EP1382698A1 - Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs - Google Patents

Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs Download PDF

Info

Publication number
EP1382698A1
EP1382698A1 EP03356108A EP03356108A EP1382698A1 EP 1382698 A1 EP1382698 A1 EP 1382698A1 EP 03356108 A EP03356108 A EP 03356108A EP 03356108 A EP03356108 A EP 03356108A EP 1382698 A1 EP1382698 A1 EP 1382698A1
Authority
EP
European Patent Office
Prior art keywords
alloy
product according
mpa
product
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03356108A
Other languages
English (en)
French (fr)
Other versions
EP1382698B1 (de
EP1382698B2 (de
Inventor
Timothy Warner
Ronan Dif
Bernard Bes
Hervé Ribes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29763743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1382698(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Priority to DE60300004T priority Critical patent/DE60300004T3/de
Publication of EP1382698A1 publication Critical patent/EP1382698A1/de
Publication of EP1382698B1 publication Critical patent/EP1382698B1/de
Application granted granted Critical
Publication of EP1382698B2 publication Critical patent/EP1382698B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the invention relates to aircraft structural elements, in particular sheet metal for large commercial aircraft fuselage made from rolled, spun or forged alloy AlCuMg in the treated state by dissolving, quenching and cold work hardening, and having, compared to the products of the prior art used for the same application, an improved compromise between the different properties required.
  • the fuselage of commercial aircraft of large capacity is typically made of an AlCuMg alloy sheet skin, as well as longitudinal stiffeners and circumferential frames.
  • a type 2024 alloy is used which, according to the designation of the Aluminum Association or the standard EN 573-3, has the following chemical composition (% by weight): If ⁇ 0.5 Fe ⁇ 0.5 Cu: 3.8 - 4.9 Mg: 1.2-1.8 Mn: 0.3 - 0.9 Cr ⁇ 0.10 Zn ⁇ 0.25 Ti ⁇ 0.15.
  • Variants of this alloy are also used. These elements are asked structures a compromise between several properties such as: resistance mechanical (i.e. static mechanical characteristics), tolerance to damage (toughness and speed of fatigue cracking), fatigue resistance (especially oligocyclic), resistance to different forms of corrosion, fitness ability. In some cases, especially for airplanes supersonic, creep resistance can be critical.
  • US Patent 5,652,063 (Alcoa) relates to an aircraft structural element made from a composition alloy (% by weight): Cu: 4.85-5.3 Mg: 0.51-1.0 Mn: 0.4-0.8 Ag: 0.2 - 0.8 If ⁇ 0.1 Fe ⁇ 0.1 Zr ⁇ 0.25 with Cu / Mg between 5 and 9.
  • the sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa).
  • the alloy is particularly intended for supersonic aircraft.
  • the patent application EP 0 731 185 of the Applicant relates to an alloy, subsequently recorded under No. 2024A, of composition: Si ⁇ 0.25 Fe ⁇ 0.25 Cu: 3.5 - 5 Mg: 1 - 2 Mn ⁇ 0.55 with the relation: 0 ⁇ Mn-2Fe ⁇ 0.2
  • the thick plates in this alloy have both improved toughness and a reduced level of residual stresses, without loss on the other properties.
  • the alloy may also contain: Zr ⁇ 0.20% V ⁇ 0.20% Mn ⁇ 0.80% Ti ⁇ 0.05% Fe ⁇ 0.15% If ⁇ 0.10%.
  • the patent application EP 1 170 394 A2 (Alcoa) describes four AlCu-type alloys which have, respectively, the composition Cu 4.08, Mn 0.29, Mg 1.36, Zr 0.12, Fe 0.02, Si 0.01; Cu 4.33, Mn 0.30, Mg 1.38, Zr 0.10, Fe 0.01, Si 0.00; Cu 4.09, Mn 0.58, Mg 1.35, Zr 0.11, Fe 0.02, Si 0.01; and Cu 4.22, Mn 0.66, Mg 1.32, Zr 0.10, Fe 0.01, Si 0.01.
  • the patent teaches how to convert these products into sheets having an elongated grain structure, wherein the grains have a length to thickness ratio of greater than 4.
  • the present invention aims to obtain aircraft structural elements, and in particular fuselage elements made of AlCuMg alloy having, compared to the prior art, improved damage tolerance, mechanical resistance to less equal, an improved resistance to corrosion, and this without resorting to expensive and troublesome addition elements for recycling.
  • the subject of the invention is a wrought product, in particular a laminated, spun or forged product, made of an alloy of composition (% by weight): Cu 3.80-4.30, Mg 1.25-1.45, Mn 0.20-0.50, Zn 0.40-1.30, Zr ⁇ 0.05, Fe ⁇ 0.15, Si ⁇ 0.15, Ag ⁇ 0.01 other elements ⁇ 0.05 each and ⁇ 0.15 in total, remain Al, said product can be treated by dissolving, quenching, and cold working, with a permanent deformation of between 0.5% and 15%, preferably between 1% and 5%, and even more preferably between 1.5% and 3.5%.
  • Cold working can be obtained by controlled pulling and / or cold processing, for example rolling or drawing.
  • the invention also relates to a structural element for construction aeronautical equipment, in particular an aircraft fuselage element, manufactured from such an aircraft wrought product, and especially from such a rolled product.
  • the copper content of the alloy according to the invention is between 3.80 and 4.30 %, and preferably between 4.05 and 4.30%; so it's in the low half of the content range of alloy 2024, so as to limit the volume fraction residual coarse copper particles.
  • the interval of magnesium content which must be between 1.25 and 1.45% and preferably between 1.28 and 1.42%, is shifted downwards compared to that of 2024.
  • the manganese is maintained between 0.20 and 0.50%, preferably between 0.30 and 0.50, and more preferably between 0.35 and 0.48%.
  • the implementation of the invention does not require significant addition of zirconium at a content greater than 0.05%.
  • the present invention requires careful control of the zinc content, the alloy being discharged into copper, magnesium and manganese.
  • the zinc content must be between 0.40 and 1.30%, preferably between 0.50 and 1.10%, and still between more preferably between 0.50 and 0.70%.
  • the zinc content at least equal to (1.2Cu - 0.3Mg + 0.3Mn - 3.75).
  • the silicon and iron contents are each kept below 0.15%, and preferably below 0.10%, to have good toughness.
  • this is only in very cases (depending on the type of alloy and the intended application) that the gain in damage tolerance related to the use of aluminum containing less than 0.06 % iron and silicon each is large enough to be valued.
  • the implementation of the present invention does not require that the content of iron and silicon less than 0.06% each, because in the selected composition range, the Damage tolerance is very good.
  • the alloy contains no silver addition, nor any other element likely to increase the production cost of the alloy and to pollute the other alloys produced on the same site by recycling manufacturing scrap.
  • the preferred method of manufacture comprises casting of plates, in the case where the product to be made is a rolled sheet, or billets in the case where it is a spun section or a forged part.
  • the plate or the billet is scalped, then homogenized between 450 and 500 ° C.
  • the hot transformation is then carried out by rolling, spinning or forging, optionally completed by a cold transformation step.
  • the laminated, spun or forged half-product is then dissolved between 480 and 505 ° C., so that this dissolution is as complete as possible, that is to say that the maximum of potentially soluble phases , in particular the precipitates Al 2 Cu and Al 2 CuMg, are effectively put back in solution.
  • the quality of the dissolution can be assessed by differential enthalpy analysis (AED) by measuring the specific energy using the area of the peak on the thermogram. This specific energy must preferably be less than 2 J / g.
  • AED differential enthalpy analysis
  • This hardening cold can be a controlled pull with a permanent elongation between 1 and 5% bringing the product to a T351 state. Controlled traction with a permanent elongation of between 1.5% and 3.5%. It can also be a cold rolling by rolling in the case of sheets or by drawing in the case profiles, with a permanent elongation of up to 15%, bringing the in the T39 state, or in the T3951 state if the rolling or drawing is combined with the traction.
  • the product finally undergoes natural aging at room temperature.
  • the final microstructure is in general largely recrystallized, with grains relatively thin and fairly equiaxed.
  • the product according to the present invention is well suited for use as an aircraft structural element, for example as a fuselage skin element, and especially as an element for the fuselage skin panel (skin).
  • These sheets preferably plated, have a thickness of between 1 and 16 mm, and have good resistance to intergranular corrosion and corrosion on riveted assembly. They have a breaking strength in the L direction and / or TL direction greater than 430 MPa, and preferably greater than 440 MPa, and a yield strength in the L and / or TL direction greater than 300 MPa, and preferably greater than 320. MPa.
  • the sheet according to the invention may be a sheet plated with at least one face with an alloy of the 1xxx series, and preferably with an alloy selected from the group consisting of alloys 1050, 1070, 1300 and 1145.
  • plated sheets according to the invention which are particularly resistant to corrosion by galvanic coupling. in a riveted assembly. More particularly, plated sheets which exhibit a galvanic corrosion current of less than 4 ⁇ A / cm 2 , and preferably less than 2.5 ⁇ A / cm 2 , for exposure of up to 200 hours, during corrosion tests in a riveted assembly, placing the core alloy in a non-deaerated solution containing 0.06 M NaCl and the plating alloy in a 0.02 M AlCl 3 solution deaerated by nitrogen sparging.
  • N0, N1, N2 and N3 alloys were developed with chemical composition was in accordance with the invention.
  • the liquid metal was first treated in the furnace maintaining by injection of gas using a rotor of a type known under the brand IRMA, and then in a pocket of type known as Alpur.
  • the refining has been done online, that is to say between the holding oven and the Alpur pocket, with wire AT5B (0.7 kg / t for N0, N1 and N3, 0.3 kg / t for N2).
  • 3.0 plates were cast m length and section 1450 mm x 377 mm (except for N3: section 1450 x 446 mm). They were relaxed for 10h at 350 ° C.
  • alloy plating 1050 corresponds to about 2% of thickness.
  • alloys E and F For the alloys according to the prior art (alloys E and F), the plates have been heated to around 450 ° C, then hot-rolled at the reversing mill up to a thickness of about 20 mm. The resulting strips were rolled on a tandem rolling mill with three cages up to a final thickness close to 5 mm, then wound (at temperatures of 320 ° C and 260 ° C, respectively for alloys F and E). In the case of alloy F, the coil thus obtained was laminated to cold to a thickness of 3.2 mm.
  • Sheet metal was cut, put in solution in a salt bath oven at a temperature of 498.5 ° C for a duration of 30 minutes (sheet metal E thickness 5 mm) or 25 min (sheet F thickness 3.2 mm), then completed (wrinkling followed by controlled traction with permanent elongation included between 1.5 and 3%).
  • the N0 plate has undergone the following homogenization cycle: 8h at 495 ° C + 12h at 500 ° C (nominal values) while alloys N1, N2 and N3 have been homogenized for 12 hours at 500 ° C.
  • the plates After reheating (about 18 hours at 425-445 ° C), the plates were hot-rolled (inlet temperature: 413 ° C) to a thickness of about 90 mm.
  • the N0 band thus obtained was cut in half in the direction perpendicular to the rolling direction. There were thus obtained two bands, labeled N01 and N02. These strips were rolled on a tandem hot rolling mill 3 cages to a final thickness of 6 mm (winding temperature about 320 - 325 ° C).
  • N1 and N3 alloy plate and one N3 alloy plate were hot rolled at 5.5 mm before being cold rolled to the final thickness of 3.2 mm, and another N1 alloy plate. was hot rolled at 4.5 mm before being cold rolled to the final thickness of 1.6 mm.
  • An N2 alloy plate was hot rolled to a final thickness of 6 mm (tandem winding temperature 270 ° C).
  • the coil N01 has not undergone any other rolling pass, while the coil N02 was cold rolled to a final thickness of 3.2 mm.
  • the plates once cut were dissolved in a salt bath oven (thickness 6 mm: 60 minutes at 500 ° C., thickness 3.2 mm: 40 minutes at 500 ° C.; thickness 1, 6 mm: 30 minutes at 500 ° C) followed by quenching with water to about 23 ° C. After quenching, the sheets have undergone wrinkling and pulling with elongation cumulative standing between 1.5 and 3.5%. The waiting time between quenching and wrinkling did not exceed 6 hours.
  • the tensile strength R m (in MPa), the conventional yield stress at 0.2% elongation R p0.2 (in MPa) and the elongation at break A (in%) were measured by a tensile test according to EN 10002-1.
  • the product according to the invention therefore has a better breaking strength in the case of a cracked panel.
  • the plates of 2024 in particular for ⁇ K ⁇ 20 MPa ⁇ m, exhibit a cracking rate two to three times higher than for the product according to the invention. The latter therefore allows longer inspection intervals (to mass given structure) or reductions in the inspection interval structure fixed.
  • the breaking K values for a limiting load greater than 200 MPa are greater than about 120 MPa ⁇ m for the described R curves, with apparent K (K r ) greater than about 110 MPa m.
  • K r apparent K
  • the dimensioning portion of the curve R consists of points corresponding to a static crack advance ⁇ a eff of more than 20 mm.
  • the corrosion resistance of the sheets has also been characterized.
  • the alloy according to the invention shows intrinsically, that is to say after displacement by machining, resistance to intergranular corrosion, measured according to ASTM standard G 110, substantially comparable to that of the reference 2024.
  • the test consists in measuring the current which is established naturally between the anode (alloy of plating placed in a cell containing a solution of AlCl 3 (0,02 M, deaerated by sparging of nitrogen)) and the cathode (alloy core placed in a cell containing a solution of NaCl (0.06 M, aerated)), a salt bridge ensuring the electrolytic contact between the two cells. Both elements (veneer and core) have the same surface (2.54 cm 2 ). The coupling current densities are recorded throughout the duration of the test. It is observed that the current reaches a plateau after about 55 hours and hardly changes during the tests (200 hours or 15 days, depending on the sample). The results are summarized in Table 6.
  • state F From hot-rolled and possibly cold-rolled sheets (state F) of the alloy according to the invention (see example 1), several other metallurgical states were developed in the form of a size of 600 mm (L-direction) x 160 mm (TL direction) x thickness.
  • the marks ending in A, D, F and I correspond to T351 states.
  • the different samples were characterized by tensile tests (L and TL directions) as well as toughness tests.
  • the tenacity was first evaluated in the TL and LT directions using the maximum stress R e (in MPa) and the flow energy E ec according to the Kahn test.
  • the stress Kahn is equal to the ratio of the maximum load F max that the specimen can withstand on the section of the specimen (product of the thickness B by the width W).
  • the flow energy is determined as the area under the force-displacement curve up to the maximum force F max supported by the specimen.
  • the test is described in the article "Kahn-Type Tear Test and Crack Toughness of Aluminum Alloy Sheet", published in the journal Materials Research & Standards, April 1964, p. 151- 155.
  • the sample used for the test of tenacity Kahn is described, for example, in the "Metals Handbook", 8 th Edition, vol. 1, American Society for Metals, pp. 241-242.
  • the tenacity was also approached for sheets of thickness 6 mm, using a curve-type test R, in the TL direction, but on smaller specimens than that described in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
EP03356108A 2002-07-11 2003-07-09 Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs Expired - Lifetime EP1382698B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE60300004T DE60300004T3 (de) 2002-07-11 2003-07-09 Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0208737A FR2842212B1 (fr) 2002-07-11 2002-07-11 Element de structure d'avion en alliage a1-cu-mg
FR0208737 2002-07-11

Publications (3)

Publication Number Publication Date
EP1382698A1 true EP1382698A1 (de) 2004-01-21
EP1382698B1 EP1382698B1 (de) 2004-05-26
EP1382698B2 EP1382698B2 (de) 2013-01-09

Family

ID=29763743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03356108A Expired - Lifetime EP1382698B2 (de) 2002-07-11 2003-07-09 Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs

Country Status (6)

Country Link
US (2) US7294213B2 (de)
EP (1) EP1382698B2 (de)
AT (1) ATE267885T1 (de)
DE (1) DE60300004T3 (de)
ES (1) ES2220902T5 (de)
FR (1) FR2842212B1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003503A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Method of manufacturing aa2000 - series aluminium alloy products
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8877123B2 (en) 2007-03-14 2014-11-04 Aleris Aluminum Koblenz Gmbh Al—Cu alloy product suitable for aerospace application
CN104451298A (zh) * 2014-11-19 2015-03-25 无锡鸿声铝业有限公司 一种改进的2024铝合金
CN104711498A (zh) * 2013-12-13 2015-06-17 天津大学 高强度铝合金二次拉伸成型中表面橘皮效应的控制方法
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
CN101438063A (zh) * 2006-04-29 2009-05-20 欧瑞康莱宝真空公司 制备涡轮分子泵转子或定子的方法
DE112009002512B4 (de) 2008-10-10 2023-03-23 Gkn Sinter Metals, Llc. Mengenchemieformulierung für Pulvermetall-Aluminiumlegierung
CN102292463A (zh) 2009-01-22 2011-12-21 美铝公司 改良的包含钒的铝-铜合金
MX341354B (es) 2011-09-16 2016-08-17 Ball Corp Recipientes extruidos por impacto a partir de chatarra de aluminio reciclada.
CN102732849A (zh) * 2012-06-29 2012-10-17 武汉理工大学 镁合金与铝合金表面改性处理及高强连接的方法
EP2983998B1 (de) 2013-04-09 2022-04-27 Ball Corporation Flasche aus extrudiertem aluminium mit einem gewindehals aus wiederverwertetem aluminium und verbesserten legierungen und verfahren zu ihrer herstellung
DE102016205221A1 (de) * 2016-03-30 2017-10-05 Sms Group Gmbh Vorrichtung und Verfahren zum Plattieren einer warmen Bramme
US20180044155A1 (en) 2016-08-12 2018-02-15 Ball Corporation Apparatus and Methods of Capping Metallic Bottles
WO2018037390A2 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
WO2018125199A1 (en) 2016-12-30 2018-07-05 Ball Corporation Aluminum alloy for impact extruded containers and method of making the same
BR112019016870A2 (pt) 2017-02-16 2020-04-14 Ball Corp aparelho e métodos de formação de fechamentos invioláveis giratórios no gargalo rosqueado de recipientes metálicos
RU2761630C2 (ru) 2017-09-15 2021-12-13 Бол Корпорейшн Система и способ формирования металлической крышки для резьбовой емкости
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333990A (en) * 1965-02-05 1967-08-01 Aluminum Co Of America Aluminum base alloy forgings
GB1133113A (en) * 1965-02-05 1968-11-06 Aluminum Co Of America Improvements in forged aluminium base alloy members
US3826688A (en) * 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
EP0473122A1 (de) * 1990-08-27 1992-03-04 Aluminum Company Of America Blech aus einer Aluminiumlegierung mit guter Beständigkeit gegen Beschädigung für Flugzeugblech
EP0731185A1 (de) * 1995-03-10 1996-09-11 Pechiney Rhenalu Aluminium-Kupfer-Magnesiumbleche mit niedrigen Restspannungen
EP1045043A1 (de) * 1999-04-12 2000-10-18 Pechiney Rhenalu Verfahren zur Herstellung von Formteilen aus Aluminiumlegierung vom Typ 2024

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336075A (en) 1979-12-28 1982-06-22 The Boeing Company Aluminum alloy products and method of making same
US5137686A (en) 1988-01-28 1992-08-11 Aluminum Company Of America Aluminum-lithium alloys
JPH03236441A (ja) 1990-02-14 1991-10-22 Nkk Corp 高強度アルミニウム合金および高強度アルミニウム合金材の製造方法
US5213639A (en) 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
GB9021565D0 (en) * 1990-10-04 1990-11-21 Allied Colloids Ltd Dewatering compositions and processes
US5376192A (en) 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
FR2704557B1 (fr) 1993-04-28 1995-06-02 Pechiney Rhenalu Alliage de revêtement à base d'Al et produit composite plaqué sur alliages 2000 ou 6000.
US5879475A (en) 1995-03-22 1999-03-09 Aluminum Company Of America Vanadium-free, lithium-free aluminum alloy suitable for forged aerospace products
US5630889A (en) 1995-03-22 1997-05-20 Aluminum Company Of America Vanadium-free aluminum alloy suitable for extruded aerospace products
US5652063A (en) 1995-03-22 1997-07-29 Aluminum Company Of America Sheet or plate product made from a substantially vanadium-free aluminum alloy
US6077363A (en) * 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
JP2001330757A (ja) * 2000-05-23 2001-11-30 Yazaki Corp 光コネクタ
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333990A (en) * 1965-02-05 1967-08-01 Aluminum Co Of America Aluminum base alloy forgings
GB1133113A (en) * 1965-02-05 1968-11-06 Aluminum Co Of America Improvements in forged aluminium base alloy members
US3826688A (en) * 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
EP0473122A1 (de) * 1990-08-27 1992-03-04 Aluminum Company Of America Blech aus einer Aluminiumlegierung mit guter Beständigkeit gegen Beschädigung für Flugzeugblech
EP0731185A1 (de) * 1995-03-10 1996-09-11 Pechiney Rhenalu Aluminium-Kupfer-Magnesiumbleche mit niedrigen Restspannungen
EP1045043A1 (de) * 1999-04-12 2000-10-18 Pechiney Rhenalu Verfahren zur Herstellung von Formteilen aus Aluminiumlegierung vom Typ 2024

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
WO2008003503A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Method of manufacturing aa2000 - series aluminium alloy products
WO2008003503A3 (en) * 2006-07-07 2008-02-21 Aleris Aluminum Koblenz Gmbh Method of manufacturing aa2000 - series aluminium alloy products
US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8088234B2 (en) 2006-07-07 2012-01-03 Aleris Aluminum Koblenz Gmbh AA2000-series aluminum alloy products and a method of manufacturing thereof
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8877123B2 (en) 2007-03-14 2014-11-04 Aleris Aluminum Koblenz Gmbh Al—Cu alloy product suitable for aerospace application
EP2121997B2 (de) 2007-03-14 2016-08-24 Aleris Aluminum Koblenz GmbH Al-cu-legierungsprodukt, das für die luft- und raumfahrtanwendung geeignet ist
CN104711498A (zh) * 2013-12-13 2015-06-17 天津大学 高强度铝合金二次拉伸成型中表面橘皮效应的控制方法
CN104711498B (zh) * 2013-12-13 2016-09-07 天津大学 高强度铝合金二次拉伸成型中表面橘皮效应的控制方法
CN104451298A (zh) * 2014-11-19 2015-03-25 无锡鸿声铝业有限公司 一种改进的2024铝合金

Also Published As

Publication number Publication date
US20080210350A1 (en) 2008-09-04
FR2842212B1 (fr) 2004-08-13
EP1382698B1 (de) 2004-05-26
EP1382698B2 (de) 2013-01-09
ATE267885T1 (de) 2004-06-15
ES2220902T5 (es) 2013-05-09
US20040086418A1 (en) 2004-05-06
DE60300004D1 (de) 2004-07-01
DE60300004T2 (de) 2005-01-20
FR2842212A1 (fr) 2004-01-16
US7294213B2 (en) 2007-11-13
DE60300004T3 (de) 2013-06-20
ES2220902T3 (es) 2004-12-16
US7993474B2 (en) 2011-08-09

Similar Documents

Publication Publication Date Title
EP1382698B1 (de) Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs
EP0787217B1 (de) VERFAHREN ZUR HERSTELLUNG VON GEGENSTÄDEN AUS AlSiMgCu-LEGIERUNG MIT VERBESSERTEN INTERKRISTALLINKORROSIONSWIEDERSTAND
EP2811042B1 (de) Geschmiedetes aluminiumlegierungsmaterial und herstellungsverfahren dafür
EP2655680B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter druckfestigkeit und beständigkeit
EP1766102B1 (de) Verfahren zur herstellung hochfester und ermüdungsfester aluminiumlegierungsprodukte
EP2364378B1 (de) Produkte aus aluminium-kupfer-lithium-legierung
WO2013007471A1 (en) Method of manufacturing an al-mg alloy sheet product
CA2798480C (fr) Alliage aluminium-cuivre-lithium pour element d'intrados
EP3201372B1 (de) Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon
FR2907466A1 (fr) Produits en alliage d'aluminium de la serie aa7000 et leur procede de fabrication
FR2820438A1 (fr) Procede de fabrication d'un produit corroye a haute resistance en alliage alznmagcu
CA2907854C (fr) Toles minces en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion
EP3077559A2 (de) Aluminium-/kupfer-/lithiumlegierungsmaterial für ein flügelunterseitenelement mit verbesserten eigenschaften
EP2981631B1 (de) Bleche aus aluminium-kupfer-lithium-legierung zur herstellung von flugzeugrümpfen
EP1544315B1 (de) Knetprodukt in Form eines gewalzten Bleches und Strukturbauteil für Flugzeug aus Al-Zn-Cu-Mg-Legierung
EP1644546B1 (de) Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz
EP1026270B1 (de) Produkt aus AlCuMg-Legierung für ein Zellenbauteil eines Flugzeuges
EP1143027B1 (de) Verfahren zur Herstellung von Flugzeugstrukturelementen aus Al-Si-Mg-Legierung
CA3085811A1 (fr) Procede de fabrication ameliore de toles en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselage d'avion
CA1291927C (fr) Procede de desensibilisation a la corrosion exfoliante avec obtention simultanee d'une haute resistance mecanique et bonne tenue auxdommages des alliages d'al contenant du li
WO2019211546A1 (fr) Procede de fabrication d'un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
FR2789405A1 (fr) PRODUIT EN ALLIAGE AlCuMg POUR ELEMENT DE STRUCTURE D'AVION

Legal Events

Date Code Title Description
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60300004

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040709

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040827

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040825

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040526

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2220902

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

EUG Se: european patent has lapsed
PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

26 Opposition filed

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Opponent name: ALCOA INC.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050709

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050709

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Opponent name: ALCOA INC.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCAN RHENALU

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALCAN RHENALU

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041026

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Opponent name: ALCOA INC.

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALCOA INC.

Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: PECHINEY RHENALU

Free format text: PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM FRANCE, FR

Effective date: 20111123

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONSTELLIUM FRANCE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM FRANCE SAS

Free format text: PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR)

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60300004

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60300004

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

BECA Be: change of holder's address

Owner name: CONSTELLIUM FRANCE

Effective date: 20120816

Owner name: 40-44 RUE WASHINGTON,F-75008 PARIS

Effective date: 20120816

BECN Be: change of holder's name

Owner name: CONSTELLIUM FRANCE

Effective date: 20120816

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130109

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 60300004

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20131101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 60300004

Country of ref document: DE

Effective date: 20130109

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2220902

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20130509

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE SAS, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60300004

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: CONSTELLIUM ISSOIRE; FR

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: CONSTELLIUM FRANCE

Effective date: 20160719

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170726

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170727

Year of fee payment: 15

Ref country code: ES

Payment date: 20170801

Year of fee payment: 15

Ref country code: IT

Payment date: 20170725

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170727

Year of fee payment: 15

Ref country code: SE

Payment date: 20170727

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180801

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CONSTELLIUM ISSOIRE; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT NOM PROPRIETAIRE, NOM + ADRESSE; FORMER OWNER NAME: CONSTELLIUM FRANCE

Effective date: 20160225

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180709

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200727

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60300004

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731