la diminution de ténacité induite par l’augmentation de température de la seconde étape de revenu lors d’un revenu en deux étapes sur un produit en alliage 2A97. La figure 4 présente les conditions de revenu suivantes : The article by Zhong et al. is relative to the alloy Al-Cu-Li 2A97. It highlights the decrease in toughness induced by the temperature increase of the second stage of income during a two-stage income on a 2A97 alloy product. Figure 4 shows the following income conditions:
- l6h à l35°C + 32h à l35°C ;  - l6h to l35 ° C + 32h to l35 ° C;
l6h à l35°C + l8h à l50°C (diminution de ténacité de 6% par rapport à un revenu bi-pallier l6h à l35°C + 32h à l35°C) ;  l6h at l35 ° C + l8h at 150 ° C (decrease in toughness of 6% compared with a double-decker income l6h at 135 ° C + 32h at 135 ° C);
l6h à l35°C + 6h à l75°C (diminution de ténacité de 16% par rapport à un revenu bi-pallier l6h à l35°C + 32h à l35°C).  l6h to l35 ° C + 6h to l75 ° C (decrease in tenacity of 16% compared to a double-income income l6h to l35 ° C + 32h to l35 ° C).
L’article de Duncan et Martin est relatif à l’alliage Al-Li 8090. L'objectif de cet article était d'étudier la variation de la ténacité avec l’augmentation de la température de revenu dans un matériau de dureté constante (propriétés statiques similaires). Il a ainsi été mis en évidence une diminution de ténacité induite par l’augmentation de température de revenu sur un produit en alliage 8090 pour un même état de revenu (même dureté). La figure 5 présente les conditions de revenu suivantes : Duncan and Martin's article is about the alloy Al-Li 8090. The purpose of this article was to study the variation of the toughness with the increase of the tempering temperature in a material of constant hardness (properties similar static). It has thus been demonstrated a decrease in toughness induced by the increase in temperature of income on an 8090 alloy product for the same state of income (same hardness). Figure 5 shows the following income conditions:
- 320h à l30°C ;  320h at 130 ° C .;
78h à l50°C (diminution de ténacité de 9% par rapport à un revenu de 320h à l30°C) ;  78h at 150 ° C (10% decrease in toughness compared to 320h at 130 ° C);
32h à l70°C (diminution de ténacité de 20% par rapport à un revenu de 320h à l30°C) ;  32h at 170 ° C (decrease in tenacity of 20% compared to an income of 320h at 130 ° C);
8,3h à l90°C (diminution de ténacité de 27% par rapport à un revenu de 320h à l30°C).  8.3h at 190 ° C (decrease in toughness of 27% compared to an income of 320h at 130 ° C).
Exemple 4  Example 4
Des examens en microscopie électronique en transmission ont été effectués sur des produits selon l’invention et des produits de référence. Une plaque en alliage A a été transformée selon le procédé décrit dans l’exemple 1. Une plaque en alliage B a été transformée selon le procédé de l’exemple 2. 4 revenus ont été pratiqués 150 h à 130 °C (Rl) ou l20h à l40°C (R2) ou 48 heures à 152 °C (R3) ou 20h à 175 °C (R4). Pour l’alliage A on a pratiqué les revenus Rl, R2 et R4. Pour l’alliage B, on a pratiqué le revenu R3. Les produits obtenus ont été observés par microscopie électronique en transmission. Les échantillons ont été préparés par amincissement électrochimique double jet (30 % HN03 + Méthanol, 20 V, - 30 °C). Le microscope électronique en transmission LEO EM912 OMEGA 120 kV équipé d’un filtre d’énergie pour la spectroscopie de perte d’énergie des électrons (EELS), d’un système d’analyse d’images SIS et d’un système d’analyse EDX (LINK OXFORD) a été utilisé. Les images ont été acquises soit par la caméra Slow Scan CCD (images numériques de haute qualité grâce à la grande gamme dynamique et à la linéarité de réponse), soit par la caméra SIT (images « grand champ » à la vitesse TV), soit sur des plans films (pour enregistrer les diagrammes de diffraction). La tension d’accélération était de 120 kV. Transmission electron microscopy examinations were carried out on products according to the invention and reference products. An alloy plate A was converted according to the method described in Example 1. An alloy plate B was transformed according to the method of Example 2. Four incomes were made 150 h at 130 ° C (Rl) or l20h to 140 ° C (R2) or 48 hours at 152 ° C (R3) or 20h at 175 ° C (R4). For the alloy A the incomes R1, R2 and R4 were practiced. For alloy B, the income R3 was practiced. The products obtained were observed by transmission electron microscopy. The samples were prepared by electrochemical double jet thinning (30% HNO 3 + Methanol, 20 V, -30 ° C). The LEO EM912 OMEGA 120 kV transmission electron microscope equipped with an energy filter for electron energy loss spectroscopy (EELS), an SIS image analysis system and EDX analysis (LINK OXFORD) was used. The images were acquired either by the Slow Scan CCD camera (high quality digital images thanks to the wide dynamic range and linearity of response), or by the SIT camera ("large field" images at the TV speed), or on film shots (to record diffraction patterns). The acceleration voltage was 120 kV.
Pour le produit obtenu avec l’alliage A avec le revenu selon l’invention R4, on n’observe pas de précipité de type d’ (AhLi) mais uniquement la phase Tl (ALCuLi). Pour les revenus Rl et R2 hors invention, la figure de diffraction correspondant à la phase d’ est observée. Pour le revenu R3 réalisé avec l’alliage B on observe également la phase d’ en moindre quantité.  For the product obtained with the alloy A with the feed according to the invention R4, no precipitate of the type of (AhLi) but only the Tl phase (ALCuLi) is observed. For incomes R1 and R2 outside the invention, the diffraction pattern corresponding to the phase of is observed. For the income R3 realized with the alloy B one also observes the phase of in smaller quantity.

Claims

Revendications claims
1. Procédé de fabrication d’un produit corroyé en alliage d’aluminium comprenant les étapes suivantes : A method of manufacturing a wrought aluminum alloy product comprising the steps of:
a. coulée d’une plaque en alliage comprenant :  at. casting an alloy plate comprising:
2.1 à 2,8 % en poids de Cu ;  2.1 to 2.8% by weight of Cu;
1.1 à 1,7 % en poids de Li ;  1.1 to 1.7% by weight of Li;
0,2 à 0,9 % en poids de Mg ;  0.2 to 0.9% by weight of Mg;
0,2 à 0,6 % en poids de Mn ;  0.2 to 0.6% by weight of Mn;
0,01 à 0,2 % en poids de Ti  0.01 to 0.2% by weight of Ti
moins de 0,1 % en poids de Ag ;  less than 0.1% by weight of Ag;
moins de 0,08% en poids de Zr ;  less than 0.08% by weight of Zr;
une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total ;  an amount of Fe and Si less than or equal to 0.1% by weight each, and unavoidable impurities at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total;
reste aluminium ;  remains aluminum;
b. homogénéisation de ladite plaque à 480-520°C pendant 5 à 60 heures ;  b. homogenizing said plate at 480-520 ° C for 5-60 hours;
c. laminage à chaud et optionnellement à froid de ladite plaque homogénéisée en une tôle ;  c. hot rolling and optionally cold rolling of said homogenized plate into a sheet;
d. mise en solution de la tôle à 470-520°C pendant 15 minutes à 4 heures ;  d. solution of the sheet at 470-520 ° C for 15 minutes to 4 hours;
e. trempe de la tôle mise en solution ;  e. quenching of the sheet metal in solution;
f. traction de façon contrôlée de la tôle mise en solution et trempée avec une déformation permanente de 1 à 6% ;  f. controlled traction of the sheet in solution and quenched with a permanent deformation of 1 to 6%;
g. revenu de la tôle tractionnée par chauffage à une température d’au moins l60°C, préférentiellement au moins l65°C, pendant une durée maximale de 30 heures, préférentiellement de 25 heures.  g. the tempered sheet is recovered by heating at a temperature of at least 160 ° C., preferably at least 165 ° C., for a maximum of 30 hours, preferably 25 hours.
2. Procédé de fabrication selon la revendication 1 dans lequel l’étape g de revenu est effectuée à un temps équivalent ti à l65°C compris entre 15 et 35 heures, préférentiellement compris entre 20 et 30 heures, le temps équivalent ti à l65°C étant défini par la formule : Jexp(-l6400 / T) dt 2. Manufacturing process according to claim 1 wherein the step g of income is carried out at a time equivalent ti to 165 ° C between 15 and 35 hours, preferably between 20 and 30 hours, the equivalent time ti to 165 ° C being defined by the formula: Jexp (-l6400 / T) dt
ti _ exp(-l6400 / Tref) _ t i exp (-l6400 / Tre f)
où T (en Kelvin) est la température instantanée de traitement du métal, qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 428 K.where T (in Kelvin) is the instantaneous metal processing temperature, which changes with time t (in hours), and T ref is a reference temperature set at 428 K.
3. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel la plaque en alliage d’aluminium comprend de 2,2 à 2,6% en poids de Cu, préférentiellement de 2,3 à 2,5% en poids. 3. Manufacturing process according to any one of the preceding claims wherein the aluminum alloy plate comprises from 2.2 to 2.6% by weight of Cu, preferably from 2.3 to 2.5% by weight.
4. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel la plaque en alliage d’aluminium comprend de 1,2 à 1,6% en poids de Li, préférentiellement de 1,25 à 1,55% en poids. 4. Manufacturing process according to any one of the preceding claims wherein the aluminum alloy plate comprises from 1.2 to 1.6% by weight of Li, preferably from 1.25 to 1.55% by weight.
5. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel la plaque en alliage d’aluminium comprend de 0,25 à 0,75% en poids de Mg. The manufacturing method according to any one of the preceding claims wherein the aluminum alloy plate comprises from 0.25 to 0.75% by weight of Mg.
6. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel la plaque en alliage d’aluminium comprend de 0,25 à 0,45% en poids de Mn. The manufacturing method according to any one of the preceding claims wherein the aluminum alloy plate comprises from 0.25 to 0.45% by weight of Mn.
7. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel la plaque en alliage d’aluminium comprend moins de 0,05% en poids de Ag, préférentiellement moins de 0,04% en poids. 7. Manufacturing method according to any one of the preceding claims wherein the aluminum alloy plate comprises less than 0.05% by weight of Ag, preferably less than 0.04% by weight.
8. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel la plaque en alliage d’aluminium comprend moins de moins de 0,05% en poids de Zr, préférentiellement moins de 0,04% en poids. 8. Manufacturing process according to any one of the preceding claims wherein the aluminum alloy plate comprises less than less than 0.05% by weight of Zr, preferably less than 0.04% by weight.
9. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel le laminage à chaud est réalisé à une température initiale de 420 à 490°C, préférentiellement de 440 à 470°C. 9. Manufacturing process according to any one of the preceding claims wherein the hot rolling is carried out at an initial temperature of 420 to 490 ° C, preferably 440 to 470 ° C.
10. Procédé de fabrication selon l’un quelconque des revendications précédentes dans lequel la traction de façon contrôlée de la tôle est réalisée avec une déformation permanente comprise entre 2,5 et 5%. 10. Manufacturing process according to any one of the preceding claims wherein the traction in a controlled manner of the sheet is made with a permanent deformation of between 2.5 and 5%.
11. Produit susceptible d’être obtenu par le procédé selon une quelconque des revendications 1 à 10 caractérisé en ce que parmi les phases contenant du lithium il ne contient pas la phase d’ mais uniquement la phase Tl . 11. Product obtainable by the method according to any one of claims 1 to 10 characterized in that among the lithium-containing phases it does not contain the phase of but only the T1 phase.
12. Produit selon la revendication 11 d’un produit présentant au moins Tune, avantageusement au moins deux préférentiellement trois ou plus des propriétés suivantes : 12. Product according to claim 11 of a product having at least one, advantageously at least two, preferably three or more of the following properties:
limite conventionnelle d’élasticité, Rp0,2 (L), d’au moins 330 MPa, préférentiellement au moins 335 MPa et, plus préférentiellement encore, au moins 340 MPa ;  the conventional yield strength, Rp0.2 (L), of at least 330 MPa, preferably at least 335 MPa and, more preferably still, at least 340 MPa;
limite conventionnelle d’élasticité, Rp0,2 (LT), d’au moins 325 MPa ; préférentiellement au moins 330 MPa et, plus préférentiellement encore, au moins 335 MPa ;  yield strength, Rp0.2 (LT), of at least 325 MPa; preferably at least 330 MPa and, more preferably still, at least 335 MPa;
ténacité en contrainte plane, Kapp (T-L), d’au moins 130 MPaVm ; préférentiellement au moins 135 MPaVm et, plus préférentiellement encore, au moins 140 MPaVm ;  toughness in plane stress, Kapp (T-L), of at least 130 MPaVm; preferably at least 135 MPaVm and, more preferably still, at least 140 MPaVm;
facteur d’intensité de contrainte effectif pour une extension de fissure effective Aaeff de 60 mm, Kr60 (T-L), d’au moins 175 MPaVm ; préférentiellement au moins 180 MPaVm et, plus préférentiellement encore, au moins 185 MPaVm. effective stress intensity factor for effective crack extension Aa eff of 60 mm, Kr60 (TL), of at least 175 MPaVm; preferably at least 180 MPaVm and, more preferably still, at least 185 MPaVm.
13. Produit selon la revendication 11 ou la revendication 12 caractérisé en ce que à l’issue d’un traitement thermique de lOOOh à 85°C, il présente une ténacité en contrainte plane, Kapp (T-L), et/ou un facteur d’intensité de contrainte effectif pour une extension de fissure effective Aaeff de 60 mm, Kr60 (T-L), qui ne diffère pas plus de 7%, préférentiellement pas plus de 5% et, plus préférentiellement encore pas plus de 4% voire 2%. 13. Product according to claim 11 or claim 12 characterized in that after a heat treatment of 1000 h to 85 ° C, it has a toughness in plane stress, Kapp (TL), and / or a factor of effective stress intensity for an effective crack extension Aa eff of 60 mm, Kr60 (TL), which does not differ by more than 7%, preferably not more than 5% and, more preferably still not more than 4% or even 2% .
EP18833951.9A 2017-12-20 2018-12-17 Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet Active EP3728667B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762674A FR3075078B1 (en) 2017-12-20 2017-12-20 IMPROVED MANUFACTURING PROCESS OF ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF AIRCRAFT FUSELAGE
PCT/FR2018/053316 WO2019122639A1 (en) 2017-12-20 2018-12-17 Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture

Publications (2)

Publication Number Publication Date
EP3728667A1 true EP3728667A1 (en) 2020-10-28
EP3728667B1 EP3728667B1 (en) 2022-06-22

Family

ID=62749025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18833951.9A Active EP3728667B1 (en) 2017-12-20 2018-12-17 Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet

Country Status (7)

Country Link
US (1) US11732333B2 (en)
EP (1) EP3728667B1 (en)
JP (1) JP2021508357A (en)
CN (1) CN111492074A (en)
CA (1) CA3085811A1 (en)
FR (1) FR3075078B1 (en)
WO (1) WO2019122639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945084A (en) * 2020-08-01 2020-11-17 安徽家园铝业有限公司 Heat treatment process of aluminum alloy section

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423926B (en) * 2019-07-29 2020-12-29 中国航发北京航空材料研究院 Heat-resistant aluminum-lithium alloy and preparation method thereof
FR3104172B1 (en) * 2019-12-06 2022-04-29 Constellium Issoire Aluminum-copper-lithium alloy thin sheets with improved toughness and manufacturing method
CN113388760B (en) * 2021-06-17 2022-05-06 上海华峰铝业股份有限公司 Al-Cu-Mn-Zr aluminum alloy, aluminum alloy composite plate and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2314929T3 (en) * 2005-06-06 2009-03-16 Alcan Rhenalu ALUMINUM-COPPER-LITHIUM SHEET WITH HIGH TENACITY FOR AIRCRAFT FUSELAGE.
US8771441B2 (en) * 2005-12-20 2014-07-08 Bernard Bes High fracture toughness aluminum-copper-lithium sheet or light-gauge plates suitable for fuselage panels
FR2894985B1 (en) 2005-12-20 2008-01-18 Alcan Rhenalu Sa HIGH-TENACITY ALUMINUM-COPPER-LITHIUM PLASTER FOR AIRCRAFT FUSELAGE
FR2925523B1 (en) * 2007-12-21 2010-05-21 Alcan Rhenalu ALUMINUM-LITHIUM ALLOY IMPROVED LAMINATED PRODUCT FOR AERONAUTICAL APPLICATIONS
FR2938553B1 (en) * 2008-11-14 2010-12-31 Alcan Rhenalu ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS
FR2960002B1 (en) * 2010-05-12 2013-12-20 Alcan Rhenalu ALUMINUM-COPPER-LITHIUM ALLOY FOR INTRADOS ELEMENT.
FR2981365B1 (en) 2011-10-14 2018-01-12 Constellium Issoire PROCESS FOR THE IMPROVED TRANSFORMATION OF AL-CU-LI ALLOY SHEET
FR3014448B1 (en) * 2013-12-05 2016-04-15 Constellium France ALUMINUM-COPPER-LITHIUM ALLOY PRODUCT FOR INTRADOS ELEMENT WITH IMPROVED PROPERTIES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945084A (en) * 2020-08-01 2020-11-17 安徽家园铝业有限公司 Heat treatment process of aluminum alloy section

Also Published As

Publication number Publication date
JP2021508357A (en) 2021-03-04
WO2019122639A1 (en) 2019-06-27
US20210071285A1 (en) 2021-03-11
US11732333B2 (en) 2023-08-22
FR3075078A1 (en) 2019-06-21
CN111492074A (en) 2020-08-04
FR3075078B1 (en) 2020-11-13
EP3728667B1 (en) 2022-06-22
CA3085811A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
EP2655680B1 (en) Aluminium-copper-lithium alloy with improved compressive strength and toughness
EP1966402B1 (en) Sheet made of high-toughness aluminium alloy containing copper and lithium for an aircraft fuselage
EP1492895B1 (en) Al-zn-mg-cu alloy products
EP3728667B1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet
EP1766102B1 (en) Method for making high-tenacity and high-fatigue strength aluminium alloy products
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
EP2984195B1 (en) Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance
FR2838135A1 (en) PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
WO2010149873A1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
FR2975403A1 (en) MAGNESIUM LITHIUM ALUMINUM ALLOY WITH IMPROVED TENACITY
CA2907854C (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP1382698A1 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
FR2989387A1 (en) LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED SHOCK RESISTANCE
WO2018073533A1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
FR3111143A1 (en) High temperature performance aluminum copper magnesium alloy products
FR2875815A1 (en) HIGH-TENACITY ALUMINUM ALLOY PRODUCTS AND PROCESS FOR PRODUCING THE SAME
FR3067044B1 (en) ALUMINUM ALLOY COMPRISING LITHIUM WITH IMPROVED FATIGUE PROPERTIES
FR3080860A1 (en) LITHIUM COPPER ALUMINUM ALLOY WITH ENHANCED COMPRESSION RESISTANCE AND TENACITY
FR3132306A1 (en) Aluminum-Copper-Lithium Alloy Enhanced Thin Sheet
EP3802897B1 (en) Thin sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LORENZINO, PABLO

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018037120

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1499819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602018037120

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ARCONIC CORPORATION

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221228

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221217

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1499819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221217

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231227

Year of fee payment: 6

Ref country code: AT

Payment date: 20231204

Year of fee payment: 6