EP1382698A1 - Wrought product in Al-Cu-Mg alloy for aircraft structural element - Google Patents
Wrought product in Al-Cu-Mg alloy for aircraft structural element Download PDFInfo
- Publication number
- EP1382698A1 EP1382698A1 EP03356108A EP03356108A EP1382698A1 EP 1382698 A1 EP1382698 A1 EP 1382698A1 EP 03356108 A EP03356108 A EP 03356108A EP 03356108 A EP03356108 A EP 03356108A EP 1382698 A1 EP1382698 A1 EP 1382698A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- product according
- mpa
- product
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 78
- 239000000956 alloy Substances 0.000 title claims abstract description 78
- 229910017818 Cu—Mg Inorganic materials 0.000 title 1
- 238000005096 rolling process Methods 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 6
- 230000009466 transformation Effects 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims description 22
- 230000007797 corrosion Effects 0.000 claims description 18
- 238000005260 corrosion Methods 0.000 claims description 18
- 238000007747 plating Methods 0.000 claims description 10
- 238000010791 quenching Methods 0.000 claims description 9
- 230000000171 quenching effect Effects 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 238000005482 strain hardening Methods 0.000 claims description 5
- 239000010455 vermiculite Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 238000009987 spinning Methods 0.000 claims description 3
- 238000005242 forging Methods 0.000 claims description 2
- 238000000265 homogenisation Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 13
- 238000010622 cold drawing Methods 0.000 abstract 2
- 238000005496 tempering Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 24
- 239000010949 copper Substances 0.000 description 23
- 239000011777 magnesium Substances 0.000 description 19
- 239000011572 manganese Substances 0.000 description 17
- 239000011701 zinc Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000003351 stiffener Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004210 cathodic protection Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- -1 i.e. Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010198 maturation time Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/12764—Next to Al-base component
Definitions
- the invention relates to aircraft structural elements, in particular sheet metal for large commercial aircraft fuselage made from rolled, spun or forged alloy AlCuMg in the treated state by dissolving, quenching and cold work hardening, and having, compared to the products of the prior art used for the same application, an improved compromise between the different properties required.
- the fuselage of commercial aircraft of large capacity is typically made of an AlCuMg alloy sheet skin, as well as longitudinal stiffeners and circumferential frames.
- a type 2024 alloy is used which, according to the designation of the Aluminum Association or the standard EN 573-3, has the following chemical composition (% by weight): If ⁇ 0.5 Fe ⁇ 0.5 Cu: 3.8 - 4.9 Mg: 1.2-1.8 Mn: 0.3 - 0.9 Cr ⁇ 0.10 Zn ⁇ 0.25 Ti ⁇ 0.15.
- Variants of this alloy are also used. These elements are asked structures a compromise between several properties such as: resistance mechanical (i.e. static mechanical characteristics), tolerance to damage (toughness and speed of fatigue cracking), fatigue resistance (especially oligocyclic), resistance to different forms of corrosion, fitness ability. In some cases, especially for airplanes supersonic, creep resistance can be critical.
- US Patent 5,652,063 (Alcoa) relates to an aircraft structural element made from a composition alloy (% by weight): Cu: 4.85-5.3 Mg: 0.51-1.0 Mn: 0.4-0.8 Ag: 0.2 - 0.8 If ⁇ 0.1 Fe ⁇ 0.1 Zr ⁇ 0.25 with Cu / Mg between 5 and 9.
- the sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa).
- the alloy is particularly intended for supersonic aircraft.
- the patent application EP 0 731 185 of the Applicant relates to an alloy, subsequently recorded under No. 2024A, of composition: Si ⁇ 0.25 Fe ⁇ 0.25 Cu: 3.5 - 5 Mg: 1 - 2 Mn ⁇ 0.55 with the relation: 0 ⁇ Mn-2Fe ⁇ 0.2
- the thick plates in this alloy have both improved toughness and a reduced level of residual stresses, without loss on the other properties.
- the alloy may also contain: Zr ⁇ 0.20% V ⁇ 0.20% Mn ⁇ 0.80% Ti ⁇ 0.05% Fe ⁇ 0.15% If ⁇ 0.10%.
- the patent application EP 1 170 394 A2 (Alcoa) describes four AlCu-type alloys which have, respectively, the composition Cu 4.08, Mn 0.29, Mg 1.36, Zr 0.12, Fe 0.02, Si 0.01; Cu 4.33, Mn 0.30, Mg 1.38, Zr 0.10, Fe 0.01, Si 0.00; Cu 4.09, Mn 0.58, Mg 1.35, Zr 0.11, Fe 0.02, Si 0.01; and Cu 4.22, Mn 0.66, Mg 1.32, Zr 0.10, Fe 0.01, Si 0.01.
- the patent teaches how to convert these products into sheets having an elongated grain structure, wherein the grains have a length to thickness ratio of greater than 4.
- the present invention aims to obtain aircraft structural elements, and in particular fuselage elements made of AlCuMg alloy having, compared to the prior art, improved damage tolerance, mechanical resistance to less equal, an improved resistance to corrosion, and this without resorting to expensive and troublesome addition elements for recycling.
- the subject of the invention is a wrought product, in particular a laminated, spun or forged product, made of an alloy of composition (% by weight): Cu 3.80-4.30, Mg 1.25-1.45, Mn 0.20-0.50, Zn 0.40-1.30, Zr ⁇ 0.05, Fe ⁇ 0.15, Si ⁇ 0.15, Ag ⁇ 0.01 other elements ⁇ 0.05 each and ⁇ 0.15 in total, remain Al, said product can be treated by dissolving, quenching, and cold working, with a permanent deformation of between 0.5% and 15%, preferably between 1% and 5%, and even more preferably between 1.5% and 3.5%.
- Cold working can be obtained by controlled pulling and / or cold processing, for example rolling or drawing.
- the invention also relates to a structural element for construction aeronautical equipment, in particular an aircraft fuselage element, manufactured from such an aircraft wrought product, and especially from such a rolled product.
- the copper content of the alloy according to the invention is between 3.80 and 4.30 %, and preferably between 4.05 and 4.30%; so it's in the low half of the content range of alloy 2024, so as to limit the volume fraction residual coarse copper particles.
- the interval of magnesium content which must be between 1.25 and 1.45% and preferably between 1.28 and 1.42%, is shifted downwards compared to that of 2024.
- the manganese is maintained between 0.20 and 0.50%, preferably between 0.30 and 0.50, and more preferably between 0.35 and 0.48%.
- the implementation of the invention does not require significant addition of zirconium at a content greater than 0.05%.
- the present invention requires careful control of the zinc content, the alloy being discharged into copper, magnesium and manganese.
- the zinc content must be between 0.40 and 1.30%, preferably between 0.50 and 1.10%, and still between more preferably between 0.50 and 0.70%.
- the zinc content at least equal to (1.2Cu - 0.3Mg + 0.3Mn - 3.75).
- the silicon and iron contents are each kept below 0.15%, and preferably below 0.10%, to have good toughness.
- this is only in very cases (depending on the type of alloy and the intended application) that the gain in damage tolerance related to the use of aluminum containing less than 0.06 % iron and silicon each is large enough to be valued.
- the implementation of the present invention does not require that the content of iron and silicon less than 0.06% each, because in the selected composition range, the Damage tolerance is very good.
- the alloy contains no silver addition, nor any other element likely to increase the production cost of the alloy and to pollute the other alloys produced on the same site by recycling manufacturing scrap.
- the preferred method of manufacture comprises casting of plates, in the case where the product to be made is a rolled sheet, or billets in the case where it is a spun section or a forged part.
- the plate or the billet is scalped, then homogenized between 450 and 500 ° C.
- the hot transformation is then carried out by rolling, spinning or forging, optionally completed by a cold transformation step.
- the laminated, spun or forged half-product is then dissolved between 480 and 505 ° C., so that this dissolution is as complete as possible, that is to say that the maximum of potentially soluble phases , in particular the precipitates Al 2 Cu and Al 2 CuMg, are effectively put back in solution.
- the quality of the dissolution can be assessed by differential enthalpy analysis (AED) by measuring the specific energy using the area of the peak on the thermogram. This specific energy must preferably be less than 2 J / g.
- AED differential enthalpy analysis
- This hardening cold can be a controlled pull with a permanent elongation between 1 and 5% bringing the product to a T351 state. Controlled traction with a permanent elongation of between 1.5% and 3.5%. It can also be a cold rolling by rolling in the case of sheets or by drawing in the case profiles, with a permanent elongation of up to 15%, bringing the in the T39 state, or in the T3951 state if the rolling or drawing is combined with the traction.
- the product finally undergoes natural aging at room temperature.
- the final microstructure is in general largely recrystallized, with grains relatively thin and fairly equiaxed.
- the product according to the present invention is well suited for use as an aircraft structural element, for example as a fuselage skin element, and especially as an element for the fuselage skin panel (skin).
- These sheets preferably plated, have a thickness of between 1 and 16 mm, and have good resistance to intergranular corrosion and corrosion on riveted assembly. They have a breaking strength in the L direction and / or TL direction greater than 430 MPa, and preferably greater than 440 MPa, and a yield strength in the L and / or TL direction greater than 300 MPa, and preferably greater than 320. MPa.
- the sheet according to the invention may be a sheet plated with at least one face with an alloy of the 1xxx series, and preferably with an alloy selected from the group consisting of alloys 1050, 1070, 1300 and 1145.
- plated sheets according to the invention which are particularly resistant to corrosion by galvanic coupling. in a riveted assembly. More particularly, plated sheets which exhibit a galvanic corrosion current of less than 4 ⁇ A / cm 2 , and preferably less than 2.5 ⁇ A / cm 2 , for exposure of up to 200 hours, during corrosion tests in a riveted assembly, placing the core alloy in a non-deaerated solution containing 0.06 M NaCl and the plating alloy in a 0.02 M AlCl 3 solution deaerated by nitrogen sparging.
- N0, N1, N2 and N3 alloys were developed with chemical composition was in accordance with the invention.
- the liquid metal was first treated in the furnace maintaining by injection of gas using a rotor of a type known under the brand IRMA, and then in a pocket of type known as Alpur.
- the refining has been done online, that is to say between the holding oven and the Alpur pocket, with wire AT5B (0.7 kg / t for N0, N1 and N3, 0.3 kg / t for N2).
- 3.0 plates were cast m length and section 1450 mm x 377 mm (except for N3: section 1450 x 446 mm). They were relaxed for 10h at 350 ° C.
- alloy plating 1050 corresponds to about 2% of thickness.
- alloys E and F For the alloys according to the prior art (alloys E and F), the plates have been heated to around 450 ° C, then hot-rolled at the reversing mill up to a thickness of about 20 mm. The resulting strips were rolled on a tandem rolling mill with three cages up to a final thickness close to 5 mm, then wound (at temperatures of 320 ° C and 260 ° C, respectively for alloys F and E). In the case of alloy F, the coil thus obtained was laminated to cold to a thickness of 3.2 mm.
- Sheet metal was cut, put in solution in a salt bath oven at a temperature of 498.5 ° C for a duration of 30 minutes (sheet metal E thickness 5 mm) or 25 min (sheet F thickness 3.2 mm), then completed (wrinkling followed by controlled traction with permanent elongation included between 1.5 and 3%).
- the N0 plate has undergone the following homogenization cycle: 8h at 495 ° C + 12h at 500 ° C (nominal values) while alloys N1, N2 and N3 have been homogenized for 12 hours at 500 ° C.
- the plates After reheating (about 18 hours at 425-445 ° C), the plates were hot-rolled (inlet temperature: 413 ° C) to a thickness of about 90 mm.
- the N0 band thus obtained was cut in half in the direction perpendicular to the rolling direction. There were thus obtained two bands, labeled N01 and N02. These strips were rolled on a tandem hot rolling mill 3 cages to a final thickness of 6 mm (winding temperature about 320 - 325 ° C).
- N1 and N3 alloy plate and one N3 alloy plate were hot rolled at 5.5 mm before being cold rolled to the final thickness of 3.2 mm, and another N1 alloy plate. was hot rolled at 4.5 mm before being cold rolled to the final thickness of 1.6 mm.
- An N2 alloy plate was hot rolled to a final thickness of 6 mm (tandem winding temperature 270 ° C).
- the coil N01 has not undergone any other rolling pass, while the coil N02 was cold rolled to a final thickness of 3.2 mm.
- the plates once cut were dissolved in a salt bath oven (thickness 6 mm: 60 minutes at 500 ° C., thickness 3.2 mm: 40 minutes at 500 ° C.; thickness 1, 6 mm: 30 minutes at 500 ° C) followed by quenching with water to about 23 ° C. After quenching, the sheets have undergone wrinkling and pulling with elongation cumulative standing between 1.5 and 3.5%. The waiting time between quenching and wrinkling did not exceed 6 hours.
- the tensile strength R m (in MPa), the conventional yield stress at 0.2% elongation R p0.2 (in MPa) and the elongation at break A (in%) were measured by a tensile test according to EN 10002-1.
- the product according to the invention therefore has a better breaking strength in the case of a cracked panel.
- the plates of 2024 in particular for ⁇ K ⁇ 20 MPa ⁇ m, exhibit a cracking rate two to three times higher than for the product according to the invention. The latter therefore allows longer inspection intervals (to mass given structure) or reductions in the inspection interval structure fixed.
- the breaking K values for a limiting load greater than 200 MPa are greater than about 120 MPa ⁇ m for the described R curves, with apparent K (K r ) greater than about 110 MPa m.
- K r apparent K
- the dimensioning portion of the curve R consists of points corresponding to a static crack advance ⁇ a eff of more than 20 mm.
- the corrosion resistance of the sheets has also been characterized.
- the alloy according to the invention shows intrinsically, that is to say after displacement by machining, resistance to intergranular corrosion, measured according to ASTM standard G 110, substantially comparable to that of the reference 2024.
- the test consists in measuring the current which is established naturally between the anode (alloy of plating placed in a cell containing a solution of AlCl 3 (0,02 M, deaerated by sparging of nitrogen)) and the cathode (alloy core placed in a cell containing a solution of NaCl (0.06 M, aerated)), a salt bridge ensuring the electrolytic contact between the two cells. Both elements (veneer and core) have the same surface (2.54 cm 2 ). The coupling current densities are recorded throughout the duration of the test. It is observed that the current reaches a plateau after about 55 hours and hardly changes during the tests (200 hours or 15 days, depending on the sample). The results are summarized in Table 6.
- state F From hot-rolled and possibly cold-rolled sheets (state F) of the alloy according to the invention (see example 1), several other metallurgical states were developed in the form of a size of 600 mm (L-direction) x 160 mm (TL direction) x thickness.
- the marks ending in A, D, F and I correspond to T351 states.
- the different samples were characterized by tensile tests (L and TL directions) as well as toughness tests.
- the tenacity was first evaluated in the TL and LT directions using the maximum stress R e (in MPa) and the flow energy E ec according to the Kahn test.
- the stress Kahn is equal to the ratio of the maximum load F max that the specimen can withstand on the section of the specimen (product of the thickness B by the width W).
- the flow energy is determined as the area under the force-displacement curve up to the maximum force F max supported by the specimen.
- the test is described in the article "Kahn-Type Tear Test and Crack Toughness of Aluminum Alloy Sheet", published in the journal Materials Research & Standards, April 1964, p. 151- 155.
- the sample used for the test of tenacity Kahn is described, for example, in the "Metals Handbook", 8 th Edition, vol. 1, American Society for Metals, pp. 241-242.
- the tenacity was also approached for sheets of thickness 6 mm, using a curve-type test R, in the TL direction, but on smaller specimens than that described in Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Conductive Materials (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
Description
L'invention concerne des éléments de structure d'avion, notamment des tôles pour fuselage d'avions commerciaux de grande capacité, réalisés à partir de produits laminés, filés ou forgés en alliage AlCuMg à l'état traité par mise en solution, trempe et écrouissage à froid, et présentant, par rapport aux produits de l'art antérieur utilisés pour la même application, un compromis amélioré entre les différentes propriétés d'emploi requises.The invention relates to aircraft structural elements, in particular sheet metal for large commercial aircraft fuselage made from rolled, spun or forged alloy AlCuMg in the treated state by dissolving, quenching and cold work hardening, and having, compared to the products of the prior art used for the same application, an improved compromise between the different properties required.
Le fuselage d'avions commerciaux de grande capacité est typiquement constitué
d'une peau en tôles en alliage de type AlCuMg, ainsi que de raidisseurs
longitudinaux et de cadres circonférentiels. On utilise le plus souvent un alliage de
type 2024 qui a, selon la désignation de l'Aluminum Association ou la norme EN
573-3 la composition chimique suivante (% en poids) :
Si < 0,5 Fe<0,5 Cu : 3,8 - 4,9 Mg : 1,2-1,8 Mn : 0,3 - 0,9
Cr<0,10 Zn<0,25 Ti<0,15.The fuselage of commercial aircraft of large capacity is typically made of an AlCuMg alloy sheet skin, as well as longitudinal stiffeners and circumferential frames. A type 2024 alloy is used which, according to the designation of the Aluminum Association or the standard EN 573-3, has the following chemical composition (% by weight):
If <0.5 Fe <0.5 Cu: 3.8 - 4.9 Mg: 1.2-1.8 Mn: 0.3 - 0.9
Cr <0.10 Zn <0.25 Ti <0.15.
On utilise également des variantes de cet alliage. On demande à ces éléments structuraux un compromis entre plusieurs propriétés telles que : la résistance mécanique (i.e. les caractéristiques mécaniques statiques), la tolérance aux dommages (ténacité et vitesse de fissuration en fatigue), la résistance à la fatigue (notamment oligocyclique), la résistance aux différentes formes de corrosion, l'aptitude à la mise en forme. Dans certains cas, notamment pour les avions supersoniques, la résistance au fluage peut être critique.Variants of this alloy are also used. These elements are asked structures a compromise between several properties such as: resistance mechanical (i.e. static mechanical characteristics), tolerance to damage (toughness and speed of fatigue cracking), fatigue resistance (especially oligocyclic), resistance to different forms of corrosion, fitness ability. In some cases, especially for airplanes supersonic, creep resistance can be critical.
Dans le but d'améliorer le compromis entre les différentes propriétés requises,
notamment la résistance mécanique et la ténacité, diverses solutions alternatives ont
été proposées. Boeing a développé l'alliage 2034 de composition :
Si <0,10 Fe<0,12 Cu : 4,2 - 4,8 Mg : 1,3 - 1,9
Mn : 0,8 - 1,3 Cr<0,05 Zn<0,20 Ti<0,15 Zr : 0,08 - 0,15In order to improve the compromise between the different properties required, in particular the mechanical strength and toughness, various alternative solutions have been proposed. Boeing developed the alloy 2034 of composition:
If <0.10 Fe <0.12 Cu: 4.2 - 4.8 Mg: 1.3 - 1.9
Mn: 0.8 - 1.3 Cr <0.05 Zn <0.20 Ti <0.15 Zr: 0.08 - 0.15
Cet alliage a fait l'objet du brevet EP 0 031 605 (= US 4 336 075). Il présente, par rapport au 2024 à l'état T351, une meilleure limite d'élasticité spécifique due à l'augmentation de la teneur en manganèse et à l'ajout d'un autre antirecristallisant (Zr), ainsi qu'une ténacité et une résistance à la fatigue améliorées.This alloy was the subject of patent EP 0 031 605 (= US 4,336,075). He introduces, compared to 2024 in the T351 state, a better specific yield strength due to the increase in the manganese content and the addition of another antirecrystallizer (Zr), as well as improved toughness and fatigue resistance.
Le brevet US 5 652 063 (Alcoa) concerne un élément de structure d'avion
réalisé à partir d'un alliage de composition (% en poids) :
Cu: 4,85-5,3 Mg : 0,51-1,0 Mn : 0,4-0,8 Ag : 0,2 - 0,8
Si < 0,1 Fe < 0,1 Zr < 0,25 avec Cu/Mg compris entre 5 et 9.
La tôle de cet alliage à l'état T8 présente une limite d'élasticité > 77 ksi (531 MPa).
L'alliage est particulièrement destiné aux avions supersoniques.US Patent 5,652,063 (Alcoa) relates to an aircraft structural element made from a composition alloy (% by weight):
Cu: 4.85-5.3 Mg: 0.51-1.0 Mn: 0.4-0.8 Ag: 0.2 - 0.8
If <0.1 Fe <0.1 Zr <0.25 with Cu / Mg between 5 and 9.
The sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa). The alloy is particularly intended for supersonic aircraft.
Le brevet EP 0 473 122 (= US 5 213 639) d'Alcoa décrit un alliage, enregistré à l'Aluminum Association comme 2524, de composition : Si <0,10 Fe <0,12 Cu : 3,8 - 4,5 Mg : 1,2 - 1,8 Mn : 0,3 - 0,9 pouvant contenir éventuellement un autre antirecristallisant (Zr, V, Hf, Cr, Ag ou Sc). Cet alliage est destiné plus particulièrement aux tôles minces pour fuselage et présente une ténacité et une résistance à la propagation de fissures améliorées par rapport au 2024.EP 0 473 122 (= US Pat. No. 5,213,639) to Alcoa discloses an alloy, registered at the Aluminum Association as 2524, of composition: Si <0.10 Fe <0.12 Cu: 3.8 - 4.5 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 may contain possibly another antirecrystallizer (Zr, V, Hf, Cr, Ag or Sc). This alloy is intended more particularly for thin sheets for fuselage and has a tenacity and improved crack propagation resistance over 2024.
La demande de brevet EP 0 731 185 de la demanderesse concerne un alliage,
enregistré ultérieurement sous le n° 2024A, de composition : Si < 0,25 Fe < 0,25
Cu : 3,5 - 5 Mg : 1 - 2 Mn < 0,55 avec la relation : 0 < Mn- 2Fe < 0,2
Les tôles épaisses en cet alliage présentent à la fois une ténacité améliorée et un
niveau réduit de contraintes résiduelles, sans perte sur les autres propriétés.The patent application EP 0 731 185 of the Applicant relates to an alloy, subsequently recorded under No. 2024A, of composition: Si <0.25 Fe <0.25 Cu: 3.5 - 5 Mg: 1 - 2 Mn < 0.55 with the relation: 0 <Mn-2Fe <0.2
The thick plates in this alloy have both improved toughness and a reduced level of residual stresses, without loss on the other properties.
Le brevet US 5 593 516 (Reynolds) concerne un alliage pour applications
aéronautiques contenant de 2,5 à 5,5% Cu et 0,1 à 2,3% Mg, dans lequel les teneurs
en Cu et Mg sont maintenues en dessous de leur limite de solubilité dans
l'aluminium, et sont liées par les équations :
Ti<0,05% Fe<0,15% Si<0,10%.US Patent 5,593,516 (Reynolds) relates to an alloy for aeronautical applications containing from 2.5 to 5.5% Cu and 0.1 to 2.3% Mg, in which the contents of Cu and Mg are maintained below their limit of solubility in aluminum, and are linked by the equations:
Ti <0.05% Fe <0.15% If <0.10%.
Les brevets US 5 376 192 et US 5 512 112, issus de la même demande initiale, concernent des alliages de ce type contenant de 0,1 à 1% d'argent. On peut remarquer que l'utilisation d'argent dans ce type d'alliage conduit à une augmentation du coût d'élaboration et des difficultés pour le recyclage des chutes de fabrication.The patents US 5,376,192 and US 5,512,112, issued from the same initial application, relate to alloys of this type containing 0.1 to 1% silver. We can notice that the use of silver in this type of alloy leads to a increase in the cost of development and difficulties in the recycling of waterfalls. manufacturing.
La demande de brevet EP 1 170 394 A2 (Alcoa) décrit quatre alliages de type
AlCu qui ont, respectivement, la composition
Cu 4,08 , Mn 0,29 , Mg 1,36 , Zr 0,12, Fe 0,02 , Si 0,01 ;
Cu 4,33 , Mn 0,30 , Mg 1,38 , Zr 0,10 , Fe 0,01 , Si 0,00 ;
Cu 4,09 , Mn 0,58 , Mg 1,35 , Zr 0,11 , Fe 0,02 , Si 0,01 ; et
Cu 4,22 , Mn 0,66 , Mg 1,32 , Zr 0,10 , Fe 0,01 , Si 0,01.
Le brevet enseigne comment transformer ces produits en tôles présentant une
structure à grains allongés, dans laquelle les grains montrent un rapport de longueur
sur épaisseur supérieur à 4. En respectant à la fois une microstructure et une texture
bien spécifiques, ce produit a de bonnes caractéristiques de résistance mécanique et
de tolérance aux dommages. Un des inconvénients de ces alliages est d'être basé sur
un aluminium de grande pureté (très faible teneur en silicium et fer), qui est cher. Un
autre brevet du même demandeur, US 5,630,889, divulgue une tôle à l'état T6 ou T8
en alliage AlCuMg contenant :
Cu 4,66 , Mg 0,81 , Mn 0,62 , Fe 0,06 , Si 0,04 , Zn 0,36 %.
Un ajout d'argent améliore les propriétés de cet alliage. Toutefois, l'argent est un
élément coûteux, et il limite les possibilités de recyclage des produits ainsi obtenus
ainsi que de leurs chutes de production, ce qui contribue à augmenter encore plus le
coût de revient desdits produits.The patent application EP 1 170 394 A2 (Alcoa) describes four AlCu-type alloys which have, respectively, the composition
Cu 4.08, Mn 0.29, Mg 1.36, Zr 0.12, Fe 0.02, Si 0.01;
Cu 4.33, Mn 0.30, Mg 1.38, Zr 0.10, Fe 0.01, Si 0.00;
Cu 4.09, Mn 0.58, Mg 1.35, Zr 0.11, Fe 0.02, Si 0.01; and
Cu 4.22, Mn 0.66, Mg 1.32, Zr 0.10, Fe 0.01, Si 0.01.
The patent teaches how to convert these products into sheets having an elongated grain structure, wherein the grains have a length to thickness ratio of greater than 4. While respecting both a specific microstructure and texture, this product has good characteristics. mechanical resistance and damage tolerance. One of the disadvantages of these alloys is to be based on a high purity aluminum (very low silicon and iron content), which is expensive. Another patent of the same applicant, US Pat. No. 5,630,889, discloses a sheet in the T6 or T8 state of AlCuMg alloy containing:
Cu 4.66, Mg 0.81, Mn 0.62, Fe 0.06, Si 0.04, Zn 0.36%.
A silver addition enhances the properties of this alloy. However, money is an expensive element, and it limits the possibilities of recycling of the products thus obtained as well as their production falls, which contributes to increase even more the cost price of these products.
La présente invention a pour but d'obtenir des éléments de structure d'avion, et notamment des éléments de fuselage, en alliage AlCuMg, présentant, par rapport à l'art antérieur, une tolérance aux dommages améliorée, une résistance mécanique au moins égale, une résistance à la corrosion améliorée, et ceci sans recourir à des éléments d'addition coûteux et gênants pour le recyclage. The present invention aims to obtain aircraft structural elements, and in particular fuselage elements made of AlCuMg alloy having, compared to the prior art, improved damage tolerance, mechanical resistance to less equal, an improved resistance to corrosion, and this without resorting to expensive and troublesome addition elements for recycling.
L'invention a pour objet un produit corroyé, notamment un produit laminé, filé
ou forgé, en alliage de composition (% en poids) :
Cu 3,80-4,30 , Mg 1,25-1,45 , Mn 0,20-0,50 , Zn 0,40-1,30 , Zr ≤ 0,05 ,
Fe < 0,15 , Si < 0,15 , Ag < 0,01
autres éléments < 0,05 chacun et < 0,15 au total, reste Al,
le dit produit pouvant être traité par mise en solution, trempe, et écrouissage à froid,
avec une déformation permanente comprise entre 0,5 % et 15 %, préférentiellement
entre 1 % et 5 %, et encore plus préférentiellement entre 1,5 % et 3,5 %.
L'écrouissage à froid peut être obtenu par traction contrôlée et/ou transformation à
froid, par exemple laminage ou étirage.The subject of the invention is a wrought product, in particular a laminated, spun or forged product, made of an alloy of composition (% by weight):
Cu 3.80-4.30, Mg 1.25-1.45, Mn 0.20-0.50, Zn 0.40-1.30, Zr ≤ 0.05, Fe <0.15, Si < 0.15, Ag <0.01
other elements <0.05 each and <0.15 in total, remain Al,
said product can be treated by dissolving, quenching, and cold working, with a permanent deformation of between 0.5% and 15%, preferably between 1% and 5%, and even more preferably between 1.5% and 3.5%. Cold working can be obtained by controlled pulling and / or cold processing, for example rolling or drawing.
L'invention a également pour objet un élément de structure pour construction aéronautique, notamment un élément de fuselage d'aéronef, fabriqué à partir d'un tel produit corroyé, et notamment à partir d'un tel produit laminé.The invention also relates to a structural element for construction aeronautical equipment, in particular an aircraft fuselage element, manufactured from such an aircraft wrought product, and especially from such a rolled product.
Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles de The Aluminum Association. Les états métallurgiques sont définis dans la norme européenne EN 515. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1. Le terme « produit filé » inclut les produits dits « étirés », c'est-à-dire des produits qui sont élaborés par filage suivi d'un étirage. Unless stated otherwise, all the information relating to the chemical composition of the alloys is expressed in percent by weight. Therefore, in a mathematical expression, "0.4 Zn" means: 0.4 times the zinc content, expressed in mass percent; this applies mutatis mutandis to other chemical elements. The designation of the alloys follows the rules of The Aluminum Association. The metallurgical states are defined in the European standard EN 515. Unless stated otherwise, the static mechanical characteristics, that is to say the breaking strength R m , the yield strength R p0,2 , and the elongation at rupture A, are determined by a tensile test according to EN 10002-1. The term "spun product" includes so-called "stretched" products, i.e., products that are made by spinning followed by stretching.
Dans les alliages AlCuMg de l'art antérieur les plus performants pour la fabrication d'éléments de structure de fuselage d'avion, un bon niveau de ténacité est obtenu en spécifiant des niveaux très bas en fer et en silicium, et en limitant les teneurs en cuivre et en magnésium pour faciliter la mise en solution des particules intermétalliques grossières. Pour obtenir un niveau suffisant de résistance mécanique, l'homme de métier est enclin à maintenir une teneur significative en manganèse, puisque celui-ci contribue au durcissement de l'alliage. La quasi-totalité des alliages de la série 2xxx ne contiennent pas plus que 0,25 % de zinc.In the AlCuMg alloys of the prior art that are the most efficient for the manufacture of aircraft fuselage structural elements, a good level of toughness is obtained by specifying very low levels of iron and silicon, and limiting the copper and magnesium contents to facilitate the dissolution of the particles coarse intermetallic. To obtain a sufficient level of mechanical resistance, the person skilled in the art is inclined to maintain a significant content of manganese, since it contributes to the hardening of the alloy. Almost all alloys of the 2xxx series contain not more than 0.25% zinc.
La teneur en cuivre de l'alliage selon l'invention est comprise entre 3,80 et 4,30 %, et de préférence entre 4,05 et 4,30 % ; elle se situe donc dans la moitié basse de l'intervalle de teneur de l'alliage 2024, de manière à limiter la fraction volumique résiduelle de particules grossières au cuivre. Pour la même raison, l'intervalle de la teneur en magnésium, qui doit être comprise entre 1,25 et 1,45 % et de préférence entre 1,28 et 1,42 %, est décalé vers le bas par rapport à celui du 2024. La teneur en manganèse est maintenue entre 0,20 et 0,50 %, de préférence entre 0,30 et 0,50 , et encore plus préférentiellement entre 0,35 et 0,48 %. La mise en oeuvre de l'invention ne nécessite pas d'ajout significatif de zirconium à une teneur supérieure à 0,05 %.The copper content of the alloy according to the invention is between 3.80 and 4.30 %, and preferably between 4.05 and 4.30%; so it's in the low half of the content range of alloy 2024, so as to limit the volume fraction residual coarse copper particles. For the same reason, the interval of magnesium content, which must be between 1.25 and 1.45% and preferably between 1.28 and 1.42%, is shifted downwards compared to that of 2024. The manganese is maintained between 0.20 and 0.50%, preferably between 0.30 and 0.50, and more preferably between 0.35 and 0.48%. The implementation of the invention does not require significant addition of zirconium at a content greater than 0.05%.
La présente invention nécessite un contrôle soigneux de la teneur en zinc, l'alliage étant déchargé en cuivre, magnésium et manganèse. La teneur en zinc doit être comprise entre 0,40 et 1,30 %, préférentiellement entre 0,50 et 1,10 %, et encore plus préférentiellement entre 0,50 et 0,70 %. Dans un mode de réalisation avantageux, lorsque les teneurs en cuivre, magnésium et manganèse sont inférieures à, respectivement, 4,20 %, 1,38 % et 0,42 %, il est préférable que la teneur en zinc soit au moins égale à (1,2Cu - 0,3Mg + 0,3Mn - 3,75).The present invention requires careful control of the zinc content, the alloy being discharged into copper, magnesium and manganese. The zinc content must be between 0.40 and 1.30%, preferably between 0.50 and 1.10%, and still between more preferably between 0.50 and 0.70%. In one embodiment advantageous when the contents of copper, magnesium and manganese are lower than at 4.20%, 1.38% and 0.42% respectively, it is preferable that the zinc content at least equal to (1.2Cu - 0.3Mg + 0.3Mn - 3.75).
Selon les constatations de la demanderesse, ce déchargement de la teneur en cuivre, magnésium et manganèse et l'ajout d'une quantité exactement contrôlée de zinc conduit, en utilisant des procédés de mise en oeuvre appropriés, à des tôles qui ont approximativement la même résistance mécanique, mais une meilleure tolérance aux dommages par rapport aux tôles qui ne contiennent pas cet ajout de zinc, à une formabilité au moins aussi bonne, et à une meilleure résistance à la corrosion. According to the findings of the plaintiff, this unloading of the copper, magnesium and manganese and adding an exactly controlled amount of Zinc leads, using appropriate methods of implementation, to sheets which have approximately the same mechanical resistance, but a better tolerance damage to sheet metal that does not contain this zinc addition, to a at least as good formability, and better corrosion resistance.
Les teneurs en silicium et en fer sont maintenues chacune en dessous de 0,15%, et de préférence en dessous de 0,10%, pour avoir une bonne ténacité. L'homme du métier sait que la diminution de la teneur en fer et silicium améliore la tolérance aux dommages des alliages AlCuMg et AlZnMgCu utilisés en construction aéronautique (voir l'article de J.T. Staley, « Microstructure and Toughness of High Strength Aluminium Alloys », paru dans « Properties Related to Fracture Toughness », ASTM STP605, ASTM, 1976, pp. 71-103). Toutefois, ce n'est que dans des cas très particuliers (en fonction du type d'alliage et de l'application visée) que le gain en tolérance aux dommages lié à l'utilisation d'un aluminium contenant moins de 0,06 % de fer et silicium chacun est suffisamment important pour pouvoir être valorisé. La mise en oeuvre de la présente invention n'exige pas que la teneur en fer et silicium soit inférieure à 0,06% chacun, car dans l'intervalle de composition sélectionné, la tolérance aux dommages est très bonne.The silicon and iron contents are each kept below 0.15%, and preferably below 0.10%, to have good toughness. The man of know that the reduction of the iron and silicon content improves tolerance to damage of AlCuMg and AlZnMgCu alloys used in aircraft construction (See the article by J.T. Staley, Microstructure and Toughness of High Strength Aluminum Alloys ", published in" Properties Related to Fracture Toughness ", ASTM STP605, ASTM, 1976, pp. 71-103). However, this is only in very cases (depending on the type of alloy and the intended application) that the gain in damage tolerance related to the use of aluminum containing less than 0.06 % iron and silicon each is large enough to be valued. The implementation of the present invention does not require that the content of iron and silicon less than 0.06% each, because in the selected composition range, the Damage tolerance is very good.
Enfin, contrairement aux alliages décrits dans les brevets US 5 376 192, US 5 512 112 et US 5 593 516, l'alliage ne contient aucune addition d'argent, ni d'un autre élément susceptible d'augmenter le coût de production de l'alliage et de polluer les autres alliages produits sur le même site par recyclage des chutes de fabrication.Finally, unlike the alloys described in US Pat. No. 5,376,192, US 5 512,112 and US 5,593,516, the alloy contains no silver addition, nor any other element likely to increase the production cost of the alloy and to pollute the other alloys produced on the same site by recycling manufacturing scrap.
Le procédé de fabrication préféré comporte la coulée de plaques, dans le cas où le produit à fabriquer est une tôle laminée, ou de billettes dans le cas où il s'agit d'un profilé filé ou d'une pièce forgée. La plaque ou la billette est scalpée, puis homogénéisée entre 450 et 500 °C. On effectue ensuite la transformation à chaud par laminage, filage ou forgeage, éventuellement complétée par une étape de transformation à froid. Le demi-produit laminé, filé ou forgé est ensuite mis en solution entre 480 et 505°C, de manière à ce que cette mise en solution soit aussi complète que possible, c'est-à-dire que le maximum de phases potentiellement solubles, notamment les précipités Al2Cu et Al2CuMg, soient effectivement remises en solution. La qualité de la mise en solution peut être appréciée par analyse enthalpique différentielle (AED) en mesurant l'énergie spécifique à l'aide de l'aire du pic sur le thermogramme. Cette énergie spécifique doit être, de préférence, inférieure à 2 J/g. The preferred method of manufacture comprises casting of plates, in the case where the product to be made is a rolled sheet, or billets in the case where it is a spun section or a forged part. The plate or the billet is scalped, then homogenized between 450 and 500 ° C. The hot transformation is then carried out by rolling, spinning or forging, optionally completed by a cold transformation step. The laminated, spun or forged half-product is then dissolved between 480 and 505 ° C., so that this dissolution is as complete as possible, that is to say that the maximum of potentially soluble phases , in particular the precipitates Al 2 Cu and Al 2 CuMg, are effectively put back in solution. The quality of the dissolution can be assessed by differential enthalpy analysis (AED) by measuring the specific energy using the area of the peak on the thermogram. This specific energy must preferably be less than 2 J / g.
Puis on procède à la trempe à l'eau froide, et ensuite à un écrouissage à froid conduisant à un allongement permanent compris entre 0,5 % et 15%. Cet écrouissage à froid peut être une traction contrôlée avec un allongement permanent compris entre 1 et 5 % amenant le produit à un état T351. On préfère une traction contrôlée avec un allongement permanent compris entre 1,5 % et 3,5 %. Ce peut être aussi une transformation à froid par laminage dans le cas des tôles ou par étirage dans le cas des profilés, avec un allongement permanent pouvant aller jusqu'à 15%, amenant le produit à l'état T39, ou à l'état T3951 si on combine le laminage ou l'étirage avec la traction. Le produit subit enfin un vieillissement naturel à température ambiante. La microstructure finale est en général largement recristallisée, avec des grains relativement fins et assez équiaxes.Then we quench with cold water, and then cold hardening leading to a permanent elongation of between 0.5% and 15%. This hardening cold can be a controlled pull with a permanent elongation between 1 and 5% bringing the product to a T351 state. Controlled traction with a permanent elongation of between 1.5% and 3.5%. It can also be a cold rolling by rolling in the case of sheets or by drawing in the case profiles, with a permanent elongation of up to 15%, bringing the in the T39 state, or in the T3951 state if the rolling or drawing is combined with the traction. The product finally undergoes natural aging at room temperature. The final microstructure is in general largely recrystallized, with grains relatively thin and fairly equiaxed.
Le produit selon la présente invention se prête bien pour l'utilisation en tant qu'élément de structure d'aéronef, par exemple en tant qu'élément de peau de fuselage, et notamment comme élément pour la tôle de revêtement (peau) de fuselage. Ces tôles, de préférence plaquées, sont d'une épaisseur comprise entre 1 et 16 mm, et présentent une bonne résistance à la corrosion intergranulaire ainsi qu'à la corrosion sur assemblage riveté. Elles présentent une résistance à la rupture au sens L et / ou sens TL supérieure à 430 MPa, et préférentiellement supérieure à 440 MPa, et une limite d'élasticité en sens L et / ou TL supérieure à 300 MPa, et préférentiellement supérieure à 320 MPa. Elles présentent une bonne formabilité (allongement à rupture au sens L et / ou TL supérieur à 19 % et préférentiellement supérieur à 20 %), et une tolérance aux dommages Kr, calculée à partir d'une courbe R obtenue selon ASTM E 561 pour une valeur Δaeff de 60 mm, supérieure à 165 MPa√m dans les sens T-L et L-T, supérieure à 180 MPa√m dans le sens L-T, ainsi qu'une vitesse de propagation de fissures da/dN, déterminée selon la norme ASTM E 647 dans le sens T-L ou L-T pour une valeur ΔK de 50 MPa√m, inférieure à 2,5.10-2 mm / cycle (et préférentiellement inférieure à 2,0 10-2 mm / cycle) et un rapport de charges R=0,1. Ce type de compromis de propriétés est particulièrement adéquat pour le revêtement de fuselage. La tôle selon l'invention peut être une tôle plaquée d'au moins une face avec un alliage de la série 1xxx, et préférentiellement avec un alliage sélectionné dans le groupe constitué par les alliages 1050, 1070, 1300 et 1145.The product according to the present invention is well suited for use as an aircraft structural element, for example as a fuselage skin element, and especially as an element for the fuselage skin panel (skin). . These sheets, preferably plated, have a thickness of between 1 and 16 mm, and have good resistance to intergranular corrosion and corrosion on riveted assembly. They have a breaking strength in the L direction and / or TL direction greater than 430 MPa, and preferably greater than 440 MPa, and a yield strength in the L and / or TL direction greater than 300 MPa, and preferably greater than 320. MPa. They have a good formability (elongation at break L and / or TL greater than 19% and preferably greater than 20%), and a damage tolerance Kr, calculated from a curve R obtained according to ASTM E 561 for a Δa eff value of 60 mm, greater than 165 MPa√m in the TL and LT directions, greater than 180 MPa√m in the LT direction, and a crack propagation rate da / dN, determined according to the ASTM E standard. 647 in the TL or LT direction for a ΔK value of 50 MPa√m, less than 2.5 × 10 -2 mm / cycle (and preferably less than 2.0 × 10 -2 mm / cycle) and a charge ratio R = 0 1. This type of property compromise is particularly suitable for fuselage lining. The sheet according to the invention may be a sheet plated with at least one face with an alloy of the 1xxx series, and preferably with an alloy selected from the group consisting of alloys 1050, 1070, 1300 and 1145.
Compte tenu du fait que le rivetage est le mode d'assemblage le plus fréquemment utilisé pour des peaux de fuselage, on préfère pour l'application comme revêtement de fuselage des tôles plaquées selon l'invention qui résistent particulièrement bien à la corrosion par couplage galvanique dans un assemblage riveté. Plus particulièrement, on préfère des tôles plaquées qui montrent un courant de corrosion galvanique inférieur à 4µA/cm2, et préférentiellement inférieur à 2,5µA/cm2, pour une exposition allant jusqu'à 200 heures, pendant des essais de corrosion dans un assemblage riveté, en plaçant l'alliage d'âme dans un solution non désaérée contenant 0,06 M de NaCl et l'alliage de placage dans une solution à 0,02 M de AlCl3 désaérée par barbotage d'azote.In view of the fact that riveting is the most frequently used assembly method for fuselage skins, it is preferred for the application as fuselage coating of plated sheets according to the invention which are particularly resistant to corrosion by galvanic coupling. in a riveted assembly. More particularly, plated sheets which exhibit a galvanic corrosion current of less than 4 μA / cm 2 , and preferably less than 2.5 μA / cm 2 , for exposure of up to 200 hours, during corrosion tests in a riveted assembly, placing the core alloy in a non-deaerated solution containing 0.06 M NaCl and the plating alloy in a 0.02 M AlCl 3 solution deaerated by nitrogen sparging.
Dans les exemples qui suivent on décrit à titre d'illustration des modes de réalisation avantageux de l'invention. Ces exemples n'ont pas de caractère limitatif.In the examples which follow, an illustration is given of modes of advantageous embodiment of the invention. These examples are not limiting in nature.
On a élaboré quatre alliages N0, N1, N2 et N3 dont la composition chimique était conforme à l'invention. Le métal liquide a été traité d'abord dans le four de maintien par injection de gaz à l'aide d'un rotor de type connu sous la marque IRMA, et puis dans une poche de type connu sous la marque Alpur. L'affinage a été fait en ligne, c'est-à-dire entre le four de maintien et la poche Alpur, avec du fil AT5B (0,7 kg/t pour N0, N1 et N3, 0,3 kg/t pour N2). On a coulée des plaques de 3,0 m de long et de section 1450 mm x 377 mm (sauf pour N3 : section 1450 x 446 mm). Elles ont été détendues pendant 10h à 350°C.Four N0, N1, N2 and N3 alloys were developed with chemical composition was in accordance with the invention. The liquid metal was first treated in the furnace maintaining by injection of gas using a rotor of a type known under the brand IRMA, and then in a pocket of type known as Alpur. The refining has been done online, that is to say between the holding oven and the Alpur pocket, with wire AT5B (0.7 kg / t for N0, N1 and N3, 0.3 kg / t for N2). 3.0 plates were cast m length and section 1450 mm x 377 mm (except for N3: section 1450 x 446 mm). They were relaxed for 10h at 350 ° C.
Des plaques en alliage 2024 selon l'art antérieur (références E et F) ont également été élaborés selon le même procédé.Alloy plates 2024 according to the prior art (references E and F) have also been developed by the same method.
Les compositions chimiques des alliages N0, N1, N2, N3, E et F, mesurées sur
un pion de spectrométrie prélevé dans le chenal de coulée, sont rassemblées dans le
tableau 1 :
Dans tous les cas, le placage en alliage 1050 correspond à environ 2 % de l'épaisseur.In all cases, alloy plating 1050 corresponds to about 2% of thickness.
Pour les alliages selon l'art antérieur (alliages E et F), les plaques ont été réchauffées aux alentours de 450°C, puis laminées à chaud au laminoir réversible jusqu'à une épaisseur d'environ 20 mm. Les bandes ainsi obtenues ont été laminées sur un laminoir tandem à trois cages jusqu'à une épaisseur finale voisine de 5 mm, puis bobinées (à des températures de 320°C et 260°C, respectivement pour les alliages F et E). Dans le cas de l'alliage F, la bobine ainsi obtenue a été laminée à froid jusqu'à une épaisseur de 3,2 mm. Des tôles ont été découpées, mise en solution en four à bain de sel à une température de 498,5°C pendant une durée de 30 min (tôle E d'épaisseur 5 mm) ou 25 min (tôle F d'épaisseur 3,2 mm), puis parachevées (défripage suivi d'une traction contrôlée avec un allongement permanent compris entre 1.5 et 3%).For the alloys according to the prior art (alloys E and F), the plates have been heated to around 450 ° C, then hot-rolled at the reversing mill up to a thickness of about 20 mm. The resulting strips were rolled on a tandem rolling mill with three cages up to a final thickness close to 5 mm, then wound (at temperatures of 320 ° C and 260 ° C, respectively for alloys F and E). In the case of alloy F, the coil thus obtained was laminated to cold to a thickness of 3.2 mm. Sheet metal was cut, put in solution in a salt bath oven at a temperature of 498.5 ° C for a duration of 30 minutes (sheet metal E thickness 5 mm) or 25 min (sheet F thickness 3.2 mm), then completed (wrinkling followed by controlled traction with permanent elongation included between 1.5 and 3%).
S'agissant des alliages selon l'invention, la plaque N0 a subi le cycle
d'homogénéisation suivant :
Une plaque de l'alliage N1 et N3 et une plaque de l'alliage N3 ont été laminées à
chaud à 5.5 mm avant d'être laminées à froid à l'épaisseur finale de 3.2 mm, et une
autre plaque de l'alliage N1 a été laminée à chaud à 4.5 mm avant d'être laminée à
froid à l'épaisseur finale de 1.6 mm.
Une plaque de l'alliage N2 a été laminée à chaud à l'épaisseur finale de 6 mm
(température de bobinage tandem 270°C).One N1 and N3 alloy plate and one N3 alloy plate were hot rolled at 5.5 mm before being cold rolled to the final thickness of 3.2 mm, and another N1 alloy plate. was hot rolled at 4.5 mm before being cold rolled to the final thickness of 1.6 mm.
An N2 alloy plate was hot rolled to a final thickness of 6 mm (tandem winding temperature 270 ° C).
La bobine N01 n'a pas subi d'autre passe de laminage, tandis que la bobine N02 a été laminée à froid jusqu'à une épaisseur finale de 3,2 mm.The coil N01 has not undergone any other rolling pass, while the coil N02 was cold rolled to a final thickness of 3.2 mm.
Les tôles une fois débitées ont été mises en solution dans un four à bain de sel (épaisseur 6 mm : 60 minutes à 500 °C ; épaisseur 3,2 mm : 40 minutes à 500 °C ; épaisseur 1 ,6 mm : 30 minutes à 500 °C) suivie d'une trempe à l'eau à environ 23 °C. Après trempe, les tôles ont subi un défripage et une traction avec un allongement permanent cumulé compris entre 1,5 et 3,5 %. Le temps d'attente entre trempe et défripage ne dépassait pas 6 heures.The plates once cut were dissolved in a salt bath oven (thickness 6 mm: 60 minutes at 500 ° C., thickness 3.2 mm: 40 minutes at 500 ° C.; thickness 1, 6 mm: 30 minutes at 500 ° C) followed by quenching with water to about 23 ° C. After quenching, the sheets have undergone wrinkling and pulling with elongation cumulative standing between 1.5 and 3.5%. The waiting time between quenching and wrinkling did not exceed 6 hours.
On a mesuré la résistance à la rupture Rm (en MPa), la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 (en MPa) et l'allongement à la rupture A (en %) par un essai de traction selon EN 10002-1.The tensile strength R m (in MPa), the conventional yield stress at 0.2% elongation R p0.2 (in MPa) and the elongation at break A (in%) were measured by a tensile test according to EN 10002-1.
Les résultats des mesures des caractéristiques mécaniques statiques à l'état T351
sont présentés dans le tableau 2 :
L'aptitude à la mise en forme caractérisée par la ductilité en traction (valeur de
l'allongement A) semble meilleure pour l'alliage selon l'invention, et ce, pour les
deux épaisseurs considérées. La formabilité des tôles d'épaisseur supérieure à 4mm a
été également caractérisée à l'aide de l'essai LDH (Limit Dome Height) sur des
formats de 500 mm x 500 mm à l'état T351. Les résultats suivants ont été obtenus :
La tolérance au dommage a été caractérisé de plusieurs façons. La courbe R a été mesurée selon la norme ASTM E 561 sur des éprouvettes de type CCT, de largeur W = 760 mm, 2a0 = 253 mm, e = épaisseur de la tôle, avec un pilotage en déplacement de piston et une vitesse de traction de 1 mm/min, en utilisant un montage anti-voilage en acier. Les éprouvettes étaient prélevées au sens T-L et au sens L-T. On a calculé la valeur de Kr [MPa√m] pour différentes valeurs de Δ a eff [mm]. The damage tolerance has been characterized in several ways. Curve R was measured according to ASTM standard E 561 on specimens of CCT type, W = 760 mm wide, 2a0 = 253 mm, e = sheet thickness, with piston displacement control and a pulling speed. of 1 mm / min, using anti-warp steel mounting. The specimens were taken in the TL and LT directions. The value of K r [MPa√m] has been calculated for different values of Δ a eff [mm].
Les résultats sont indiqués dans le tableau 3 :
On constate que pour des fortes valeurs de Δ a eff [mm], le produit selon l'invention dépasse le produit standard en alliage 2024.It is found that for high values of Δ a eff [mm], the product according to the invention exceeds the standard product alloy 2024.
Le produit selon l'invention présente donc une meilleure résistance à la rupture dans le cas d'un panneau fissuré. The product according to the invention therefore has a better breaking strength in the case of a cracked panel.
La vitesse de fissuration da/dN (en mm/cycle) pour différents niveaux de ΔK
(exprimés en MPa√m) a été déterminée selon la norme ASTM E 647 sur des
éprouvettes de type CCT prélevées dans le sens T-L et dans le sens L-T, de largeur
W = 400 mm, 2ao = 4 mm, e = épaisseur de la tôle, dans des conditions de R = 0,1 et
avec une contrainte maximale de 120 MPa et un dispositif anti-voilage pour les
éprouvettes d'épaisseur inférieure à 3,2 mm. Les résultats sont indiqués dans le
tableau 4.
On constate que les tôles de 2024, notamment pour ΔK ≥ 20 MPa√m, présentent une vitesse de fissuration deux à trois fois plus élevée que pour le produit selon l'invention. Ce dernier permet donc des intervalles d'inspection plus longs (à masse de structure donnée) ou bien des allègements de la structure à intervalle d'inspection fixé.It can be seen that the plates of 2024, in particular for ΔK ≥ 20 MPa√m, exhibit a cracking rate two to three times higher than for the product according to the invention. The latter therefore allows longer inspection intervals (to mass given structure) or reductions in the inspection interval structure fixed.
En ce qui concerne les courbes R et les valeurs de ΔK, il convient de noter que les valeurs les plus significatives vis à vis du comportement de la structure réelle d'un aéronef se situent dans le domaine compris entre 15 et 60 MPa√m.As regards the R curves and the ΔK values, it should be noted that the most significant values with respect to the behavior of the real structure of an aircraft are in the range of 15 to 60 MPa√m.
En effet, les contraintes de fatigue dans une peau de fuselage sont généralement de l'ordre de 50 à 100 MPa, pour des défauts détectables de l'ordre de 20 à 50 mm, sachant que K = σ √(πa), où σ est la contrainte et le paramètre a signifie la taille du défaut.Indeed, the fatigue stresses in a fuselage skin are generally of the order of 50 to 100 MPa, for detectable defects of the order of 20 to 50 mm, knowing that K = σ √ (πa), where σ is the constraint and the parameter a means the size of the default.
Pour un espacement entre raidisseurs supérieur à 100 mm, les valeurs de K à rupture pour une charge limite supérieure à 200 MPa sont supérieures à environ 120 MPa√m pour les courbes R décrites, avec des K apparents (Kr) supérieurs à environ 110 MPa√m. Ceci signifie que la portion dimensionnante de la courbe R est constituée de points correspondant à une avancée de fissure statique Δ a eff de plus de 20 mm.For a stiffener spacing greater than 100 mm, the breaking K values for a limiting load greater than 200 MPa are greater than about 120 MPa√m for the described R curves, with apparent K (K r ) greater than about 110 MPa m. This means that the dimensioning portion of the curve R consists of points corresponding to a static crack advance Δ a eff of more than 20 mm.
On a également caractérisé la résistance à la corrosion des tôles. On constate que l'alliage selon l'invention montre intrinsèquement, c'est-à-dire après déplacage par usinage, une résistance à la corrosion intergranulaire, mesurée selon la norme ASTM G 110, sensiblement comparable à celle du 2024 de référence.The corrosion resistance of the sheets has also been characterized. We observe that the alloy according to the invention shows intrinsically, that is to say after displacement by machining, resistance to intergranular corrosion, measured according to ASTM standard G 110, substantially comparable to that of the reference 2024.
Sur des tôles plaquées, la mesure du potentiel de corrosion dans l'âme et dans le
placage selon la norme ASTM G 69 a donné les résultats donnés dans le tableau 5 ci-après.
Ces résultats ne montrent pas de différence significative en ce qui concerne
l'écart de potentiel entre âme et placage (caractéristique du pouvoir de protection
cathodique d'un placage). Cela est surprenant dans la mesure où, conformément aux
données publiées (voir notamment « ASM Handbook », 9th Edition, Volume 13,
« Corrosion », page 584, figure 5), l'ajout de zinc dans un alliage d'aluminium
diminue significativement le potentiel de corrosion, ce qui aurait dû avoir comme
effet de limiter l'écart de potentiel entre âme et placage de l'alliage selon l'invention.
En revanche, et de façon surprenante, on constate que lors d'un essai de
corrosion par couplage galvanique dans un assemblage riveté, le produit selon
l'invention se comporte de façon significativement meilleure. Selon les constatations
de la demanderesse, cet essai, qui a été décrit par exemple dans le brevet EP 0 623
462 B1, est particulièrement pertinent pour évaluer l'aptitude de tôles plaquées à
l'usage en construction aéronautique. L'essai consiste à mesurer le courant qui
s'établit naturellement entre l'anode (alliage de placage placé dans une cellule
contenant une solution de AlCl3 (0,02 M, désaérée par barbotage d'azote)) et la
cathode (alliage d'âme placée dans une cellule contenant une solution de NaCl (0,06
M, aérée)), un pont salin assurant le contact électrolytique entre les deux cellules.
Les deux éléments (placage et âme) ont la même surface (2,54 cm2). On enregistre
les densités de courant de couplage pendant toute la durée de l'essai. On observe que
le courant atteint un plateau après environ 55 heures et n'évolue pratiquement plus
pendant la durée des essais (200 h ou 15 jours, selon l'échantillon). Les résultats sont
résumés dans le tableau 6.
A titre de comparaison, les exemples décrits dans le fascicule de brevet EP 0 623 462 B1 donnent pour l'alliage standard 2024 plaqué avec un alliage 1070 un courant plateau de 3,1 µA/cm2.By way of comparison, the examples described in patent specification EP 0 623 462 B1 give, for the standard alloy 2024 plated with an alloy 1070, a plateau current of 3.1 μA / cm 2 .
On constate que le produit selon l'invention (N1 et N2) présente un courant de corrosion et une perte de masse beaucoup plus faibles que le produit standard selon l'art antérieur. Pour certaines applications, par exemple des éléments structuraux pour aéronef, cela procure un avantage très significatif en termes de durée de vie.It is found that the product according to the invention (N1 and N2) has a current of corrosion and mass loss much lower than the standard product according to the prior art. For some applications, for example structural elements for aircraft, this provides a very significant benefit in terms of service life.
A partir de tôles laminées à chaud et éventuellement à froid (état F) de l'alliage
selon l'invention (voir exemple 1), on a élaboré plusieurs autres états métallurgiques
sous forme de format de dimensions 600 mm (sens L) x 160 mm (sens TL) x
épaisseur. Les tôles brutes de laminage d'épaisseur 3,2 mm (brut de laminage à froid)
ou 6,0 mm (brut de laminage à chaud) ont été soumises à une mise en solution suivie
d'une trempe, une maturation et une traction contrôlée, comme indiqué dans le
Tableau 7 :
Les repères se terminant par A, D, F et I correspondent à des états T351. Les différents échantillons ont été caractérisés par des essais de traction (sens L et TL) ainsi que par des essais de ténacité.The marks ending in A, D, F and I correspond to T351 states. The different samples were characterized by tensile tests (L and TL directions) as well as toughness tests.
La ténacité a tout d'abord été évaluée dans les sens T-L et L-T à l'aide de la contrainte maximale Re (en MPa) et de l'énergie d'écoulement Eec selon l'essai Kahn. La contrainte Kahn est égale au rapport de la charge maximale Fmax que peut supporter l'éprouvette sur la section de l'éprouvette (produit de l'épaisseur B par la largeur W). L'énergie d'écoulement est déterminée comme l'aire sous la courbe Force-Déplacement jusqu'à la force maximale Fmax supportée par l'éprouvette. L'essai est décrit dans l'article « Kahn-Type Tear Test and Crack Toughness of Aluminum Alloy Sheet », paru dans la revue Materials Research & Standards, Avril 1964, p. 151- 155. L'éprouvette utilisée pour l'essai de ténacité Kahn est décrite, par exemple, dans le « Metals Handbook », 8th Edition, vol. 1, American Society for Metals, pp. 241-242. The tenacity was first evaluated in the TL and LT directions using the maximum stress R e (in MPa) and the flow energy E ec according to the Kahn test. The stress Kahn is equal to the ratio of the maximum load F max that the specimen can withstand on the section of the specimen (product of the thickness B by the width W). The flow energy is determined as the area under the force-displacement curve up to the maximum force F max supported by the specimen. The test is described in the article "Kahn-Type Tear Test and Crack Toughness of Aluminum Alloy Sheet", published in the journal Materials Research & Standards, April 1964, p. 151- 155. The sample used for the test of tenacity Kahn is described, for example, in the "Metals Handbook", 8 th Edition, vol. 1, American Society for Metals, pp. 241-242.
La ténacité a également été abordée pour les tôles d'épaisseur 6mm, à l'aide d'un essai de type courbe R, dans le sens T-L, mais sur des éprouvettes de taille plus restreinte que celle décrite dans l'exemple 1. On a utilisé des eprouvettes de type CT, de largeur W = 127 mm, a0 = 38.5 mm, e = épaisseur de la tôle, avec un pilotage en déplacement de piston et une vitesse de traction de 1 mm/min.The tenacity was also approached for sheets of thickness 6 mm, using a curve-type test R, in the TL direction, but on smaller specimens than that described in Example 1. used CT specimens, width W = 127 mm, at 0 = 38.5 mm, e = sheet thickness, with piston displacement control and a tensile speed of 1 mm / min.
Les différents résultats sont donnés dans les tableaux 8 et 9 ci-après.
Des tôles élaborées selon l'exemple 2 ont été soumis à un écrouissage de 5 % (par
traction contrôlée) après la trempe. Les tableaux 10 et 11 montrent les résultats des
caractérisations.
√
Claims (23)
Cu 3,80-4,30 , Mg 1,25-1,45 , Mn 0,20-0,50 , Zn 0,40 - 1,30 , Fe<0,15 , Si < 0,15 , Zr ≤ 0,05 , Ag<0,01
autres éléments <0,05 chacun et < 0,15 au total, reste Al.Wrought product, in particular rolled, spun or forged, of AlCuMg type alloy, characterized in that it comprises (% by weight):
Cu 3.80-4.30, Mg 1.25-1.45, Mn 0.20-0.50, Zn 0.40-1.30, Fe <0.15, Si <0.15, Zr ≤ 0.05, Ag <0.01
other elements <0.05 each and <0.15 in total, remain Al.
Mn 0,30 - 0,50 et préférentiellement Mn 0,35 - 0,48.Product according to any one of claims 1 to 3, wherein
Mn 0.30 - 0.50 and preferably Mn 0.35 - 0.48.
Cu < 4,20 , Mg < 1,38 , Mn < 0,42 , Zn ≥ (1,2 Cu - 0,3 Mg + 0,3 Mn- 3,75).Product according to claim 1, wherein
Cu <4.20, Mg <1.38, Mn <0.42, Zn ≥ (1.2 Cu - 0.3 Mg + 0.3 Mn-3.75).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE60300004T DE60300004T3 (en) | 2002-07-11 | 2003-07-09 | Kneaded product of Al-Cu-Mg alloy for the structural component of an aircraft |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0208737A FR2842212B1 (en) | 2002-07-11 | 2002-07-11 | A1-CU-MG ALLOY AIRCRAFT STRUCTURAL ELEMENT |
FR0208737 | 2002-07-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1382698A1 true EP1382698A1 (en) | 2004-01-21 |
EP1382698B1 EP1382698B1 (en) | 2004-05-26 |
EP1382698B2 EP1382698B2 (en) | 2013-01-09 |
Family
ID=29763743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03356108A Expired - Lifetime EP1382698B2 (en) | 2002-07-11 | 2003-07-09 | Wrought product in Al-Cu-Mg alloy for aircraft structural element |
Country Status (6)
Country | Link |
---|---|
US (2) | US7294213B2 (en) |
EP (1) | EP1382698B2 (en) |
AT (1) | ATE267885T1 (en) |
DE (1) | DE60300004T3 (en) |
ES (1) | ES2220902T5 (en) |
FR (1) | FR2842212B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008003503A2 (en) * | 2006-07-07 | 2008-01-10 | Aleris Aluminum Koblenz Gmbh | Method of manufacturing aa2000 - series aluminium alloy products |
US7883591B2 (en) | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
US8608876B2 (en) | 2006-07-07 | 2013-12-17 | Aleris Aluminum Koblenz Gmbh | AA7000-series aluminum alloy products and a method of manufacturing thereof |
US8877123B2 (en) | 2007-03-14 | 2014-11-04 | Aleris Aluminum Koblenz Gmbh | Al—Cu alloy product suitable for aerospace application |
CN104451298A (en) * | 2014-11-19 | 2015-03-25 | 无锡鸿声铝业有限公司 | Improved 2024 aluminum alloy |
CN104711498A (en) * | 2013-12-13 | 2015-06-17 | 天津大学 | Control method of surface orange peel effect in second tension forming of high strength aluminium alloy |
US10472707B2 (en) | 2003-04-10 | 2019-11-12 | Aleris Rolled Products Germany Gmbh | Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050034794A1 (en) * | 2003-04-10 | 2005-02-17 | Rinze Benedictus | High strength Al-Zn alloy and method for producing such an alloy product |
DE502007003011D1 (en) * | 2006-04-29 | 2010-04-15 | Oerlikon Leybold Vacuum Gmbh | METHOD FOR PRODUCING ROTORS OR STATORS OF A TURBOMOLECULAR PUMP |
JP2012505312A (en) | 2008-10-10 | 2012-03-01 | ジーケーエヌ シンター メタルズ、エル・エル・シー | Aluminum alloy powder metal mixture |
EP2389458B1 (en) | 2009-01-22 | 2015-09-16 | Alcoa Inc. | Improved aluminum-copper alloys containing vanadium |
AR087892A1 (en) | 2011-09-16 | 2014-04-23 | Ball Corp | ALUMINUM ALLOY, PROCESS TO MANUFACTURE A CONTAINER FROM A TARUGO AND METHOD TO FORM THE TARUGO |
CN102732849A (en) * | 2012-06-29 | 2012-10-17 | 武汉理工大学 | Method for surface modification and high strength connection of magnesium alloy and aluminum alloy |
CA2908181C (en) | 2013-04-09 | 2018-02-20 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
DE102016205221A1 (en) * | 2016-03-30 | 2017-10-05 | Sms Group Gmbh | Apparatus and method for plating a hot slab |
US20180044155A1 (en) | 2016-08-12 | 2018-02-15 | Ball Corporation | Apparatus and Methods of Capping Metallic Bottles |
CA3032261A1 (en) | 2016-08-26 | 2018-03-01 | Shape Corp. | Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
US11072844B2 (en) | 2016-10-24 | 2021-07-27 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
EP4219780A1 (en) | 2016-12-30 | 2023-08-02 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
MX2019009745A (en) | 2017-02-16 | 2020-02-07 | Ball Corp | Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers. |
US11185909B2 (en) | 2017-09-15 | 2021-11-30 | Ball Corporation | System and method of forming a metallic closure for a threaded container |
US20190233921A1 (en) * | 2018-02-01 | 2019-08-01 | Kaiser Aluminum Fabricated Products, Llc | Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3333990A (en) * | 1965-02-05 | 1967-08-01 | Aluminum Co Of America | Aluminum base alloy forgings |
GB1133113A (en) * | 1965-02-05 | 1968-11-06 | Aluminum Co Of America | Improvements in forged aluminium base alloy members |
US3826688A (en) * | 1971-01-08 | 1974-07-30 | Reynolds Metals Co | Aluminum alloy system |
EP0473122A1 (en) * | 1990-08-27 | 1992-03-04 | Aluminum Company Of America | Damage tolerant aluminum alloy sheet for aircraft skin |
EP0731185A1 (en) * | 1995-03-10 | 1996-09-11 | Pechiney Rhenalu | Alumium-copper-magnesium alloy sheets with low residual stresses |
EP1045043A1 (en) * | 1999-04-12 | 2000-10-18 | Pechiney Rhenalu | Method of manufacturing shaped articles of a 2024 type aluminium alloy |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4336075A (en) * | 1979-12-28 | 1982-06-22 | The Boeing Company | Aluminum alloy products and method of making same |
US5137686A (en) * | 1988-01-28 | 1992-08-11 | Aluminum Company Of America | Aluminum-lithium alloys |
JPH03236441A (en) | 1990-02-14 | 1991-10-22 | Nkk Corp | Manufacture of high strength aluminum alloy and high strength aluminum alloy material |
US5213639A (en) | 1990-08-27 | 1993-05-25 | Aluminum Company Of America | Damage tolerant aluminum alloy products useful for aircraft applications such as skin |
GB9021565D0 (en) * | 1990-10-04 | 1990-11-21 | Allied Colloids Ltd | Dewatering compositions and processes |
US5376192A (en) * | 1992-08-28 | 1994-12-27 | Reynolds Metals Company | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy |
FR2704557B1 (en) | 1993-04-28 | 1995-06-02 | Pechiney Rhenalu | Al-based coating alloy and composite product plated on 2000 or 6000 alloys. |
US5879475A (en) * | 1995-03-22 | 1999-03-09 | Aluminum Company Of America | Vanadium-free, lithium-free aluminum alloy suitable for forged aerospace products |
US5652063A (en) * | 1995-03-22 | 1997-07-29 | Aluminum Company Of America | Sheet or plate product made from a substantially vanadium-free aluminum alloy |
US5630889A (en) * | 1995-03-22 | 1997-05-20 | Aluminum Company Of America | Vanadium-free aluminum alloy suitable for extruded aerospace products |
US6077363A (en) * | 1996-06-17 | 2000-06-20 | Pechiney Rhenalu | Al-Cu-Mg sheet metals with low levels of residual stress |
JP2001330757A (en) * | 2000-05-23 | 2001-11-30 | Yazaki Corp | Optical connector |
US6562154B1 (en) * | 2000-06-12 | 2003-05-13 | Aloca Inc. | Aluminum sheet products having improved fatigue crack growth resistance and methods of making same |
-
2002
- 2002-07-11 FR FR0208737A patent/FR2842212B1/en not_active Expired - Fee Related
-
2003
- 2003-07-07 US US10/612,878 patent/US7294213B2/en not_active Expired - Lifetime
- 2003-07-09 DE DE60300004T patent/DE60300004T3/en not_active Expired - Lifetime
- 2003-07-09 EP EP03356108A patent/EP1382698B2/en not_active Expired - Lifetime
- 2003-07-09 AT AT03356108T patent/ATE267885T1/en not_active IP Right Cessation
- 2003-07-09 ES ES03356108T patent/ES2220902T5/en not_active Expired - Lifetime
-
2007
- 2007-10-01 US US11/865,300 patent/US7993474B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3333990A (en) * | 1965-02-05 | 1967-08-01 | Aluminum Co Of America | Aluminum base alloy forgings |
GB1133113A (en) * | 1965-02-05 | 1968-11-06 | Aluminum Co Of America | Improvements in forged aluminium base alloy members |
US3826688A (en) * | 1971-01-08 | 1974-07-30 | Reynolds Metals Co | Aluminum alloy system |
EP0473122A1 (en) * | 1990-08-27 | 1992-03-04 | Aluminum Company Of America | Damage tolerant aluminum alloy sheet for aircraft skin |
EP0731185A1 (en) * | 1995-03-10 | 1996-09-11 | Pechiney Rhenalu | Alumium-copper-magnesium alloy sheets with low residual stresses |
EP1045043A1 (en) * | 1999-04-12 | 2000-10-18 | Pechiney Rhenalu | Method of manufacturing shaped articles of a 2024 type aluminium alloy |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10472707B2 (en) | 2003-04-10 | 2019-11-12 | Aleris Rolled Products Germany Gmbh | Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties |
US7883591B2 (en) | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
WO2008003503A2 (en) * | 2006-07-07 | 2008-01-10 | Aleris Aluminum Koblenz Gmbh | Method of manufacturing aa2000 - series aluminium alloy products |
WO2008003503A3 (en) * | 2006-07-07 | 2008-02-21 | Aleris Aluminum Koblenz Gmbh | Method of manufacturing aa2000 - series aluminium alloy products |
US8002913B2 (en) | 2006-07-07 | 2011-08-23 | Aleris Aluminum Koblenz Gmbh | AA7000-series aluminum alloy products and a method of manufacturing thereof |
US8088234B2 (en) | 2006-07-07 | 2012-01-03 | Aleris Aluminum Koblenz Gmbh | AA2000-series aluminum alloy products and a method of manufacturing thereof |
US8608876B2 (en) | 2006-07-07 | 2013-12-17 | Aleris Aluminum Koblenz Gmbh | AA7000-series aluminum alloy products and a method of manufacturing thereof |
US8877123B2 (en) | 2007-03-14 | 2014-11-04 | Aleris Aluminum Koblenz Gmbh | Al—Cu alloy product suitable for aerospace application |
EP2121997B2 (en) † | 2007-03-14 | 2016-08-24 | Aleris Aluminum Koblenz GmbH | Ai-cu alloy product suitable for aerospace application |
CN104711498A (en) * | 2013-12-13 | 2015-06-17 | 天津大学 | Control method of surface orange peel effect in second tension forming of high strength aluminium alloy |
CN104711498B (en) * | 2013-12-13 | 2016-09-07 | 天津大学 | The control method of surface orange peel effect in the shaping of high-strength aluminum alloy succeeding stretch |
CN104451298A (en) * | 2014-11-19 | 2015-03-25 | 无锡鸿声铝业有限公司 | Improved 2024 aluminum alloy |
Also Published As
Publication number | Publication date |
---|---|
US20040086418A1 (en) | 2004-05-06 |
DE60300004T2 (en) | 2005-01-20 |
DE60300004T3 (en) | 2013-06-20 |
FR2842212A1 (en) | 2004-01-16 |
DE60300004D1 (en) | 2004-07-01 |
FR2842212B1 (en) | 2004-08-13 |
EP1382698B1 (en) | 2004-05-26 |
US7294213B2 (en) | 2007-11-13 |
ATE267885T1 (en) | 2004-06-15 |
EP1382698B2 (en) | 2013-01-09 |
ES2220902T5 (en) | 2013-05-09 |
ES2220902T3 (en) | 2004-12-16 |
US20080210350A1 (en) | 2008-09-04 |
US7993474B2 (en) | 2011-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1382698B1 (en) | Wrought product in Al-Cu-Mg alloy for aircraft structural element | |
EP2811042B1 (en) | ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME | |
EP0787217B1 (en) | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE | |
EP1492895B1 (en) | Al-zn-mg-cu alloy products | |
EP2655680B1 (en) | Aluminium-copper-lithium alloy with improved compressive strength and toughness | |
EP1766102B1 (en) | Method for making high-tenacity and high-fatigue strength aluminium alloy products | |
EP2364378B1 (en) | Products in aluminium-copper-lithium alloy | |
WO2013007471A1 (en) | Method of manufacturing an al-mg alloy sheet product | |
CA2798480C (en) | Aluminum-copper-lithium alloy for lower surface element | |
EP3201372B1 (en) | Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same | |
CA2907854C (en) | Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages | |
FR2907466A1 (en) | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME | |
EP1544315B1 (en) | Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy | |
FR2820438A1 (en) | PROCESS FOR MANUFACTURING A CORROSIVE PRODUCT WITH HIGH RESISTANCE IN ALZNMAGCU ALLOY | |
EP3077559A2 (en) | Aluminum/copper/lithium alloy material for underwing element having enhanced properties | |
EP2981631B1 (en) | Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages | |
EP1644546B1 (en) | Use of pipes made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage | |
EP1026270B1 (en) | AlCuMg alloy product for aircraft body member | |
EP1143027B1 (en) | Process for making avionic structural elements from an Al-Si-Mg alloy | |
CA3085811A1 (en) | Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture | |
CA1291927C (en) | Exfoliation corrosion desensitizing process giving high mechanical resistance and damage resisting qualities for li-containing al alloys | |
EP3788179A1 (en) | Method for manufacturing an aluminum-copper-lithium alloy with improved compressive strength and improved toughness | |
FR2789405A1 (en) | New quenched and stretched aluminum-copper-magnesium alloy product, for aircraft wing intrados skin and wing or fuselage intrados strut manufacture has a large plastic deformation range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030925 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040526 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60300004 Country of ref document: DE Date of ref document: 20040701 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040709 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040826 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040827 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040825 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040526 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2220902 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLAQ | Examination of admissibility of opposition: information related to despatch of communication + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE2 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
EUG | Se: european patent has lapsed | ||
PLAQ | Examination of admissibility of opposition: information related to despatch of communication + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE2 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAQ | Examination of admissibility of opposition: information related to despatch of communication + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE2 |
|
PLAR | Examination of admissibility of opposition: information related to receipt of reply deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE4 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20050214 |
|
26 | Opposition filed |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20050214 Opponent name: ALCOA INC. Effective date: 20050228 |
|
R26 | Opposition filed (corrected) |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20050214 Opponent name: ALCOA INC. Effective date: 20050228 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Opponent name: ALCOA INC. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050709 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050709 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20050214 Opponent name: ALCOA INC. Effective date: 20050228 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Opponent name: ALCOA INC. |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALCAN RHENALU |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: ALCAN RHENALU Effective date: 20071003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041026 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Effective date: 20050214 Opponent name: ALCOA INC. Effective date: 20050228 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH Opponent name: ALCOA INC. |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ALERIS ALUMINUM KOBLENZ GMBH Effective date: 20050214 Opponent name: ALCOA INC. Effective date: 20050228 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ALCOA INC. Opponent name: ALERIS ALUMINUM KOBLENZ GMBH |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ALERIS ALUMINUM KOBLENZ GMBH Effective date: 20050214 Opponent name: ALCOA INC. Effective date: 20050228 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20091201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: PECHINEY RHENALU Free format text: PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: CONSTELLIUM FRANCE, FR Effective date: 20111123 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: CONSTELLIUM FRANCE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: CONSTELLIUM FRANCE SAS Free format text: PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR) |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60300004 Country of ref document: DE Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60300004 Country of ref document: DE Owner name: CONSTELLIUM FRANCE, FR Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR Effective date: 20120622 Ref country code: DE Ref legal event code: R082 Ref document number: 60300004 Country of ref document: DE Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE Effective date: 20120622 Ref country code: DE Ref legal event code: R082 Ref document number: 60300004 Country of ref document: DE Representative=s name: BEETZ & PARTNER MBB, DE Effective date: 20120622 Ref country code: DE Ref legal event code: R081 Ref document number: 60300004 Country of ref document: DE Owner name: CONSTELLIUM ISSOIRE, FR Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR Effective date: 20120622 Ref country code: DE Ref legal event code: R082 Ref document number: 60300004 Country of ref document: DE Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE Effective date: 20120622 Ref country code: DE Ref legal event code: R082 Ref document number: 60300004 Country of ref document: DE Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE Effective date: 20120622 |
|
BECA | Be: change of holder's address |
Owner name: CONSTELLIUM FRANCE Effective date: 20120816 Owner name: 40-44 RUE WASHINGTON,F-75008 PARIS Effective date: 20120816 |
|
BECN | Be: change of holder's name |
Owner name: CONSTELLIUM FRANCE Effective date: 20120816 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20130109 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 60300004 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AELC |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: TD Effective date: 20131101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 60300004 Country of ref document: DE Effective date: 20130109 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2220902 Country of ref document: ES Kind code of ref document: T5 Effective date: 20130509 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: CONSTELLIUM ISSOIRE, FR Effective date: 20150915 Ref country code: FR Ref legal event code: CA Effective date: 20150915 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: CONSTELLIUM ISSOIRE, FR Free format text: FORMER OWNER: CONSTELLIUM FRANCE SAS, FR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60300004 Country of ref document: DE Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R081 Ref document number: 60300004 Country of ref document: DE Owner name: CONSTELLIUM ISSOIRE, FR Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR Ref country code: DE Ref legal event code: R082 Ref document number: 60300004 Country of ref document: DE Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: CONSTELLIUM ISSOIRE; FR Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: CONSTELLIUM FRANCE Effective date: 20160719 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: CONSTELLIUM ISSOIRE Effective date: 20161010 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20170726 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20170727 Year of fee payment: 15 Ref country code: ES Payment date: 20170801 Year of fee payment: 15 Ref country code: IT Payment date: 20170725 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20170727 Year of fee payment: 15 Ref country code: SE Payment date: 20170727 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180801 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: HC Owner name: CONSTELLIUM ISSOIRE; FR Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT NOM PROPRIETAIRE, NOM + ADRESSE; FORMER OWNER NAME: CONSTELLIUM FRANCE Effective date: 20160225 Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180710 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180709 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180710 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190729 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190729 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200727 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60300004 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |