EP0787217B1 - METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE - Google Patents
METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE Download PDFInfo
- Publication number
- EP0787217B1 EP0787217B1 EP95936606A EP95936606A EP0787217B1 EP 0787217 B1 EP0787217 B1 EP 0787217B1 EP 95936606 A EP95936606 A EP 95936606A EP 95936606 A EP95936606 A EP 95936606A EP 0787217 B1 EP0787217 B1 EP 0787217B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- range
- process according
- ageing
- rolled
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Definitions
- the invention relates to the field of alloy products high-strength aluminum AlSiMgCu, belonging to the 6000 series according to the international aluminum nomenclature Association in the United States, and intended for applications structural, in particular in aeronautical construction.
- US patent 4082578 of ALCOA describes two families of alloys, subsequently registered with the Aluminum Association under the numbers 6009 and 6010, the first favoring formability and the second mechanical strength. These alloys have good resistance to indentation, stress corrosion and exfoliating corrosion, as well as good spot welding ability, which makes them particularly suitable for automobile construction (bodywork and bumpers). These alloys have the following composition (by weight): Yes 0.4 - 1.2% Mg 0.4 - 1.1% Cu 0.1 - 0.6% Mn 0.2 - 0.8% Fe 0.05 - 0.35% In certain cases, one can exceed in state T6 (according to the designation of the Aluminum Association) 400 MPa for the breaking strength R m and 370 MPa for the elastic limit at 0.2% R 0.2 .
- ALCAN patent US 4,614,552 covers aluminum alloy sheets, also intended for automobile bodywork, of composition: Yes 0.60 - 1.0% Mg 0.62 - 0.82% Cu 0.65 - 0.79% Mn 0.10 - 0.50% Fe ⁇ 0.40% Ti ⁇ 0.10% other ⁇ 0.05% each and ⁇ 0.15% in total.
- This alloy was subsequently registered under the designation AA 6111. Like the alloys 6009 and 6010 mentioned above, it does not exhibit good resistance to intercrystalline corrosion in the T6 state.
- the US patent 4589932 of ALCOA proposes for the automobile, railway, naval or aeronautical construction, an alloy, subsequently registered under the designation AA 6013, of composition: Yes 0.4 - 1.2% and preferably 0.6 - 1% Mg 0.5 - 1.3% " 0.8 - 1.2% Cu 0.6 - 1.1% Mn 0.1 - 1% " 0.2 - 0.8% Fe ⁇ 0.5% Cr ⁇ 0.10% Ti ⁇ 0.10% Zn around 0.25%
- the alloy undergoes dissolution between 549 and 582 ° C, this temperature being close to the temperature of the solidus.
- the sheets obtained compare very favorably, in terms of elastic limit and toughness, to the plated alloy 2024 commonly used for the fuselage of aircraft, and, moreover, the manufacturing cost is lower.
- Patent EP 173632 of the applicant relates to extruded or stamped alloy products of composition: Yes 0.9 - 1.3% and preferably 1 - 1.15% Mg 0.7 - 1.1% " 0.8 - 1% Cu 0.3 - 1.1% " 0.8 - 1% Mn 0.5 - 0.7% Zr 0.07 - 0.2% " 0.08 - 0.12% Fe ⁇ 0.30% Zn ⁇ 0.7% " 0.3 - 0.6% having an essentially non-recrystallized structure.
- This alloy subsequently registered under the designation AA 6056, has very high mechanical characteristics, both in strength and in ductility: R m > 420 MPa R 0.2 > 380 MPa A> 10%
- the applicant's studies show that this alloy is also sensitive to intercrystalline corrosion in the T6 state, with results similar to those of 6013 (cf. M. REBOUL et al. "Stress Corrosion cracking of high strength Al alloys" in ICAA3 Trondheim 1992, p. 455).
- the subject of the invention is also a laminated product or aluminum alloy spun of the above-mentioned composition, desensitized to intercrystalline corrosion (in the sense of the US Department of Defense standard MIL-H-6088) and having, in this desensitized state, a conductivity at least 0.5 MS / m higher than that measured at state T6.
- It also relates to a fuselage element airplane or structural element of a road vehicle or rail made from products according to the invention or of products produced according to the process of the invention.
- the alloys according to the invention having an Mg / Si ratio ⁇ 1 have a rather higher silicon content, since the Mg composition ranges are typical of alloys 6000 series. Surprisingly better resistance to intercrystalline corrosion by increasing the Si content, while this is deemed to act in the sense opposite.
- Kemal NISANCIOGLU in the SINTEF Report A 820/3 du 23/8/1982 "Intercrystalline, stress and exfoliation corrosion of AlMgSi alloys. A litterature survey. "ISBN n ° 82-0595-2860-6, p.7, mentions that "the susceptibility to intercrystalline corrosion (in state T6) increases with the Si content, especially for alloys where Si is in excess over stoichiometric content ".
- the alloys according to the invention having a Mg / Si ratio ⁇ 1 and desensitized to intercrystalline corrosion, numerous intergranular precipitates in the form of planchettes, whereas these are rather in the form of needles with state T6. At least some of these board-shaped precipitates contain AlMgSiCu quaternary compounds. Furthermore, the desensitized alloys according to the invention have a higher electrical conductivity of at least 0.5 MS / m compared to the electrical conductivity in the T6 state when the income applied is of the two-bearing type and of 1 MS / m in the case of single income.
- the Cu content must be> 0.5% to have both sufficient mechanical characteristics and good stability thermal of the alloy. Beyond 1.1%, we risk seeing problems of stress corrosion and exfoliating corrosion, as well as a decrease in the tenacity to because of primary copper particles.
- An addition of Zn at a content between 0.15 and 1% has, for an identical composition and income, an influence positive on the resistance to intercrystalline corrosion.
- an addition of around 0.5% Ag allows improve mechanical characteristics.
- the products according to the invention can be sheets rolled or extruded sections.
- the alloy is cast in plates (for sheets) or in billets (for profiles) and its transformation range is relatively classic up to final income. Homogenization takes place between 480 and 570 ° C for a period between 5 and 50h. We then proceed to working by hot rolling or spinning, then, in the case sheets, cold rolling to a thickness included between 0.5 and 15 mm. We then perform a solution thrust at a temperature close to solidus, between 540 and 575 ° C, then water quenching with a speed of cooling dependent on the thickness of the product.
- This treatment can either be a treatment single-bearing at a temperature between 150 and 250 ° C, and preferably between 165 and 220 ° C, or a two-bearing treatment, one of the bearings being at a temperature between 150 and 250 ° C (preferably 165 and 220 ° C) and the other at a higher temperature, between 170 and 270 ° C.
- Q 145000 J / mol and R is the constant of ideal gases.
- partial desensitization is meant the absence of intercrystalline ramifications of length greater than 20 microns, on a polished section produced following the test according to the American military standard MIL-H-6088. Desensitization is considered complete in the absence of ramifications larger than 5 microns. It is not recommended to exceed an equivalent time of 120 h, because there is then a too significant degradation of the elastic limit which falls clearly below 300 MPa.
- the optimum desensitization range is between 70 and 120 h for two-bearing treatments and between 150 and 250 h for single-bearing treatments. Following this income, it can be seen that the difference in conductivity with state T6 is always greater than 0.5 MS / m.
- This equivalent duration is preferably between 150 and 250 h.
- the deviation in conductivity from the T6 state is at least 1 MS / m.
- the products produced according to the invention have a good elastic modulus and an excellent specific modulus (quotient of the modulus by density) taking into account their lower density than that of alloys 2000 for example.
- a module of 71 GPa was measured, barely less than the module of sheets of the same thickness in bare 2024 alloy, and clearly greater than that of the plated 2024 usually used for fuselage commercial aircraft.
- These products also exhibit, thanks to the high temperature tempering, good thermal stability which makes them suitable, for example, for use in the fuselage of supersonic aircraft.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Electroplating Methods And Accessories (AREA)
- Extrusion Of Metal (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Articles (AREA)
Description
L'invention concerne le domaine des produits en alliage d'aluminium à haute résistance AlSiMgCu, appartenant à la série 6000 selon la nomenclature internationale de l'Aluminum Association aux Etats-Unis, et destinées aux applications structurales, notamment à la construction aéronautique. The invention relates to the field of alloy products high-strength aluminum AlSiMgCu, belonging to the 6000 series according to the international aluminum nomenclature Association in the United States, and intended for applications structural, in particular in aeronautical construction.
Parmi les alliages de la série 6000, certains présentent des caractéristiques élevées qui les rendent aptes aux applications structurales les plus exigeantes. Among the 6000 series alloys, some have high characteristics which make them suitable for the most demanding structural applications.
Ainsi, le brevet US 4082578 d'ALCOA décrit deux familles
d'alliages, enregistrées ultérieurement à l'Aluminum
Association sous les n° 6009 et 6010, la première privilégiant
la formabilité et la seconde la résistance mécanique. Ces
alliages présentent une bonne résistance à l'indentation, à la
corrosion sous contrainte et à la corrosion exfoliante, ainsi
qu'une bonne aptitude au soudage par points, ce qui les
destine particulièrement à la construction automobile
(carrosserie et pare-chocs).
Ces alliages ont la composition suivante (en poids):
These alloys have the following composition (by weight):
Le brevet US 4614552 d'ALCAN couvre des tôles d'alliage
d'aluminium, destinées également à la carrosserie automobile,
de composition:
Le brevet US 4589932 d'ALCOA propose pour la construction
automobile, ferroviaire, navale ou aéronautique, un alliage,
enregistré ultérieurement sous la désignation AA 6013, de
composition:
Les tôles obtenues se comparent très favorablement, en matière
de limite élastique et de tenacité, à l'alliage 2024 plaqué
utilisé couramment pour le fuselage des avions, et, de plus,
le coût de fabrication est plus faible.
Cependant, un certain nombre d'études publiées dans la presse
scientifique montrent une forte sensibilité à la corrosion
intercristalline de cet alliage à l'état T6 (cf. T.D. BURLEIGH
"Microscopic investigation of the intergranular corrosion of
6013-T6" in ICAA3 Trondheim 1992, p. 435). The US patent 4589932 of ALCOA proposes for the automobile, railway, naval or aeronautical construction, an alloy, subsequently registered under the designation AA 6013, of composition:
The sheets obtained compare very favorably, in terms of elastic limit and toughness, to the plated alloy 2024 commonly used for the fuselage of aircraft, and, moreover, the manufacturing cost is lower.
However, a certain number of studies published in the scientific press show a high sensitivity to intercrystalline corrosion of this alloy in the T6 state (cf. TD BURLEIGH "Microscopic investigation of the intergranular corrosion of 6013-T6" in ICAA3 Trondheim 1992 , p. 435).
Le brevet EP 173632 de la demanderesse est relatif à des
produits filés ou matricés en alliage de composition:
Rm > 420 MPa R0,2 > 380 MPa A > 10%
Les études de la demanderesse montrent que cet alliage est
également sensible à la corrosion intercristalline à l'état
T6, avec des résultats analogues à ceux du 6013 (cf. M. REBOUL
et al. "Stress Corrosion cracking of high strength Al alloys"
in ICAA3 Trondheim 1992, p. 455). Patent EP 173632 of the applicant relates to extruded or stamped alloy products of composition:
R m > 420 MPa R 0.2 > 380 MPa A> 10%
The applicant's studies show that this alloy is also sensitive to intercrystalline corrosion in the T6 state, with results similar to those of 6013 (cf. M. REBOUL et al. "Stress Corrosion cracking of high strength Al alloys" in ICAA3 Trondheim 1992, p. 455).
La demanderesse s'est aperçue que l'utilisation d'un domaine particulier à l'intérieur du domaine de composition des alliages 6000 chargés en Si, Mg et Cu, associée à un traitement particulier de désensibilisation à la corrosion intercristalline, permettait d'obtenir à la fois des caractéristiques mécaniques équivalentes à celles de l'alliage 2024 à l'état T3 et une résistance à la corrosion intercristalline à l'état non plaqué nettement améliorée, ce qui rend les alliages de ce type ainsi traités particulièrement appropriés à la réalisation de fuselages d'avions et, plus généralement, aux applications structurales à haute résistance. The Applicant has noticed that the use of a particular domain within the composition domain 6000 alloys loaded with Si, Mg and Cu, associated with a special treatment for corrosion desensitization intercrystalline, allowed to obtain both mechanical properties equivalent to those of the alloy 2024 in T3 state and corrosion resistance significantly improved intercrystalline in the unplated state, which makes alloys of this type thus treated particularly suitable for making fuselages aircraft and, more generally, for structural applications high resistance.
L'invention a ainsi pour objet un procédé de fabrication de produits corroyés en alliage d'aluminium AlSiMgCu à haute résistance mécanique et présentant une bonne résistance à la corrosion intercristalline, comprenant les étapes suivantes:
- coulée d'une plaque ou billette de composition (en
poids):
Si 0,7 - 1,3% Mg 0,6 - 1,1% Cu 0,5 - 1,1% Mn 0,3 - 0,8% Zr < 0,20% Fe < 0,30% Zn < 1% Cr < 0,25% Ag < 1% autres éléments < 0,05% chacun et < 0,15% au total
avec: Mg/Si < 1 - homogénéisation de cette plaque ou billette à une température comprise entre 470 et 570°C
- corroyage à chaud et éventuellement à froid
- mise en solution à une température comprise entre 540 et 570°C
- trempe
- revenu comportant au moins un palier à une température
comprise entre 150 et 250°C, et de préférence entre 165 et
220°C, et d'une durée comprise entre 30h et 300h, de
préférence entre 70 et 120h en durée équivalente à 175°C.
Le revenu comporte, de préférence, un autre palier à température plus élevée comprise entre 185 et 250°C, la durée équivalente à 175°C étant toujours, pour l'ensemble des 2 paliers, comprise entre 30 et 300h.
- pouring a composition plate or billet (by weight):
Yes 0.7 - 1.3% Mg 0.6 - 1.1% Cu 0.5 - 1.1% Mn 0.3 - 0.8% Zr <0.20% Fe <0.30% Zn <1% Cr <0.25% Ag <1% other elements <0.05% each and <0.15% in total
with: Mg / Si <1 - homogenization of this plate or billet at a temperature between 470 and 570 ° C
- hot and possibly cold working
- dissolved at a temperature between 540 and 570 ° C
- quenching
- tempering comprising at least one level at a temperature between 150 and 250 ° C, and preferably between 165 and 220 ° C, and with a duration between 30h and 300h, preferably between 70 and 120h in duration equivalent to 175 ° vs.
The tempering preferably comprises another level at a higher temperature between 185 and 250 ° C, the duration equivalent to 175 ° C being always, for all 2 levels, between 30 and 300 hours.
L'invention a également pour objet un produit laminé ou filé en alliage d'aluminium de la composition mentionnée ci-dessus, désensibilisé à la corrosion intercristalline(au sens de la norme MIL-H-6088 du Département de la Défense des USA) et présentant, à cet état désensibilisé, une conductivité électrique supérieure d'au moins 0,5 MS/m à celle mesurée à l'état T6. The subject of the invention is also a laminated product or aluminum alloy spun of the above-mentioned composition, desensitized to intercrystalline corrosion (in the sense of the US Department of Defense standard MIL-H-6088) and having, in this desensitized state, a conductivity at least 0.5 MS / m higher than that measured at state T6.
Elle a également pour objet un élément de fuselage d'avion ou un élément structural de véhicule routier ou ferroviaire réalisé à partir de produits selon l'invention ou de produits élaborés selon le procédé de l'invention. It also relates to a fuselage element airplane or structural element of a road vehicle or rail made from products according to the invention or of products produced according to the process of the invention.
Les alliages selon l'invention ayant un rapport Mg/Si < 1 ont une teneur en silicium plutôt plus élevée, puisque les fourchettes de composition de Mg sont typiques des alliages de la série 6000. Il est surprenant d'obtenir une meilleure résistance à la corrosion intercristalline en augmentant la teneur en Si, alors que celle-ci est réputée agir dans le sens contraire. Ainsi, Kemal NISANCIOGLU dans le SINTEF Report A 820/3 du 23/8/1982 "Intercrystalline, stress and exfoliation corrosion of AlMgSi alloys. A litterature survey." ISBN n° 82-0595-2860-6, p.7, mentionne que "la susceptibilité à la corrosion intercristalline (à l'état T6) augmente avec la teneur en Si, spécialement pour les alliages où Si est en excès par rapport à la teneur stoechiométrique". The alloys according to the invention having an Mg / Si ratio <1 have a rather higher silicon content, since the Mg composition ranges are typical of alloys 6000 series. Surprisingly better resistance to intercrystalline corrosion by increasing the Si content, while this is deemed to act in the sense opposite. Thus, Kemal NISANCIOGLU in the SINTEF Report A 820/3 du 23/8/1982 "Intercrystalline, stress and exfoliation corrosion of AlMgSi alloys. A litterature survey. "ISBN n ° 82-0595-2860-6, p.7, mentions that "the susceptibility to intercrystalline corrosion (in state T6) increases with the Si content, especially for alloys where Si is in excess over stoichiometric content ".
On constate qu'avec des alliages situés dans les mêmes fourchettes de composition, mais avec un rapport Mg/Si > 1, le revenu particulier ne permet pas d'obtenir une désensibilisation satisfaisante à la corrosion intercristalline. On observe en effet localement des traces d'attaque intercristalline. La désensibilisation pourrait sans doute être obtenue, mais au prix d'une dégradation inacceptable des caractéristiques mécaniques. It can be seen that with alloys located in the same composition ranges, but with an Mg / Si ratio> 1, the particular income does not provide a satisfactory desensitization to corrosion intercrystalline. There are indeed traces locally of intercrystalline attack. Desensitization could without doubt be obtained, but at the cost of degradation unacceptable mechanical characteristics.
On observe également, pour les alliages selon l'invention
ayant un rapport Mg/Si < 1 et désensibilisés à la corrosion
intercristalline, de nombreux précipités intergranulaires en
forme de planchettes, alors que ceux-ci sont plutôt en forme
d'aiguilles à l'état T6. Au moins certains de ces précipités
en forme de planchettes contiennent des composés quaternaires
AlMgSiCu.
Par ailleurs, les alliages désensibilisés selon l'invention
présentent une conductivité éléctrique plus élevée d'au moins
0,5 MS/m par rapport à la conductivité électrique à l'état T6
lorsque le revenu pratiqué est de type bipalier et de 1 MS/m
dans le cas d'un revenu monopalier. We also observe, for the alloys according to the invention having a Mg / Si ratio <1 and desensitized to intercrystalline corrosion, numerous intergranular precipitates in the form of planchettes, whereas these are rather in the form of needles with state T6. At least some of these board-shaped precipitates contain AlMgSiCu quaternary compounds.
Furthermore, the desensitized alloys according to the invention have a higher electrical conductivity of at least 0.5 MS / m compared to the electrical conductivity in the T6 state when the income applied is of the two-bearing type and of 1 MS / m in the case of single income.
La teneur en Cu doit être > 0,5% pour avoir à la fois des caractéristiques mécaniques suffisantes et une bonne stabilité thermique de l'alliage. Au delà de 1,1%, on risque de voir apparaítre des problèmes de corrosion sous contrainte et de corrosion exfoliante, ainsi qu'une baisse de la tenacité à cause de particules primaires au cuivre. The Cu content must be> 0.5% to have both sufficient mechanical characteristics and good stability thermal of the alloy. Beyond 1.1%, we risk seeing problems of stress corrosion and exfoliating corrosion, as well as a decrease in the tenacity to because of primary copper particles.
Une addition de Zn à une teneur comprise entre 0,15 et 1% a, pour une composition et un revenu identiques, une influence positive sur la résistance à la corrosion intercristalline. Par ailleurs, une addition de l'ordre de 0,5% d'Ag permet d'améliorer les caractéristiques mécaniques. An addition of Zn at a content between 0.15 and 1% has, for an identical composition and income, an influence positive on the resistance to intercrystalline corrosion. In addition, an addition of around 0.5% Ag allows improve mechanical characteristics.
Les produits selon l'invention peuvent être des tôles laminées ou des profilés filés. L'alliage est coulé en plaques (pour les tôles) ou en billettes (pour les profilés) et sa gamme de transformation est relativement classique jusqu'au revenu final. L'homogénéisation se fait entre 480 et 570°C pendant une durée comprise entre 5 et 50h. On procède ensuite au corroyage par laminage à chaud ou filage, puis, dans le cas des tôles, au laminage à froid jusqu'à une épaisseur comprise entre 0,5 et 15 mm. On effectue ensuite une mise en solution poussée à une température proche du solidus, comprise entre 540 et 575°C, puis une trempe à l'eau avec une vitesse de refroidissement dépendant de l'épaisseur du produit. The products according to the invention can be sheets rolled or extruded sections. The alloy is cast in plates (for sheets) or in billets (for profiles) and its transformation range is relatively classic up to final income. Homogenization takes place between 480 and 570 ° C for a period between 5 and 50h. We then proceed to working by hot rolling or spinning, then, in the case sheets, cold rolling to a thickness included between 0.5 and 15 mm. We then perform a solution thrust at a temperature close to solidus, between 540 and 575 ° C, then water quenching with a speed of cooling dependent on the thickness of the product.
Le revenu est un traitement thermique particulier qui permet à la fois d'obtenir les caractéristiques mécaniques requises tout en désensibilisant l'alliage à la corrosion intercristalline. Ce traitement peut être soit un traitement monopalier à une température comprise entre 150 et 250°C, et de préférence entre 165 et 220°C, soit un traitement bipalier, l'un des paliers étant à une température comprise entre 150 et 250°C (de préférence 165 et 220°C) et l'autre à une température plus élevée, comprise entre 170 et 270°C. Income is a special heat treatment which allows both to obtain the mechanical characteristics required while desensitizing the alloy to corrosion intercrystalline. This treatment can either be a treatment single-bearing at a temperature between 150 and 250 ° C, and preferably between 165 and 220 ° C, or a two-bearing treatment, one of the bearings being at a temperature between 150 and 250 ° C (preferably 165 and 220 ° C) and the other at a higher temperature, between 170 and 270 ° C.
Le temps de traitement dépend de la température. On peut
ramener cette durée à un temps équivalent à 175°C teq, lié à
la température T du palier en °K et à la durée t de traitement
à cette température (la durée de montée en température étant
prise en compte dans le calcul du temps équivalent) par la
relation:
Pour les traitements bipalier, on constate qu'on obtient une
désensibilisation partielle à la corrosion intercristalline
pour teq > 30 h et une désensibilisation totale pour teq >
70 h. On entend par désensibilisation partielle l'absence de
ramifications intercristallines de longueur supérieure à 20
microns, sur une coupe polie réalisée à la suite de l'essai
selon la norme militaire américaine MIL-H-6088. La
désensibilisation est considérée comme totale en l'absence de
ramifications de taille supérieure à 5 microns.
Il n'est pas recommandé de dépasser un temps équivalent de 120
h, car on a alors une dégradation trop importante de la limite
élastique qui chute nettement en dessous de 300 MPa. L'optimum
de la plage de désensibilisation se situe entre 70 et 120 h
pour les traitements bipalier et entre 150 et 250 h pour les
traitements monopalier. A la suite de ce revenu, on constate
que la différence de conductivité avec l'état T6 est toujours
supérieure à 0,5 MS/m.
On peut aussi pratiquer un traitement thermique monopalier,
mais, pour être efficace, il doit avoir une durée équivalente
supérieure à celle d'un traitement bipalier, ce qui conduit
généralement à des caractéristiques mécaniques inférieures.
Cette durée équivalente est comprise de préférence entre 150
et 250 h. Dans ce cas, l'écart de conductivité par rapport à
l'état T6 est d'au moins 1 MS/m.
Les produits réalisés selon l'invention présentent un bon
module d'élasticité et un excellent module spécifique
(quotient du module par la densité) compte-tenu de leur
densité plus faible que celle des alliages 2000 par exemple.
Ainsi, pour des tôles d'épaisseur 1,6 mm, on a mesuré un
module de 71 GPa, à peine inférieur au module de tôles de même
épaisseur en alliage 2024 nu, et nettement supérieur à celui
du 2024 plaqué utilisé habituellement pour le fuselage des
avions commerciaux.
Ces produits présentent également, grâce au revenu à haute
température, une bonne stabilité thermique qui les rend aptes,
par exemple, à être utilisés pour le fuselage d'avions
supersoniques. The processing time depends on the temperature. We can reduce this duration to a time equivalent to 175 ° C t eq , linked to the temperature T of the plateau in ° K and to the duration t of treatment at this temperature (the duration of temperature rise being taken into account in the calculation equivalent time) by the relation:
For the two-bearing treatments, it is found that partial desensitization to intercrystalline corrosion is obtained for t eq > 30 h and a total desensitization for t eq > 70 h. By partial desensitization is meant the absence of intercrystalline ramifications of length greater than 20 microns, on a polished section produced following the test according to the American military standard MIL-H-6088. Desensitization is considered complete in the absence of ramifications larger than 5 microns.
It is not recommended to exceed an equivalent time of 120 h, because there is then a too significant degradation of the elastic limit which falls clearly below 300 MPa. The optimum desensitization range is between 70 and 120 h for two-bearing treatments and between 150 and 250 h for single-bearing treatments. Following this income, it can be seen that the difference in conductivity with state T6 is always greater than 0.5 MS / m.
One can also practice a single-bearing treatment, but, to be effective, it must have an equivalent duration greater than that of a two-bearing treatment, which generally leads to lower mechanical characteristics. This equivalent duration is preferably between 150 and 250 h. In this case, the deviation in conductivity from the T6 state is at least 1 MS / m.
The products produced according to the invention have a good elastic modulus and an excellent specific modulus (quotient of the modulus by density) taking into account their lower density than that of alloys 2000 for example. Thus, for sheets of 1.6 mm thickness, a module of 71 GPa was measured, barely less than the module of sheets of the same thickness in bare 2024 alloy, and clearly greater than that of the plated 2024 usually used for fuselage commercial aircraft.
These products also exhibit, thanks to the high temperature tempering, good thermal stability which makes them suitable, for example, for use in the fuselage of supersonic aircraft.
On a élaboré sous forme de plaque un alliage de
composition:
La plaque a été homogénéisée 21h à 530°C, écroutée, puis
laminée à chaud et à froid jusqu'à une épaisseur de 1,6 mm. La
mise en solution a été effectuée à 550°C pendant 1h.
Le revenu standard pour un tel alliage, conduisant à l'état
T6, serait de 8h à 175°C et les caractéristiques mécaniques
dans le sens travers obtenues dans ce cas sont:
Différents traitements thermiques ont été effectués sur ces tôles pour essayer de les désensibiliser à la corrosion intercristalline. On a utilisé, pour qualifier cette sensibilité, soit un test nommé "Interneutre", correspondant à la norme militaire américaine MIL-H-6088, soit un test interne nommé "Interano", consistant en une attaque anodique de l'échantillon, pendant 6h, en milieu chlorures - perchlorates et sous une densité de courant de 1 mA/cm2, suivie d'un examen en coupe micrographique.
Les températures équivalentes de revenu ainsi que les résultats en matière de caractéristiques mécaniques dans le sens travers et corrosion intercristalline sont rassemblés dans le tableau 1. An alloy of composition has been developed in the form of a plate:
The plate was homogenized 21 h at 530 ° C, peeled, then hot and cold rolled to a thickness of 1.6 mm. The solution was carried out at 550 ° C for 1 hour.
The standard income for such an alloy, leading to the T6 state, would be 8 hours at 175 ° C. and the transverse mechanical characteristics obtained in this case are:
Various heat treatments have been carried out on these sheets to try to desensitize them to intercrystalline corrosion. To qualify this sensitivity, we used either a test called "Interneutre", corresponding to the US military standard MIL-H-6088, or an internal test called "Interano", consisting of an anodic attack on the sample, for 6h , in chlorides - perchlorates medium and at a current density of 1 mA / cm 2 , followed by an examination in micrographic section.
The equivalent tempering temperatures as well as the results in terms of mechanical characteristics in the cross direction and intercrystalline corrosion are collated in Table 1.
On a élaboré sous forme de plaque deux alliages A et B de
composition suivante:
Différents traitements thermiques de revenu ont été effectués sur ces tôles pour essayer de les désensibiliser à la corrosion intercristalline, qui a été qualifiée par des tests accélérés "Interneutre" et "Interano".
Les temps équivalents à 175°C, les caractéristiques mécaniques dans le sens travers, la conductivité électrique et la sensibilité à la corrosion intercristalline ont été rassemblés dans les tableaux 2 (pour l'alliage A) et 3 (pour l'alliage B). Two alloys A and B of the following composition were produced in the form of a plate:
Various tempering heat treatments have been carried out on these sheets in an attempt to desensitize them to intercrystalline corrosion, which has been qualified by accelerated "Interneutre" and "Interano" tests.
The times equivalent to 175 ° C., the mechanical characteristics in the transverse direction, the electrical conductivity and the sensitivity to intercrystalline corrosion have been collated in Tables 2 (for alloy A) and 3 (for alloy B).
On a élaboré sous forme de plaque un alliage de composition:
La plaque a été homogénéisée à 530°C, ecroutée, laminée à
chaud à une épaisseur de 35 mm, mise en solution à 550°C et
trempée. On a comparé des échantillons ayant subi un revenu
classique correspondant à un état T6 à des échantillons ayant
subi un traitement de désensibilisation à la corrosion
intercristalline selon l'invention, avec un revenu à double
palier de 6 h à 175°C + 2 h à 220°C.
Les caractéristiques mécaniques mesurées dans le sens long et
travers-long sont les suivantes:
The plate was homogenized at 530 ° C, peeled, hot rolled to a thickness of 35 mm, dissolved in 550 ° C and quenched. We compared samples having undergone a conventional tempering corresponding to a T6 state with samples having undergone a desensitization treatment to intercrystalline corrosion according to the invention, with a double-stage tempering of 6 h at 175 ° C. + 2 h at 220 ° C.
The mechanical characteristics measured in the long and cross-long direction are as follows:
Les produits laminés ou filés et désensibilisés à la
corrosion intercristalline selon l'invention sont
particulièrement bien adaptés à la réalisation de pièces
structurales pour l'aéronautique, en particulier des
fuselages, et pour des véhicules routiers et ferroviaires.
Claims (11)
- A process for the production of high strength AlSiMgCu aluminium alloy products with good intergranular corrosion resistance, comprising the following steps:casting a plate or billet with the following composition (by weight):
Si 0.7 - 1.3% Mg 0.6 - 1.1% Cu 0.5 - 1.1% Mn 0.3 - 0.8% Zr < 0.20% Fe < 0.30% Zn < 1% Ag < 1% Cr < 0.25% other elements < 0.05% each and < 0.15% in total
with: Mg/Si < 1homogenising in the range 470°C to 570°C;hot working, and optionally cold working;solution heat treating in the range 540°C to 570°C;quenching;ageing, comprising at least one temperature plateau in the range 150°C to 250°C preferably in the range 165°C to 220°C, the total period, measured as the equivalent period at 175°C, being in the range 30 h to 300 h. - A process according to claim 1, characterized in that the Zn content is in the range 0.15% to 1%.
- A process according to claim 1 or claim 2, characterized in that the ageing comprises a plateau at a temperature which is in the range 150°C to 250°C, preferably in the range 165°C to 220°C, and a further plateau at a higher temperature which is in the range 170°C to 270°C.
- A process according to claim 3, characterized in that the equivalent period at 175°C for ageing is in the range 30 h to 120 h.
- A process according to claim 4, characterized in that the equivalent period at 175°C for ageing is in the range 70 h to 120 h.
- A process according to claim 1 or claim 2, characterized in that the ageing comprises a single plateau and its equivalent period at 175°C is in the range 150 h to 250 h.
- A rolled or extruded product of high strength AlSiMgCu aluminium with the following composition (by weight):
Si 0.7 - 1.3% Mg 0.6 - 1.1% Cu 0.5 - 1.1% Mn 0.3 - 0.8% Zr < 0.20% Fe < 0.30% Zn < 1% Ag < 1% Cr < 0.25% other elements < 0.05% each and < 0.15% in total - An aircraft fuselage element formed from rolled or extruded products produced by a process according to any one of claims 1 to 6.
- An aircraft fuselage element formed from rolled or extruded products according to claim 7.
- A structural element for a rail or road vehicle produced from rolled or extruded products produced by the process of any one of claims 1 to 6.
- A structural element for a rail or road vehicle formed from products according to claim 7.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9413047 | 1994-10-25 | ||
FR9413047A FR2726007B1 (en) | 1994-10-25 | 1994-10-25 | PROCESS FOR PRODUCING ALSIMGCU ALLOY PRODUCTS WITH IMPROVED INTERCRYSTALLINE CORROSION RESISTANCE |
PCT/FR1995/001412 WO1996012829A1 (en) | 1994-10-25 | 1995-10-24 | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0787217A1 EP0787217A1 (en) | 1997-08-06 |
EP0787217B1 true EP0787217B1 (en) | 1998-05-13 |
Family
ID=9468402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95936606A Revoked EP0787217B1 (en) | 1994-10-25 | 1995-10-24 | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE |
Country Status (8)
Country | Link |
---|---|
US (1) | US5858134A (en) |
EP (1) | EP0787217B1 (en) |
JP (1) | JPH10512924A (en) |
KR (1) | KR970707314A (en) |
CA (1) | CA2202184A1 (en) |
DE (1) | DE69502508T2 (en) |
FR (1) | FR2726007B1 (en) |
WO (1) | WO1996012829A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902842B2 (en) † | 1996-05-22 | 2007-06-06 | Alcan Technology & Management AG | Method of producing a component |
EP2789707A1 (en) | 2013-04-08 | 2014-10-15 | Benteler Automobiltechnik GmbH | Method for producing a motor vehicle chassis component |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE217912T1 (en) * | 1997-08-04 | 2002-06-15 | Corus Aluminium Walzprod Gmbh | HIGHLY DEFORMABLE, CORROSION-RESISTANT ALLOY |
AU766929B2 (en) * | 1999-12-23 | 2003-10-23 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of age-hardenable aluminium alloys |
AUPQ485399A0 (en) * | 1999-12-23 | 2000-02-03 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of age-hardenable aluminium alloys |
FR2807449B1 (en) * | 2000-04-07 | 2002-10-18 | Pechiney Rhenalu | METHOD FOR MANUFACTURING STRUCTURAL ELEMENTS OF ALUMINUM ALLOY AIRCRAFT AL-SI-MG |
AU2001286386A1 (en) * | 2000-06-01 | 2001-12-11 | Alcoa Inc. | Corrosion resistant 6000 series alloy suitable for aerospace applications |
FR2811337B1 (en) * | 2000-07-05 | 2002-08-30 | Pechiney Rhenalu | PLATED ALUMINUM ALLOY SHEETS FOR AIRCRAFT STRUCTURAL ELEMENTS |
FR2807448B1 (en) * | 2000-09-19 | 2002-08-09 | Pechiney Rhenalu | METHOD FOR MANUFACTURING STRUCTURAL ELEMENTS OF ALUMINUM ALLOY AIRCRAFT AL-SI-MG |
AUPR360801A0 (en) * | 2001-03-08 | 2001-04-05 | Commonwealth Scientific And Industrial Research Organisation | Heat treatment of age-hardenable aluminium alloys utilising secondary precipitation |
US6613167B2 (en) * | 2001-06-01 | 2003-09-02 | Alcoa Inc. | Process to improve 6XXX alloys by reducing altered density sites |
DE60203801T2 (en) * | 2001-07-09 | 2006-05-18 | Corus Aluminium Walzprodukte Gmbh | Weldable high strength Al-Mg-Si alloy |
JP4101749B2 (en) * | 2001-07-23 | 2008-06-18 | コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー | Weldable high strength Al-Mg-Si alloy |
US6925352B2 (en) * | 2001-08-17 | 2005-08-02 | National Research Council Of Canada | Method and system for prediction of precipitation kinetics in precipitation-hardenable aluminum alloys |
CA2485525C (en) * | 2002-06-24 | 2010-09-21 | Corus Aluminium Walzprodukte Gmbh | Method of producing high strength balanced al-mg-si alloy and a weldable product of that alloy |
ES2203334B1 (en) * | 2002-09-05 | 2005-03-16 | Universidad Complutense De Madrid | MANUFACTURING AND SUPERPLASTIC CONFORMING PROCEDURE OF ALLOYS ZN-AL-AG. |
US7666267B2 (en) * | 2003-04-10 | 2010-02-23 | Aleris Aluminum Koblenz Gmbh | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
US20050034794A1 (en) * | 2003-04-10 | 2005-02-17 | Rinze Benedictus | High strength Al-Zn alloy and method for producing such an alloy product |
GB2426979B (en) | 2003-04-10 | 2007-05-23 | Corus Aluminium Walzprod Gmbh | An Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties |
FR2856368B1 (en) * | 2003-06-18 | 2005-07-22 | Pechiney Rhenalu | BODY PIECE OF AUTOMOBILE BODY IN ALLOY SHEET AI-SI-MG FIXED ON STRUCTURE STEEL |
US20060032560A1 (en) * | 2003-10-29 | 2006-02-16 | Corus Aluminium Walzprodukte Gmbh | Method for producing a high damage tolerant aluminium alloy |
US20060070686A1 (en) * | 2004-10-05 | 2006-04-06 | Corus Aluminium Walzprodukte Gmbh | High hardness moulding plate and method for producing said plate |
US7883591B2 (en) * | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
EP3461635A1 (en) * | 2004-11-16 | 2019-04-03 | Aleris Aluminum Duffel BVBA | Aluminium composite sheet material |
DE102005015880B4 (en) * | 2005-04-06 | 2010-07-22 | Airbus Deutschland Gmbh | Extruded profile for aircraft and apparatus for differential heat treatment of such a profile |
WO2007118489A1 (en) * | 2006-04-13 | 2007-10-25 | Airbus Deutschland Gmbh | Method for the heat treatment of a profile, device for the heat treatment of a profile and profile |
EP1852250A1 (en) * | 2006-05-02 | 2007-11-07 | Aleris Aluminum Duffel BVBA | Clad sheet product |
FR2902442B1 (en) * | 2006-06-16 | 2010-09-03 | Aleris Aluminum Koblenz Gmbh | ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY |
US8182851B2 (en) * | 2006-06-23 | 2012-05-22 | Church & Dwight Co., Inc. | Ruminant feedstock dietary supplement |
US8178138B2 (en) * | 2006-06-23 | 2012-05-15 | Church & Dwight Co., Inc. | Ruminant feedstock dietary supplement |
US7939117B2 (en) * | 2006-06-23 | 2011-05-10 | Church & Dwight Co., Inc. | Ruminant feedstock dietary supplement |
FR2907796B1 (en) * | 2006-07-07 | 2011-06-10 | Aleris Aluminum Koblenz Gmbh | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME |
EP2038447B1 (en) * | 2006-07-07 | 2017-07-19 | Aleris Aluminum Koblenz GmbH | Method of manufacturing aa2000-series aluminium alloy products |
JP5495183B2 (en) * | 2010-03-15 | 2014-05-21 | 日産自動車株式会社 | Aluminum alloy and high strength bolt made of aluminum alloy |
JP5925667B2 (en) * | 2012-11-19 | 2016-05-25 | 株式会社神戸製鋼所 | Aluminum alloy material for high-pressure hydrogen gas container and manufacturing method thereof |
CN105401013A (en) * | 2015-11-10 | 2016-03-16 | 苏州三基铸造装备股份有限公司 | Cast aluminum alloy for automotive structural parts and preparation method thereof |
SI24911A (en) | 2016-03-04 | 2016-07-29 | Impol 2000, d.d. | High-strength aluminum alloy Al-Mg-Si and procedure for its manufacture |
KR102644089B1 (en) * | 2017-05-26 | 2024-03-07 | 노벨리스 인크. | High intensity corrosion resistance 6XXX series aluminum alloy and a method of manufacture thereof |
US10030295B1 (en) | 2017-06-29 | 2018-07-24 | Arconic Inc. | 6xxx aluminum alloy sheet products and methods for making the same |
JP6964552B2 (en) * | 2018-04-24 | 2021-11-10 | 株式会社神戸製鋼所 | Aluminum alloy and clad material made of aluminum alloy |
CN109055698B (en) * | 2018-09-28 | 2020-04-28 | 中南大学 | 6XXX aluminum alloy suitable for automobile body and preparation process of automobile body plate |
CN109355533A (en) * | 2018-12-13 | 2019-02-19 | 徐州宁铝业科技有限公司 | A kind of fire resistant aluminum alloy and preparation method thereof |
CN110172653B (en) * | 2019-01-31 | 2022-02-18 | 苏州铭恒金属科技有限公司 | Homogenizing method for improving conductivity of aluminum alloy ingot and aluminum alloy ingot prepared by homogenizing method |
CN112122882A (en) * | 2019-06-25 | 2020-12-25 | 西南铝业(集团)有限责任公司 | Production process of pure aluminum alloy O-state plate |
CN111705243A (en) * | 2020-06-12 | 2020-09-25 | 包头常铝北方铝业有限责任公司 | Aluminum alloy strip for hollow glass aluminum parting strip and preparation method thereof |
CN111961928A (en) * | 2020-09-07 | 2020-11-20 | 四川三星新材料科技股份有限公司 | Production process method of high-silicon aluminum alloy section for automobile |
CN112626386B (en) * | 2020-11-04 | 2022-08-16 | 佛山科学技术学院 | High-strength corrosion-resistant Al-Mg-Si-Cu aluminum alloy and preparation method and application thereof |
CN113215451B (en) * | 2021-05-13 | 2022-04-22 | 中南大学 | High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof |
CN113564433B (en) * | 2021-08-10 | 2022-06-03 | 江苏亚太航空科技有限公司 | Corrosion-resistant 6082 aluminum alloy material and casting process thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4082578A (en) * | 1976-08-05 | 1978-04-04 | Aluminum Company Of America | Aluminum structural members for vehicles |
US4424084A (en) * | 1980-08-22 | 1984-01-03 | Reynolds Metals Company | Aluminum alloy |
FR2524908A1 (en) * | 1982-04-13 | 1983-10-14 | Pechiney Aluminium | PROCESS FOR THE PRODUCTION OF MATRIX OR FORGED ALUMINUM ALLOY PARTS |
US4711762A (en) * | 1982-09-22 | 1987-12-08 | Aluminum Company Of America | Aluminum base alloys of the A1-Cu-Mg-Zn type |
US4589932A (en) * | 1983-02-03 | 1986-05-20 | Aluminum Company Of America | Aluminum 6XXX alloy products of high strength and toughness having stable response to high temperature artificial aging treatments and method for producing |
US4614552A (en) * | 1983-10-06 | 1986-09-30 | Alcan International Limited | Aluminum alloy sheet product |
JPS6082643A (en) * | 1983-10-07 | 1985-05-10 | Showa Alum Corp | Corrosion resistant aluminum alloy having high strength and superior ductility |
FR2568590B1 (en) * | 1984-07-31 | 1987-02-27 | Cegedur | HIGH-STRENGTH TYPE A-SG ALUMINUM ALLOY FOR SPINNED OR DIE PRODUCTS |
JPH0570907A (en) * | 1991-04-30 | 1993-03-23 | Sumitomo Light Metal Ind Ltd | Manufacture of aluminum alloy material for forming |
FR2683828B1 (en) * | 1991-11-18 | 1994-08-26 | Cezus Cie Europ Zirconium | PROCESS FOR THE MANUFACTURE OF SHEETS WITH A HOMOGENEOUS STRUCTURE IN ZIRCALOY 2 OR ZIRCALOY 4. |
JPH06136478A (en) * | 1992-10-23 | 1994-05-17 | Kobe Steel Ltd | Baking hardening type al alloy sheet excellent in formability and its production |
US5616189A (en) * | 1993-07-28 | 1997-04-01 | Alcan International Limited | Aluminum alloys and process for making aluminum alloy sheet |
FR2710657B1 (en) * | 1993-09-28 | 1995-11-10 | Pechiney Rhenalu | Desensitization process for intercrystalline corrosion of Al alloys 2000 and 6000 series and corresponding products. |
US5503690A (en) * | 1994-03-30 | 1996-04-02 | Reynolds Metals Company | Method of extruding a 6000-series aluminum alloy and an extruded product therefrom |
-
1994
- 1994-10-25 FR FR9413047A patent/FR2726007B1/en not_active Expired - Fee Related
-
1995
- 1995-10-24 KR KR1019970702642A patent/KR970707314A/en not_active Application Discontinuation
- 1995-10-24 US US08/809,704 patent/US5858134A/en not_active Expired - Lifetime
- 1995-10-24 EP EP95936606A patent/EP0787217B1/en not_active Revoked
- 1995-10-24 CA CA002202184A patent/CA2202184A1/en not_active Abandoned
- 1995-10-24 JP JP8513700A patent/JPH10512924A/en active Pending
- 1995-10-24 DE DE69502508T patent/DE69502508T2/en not_active Revoked
- 1995-10-24 WO PCT/FR1995/001412 patent/WO1996012829A1/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902842B2 (en) † | 1996-05-22 | 2007-06-06 | Alcan Technology & Management AG | Method of producing a component |
EP2789707A1 (en) | 2013-04-08 | 2014-10-15 | Benteler Automobiltechnik GmbH | Method for producing a motor vehicle chassis component |
Also Published As
Publication number | Publication date |
---|---|
US5858134A (en) | 1999-01-12 |
DE69502508D1 (en) | 1998-06-18 |
DE69502508T2 (en) | 1998-09-10 |
FR2726007A1 (en) | 1996-04-26 |
CA2202184A1 (en) | 1996-05-02 |
KR970707314A (en) | 1997-12-01 |
JPH10512924A (en) | 1998-12-08 |
WO1996012829A1 (en) | 1996-05-02 |
EP0787217A1 (en) | 1997-08-06 |
FR2726007B1 (en) | 1996-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0787217B1 (en) | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE | |
EP2811042B1 (en) | ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME | |
EP1114877B1 (en) | Al-Cu-Mg alloy aircraft structural element | |
EP1170118B1 (en) | Aluminium alloy plated sheets for structural aircraft elements | |
US6994760B2 (en) | Method of producing a high strength balanced Al-Mg-Si alloy and a weldable product of that alloy | |
JP2018513270A (en) | High strength 7XXX aluminum alloy and manufacturing method thereof | |
EP1382698B1 (en) | Wrought product in Al-Cu-Mg alloy for aircraft structural element | |
FR2843754A1 (en) | Balanced aluminum-copper-magnesium-silicon alloy product for fuselage sheet or lower-wing sheet of aircraft, contains copper, silicon, magnesium, manganese, zirconium, chromium, iron, and aluminum and incidental elements and impurities | |
EP0162096B1 (en) | Aluminium alloys containing lithium, magnesium and copper | |
FR2900663A1 (en) | ALUMINUM COMPOSITE | |
FR2902442A1 (en) | ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY | |
EP1231290A1 (en) | Method for making a high strength, wrought AlZnMgCu alloy product | |
EP0756017B1 (en) | Aluminium-copper-magnesium alloy with high creep resistance | |
EP3526358B1 (en) | Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications | |
EP1544315B1 (en) | Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy | |
EP1143027B1 (en) | Process for making avionic structural elements from an Al-Si-Mg alloy | |
EP0227563B1 (en) | Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation | |
US3414406A (en) | Aluminium alloys and articles made therefrom | |
CA1333232C (en) | Alloy product containing li, which is resistant to corrosion under stress, and process for its preparation | |
FR2646172A1 (en) | AL-LI-CU-MG ALLOY HAS GOOD DEFORMABILITY TO COLD AND GOOD RESISTANCE TO DAMAGE | |
EP0375572A1 (en) | Aluminium alloy for cupping, containing silicon, magnesium and copper | |
CA3203686A1 (en) | Wrought products made of 2xxx alloy having an optimized corrosion resistance, and method for obtaining same | |
FR2807448A1 (en) | Aircraft fuselage structural elements production from a tempered rolled, spun or forged aluminum-silicon-magnesium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970421 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19971008 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19980513 |
|
REF | Corresponds to: |
Ref document number: 69502508 Country of ref document: DE Date of ref document: 19980618 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: HOOGOVENS ALUMINIUM WALZPRODUKTE GMBH Effective date: 19990211 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: HOOGOVENS ALUMINIUM WALZPRODUKTE GMBH Effective date: 19990211 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020916 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020918 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021014 Year of fee payment: 8 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
RDAC | Information related to revocation of patent modified |
Free format text: ORIGINAL CODE: 0009299REVO |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20030214 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 20030214 |
|
R27W | Patent revoked (corrected) |
Effective date: 20030224 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |