EP0902842B2 - Method of producing a component - Google Patents

Method of producing a component Download PDF

Info

Publication number
EP0902842B2
EP0902842B2 EP97920475A EP97920475A EP0902842B2 EP 0902842 B2 EP0902842 B2 EP 0902842B2 EP 97920475 A EP97920475 A EP 97920475A EP 97920475 A EP97920475 A EP 97920475A EP 0902842 B2 EP0902842 B2 EP 0902842B2
Authority
EP
European Patent Office
Prior art keywords
process according
alloy
max
component
alloy contains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97920475A
Other languages
German (de)
French (fr)
Other versions
EP0902842B1 (en
EP0902842A1 (en
Inventor
Pius Schwellinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8225612&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0902842(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to EP97920475A priority Critical patent/EP0902842B2/en
Publication of EP0902842A1 publication Critical patent/EP0902842A1/en
Application granted granted Critical
Publication of EP0902842B1 publication Critical patent/EP0902842B1/en
Publication of EP0902842B2 publication Critical patent/EP0902842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates to a method for producing a component according to the preamble of claim 1.
  • crash behavior is an increasingly important aspect in vehicle construction. This applies to road traffic as well as to rail traffic.
  • Road and rail vehicle manufacturers are increasingly considering dimensioning special components or even entire assemblies of the vehicle in such a way that they absorb as much energy as possible in the event of a collision in order to reduce the risk of injury to passengers.
  • the mechanical properties of the materials used and joining zones are of crucial importance.
  • the aim is to maximize absorption of energy before breakage. This can be achieved by a low ratio of yield strength to strength.
  • An important material feature is also a high elongation.
  • Joining zones, such as the weld seam, should differ as little as possible in their mechanical properties from the base material. With extruded profiles, a good elongation also in the transverse direction is of great importance.
  • the requirements for the finished component By design, for example, a certain level of strength, certain minimum values of elongation, corrosion resistance or other essential characteristics can be specified.
  • the aluminum materials that are today being processed into crash elements include, in particular, standard alloys of the AlMgSi type. Although alloys of this type bring good conditions for energy-absorbing parts in terms of their elongation and formability compared to other alloy systems such as AlZnMg, a further optimization of the properties is desirable.
  • the AA6005A alloy currently used in wagon construction has a number of problems in manufacturing, which are related to the tendency to recrystallize coarsely. With a coarse grain structure, it is difficult to keep the prescribed bending radii, which enhances the tendency to form grain boundary holes during welding. This leads to a high number of nonconformities in production. If this is to be avoided, it must be produced in such a way that the profile cross section has predominantly fiber structure. This is currently only possible with an alloy composition that leads to higher press forces and significantly lower press speeds. But this means that big productivity losses have to be accepted.
  • the invention has for its object to provide a material with particularly good deformability with good mechanical properties of the component.
  • the material is said to have a comparable or lower strength level with the AA6005A alloy but to provide greater manufacturing safety and higher productivity.
  • the alloy used is much less sensitive to quenching in terms of strength and elongation than the alloy AA6005A, and even with wall thicknesses of 6 mm, a fine grain still occurs throughout.
  • the alloy is basically suitable for use with large profiles.
  • the content limits for silicon and magnesium in% by weight are preferably set as follows: silicon 0.45 to 0.75, especially 0.55 to 0.65 magnesium 0.45 to 0.65, especially 0.50 to 0.60
  • silicon and magnesium preferably apply: silicon 0.45 to 0.60, especially 0.45 to 0.55 magnesium 0.40 to 0.60, especially 0.45 to 0.55
  • novel alloy composition for the production of components with high energy absorption capacity leads to a favorable microstructure of the component structure.
  • the smallest possible grain size for improving the deformation properties is achieved with the alloy composition according to the invention.
  • the special heat treatment gives the component particularly good properties with regard to energy absorption combined with good strength values.
  • the heat treatment which can also be combined with paint firing, especially in the automotive industry, is the generation of the overaged state, T72, which is achieved by annealing between 190 and 230 ° C. for an annealing time of 1 to 5 hours.
  • the components according to the invention are in the simplest case extruded profiles. However, it is also conceivable components that are finished, starting from an extruded profile as a preform, by hydroforming. According to a further variant of the invention, the component may also be a forged part.
  • a preferred use of the inventively manufactured component is seen as a safety part in vehicle construction.
  • the mechanical properties of the alloys used according to the invention were determined in a tensile test and on the basis of fatigue tests for the heat treatment conditions T6 (full cure) and T64 (partial cure).
  • This condition is set by a storage of 10 h at 160 ° C.
  • the heat treatment time is still below the maximum hardness, which is achieved at 160 ° C for about 20 h.
  • the characteristics of the tensile test can vary depending on the exact analysis, degree of deformation, profile thickness and cooling conditions. Based on previous experience, the following minimum values have been established: Profile thickness range 2 - 4 mm 4 - 8 mm Rp0.2 rm A5 Rp0 Rm A5 [MPa] [MPa] [%] [MPa] [MPa] [%] base material 230 275 10 230 270 8th Butt joint (MIG) 120 180 .. 115 165 ..
  • the typical values of the yield strength are around 240 MPa, the strength in the base material along 290 MPa, and the strains A5 by 12%. In the transverse direction, yield strength and strength are about the same. A5 drops to 6% from. All tested transverse samples contained profile seams and sample molds. In no case, a break was found in the immediate vicinity of the squeeze, which is due to the particularly fine grain in the press seam area due to the high degree of deformation. The hardness is in the range of 94 to 105 HB.
  • the characteristic values of the welded connection apply to MIG machine welding. In the specified thickness range, the characteristic values differ only slightly when using SG-AlMg4, 5Mn, SG-AlMg5 and SG-AlSi5 filler metals. Errors such as edge misalignment due to the problems of welding large profiles affect the results more.
  • the typical values of the processed weld joint are 130 MPa for Rp0.2, 210 MPa for Rm and 4% for A100. These are achieved in a test after about 30 days after welding. The cold curing in the heat affected zone is not completed after this time. In a test after about 90 days, a further increase of Rp0.2 is found by about 10 MPa, while the strength increases only slightly, and the strain remains constant within the measurement accuracy.
  • the value for the base material was determined on 3 mm thick sections. Under comparable conditions, AA6005A typically achieves values ⁇ 100 MPa. The values of the welded connection were determined on 4 mm thick samples.
  • This condition is achieved by aging for 8 h at 140 ° C.
  • the typical values of the strength in the basic material along are 255 MPa, the strains A5 by 22%. In the transverse direction, the strength drops slightly to 250 MPa. A5 drops to 12%. All tested transverse samples contain pressed seams. In no case was a break found in the immediate vicinity of the squeeze seam. The hardness is in the range of 74 to 85 HB.
  • the typical values of the processed weld joint are 130 MPa for Rp0.2, 210 MPa for Rm and 10% for A100. Such a high elongation is extraordinary. This has a very favorable effect in the event of a crash. Here, too, higher values for Rp0.2 are reached after about 90 days of storage at room temperature.
  • Position 1 is completely in the welding material, position 5 in the uninfluenced base material.
  • the behavior in the event of a crash depends essentially on the material properties, the shape and dimension of the crash element used.
  • a first prerequisite for the suitability of a material in a specific shape and dimension is a folding without premature breakage.
  • To test the crash behavior are sections of pipes or hollow profiles of rectangular cross-section, which are compressed.
  • the alloys A, B and C were compared in a second series of experiments, the alloys B, D and E with the following compositions.
  • the alloy C used In the upsetting tests of the first series of tests, the alloy C used always reached the highest values of absorbed energy in relation to the mass of the crash element. In this alloy, even in the T64 and T6 states, convolution without breakage and higher energy absorption was achieved with a thin tube than with T4.
  • the alloy recrystallizes in fine-grained pressing, leaving in the grains still a remnant of a deformation structure. This is the most important basis for the superior properties in many aspects compared to the AA6005A alloy.
  • the fine-grained recrystallization requires a sufficient degree of deformation with respect to time.
  • the alloy is easily weldable. In the case of butt joints from profile sections, which were worked out from large profiles and welded with SG-AlMg4.5Mn filler material, no significant grain boundary openings have been observed for wall thicknesses up to 6 mm.
  • the alloy is well suited for use in vehicle construction.
  • the characteristic values of the tensile test required for the base material and the welded joint are reliably achieved.
  • the alloy can be used equally well for small and large profiles. It is equally suitable for crash elements and components produced by hydroforming.
  • the press speed can generally be increased by more than 50% compared to AA6005A.
  • the variant partially cured T64 is characterized by a small decrease in the characteristic values of the welded connection compared to the base material.
  • the alloy has proven to be an alloy with a good property combination of strength, elongation, weldability and production safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Body Structure For Vehicles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Glass Compositions (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Conductive Materials (AREA)
  • Extrusion Of Metal (AREA)
  • Laminated Bodies (AREA)

Abstract

Building component is made of an alloy containing (in wt.%): 0.3-1.6 Si, 0.3-1.3 Mg, max. 0.5 Fe, max. 0.9 Cu, max. 0.5 Mn, 0.05-0.3 V, max. 0.3 Co, max. 0.3 Cr, max. 0.8 Ni, max. 0.3 Zr, max. 0.05 other alloying elements, and a balance of Al.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils nach dem Oberbegriff von Anspruch 1.The invention relates to a method for producing a component according to the preamble of claim 1.

Das Crash-Verhalten ist im Fahrzeugbau ein zunehmend wichtiger Aspekt. Dies gilt für den Strassenverkehr ebenso wie für den Schienenverkehr.The crash behavior is an increasingly important aspect in vehicle construction. This applies to road traffic as well as to rail traffic.

Hersteller von Strassen- und Schienenfahrzeugen gehen immer mehr dazu über, spezielle Bauelemente oder sogar ganze Baugruppen des Fahrzeugs so zu dimensionieren, dass diese bei einem Zusammenstoss möglichst viel Energie absorbieren, um damit das Verletzungsrisiko der Passagiere zu verringern.Road and rail vehicle manufacturers are increasingly considering dimensioning special components or even entire assemblies of the vehicle in such a way that they absorb as much energy as possible in the event of a collision in order to reduce the risk of injury to passengers.

Neben der konstruktiven Gestaltung dieser sogenannten Crash-Elemente sind die mechanischen Eigenschaften der eingesetzten Werkstoffe und Fügezonen von ausschlaggebender Bedeutung. Angestrebt wird eine möglichst grosse Absorption von Energie vor dem Bruch. Dies kann durch ein niedriges Verhältnis von Streckgrenze zu Festigkeit erreicht werden. Ein wichtiges Werkstoffmerkmal ist auch eine hohe Dehnung. Fügezonen, wie die Schweissnaht, sollten sich in ihren mechanischen Eigenschaften möglichst wenig vom Grundmaterial unterscheiden. Bei Strangpressprofilen ist zudem eine gute Dehnung auch in Querrichtung von grosser Bedeutung.In addition to the structural design of these so-called crash elements, the mechanical properties of the materials used and joining zones are of crucial importance. The aim is to maximize absorption of energy before breakage. This can be achieved by a low ratio of yield strength to strength. An important material feature is also a high elongation. Joining zones, such as the weld seam, should differ as little as possible in their mechanical properties from the base material. With extruded profiles, a good elongation also in the transverse direction is of great importance.

Zu beachten sind auch die Anforderungen an das fertige Bauteil. Von der Konstruktion her können beispielsweise ein bestimmtes Festigkeitsniveau, bestimmte Mindestwerte der Dehnung, Korrosionsbeständigkeit oder andere wesentliche Kennwerte vorgegeben sein.Also note the requirements for the finished component. By design, for example, a certain level of strength, certain minimum values of elongation, corrosion resistance or other essential characteristics can be specified.

Zu den Aluminiumwerkstoffen, die heute zu Crash-Elementen verarbeitet werden, gehören insbesondere Standardlegierungen vom Typ AlMgSi. Obschon Legierungen dieses Typs gegenüber andern Legierungssystemen wie beispielsweise AlZnMg hinsichtlich ihrer Dehnung und Umformbarkeit gute Voraussetzungen für Energie absorbierende Teile mitbringen, ist eine weitere Optimierung der Eigenschaften wünschenswert.The aluminum materials that are today being processed into crash elements include, in particular, standard alloys of the AlMgSi type. Although alloys of this type bring good conditions for energy-absorbing parts in terms of their elongation and formability compared to other alloy systems such as AlZnMg, a further optimization of the properties is desirable.

Die zur Zeit im Waggonbau eingesetzte Legierung AA6005A bringt in der Fertigung eine Reihe von Problemen mit sich, die mit der Neigung, grobkörnig zu rekristallisieren, zusammenhängen. Bei grober Kornstruktur ist es schwierig, die vorgeschriebenen Biegeradien einzuhalten, wodurch die Neigung zur Bildung von Korngrenzenöffnungen beim Schweissen verstärkt wird. Dies führt zu einer hohen Zahl von Nonkonformitäten bei der Produktion. Will man dies vermeiden, so muss so produziert werden, dass der Profilquerschnitt überwiegend Fasergefüge aufweist. Dies ist derzeit nur mit einer Legierungszusammensetzung möglich, die zu höheren Presskräften und deutlich niedrigeren Pressgeschwindigkeiten führt. Damit müssen aber grosse Produktivitätsverluste in Kauf genommen werden.The AA6005A alloy currently used in wagon construction has a number of problems in manufacturing, which are related to the tendency to recrystallize coarsely. With a coarse grain structure, it is difficult to keep the prescribed bending radii, which enhances the tendency to form grain boundary holes during welding. This leads to a high number of nonconformities in production. If this is to be avoided, it must be produced in such a way that the profile cross section has predominantly fiber structure. This is currently only possible with an alloy composition that leads to higher press forces and significantly lower press speeds. But this means that big productivity losses have to be accepted.

Im Automobilbau als Sicherheitsteile eingesetzte Bauteile müssen oft nicht die beim Waggonbau vorgeschriebenen hohen Festigkeitswerte erreichen. Andererseits weisen die beim Automobilbau eingesetzten stranggepressten Bauteile oft Profilwandstärken in der Grössenordnung von 1mm oder sogar weniger auf. Diese geringen Wandstärken können aus Legierungen mit zu hoher Festigkeit nicht oder nicht mehr wirtschaftlich verpresst werden.Components used in automotive engineering as safety parts often do not have to achieve the high strength values prescribed for wagon construction. On the other hand, the extruded components used in automotive often have profile wall thicknesses of the order of 1mm or even less. These low wall thicknesses can not or no longer economically pressed from alloys with too high strength.

Eine Legierung nach einem der Merkmale von Anspruch 1 ist in der DE-A- 32 43 371 und in der US-A-5 527 404 offenbart. Aus Aluminium -Taschenbuch (1983), S. 141-143 ist der Verlauf der Warmaushärtung bei AlMgSi, bekannt.An alloy according to any one of the features of claim 1 is disclosed in DE-A-32 43 371 and in US-A-5 527 404. From aluminum paperback (1983), pp 141-143, the course of the hot curing in AlMgSi known.

Der Erfindung liegt die Aufgabe zugrunde, einen Werkstoff mit besonders guter Verformbarkeit bei guten mechanischen Eigenschaften des Bauteils bereitzustellen. Der Werkstoff soll ein mit der Legierung AA6005A vergleichbares oder geringeres Festigkeitsniveau aufweisen, jedoch eine höhere Fertigungssicherheit und eine höhere Produktivität gewährleisten.The invention has for its object to provide a material with particularly good deformability with good mechanical properties of the component. The material is said to have a comparable or lower strength level with the AA6005A alloy but to provide greater manufacturing safety and higher productivity.

Zur erfindungsgemässen Lösung der Aufgabe führt ein Verfahren mit den Merkmalen von Anspruch 1.For the inventive solution of the problem leads a method having the features of claim 1.

Die eingesetzte Legierung ist in Bezug auf Festigkeit und Dehnung wesentlich weniger abschreckempfindlich als die Legierung AA6005A, und schon bei Wanddicken von 6 mm tritt immer noch durchgehend ein feines Korn auf. Damit ist die Legierung grundsätzlich für den Einsatz bei Grossprofilen geeignet.The alloy used is much less sensitive to quenching in terms of strength and elongation than the alloy AA6005A, and even with wall thicknesses of 6 mm, a fine grain still occurs throughout. Thus, the alloy is basically suitable for use with large profiles.

Für Bauteile mit hohen Festigkeitsanforderungen, wie sie beispielsweise im Waggonbau eingesetzt werden, werden die Gehaltsgrenzen für Silizium und Magnesium in Gew.-% bevorzugt wie folgt festgelegt: Silizium 0.45 bis 0.75, insbesondere 0.55 bis 0.65 Magnesium 0.45 bis 0.65, insbesondere 0.50 bis 0.60 For components with high strength requirements, as used for example in wagon construction, the content limits for silicon and magnesium in% by weight are preferably set as follows: silicon 0.45 to 0.75, especially 0.55 to 0.65 magnesium 0.45 to 0.65, especially 0.50 to 0.60

Für Bauteile mit geringeren Anforderungen an die Festigkeit, wie sie beispielsweise im Automobilbau als stranggepresste Profile mit teilweise geringen Wandstärken von 1mm oder weniger eingesetzt werden, gelten bevorzugt die folgenden Gehaltsbereicht in Gew. -% für Silizium und Magnesium: Silizium 0.45 bis 0.60, insbesondere 0.45 bis 0.55 Magnesium 0.40 bis 0.60, insbesondere 0.45 bis 0.55 For components with lower strength requirements, such as those used in automotive engineering as extruded profiles with partially small wall thicknesses of 1 mm or less, the following content ranges in wt.% For silicon and magnesium preferably apply: silicon 0.45 to 0.60, especially 0.45 to 0.55 magnesium 0.40 to 0.60, especially 0.45 to 0.55

Für die neben Silizium und Magnesium in der erfindungsgemässen Legierung weiter enthaltenen Elemente gelten die folgenden Vorzugsbereiche in Gew.-%: Eisen 0.18 bis 0.25 Kupfer 0.08 bis 0.16 Mangan 0.05 bis 0.10 Vanadium 0.06 bis 0.15 Chrom max. 0.08, vorzugsweise max. 0.01 Titan max. 0.05 For in addition to silicon and magnesium in the inventive alloy further contained elements the following preferential ranges apply in% by weight: iron 0.18 to 0.25 copper 0.08 to 0.16 manganese 0.05 to 0.10 vanadium 0.06 to 0.15 chrome Max. 0.08, preferably max. 12:01 titanium Max. 12:05

Die Verwendung der erfindungsgemässen Legierungszusammensetzung zur Herstellung von Bauteilen mit hohem Energieabsorptionsvermögen führt zu einer günstigen Mikrostruktur des Bauteilgefüges. Die zur Verbesserung der Verformungseigenschaften möglichst geringe Korngrösse wird mit der erfindungsgemässen Legierungszusammensetzung erreicht.The use of the novel alloy composition for the production of components with high energy absorption capacity leads to a favorable microstructure of the component structure. The smallest possible grain size for improving the deformation properties is achieved with the alloy composition according to the invention.

Die spezielle Wärmebehandlung verleiht dem Bauteil besonders gute Eigenschaften bezüglich Energieabsorption bei gleichzeitig guten Festigkeitswerten.The special heat treatment gives the component particularly good properties with regard to energy absorption combined with good strength values.

Die Wärmebehandlung, die insbesondere in der Automobilindustrie auch mit einer Lackeinbrennung kombiniert werden kann, besteht in der Erzeugung des überalterten Zustandes, T72, der durch eine Glühung zwischen 190 und 230°C während einer Glühdauer von 1 bis 5 Stunden erreicht wird.The heat treatment, which can also be combined with paint firing, especially in the automotive industry, is the generation of the overaged state, T72, which is achieved by annealing between 190 and 230 ° C. for an annealing time of 1 to 5 hours.

Die erfindungsgemäss hergestellen Bauteile sind im einfachsten Fall Strangpressprofile. Denkbar sind jedoch auch Bauteile, die, ausgegehend von einem stranggepressten Profil als Vorform, durch Innenhochdruckumformen endgefertigt sind. Nach einer weiteren Variante der Erfindung kann das Bauteil auch ein Schmiedeteil sein.The components according to the invention are in the simplest case extruded profiles. However, it is also conceivable components that are finished, starting from an extruded profile as a preform, by hydroforming. According to a further variant of the invention, the component may also be a forged part.

Eine bevorzugte Verwendung des erfindungsgemäss hergestellen Bauteils wird als Sicherheitsteil im Fahrzeugbau gesehen.A preferred use of the inventively manufactured component is seen as a safety part in vehicle construction.

Die Vorteile der zur erfindungsgemässen Herstellung von Crash-Elementen eingesetzten Legierungen sowie der speziellen Wärmebehandlung der Ueberalterung werden durch die nachfolgende Darlegung von Versuchsergebnissen weiter untermauert.The advantages of the alloys used for the production of crash elements according to the invention as well as the special heat treatment of the aging are further substantiated by the following description of test results.

Pressversuche mit der erfindungsgemässen Legierung mit hohem Festigkeitsniveau (Legierung C, siehe unten) haben gezeigt, dass die Pressgeschwindigkeit im Vergleich zu AA6005A deutlich erhöht werden kann. Bei einem Betriebsversuch mit einer presstechnisch schwierigen Bodenplatte für einen Eisenbahnwaggon konnte die Pressgeschwindigkeit beispielsweise um 70% gesteigert werden, ohne dass die Legierung Kantenrisse zeigte, wobei die Begrenzung durch die maximal zulässige Presskraft der Presse gegeben war. Eine durchschnittliche Steigerung der Pressgeschwindigkeit von 50% mit der erfindungsgemässen Legierung im Vergleich zur Legierung AA6005A darf als realistisch angenommen werden.Pressing tests with the high-strength alloy according to the invention (alloy C, see below) have shown that the pressing speed can be significantly increased compared to AA6005A. In an operating test with a press technically difficult base plate for a railroad car, for example, the pressing speed could be increased by 70% without the alloy showing edge cracks, the limitation being given by the maximum permissible pressing force of the press. An average increase in the press speed of 50% with the alloy according to the invention compared to the alloy AA6005A may be assumed to be realistic.

Die mechanischen Eigenschaften der erfindungsgemäss eingesetzten Legierungen wurden im Zugversuch sowie anhand von Ermüdungsprüfungen für die Wärmebehandlungszustände T6 (Vollaushärtung)und T64(Teilaushärtung)ermittelt.The mechanical properties of the alloys used according to the invention were determined in a tensile test and on the basis of fatigue tests for the heat treatment conditions T6 (full cure) and T64 (partial cure).

Wärmebehandlungszustand T6Heat treatment state T6

Dieser Zustand wird durch eine Auslagerung von 10 h bei 160°C eingestellt. Die Wärmebehandlungsdauer liegt noch unterhalb des Härtemaximums, das bei etwa 20 h bei 160°C erreicht wird.This condition is set by a storage of 10 h at 160 ° C. The heat treatment time is still below the maximum hardness, which is achieved at 160 ° C for about 20 h.

Die Kennwerte des Zugversuchs können je nach genauer Analyse, Umformgrad, Profildicke und Abkühlbedingungen schwanken. Den bisherigen Erfahrungen entsprechend wurden folgende Mindestwerte festgelegt: Profildickenbereich 2 - 4 mm 4 - 8 mm Rp0.2 Rm A5 Rp0 Rm A5 [MPa] [MPa] [%] [MPa] [MPa] [%] Grundmaterial 230 275 10 230 270 8 Stumpfstoss (MIG) 120 180 .. 115 165 .. The characteristics of the tensile test can vary depending on the exact analysis, degree of deformation, profile thickness and cooling conditions. Based on previous experience, the following minimum values have been established: Profile thickness range 2 - 4 mm 4 - 8 mm Rp0.2 rm A5 Rp0 Rm A5 [MPa] [MPa] [%] [MPa] [MPa] [%] base material 230 275 10 230 270 8th Butt joint (MIG) 120 180 .. 115 165 ..

Die typischen Werte der Streckgrenze liegen um 240 MPa, die der Festigkeit im Grundmaterial längs um 290 MPa, die Dehnungen A5 um 12%. In Querrichtung sind Streckgrenze und Festigkeit etwa gleich hoch. A5 fällt auf 6% ab. Bei allen geprüften Querproben waren durch Profil- und Probenform bedingte Pressnähte enthalten. In keinem Fall wurde ein Bruch in unmittelbarer Nähe der Pressnaht festgestellt, was auf das infolge des hohen Umformgrades besonders feine Korn im Pressnahtbereich zurückzuführen ist. Die Härte liegt im Bereich von 94 bis 105 HB.The typical values of the yield strength are around 240 MPa, the strength in the base material along 290 MPa, and the strains A5 by 12%. In the transverse direction, yield strength and strength are about the same. A5 drops to 6% from. All tested transverse samples contained profile seams and sample molds. In no case, a break was found in the immediate vicinity of the squeeze, which is due to the particularly fine grain in the press seam area due to the high degree of deformation. The hardness is in the range of 94 to 105 HB.

Die Kennwerte der Schweissverbindung gelten für MIG-Maschinenschweissungen. Im angegebenen Dickenbereich unterscheiden sich die Kennwerte bei Verwendung von SG-AlMg4, 5Mn-, SG-AlMg5- und SG-AlSi5-Zusatzwerkstoffen nur wenig. Fehler, wie beispielsweise Kantenversatz, die auf die Probleme beim Schweissen von Grossprofilen zurückzuführen sind, beeinflussen die Ergebnisse stärker. Die typischen Werte der abgearbeiteten Schweissverbindung liegen für Rp0.2 bei 130 MPa, für Rm bei 210 MPa und für A100 bei 4%. Diese werden bei einer Prüfung nach etwa 30 Tagen nach dem Schweissen erreicht. Die Kaltaushärtung in der Wärmeeinflusszone ist nach dieser Zeit noch nicht abgeschlossen. Bei einer Prüfung nach etwa 90 Tagen wird eine weitere Erhöhung von Rp0.2 um etwa 10 MPa festgestellt, während die Festigkeit sich nur geringfügig erhöht, und die Dehnung im Rahmen der Messgenauigkeit konstant bleibt.The characteristic values of the welded connection apply to MIG machine welding. In the specified thickness range, the characteristic values differ only slightly when using SG-AlMg4, 5Mn, SG-AlMg5 and SG-AlSi5 filler metals. Errors such as edge misalignment due to the problems of welding large profiles affect the results more. The typical values of the processed weld joint are 130 MPa for Rp0.2, 210 MPa for Rm and 4% for A100. These are achieved in a test after about 30 days after welding. The cold curing in the heat affected zone is not completed after this time. In a test after about 90 days, a further increase of Rp0.2 is found by about 10 MPa, while the strength increases only slightly, and the strain remains constant within the measurement accuracy.

Bei der Ermüdungsprüfung wurden die folgenden Werte ermittelt: N*) = 104 > 107 Δδ Δδ [MPa] [MPa] Grundmaterial (längs) 110 Stumpfstoss (MIG) 90 45 mit Nahtüberhöhung 95 55 ohne Nachtüberhöhung *) N = Anzahl Lastwechsel In the fatigue test, the following values were determined: N *) = 10 4 > 10 7 Δδ Δδ [MPa] [MPa] Basic material (longitudinal) 110 Butt joint (MIG) 90 45 with seam exaggeration 95 55 without night elevation *) N = number of load changes

Der Wert für das Grundmaterial wurde an 3 mm dicken Abschnitten ermittelt. Bei vergleichbaren Bedingungen werden für AA6005A in der Regel Werte < 100 MPa erreicht. Die Werte der Schweissverbindung wurden an 4 mm dicken Proben ermittelt.The value for the base material was determined on 3 mm thick sections. Under comparable conditions, AA6005A typically achieves values <100 MPa. The values of the welded connection were determined on 4 mm thick samples.

Wärmebehandlungszustand T64Heat treatment condition T64

Dieser Zustand wird durch eine Auslagerung von 8 h bei 140°C erreicht.This condition is achieved by aging for 8 h at 140 ° C.

Als Kennwerte des Zugversuchs im teilausgehärteten Zustand T64 wurde zur Definition der Crash-Toleranz festgelegt: Profildickenbereich 2 - 4 mm Rp0.2 Rm A5 [MPa] [MPa] [%] Grundmaterial 140 - 180 >220 >18 Stumpfstoss (MIG) >120 >180 >5(A100) The characteristic values of the tensile test in the partially cured state T64 were defined for the definition of the crash tolerance: Profile thickness range 2 - 4 mm Rp0.2 rm A5 [MPa] [MPa] [%] base material 140 - 180 > 220 > 18 Butt joint (MIG) > 120 > 180 > 5 (A100)

Die typischen Werte der Festigkeit im Grundmaterial längs liegen bei 255 MPa, die Dehnungen A5 um 22%. In Querrichtung fällt die Festigkeit leicht ab auf 250 MPa. A5 fällt auf 12% ab. Bei allen geprüften Querproben sind Pressnähte enthalten. In keinem Fall wurde ein Bruch in unmittelbarer Nähe der Pressnaht festgestellt. Die Härte liegt im Bereich von 74 bis 85 HB.The typical values of the strength in the basic material along are 255 MPa, the strains A5 by 22%. In the transverse direction, the strength drops slightly to 250 MPa. A5 drops to 12%. All tested transverse samples contain pressed seams. In no case was a break found in the immediate vicinity of the squeeze seam. The hardness is in the range of 74 to 85 HB.

Die typischen Werte der abgearbeiteten Schweissverbindung liegen für Rp0.2 bei 130 MPa, für Rm bei 210 MPa und für A100 bei 10%. Eine so hohe Dehnung ist aussergewöhnlich. Dies wirkt sich im Crashfall sehr günstig aus. Auch hier werden nach etwa 90 Tagen Lagerung bei Raumtemperatur noch höhere Werte für Rp0.2 erreicht.The typical values of the processed weld joint are 130 MPa for Rp0.2, 210 MPa for Rm and 10% for A100. Such a high elongation is extraordinary. This has a very favorable effect in the event of a crash. Here, too, higher values for Rp0.2 are reached after about 90 days of storage at room temperature.

Zur Dokumentation der mechanischen Eigenschaften im Schweissnahtbereich wurden aus 6 mm dicken geschweissten Profilabschnitten parallel zur Schweissrichtung 2 mm dicke Zugproben in definierten Abständen (Positionen) von der Schweissnahtmitte herausgearbeitet und geprüft (je Position 4 Zugproben). Die Ergebnisse sind in den nachstehenden Tabellen zusammengestellt.To document the mechanical properties in the weld seam area, 2 mm thick tensile specimens were machined from 6 mm thick welded profile sections parallel to the welding direction at defined distances (positions) from the weld seam center (4 tensile specimens per position). The results are summarized in the tables below.

Zugversuch parallel zur Schweissnaht in der WärmeeinflusszoneTensile test parallel to the weld in the heat affected zone SG-AlMg5-ZusatzwerkstoffSG-AlMg5-filler Positionposition Rp0.2Rp0.2 Rmrm AgAg A5A5 mmmm MPaMPa MPaMPa %% %% 11 00 108108 214214 17.217.2 20.920.9 22 99 117117 221221 21.321.3 27.727.7 33 1515 118118 181181 15.515.5 22.722.7 44 2727 136136 210210 16.416.4 21.321.3 55 8484 159159 245245 17.417.4 19.519.5

Zugversuch parallel zur Schweissnaht in der WärmeeinflusszoneTensile test parallel to the weld in the heat affected zone SG-AlSi5-ZusatzwerkstoffSG-AlSi5-filler Positionposition Rp0.2Rp0.2 Rmrm AgAg A5A5 mmmm MPaMPa MPaMPa %% %% 11 00 106106 205205 14.714.7 16.216.2 22 99 111111 195195 20.720.7 25.725.7 33 1515 140140 207207 17.017.0 22.122.1 44 2727 154154 238238 19.619.6 21.921.9 55 8484 159159 240240 17.317.3 18.618.6

Die Positionen sind in Abstand zur Mitte der Schweissnaht angegeben. Position 1 liegt ganz im Schweissgut, Position 5 im unbeeinflussten Grundmaterial.The positions are given at a distance from the center of the weld. Position 1 is completely in the welding material, position 5 in the uninfluenced base material.

Die Ergebnisse zeigen, dass die Festigkeit innerhalb der Schweissnaht (Schweissgut und Wärmeeinflusszone) im Vergleich zum Grundmaterial relativ wenig abfällt, und dass im ganzen Bereich eine hohe Duktilität vorhanden ist.The results show that the strength within the weld (weld metal and heat-affected zone) is relatively low compared to the base material, and that a high ductility is present throughout the area.

Die Ermittlungsprüfungen haben zu folgendem Ergebnis geführt: Ermüdung N*) = 104 > 107 Δδ Δδ [MPa] [MPa] Grundmaterial (längs) 95 Stumpfstoss (MIG) 85 45 mit Nahtüberhöhung 95 50 ohne Nachtüberhöhung *) N = Anzahl Lastwechsel Investigations have led to the following result: fatigue N *) = 10 4 > 10 7 Δδ Δδ [MPa] [MPa] Basic material (longitudinal) 95 Butt joint (MIG) 85 45 with seam exaggeration 95 50 without night elevation *) N = number of load changes

Die Ermüdungsprüfungen wurden an Profilen aus der gleichen Produktion wie beim Zustand T6 durchgeführt.The fatigue tests were carried out on profiles from the same production as in condition T6.

Die Streuung der mechanischen Kennwerte zwischen Stranganfang und -ende des stranggepressten Profils sind bei der erfindungsgemässen Legierung geringer als bei der Legierung AA6005A. Dies ist auf das gleichmässigere Gefüge und die geringere Abschreckempfindlichkeit zurückzuführen. Als Beispiel seien die Werte eines Betriebsversuchs über die Auspresslänge aufgeführt: Zugversuch Grundmaterial 160°C 10 h längs n = 6 Rp0.2 Rm Ag A5 Mittelwert 241 291 10.8 12.9 Standardabweichung 1.4 2.1 0.3 0.5 Minimum 239 288 10.4 12.3 Zugversuch Grundmaterial 140°C 8 h längs n = 6 Rp0.2 Rm Ag A5 Mittelwert 165 255 18.6 23.3 Standardabweichung 0.5 0.3 0.4 0.4 Minimum 164 255 17.9 22.9 The scattering of the mechanical characteristics between strand start and end of the extruded profile are lower in the alloy according to the invention than in the alloy AA6005A. This is due to the more uniform structure and the lower quenching sensitivity. As an example, the values of an operating test on the extrusion length are listed: Tensile test base material 160 ° C 10 h along n = 6 Rp0.2 rm Ag A5 Average 241 291 10.8 12.9 standard deviation 1.4 2.1 0.3 0.5 minimum 239 288 10.4 12.3 Tensile test base material 140 ° C 8 h along n = 6 Rp0.2 rm Ag A5 Average 165 255 18.6 23.3 standard deviation 0.5 0.3 0.4 0.4 minimum 164 255 17.9 22.9

Crashverhaltencrashworthiness

Das Verhalten im Crashfall hängt wesentlich von den Materialeigenschaften, von Gestalt und Dimension des verwendeten Crash-Elements ab. Eine erste Voraussetzung für die Eignung eines Werkstoffs in einer bestimmten Gestalt und Dimension ist eine Faltung ohne frühzeitigen Bruch. Zur Prüfung des Crashverhaltens dienen Abschnitte von Rohren oder von Hohlprofilen rechteckigen Querschnittes, die gestaucht werden. In einer ersten Versuchsreihe wurden die Legierungen A, B und C, in einer zweiten Versuchsreihe die Legierungen B, D und E mit den nachstehenden Zusammensetzungen verglichen. Si Fe Cu Mn Mg Cr Zn V Ti A 0.45 0.21 0.02 0.02 0.43 -- 0.03 -- 0.02 B 0.54 0.21 -- 0.08 0.59 -- -- -- 0.01 C 0.62 0.26 0.16 0.07 0.56 -- -- 0.10 0.01 D 0.52 0.21 -- 0.08 0.57 -- -- 0.09 0.01 E 0.51 0.21 0.11 0.06 0.49 -- -- 0.10 0.01 The behavior in the event of a crash depends essentially on the material properties, the shape and dimension of the crash element used. A first prerequisite for the suitability of a material in a specific shape and dimension is a folding without premature breakage. To test the crash behavior are sections of pipes or hollow profiles of rectangular cross-section, which are compressed. In a first series of experiments, the alloys A, B and C were compared in a second series of experiments, the alloys B, D and E with the following compositions. Si Fe Cu Mn mg Cr Zn V Ti A 12:45 12:21 12:02 12:02 12:43 - 12:03 - 12:02 B 12:54 12:21 - 12:08 12:59 - - - 12:01 C 0.62 12:26 12:16 12:07 12:56 - - 12:10 12:01 D 12:52 12:21 - 12:08 12:57 - - 12:09 12:01 e 12:51 12:21 12:11 12:06 12:49 - - 12:10 12:01

Bei den durchgeführten Stauchversuchen der ersten Versuchsreihe erreichte immer die eingesetzte Legierung C die höchsten Werte der absorbierten Energie bezogen auf die Masse des Crash-Elementes. Bei dieser Legierung wurde auch im Zustand T64 und T6 bei einem dünnen Rohr noch eine Faltung ohne Bruch und eine höhere Energieabsorption als im Zustand T4 erreicht.In the upsetting tests of the first series of tests, the alloy C used always reached the highest values of absorbed energy in relation to the mass of the crash element. In this alloy, even in the T64 and T6 states, convolution without breakage and higher energy absorption was achieved with a thin tube than with T4.

Bei den an rechteckförmigen Hohlprofilen mit einem Querschnitt von 56 x 65mm, einer Länge von 300mm sowie einer Dicke von 1mm durchgeführten Stauchversuchen der zweiten Versuchsreihe erreichten immer die eingesetzten Legierungen D und E die höchsten Werte der absorbierten Energie bezogen auf die Masse des Crash-Elementes. In den angegebenen Beispielen wurde der Zustand T72 mit einer Wärmebehandlung von 5 Stunden bei 205°C, der Zustand T6 durch eine Glühung von 10 Stunden bei 160°C erreicht.In the case of square ups with a cross section of 56 x 65 mm, a length of 300 mm and a thickness of 1 mm, upsetting tests of the second series always achieved the used alloys D and E the highest values of the absorbed energy relative to the mass of the crash element. In the examples given, the condition T72 was achieved with a heat treatment of 5 hours at 205 ° C., the condition T6 by annealing for 10 hours at 160 ° C.

Die Ergebnisse der Stauchversuche der beiden Versuchsreihen sind in den nachstehenden Tabellen zusammengestellt. Crash - Test an Rohrelementen Leg. Zustand Durchm. Dicke Art der Absorbierte Faltung*) Energie/Masse [mm] [mm] [kJ/kg] A T4 92 1.5 as 14.4 B T4 92 1.5 as 17.8 C T4 92 1.5 as 22.1 C T64 92 1.5 as 25 C T6 92 1.5 as 25.7 A T4 70 5 rs 52 B T4 70 5 rs 47 C T4 70 5 rs 58 *) as = asymmetrisch mit Knotenpunkten
rs = ringsymmetrisch
Crash - Test an rechteckförmigen Hohlprofilelementen Leg. Kühlung an der Presse Absorbierte Energie/Masse [kJ/kg] T72 T6 B Gebläse 14.6 17.6 D Gebläse 19.0 18.8 E Gebläse 20.9 20.0 B Wassersprühung 19.1 16.8 D Wassersprühung 19.8 18.2 E Wassersprühung 21.6 18.2
The results of the compression tests of the two test series are summarized in the following tables. Crash test on tubular elements Leg. Status Dia. thickness Type of absorbed Folding*) Energy / mass [Mm] [Mm] [KJ / kg] A T4 92 1.5 as 14.4 B T4 92 1.5 as 17.8 C T4 92 1.5 as 22.1 C T64 92 1.5 as 25 C T6 92 1.5 as 25.7 A T4 70 5 rs 52 B T4 70 5 rs 47 C T4 70 5 rs 58 *) as = asymmetric with nodes
rs = all-round
Crash test on rectangular hollow profile elements Leg. Cooling at the press Absorbed energy / mass [kJ / kg] T72 T6 B fan 14.6 17.6 D fan 19.0 18.8 e fan 20.9 20.0 B water spray 19.1 16.8 D water spray 19.8 18.2 e water spray 21.6 18.2

Gefügestructure

Die Legierung rekristallisiert beim Pressen feinkörnig, wobei in den Körnern noch ein Rest einer Verformungsstruktur verbleibt. Dies ist die wichtigste Grundlage für die unter vielen Aspekten besseren Eigenschaften im Vergleich zur Legierung AA6005A. Die feinkörnige Rekristallisation erfordert einen ausreichenden Umformgrad bezogen auf die Zeit.The alloy recrystallizes in fine-grained pressing, leaving in the grains still a remnant of a deformation structure. This is the most important basis for the superior properties in many aspects compared to the AA6005A alloy. The fine-grained recrystallization requires a sufficient degree of deformation with respect to time.

Schweissverhaltenwelding behavior

Die Legierung ist gut schweissbar. Bei Stumpfstössen aus Profilabschnitten, die aus Grossprofilen herausgearbeitet und mit SG-AlMg4,5Mn-Zusatzwerkstoff geschweisst wurden, sind bei Wanddicken bis 6 mm nie signifikante Korngrenzenöffnungen beobachtet worden.The alloy is easily weldable. In the case of butt joints from profile sections, which were worked out from large profiles and welded with SG-AlMg4.5Mn filler material, no significant grain boundary openings have been observed for wall thicknesses up to 6 mm.

Korrosioncorrosion

Es wurden vergleichende Korrosionsuntersuchungen an Legierung B T6, AA6005A T6 und an der Legierung C T6 und T64 durchgeführt. Ein RID-Test wurde am Grundmaterial, der Salzsprühtest an geschweissten Probenabschnitten durchgeführt. Beim RID-Test (24 h in einer Lösung von 3% NaCl + 0.5% HCl bei Raumtemperatur) zeigte sich eine klare Differenzierung: Angegriffen wurde die Legierung AA6005A bis etwa 250 µm Tiefe. Die übrigen Legierungen und Zustände zeigten nur vereinzelt Ansätze von interkristalliner Korrosion. Im Salzsprühtest nach DIN 50021 SS (5% NaCl-Lösung bei 35+/-2°C) zeigte sich nach 1000 h noch keine Differenzierung zwischen den Legierungen und Zuständen. Eine besondere Korrosionsanfälligkeit einer der Werkstoffe kann aus den durchgeführten Versuchen nicht abgeleitet werden.Comparative corrosion tests were carried out on alloy B T6, AA6005A T6 and on alloy C T6 and T64. An RID test was performed on the base material, the salt spray test on welded sample sections. The RID test (24 h in a solution of 3% NaCl + 0.5% HCl at room temperature) revealed a clear differentiation: Alloy AA6005A was attacked down to a depth of about 250 μm. The other alloys and states showed only occasional approaches of intercrystalline corrosion. The salt spray test according to DIN 50021 SS (5% NaCl solution at 35 +/- 2 ° C) showed no differentiation between the alloys and states after 1000 h. A special susceptibility to corrosion of one of the materials can not be derived from the experiments carried out.

SchlussfolgerungenConclusions

Die Legierung ist gut geeignet für den Einsatz im Fahrzeugbau. Die für das Grundmaterial und die Schweissverbindung geforderten Kennwerte des Zugversuchs werden sicher erreicht. Die Legierung ist für kleine und für grosse Profile in gleicher Weise einsetzbar. Sie ist für Crash-Elemente und für Bauteile, die durch Innenhochdruckumformen hergestellt werden, gleichermassen geeignet.The alloy is well suited for use in vehicle construction. The characteristic values of the tensile test required for the base material and the welded joint are reliably achieved. The alloy can be used equally well for small and large profiles. It is equally suitable for crash elements and components produced by hydroforming.

Die Produktionssicherheit ist aufgrund der geringeren Abschreckempfindlichkeit und der feinkörnigen Rekristallisation der Legierung wesentlich besser als bei der Legierung AA6005A.Due to the lower quench sensitivity and the fine-grained recrystallization of the alloy, the production reliability is considerably better than with the alloy AA6005A.

Die Pressgeschwindigkeit kann im Vergleich zu AA6005A generell um mehr als 50% erhöht werden.The press speed can generally be increased by more than 50% compared to AA6005A.

Pressnähte wirken sich nicht negativ auf die mechanischen Eigenschaften aus.Pressed seams do not have a negative effect on the mechanical properties.

Beim Schweissen mit SG-AlMg-Zusatzwerkstoffen werden im Dickenbereich, in dem die Legierung feinkörnig rekristallisiert, keine Korngrenzenöffnungen einer Grösse gebildet, die einen signifikanten Einfluss auf die mechanischen Eigenschaften der Schweissverbindung ausüben, wenn die Erstarrungsschrumpfung nicht extrem behindert wird. Dies wirkt sich in einer guten Dehnbarkeit aus. Insbesondere die Variante teilausgehärtet T64 zeichnet sich durch einen geringen Abfall der Kennwerte der Schweissverbindung gegenüber dem Grundmaterial aus.When welding with SG-AlMg filler materials, no grain boundary openings of a size are formed in the thickness range in which the alloy recrystallizes fine-grained, which have a significant influence on the mechanical properties of the welded joint, if the solidification shrinkage is not extremely hindered. This affects a good elasticity. In particular, the variant partially cured T64 is characterized by a small decrease in the characteristic values of the welded connection compared to the base material.

Insgesamt hat sich die Legierung als eine Legierung mit einer guten Eigenschaftskombination von Festigkeit, Dehnung, Schweissbarkeit und Produktionssicherheit erwiesen.Overall, the alloy has proven to be an alloy with a good property combination of strength, elongation, weldability and production safety.

Claims (12)

  1. Process for manufacturing a component in the form of a crash element for the manufacture of vehicles from an alloy of the AlMgSi type containing, in wt. %, silicon 0.40 to 0.80 magnesium 0.40 to 0.70 iron max. 0.30 copper max. 0.20 manganese max. 0.15 vanadium 0.05 to 0.20 chromium max. 0.10 titanium max. 0.10 zinc max. 0.10
    and further elements each individually at most 0.05, in total at most 0.15 and the remainder aluminium, characterised in that the component is transferred by a heat-treatment of 1 to 5 h at 190 to 230°C to an overaged condition (T72).
  2. Process according to claim 1, the alloy contains, in wt. %, silicon 0.45 to 0.75, preferably 0.55 to 0.65 and magnesium 0.45 to 0.65, preferably 0.50 to 0.60.
  3. Process according to claim 1, characterised in that the alloy contains, in wt. %, silicon 0.40 to 0.60, preferably 0.45 to 0.55 and magnesium 0.40 to 0.60, preferably 0.45 to 0.55.
  4. Process according to one of the claims 1 to 3, characterised in that the alloy contains 0.18 to 0.25 wt. % iron.
  5. Process according to one of the claims I to 3, characterised in that the alloy contains 0.12 to 0.16 wt. % copper.
  6. Process according to one of the claims 1 to 3, characterised in that the alloy contains 0.05 to 0.10 wt. % manganese.
  7. Process according to one of the claims 1 to 3, characterised in that the alloy contains 0.06 to 0.15 wt. % vanadium.
  8. Process according to one of the claims 1 to 3, characterised in that the alloy contains at most 0.08, preferably at most 0.01 wt. % chromium.
  9. Process according to one of the claims 1 to 3, characterised in that the alloy contains at most 0.05 wt. % titanium.
  10. Process according to one of the claims 1 to 9, characterised in that the component is manufactured in the form of a section made by extrusion.
  11. Process according to one of the claims 1 to 9, characterised in that the component is manufactured from an extruded section subjected to pressure from within.
  12. Process according to one of the claims 1 to 9, characterised in that the component is manufactured in the form of a forging.
EP97920475A 1996-05-22 1997-05-16 Method of producing a component Expired - Lifetime EP0902842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97920475A EP0902842B2 (en) 1996-05-22 1997-05-16 Method of producing a component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP96810325 1996-05-22
EP96810325A EP0808911A1 (en) 1996-05-22 1996-05-22 Component
PCT/CH1997/000193 WO1997044501A1 (en) 1996-05-22 1997-05-16 Component
EP97920475A EP0902842B2 (en) 1996-05-22 1997-05-16 Method of producing a component

Publications (3)

Publication Number Publication Date
EP0902842A1 EP0902842A1 (en) 1999-03-24
EP0902842B1 EP0902842B1 (en) 2001-09-05
EP0902842B2 true EP0902842B2 (en) 2007-06-06

Family

ID=8225612

Family Applications (2)

Application Number Title Priority Date Filing Date
EP96810325A Withdrawn EP0808911A1 (en) 1996-05-22 1996-05-22 Component
EP97920475A Expired - Lifetime EP0902842B2 (en) 1996-05-22 1997-05-16 Method of producing a component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP96810325A Withdrawn EP0808911A1 (en) 1996-05-22 1996-05-22 Component

Country Status (8)

Country Link
US (1) US6685782B1 (en)
EP (2) EP0808911A1 (en)
AT (1) ATE205261T1 (en)
AU (1) AU2688197A (en)
DE (1) DE59704542D1 (en)
ES (1) ES2162285T3 (en)
WO (1) WO1997044501A1 (en)
ZA (1) ZA974318B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012894A1 (en) * 2007-03-17 2008-04-03 Daimler Ag Use of a welding filler material for metal inert gas welding of vehicle components
EP2072628A1 (en) 2007-12-19 2009-06-24 Aleris Aluminum Bonn GmbH High strength crash resistant aluminium alloy

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE272725T1 (en) * 1998-02-17 2004-08-15 Corus Aluminium Profiltechnik ALUMINUM ALLOY AND METHOD FOR PRODUCING IT
GB2376337B (en) * 1998-05-05 2003-01-22 Jay Chieh Chen A cryptographic method for electronic transactions
CH693673A5 (en) * 1999-03-03 2003-12-15 Alcan Tech & Man Ag Use of an aluminum alloy of the AlMgSi type for the production of structural components.
EP1118686B1 (en) * 2000-01-19 2003-09-17 ALUMINIUM RHEINFELDEN GmbH Aluminium cast alloy
US20050000609A1 (en) * 2002-12-23 2005-01-06 Butler John F. Crash resistant aluminum alloy sheet products and method of making same
DE102004030021B4 (en) * 2003-07-09 2009-11-26 Aleris Aluminum Duffel Bvba Rolled product
FR2857376B1 (en) * 2003-07-09 2008-08-22 Corus Aluminium Nv AlMgSi ALLOY
DE102005060297A1 (en) 2005-11-14 2007-05-16 Fuchs Kg Otto Energieabsorbtionsbauteil
CN100482828C (en) * 2007-05-09 2009-04-29 东北轻合金有限责任公司 High-accuracy aluminum alloy wave canal and manufacturing method thereof
EP2563944B1 (en) 2010-04-26 2014-06-18 Sapa AB Damage tolerant aluminium material having a layered microstructure
EP2518173B1 (en) 2011-04-26 2017-11-01 Benteler Automobiltechnik GmbH Method for manufacturing a sheet metal structure component and sheet metal structure component
CN104245981B (en) 2012-04-25 2017-08-11 诺尔斯海德公司 Al Mg Si aluminium alloys with improved property
CN104046865A (en) * 2013-03-12 2014-09-17 亚太轻合金(南通)科技有限公司 High strength forgeable aluminum alloy bar and preparation method thereof
EP2993244B1 (en) * 2014-09-05 2020-05-27 Constellium Valais SA (AG, Ltd) Method to produce high strength products extruded from 6xxx aluminium alloys having excellent crash performance
CN104561686A (en) * 2014-12-31 2015-04-29 东莞市东兴铝业有限公司 Aluminum alloy material capable of resisting cold and hot coagulation changes and preparation process for aluminum alloy material
EP3064305A1 (en) 2015-03-03 2016-09-07 Constellium Valais SA (AG, Ltd) Welded parts comprising arc-welded wrought components made of 6xxx series aluminium alloys, typically for transportation applications
FR3042140B1 (en) 2015-10-12 2017-10-20 Constellium Neuf-Brisach AUTOMOTIVE CASE STRUCTURE COMPONENT HAVING EXCELLENT COMPROMISE BETWEEN MECHANICAL RESISTANCE AND CRASH BEHAVIOR
CN105483464B (en) * 2015-12-17 2017-09-22 上海友升铝业有限公司 A kind of Al Mg Si systems alloy material suitable for automobile bumper energy absorption box
CN109890663B (en) 2016-08-26 2023-04-14 形状集团 Warm forming process and apparatus for transverse bending extrusion of aluminum beams to warm form vehicle structural members
MX2019004494A (en) 2016-10-24 2019-12-18 Shape Corp Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components.
NO20211429A1 (en) * 2021-11-24 2023-05-25 Norsk Hydro As A 6xxx aluminium alloy with improved properties and a process for manufacturing extruded products
WO2023220830A1 (en) * 2022-05-18 2023-11-23 Rio Tinto Alcan International Limited Aluminum alloy with improved strength and ductility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1325565A (en) 1962-06-21 1963-04-26 Sulzer Ag Method and device for cold forming hollow profiled bodies
FR2273077A1 (en) 1974-05-31 1975-12-26 Cegedur Shock-resistant, deformable aluminium alloy extrusions - contg. silicon and magnesium and suitable for crash barriers and car bumpers
EP0787217B1 (en) 1994-10-25 1998-05-13 Pechiney Rhenalu METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938991A (en) * 1974-07-15 1976-02-17 Swiss Aluminium Limited Refining recrystallized grain size in aluminum alloys
JPS544806A (en) * 1977-06-15 1979-01-13 Sumitomo Light Metal Ind Extrusion aluminum alloy having good quenching propertity
DE3243371A1 (en) * 1982-09-13 1984-03-15 Schweizerische Aluminium AG, 3965 Chippis ALUMINUM ALLOY
IT1154589B (en) * 1982-11-26 1987-01-21 Italia Alluminio ALUMINUM ALLOYS FOR NUCLEAR EQUIPMENT
US4637842A (en) * 1984-03-13 1987-01-20 Alcan International Limited Production of aluminum alloy sheet and articles fabricated therefrom
JPS61163232A (en) * 1985-01-11 1986-07-23 Kobe Steel Ltd High strength al-mg-si alloy and its manufacture
JPS6296640A (en) * 1985-10-23 1987-05-06 Nippon Light Metal Co Ltd Aluminum alloy having fine recrystal grains
JPS6296638A (en) * 1985-10-24 1987-05-06 Nippon Light Metal Co Ltd Aluminum alloy for lead frame
BE906107A (en) * 1986-12-30 1987-04-16 Alusuisse Fabrication aluminium alloy - containing iron, vanadium, copper, manganese
JPH0747804B2 (en) * 1991-03-18 1995-05-24 住友軽金属工業株式会社 Manufacturing method of aluminum alloy material with excellent anisotropy and excellent formability, shape freezing property and paint bake hardenability
JPH04147935A (en) * 1990-10-11 1992-05-21 Mitsubishi Alum Co Ltd High strength al alloy having good brazability
JPH0747806B2 (en) * 1991-05-20 1995-05-24 住友軽金属工業株式会社 High strength aluminum alloy extruded shape manufacturing method
JPH0747808B2 (en) * 1993-02-18 1995-05-24 スカイアルミニウム株式会社 Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2626958B2 (en) * 1993-03-16 1997-07-02 スカイアルミニウム株式会社 Method for producing aluminum alloy sheet excellent in formability and bake hardenability
DE4421744C2 (en) * 1993-07-02 1996-05-23 Fuchs Fa Otto Use of a wrought alloy of the type AlMgSiCu for the production of high-strength and corrosion-resistant parts
JPH073371A (en) * 1994-01-26 1995-01-06 Sky Alum Co Ltd Aluminum alloy sheet for zinc phosphate treatment and production thereof
US5571347A (en) * 1994-04-07 1996-11-05 Northwest Aluminum Company High strength MG-SI type aluminum alloy
US5527404A (en) 1994-07-05 1996-06-18 Aluminum Company Of America Vehicle frame components exhibiting enhanced energy absorption, an alloy and a method for their manufacture
JP3359428B2 (en) * 1994-08-05 2002-12-24 スカイアルミニウム株式会社 Manufacturing method of aluminum alloy sheet for forming
ATE188259T1 (en) * 1996-04-10 2000-01-15 Alusuisse Lonza Services Ag COMPONENT

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1325565A (en) 1962-06-21 1963-04-26 Sulzer Ag Method and device for cold forming hollow profiled bodies
FR2273077A1 (en) 1974-05-31 1975-12-26 Cegedur Shock-resistant, deformable aluminium alloy extrusions - contg. silicon and magnesium and suitable for crash barriers and car bumpers
EP0787217B1 (en) 1994-10-25 1998-05-13 Pechiney Rhenalu METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Registration Record of International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum alloys", The Aluminum Association, June 1994, Washington, USA, 2 Seiten
Develay R., "Traitements thermiques des alliages d'aluminium", Techniques de l'ingénieur, M 1290-92, 1983, 17 Seiten
DIN EN 515, DEUTSCHE NORM, 1993
Evans D. W. und Aucote J., "The Influence of Silicon Content and Copper, Iron and Manganese Additions on the Relationship between Structure and Toughness in Aluminium-Magnesium-Silicon Alloys" ET 84: Extrusion Productivity through Automation, Vol. 1, Atlanta, 24-26 April 1984, 10 Seiten
Hufnagel W., "Aluminium-Taschenbuch", 14. Auflage, 1983, Aluminium- Verlag, Düsseldorf, Deutschland, Seiten 1040-1041, 140-141

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012894A1 (en) * 2007-03-17 2008-04-03 Daimler Ag Use of a welding filler material for metal inert gas welding of vehicle components
EP2072628A1 (en) 2007-12-19 2009-06-24 Aleris Aluminum Bonn GmbH High strength crash resistant aluminium alloy

Also Published As

Publication number Publication date
ATE205261T1 (en) 2001-09-15
EP0808911A1 (en) 1997-11-26
US6685782B1 (en) 2004-02-03
ZA974318B (en) 1998-01-30
ES2162285T3 (en) 2001-12-16
EP0902842B1 (en) 2001-09-05
AU2688197A (en) 1997-12-09
WO1997044501A1 (en) 1997-11-27
EP0902842A1 (en) 1999-03-24
DE59704542D1 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
EP0902842B2 (en) Method of producing a component
EP2886332B1 (en) Flat steel product, and method of producing a component of a motor vehicle body and of a motor vehicle body.
DE19830560B4 (en) Energy-absorbing element
DE102008033027B4 (en) Process for increasing the strength and deformability of precipitation-hardenable materials
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
DE69212602T2 (en) HIGH-STRENGTH AL-CI ALLOY WITH LOW DENSITY
EP2770071B1 (en) Aluminium alloy for the production of semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from this aluminium alloy and aluminium alloy strip and uses thereof
DE102006005250B4 (en) Iron-nickel alloy
DE69825414T3 (en) Aluminum alloy and process for its preparation
EP1785499B1 (en) Energy absorbing construction element
EP1165848B1 (en) USE OF AN ALUMINUM ALLOY OF THE AlMgSi TYPE AS SAFETY PART IN VEHICLES
DE10231437B4 (en) Process for producing an aluminum wrought alloy product
EP1171643B1 (en) Highly ductile magnesium alloys, method for producing them and use of the same
DE60203608T2 (en) METAL BLOCKS FOR MACHINING APPLICATIONS
EP0801139A1 (en) Component
EP0811700B1 (en) Deep drawable and weldable AlMgSi type aluminium alloy
DE10231422A1 (en) Aluminum-magnesium alloy product
CH700835B1 (en) Aluminum composite sheet metal product.
EP2628807A1 (en) Tempered pin-shaped connection element and method for producing same
EP0211831B1 (en) Process for the cold extrusion of aluminium or aluminium alloys
EP3970964A1 (en) Aluminum composite for crash applications
EP2924135B1 (en) Method for producing a sheet made of a high plasticity aluminum alloy having moderate strength for manufacturing semi-finished products or components of motor vehicles
DE2314058C3 (en) Method of making a high strength aluminum alloy forging

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19990504

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 205261

Country of ref document: AT

Date of ref document: 20010915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010905

REF Corresponds to:

Ref document number: 59704542

Country of ref document: DE

Date of ref document: 20011011

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2162285

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ERBSLOEH AG

Effective date: 20020517

26 Opposition filed

Opponent name: PECHINEY

Effective date: 20020604

Opponent name: ERBSLOEH AG

Effective date: 20020517

NLR1 Nl: opposition has been filed with the epo

Opponent name: ERBSLOEH AG

NLR1 Nl: opposition has been filed with the epo

Opponent name: PECHINEY

Opponent name: ERBSLOEH AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

R26 Opposition filed (corrected)

Opponent name: ERBSLOEH AG

Effective date: 20020517

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

NLR1 Nl: opposition has been filed with the epo

Opponent name: ERBSLOEH AG

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050429

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050504

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050511

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050519

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20050520

Year of fee payment: 9

Ref country code: CH

Payment date: 20050520

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050609

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050624

Year of fee payment: 9

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060516

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060516

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060517

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060516

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20061201

RTI2 Title (correction)

Free format text: METHOD OF PRODUCING A COMPONENT

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20070606

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL SE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060517

ET3 Fr: translation filed ** decision concerning opposition
BERE Be: lapsed

Owner name: *ALUSUISSE TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070516

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Effective date: 20111130

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59704542

Country of ref document: DE

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALUSUISSE TECHNOLOGY & MANAGEMENT AG, NEUHAUSEN AM RHEINFALL, CH

Effective date: 20120302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160527

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160530

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59704542

Country of ref document: DE