EP1382698B2 - Wrought product in Al-Cu-Mg alloy for aircraft structural element - Google Patents

Wrought product in Al-Cu-Mg alloy for aircraft structural element Download PDF

Info

Publication number
EP1382698B2
EP1382698B2 EP03356108A EP03356108A EP1382698B2 EP 1382698 B2 EP1382698 B2 EP 1382698B2 EP 03356108 A EP03356108 A EP 03356108A EP 03356108 A EP03356108 A EP 03356108A EP 1382698 B2 EP1382698 B2 EP 1382698B2
Authority
EP
European Patent Office
Prior art keywords
product according
alloy
mpa
product
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03356108A
Other languages
German (de)
French (fr)
Other versions
EP1382698A1 (en
EP1382698B1 (en
Inventor
Timothy Warner
Ronan Dif
Bernard Bes
Hervé Ribes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29763743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1382698(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium France SAS filed Critical Constellium France SAS
Priority to DE60300004T priority Critical patent/DE60300004T3/en
Publication of EP1382698A1 publication Critical patent/EP1382698A1/en
Application granted granted Critical
Publication of EP1382698B1 publication Critical patent/EP1382698B1/en
Publication of EP1382698B2 publication Critical patent/EP1382698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the invention relates to aircraft structural elements, in particular fuselage sheets for commercial aircraft of large capacity, made from rolled, spun or forged products made of AlCuMg alloy in the treated, solution-quenched and quenched state. cold work hardening, and having, compared with the products of the prior art used for the same application, an improved compromise between the different required use properties.
  • the fuselage of commercial aircraft of large capacity is typically made of an AlCuMg alloy sheet skin, as well as longitudinal stiffeners and circumferential frames.
  • a type 2024 alloy is used which, according to the designation of the Aluminum Association or the standard EN 573-3, has the following chemical composition (% by weight): If ⁇ 0.5 Fe ⁇ 0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr ⁇ 0.10 Zn ⁇ 0.25 Ti ⁇ 0 15.
  • Variants of this alloy are also used. These structural elements are required to compromise between several properties such as: mechanical resistance (ie static mechanical characteristics), damage tolerance (toughness and speed of fatigue cracking), fatigue resistance (particularly oligocyclic), resistance to different forms of corrosion, fitness. In some cases, especially for supersonic aircraft, creep resistance can be critical.
  • Zr antirecrystallizer
  • the patent US 5,652,063 (Alcoa) relates to an aircraft structural element made from a composition alloy (% by weight): Cu: 4.85 - 5.3 Mg: 0.51 - 1.0 Mn: 0.4 - 0.8 Ag: 0.2 - 0.8 If ⁇ 0.1 Fe ⁇ 0.1 Zr ⁇ 0, With Cu / Mg between 5 and 9.
  • the sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa).
  • the alloy is particularly intended for supersonic aircraft.
  • This alloy is intended more particularly for thin fuselage sheets and has improved toughness and resistance to crack propagation compared to 2024.
  • the patent application EP 0 731 185 of the Applicant relates to an alloy, subsequently recorded under No. 2024A, of composition: Si ⁇ 0.25 Fe ⁇ 0.25 Cu: 3.5 - 5 Mg: 1 - 2 Mn ⁇ 0.55 with the relation: 0 ⁇ Mn - 2Fe ⁇ 0.2
  • the thick plates in this alloy have both improved toughness and a reduced level of residual stresses, without loss on the other properties.
  • the alloy may also contain: Zr ⁇ 0.20% V ⁇ 0.20% Mn ⁇ 0.80% Ti ⁇ 0.05% Fe ⁇ 0.15% Si ⁇ 0.10%.
  • Licences US 5,376,192 and US 5,512,112 relate to alloys of this type containing from 0.1 to 1% of silver. It should be noted that the use of silver in this type of alloy leads to an increase in the cost of production and difficulties in the recycling of manufacturing scrap.
  • the present invention aims to obtain aircraft structural elements, and in particular fuselage elements, AlCuMg alloy, having, compared with the prior art, improved damage tolerance, mechanical strength at least equal , improved corrosion resistance, and this without resorting to expensive and troublesome addition elements for recycling.
  • the subject of the invention is a wrought product, in particular a laminated, spun or forged product, made of an alloy of composition (% by weight): Cu 3.80 - 4.30, Mg 1.25 - 1.45, Mn 0.20 - 0.50, Zn 0.40 - 0.70, Zr ⁇ 0.05, Fe ⁇ 0.15, Si ⁇ 0.15, Ag ⁇ 0.01 other elements ⁇ 0.05 each and ⁇ 0.15 in total, remain Al, said product can be treated by dissolving, quenching, and cold working, with a permanent deformation of between 0.5% and 15%, preferably between 1% and 5%, and even more preferably between 1.5% and 3.5%. Cold working can be obtained by controlled pulling and / or cold processing, for example rolling or drawing.
  • the invention also relates to a structural element for aircraft construction, including an aircraft fuselage element, manufactured from such a wrought product, and in particular from such a rolled product.
  • the copper content of the alloy according to the invention is between 3.80 and 4.30%, and preferably between 4.05 and 4.30%; it is therefore in the lower half of the content range of alloy 2024, so as to limit the residual volume fraction of coarse copper particles.
  • the interval of the magnesium content which must be between 1.25 and 1.45% and preferably between 1.28 and 1.42%, is shifted downwards relative to that of the 2024.
  • the manganese content is maintained between 0.20 and 0.50%, preferably between 0.30 and 0.50, and even more preferably between 0.35 and 0.48%.
  • the implementation of the invention does not require significant addition of zirconium at a content greater than 0.05%.
  • the present invention requires careful control of the zinc content, the alloy being discharged into copper, magnesium and manganese.
  • the zinc content must be between 0.40 and 0.70%, and preferably between 0.50 and 0.70%.
  • the zinc content it is preferable for the zinc content to be at least equal to (1.2Cu - 0.3Mg + 0.3Mn - 3.75).
  • the silicon and iron contents are each maintained below 0.15%, and preferably below 0.10%, to have good toughness.
  • the person skilled in the art knows that the reduction in the content of iron and silicon improves the damage tolerance of the AlCuMg and AlZnMgCu alloys used in aircraft construction (see the article by JT Staley, "Microstructure and Toughness of High Strength Aluminum Alloys,” published in “Properties Related to Fracture Toughness,” ASTM STP605, ASTM, 1976, pp. 71-103 ).
  • the damage tolerance gain associated with the use of aluminum containing less than 0.06% of iron and silicon each is important enough to be valued.
  • the implementation of the present invention does not require that the iron and silicon content be less than 0.06% each, because in the selected composition range, the damage tolerance is very good.
  • the alloy contains no silver addition, nor any other element likely to increase the production cost of the alloy and pollute the other alloys produced on the same site by recycling manufacturing scrap.
  • the preferred method of manufacture comprises casting of plates, in the case where the product to be made is a rolled sheet, or billets in the case where it is a spun section or a forged part.
  • the plate or the billet is scalped, then homogenized between 450 and 500 ° C.
  • the hot transformation is then carried out by rolling, spinning or forging, optionally completed by a cold transformation step.
  • the laminated, spun or forged half-product is then dissolved between 480 and 505 ° C., so that this dissolution is as complete as possible, that is to say that the maximum of potentially soluble phases , in particular the precipitates Al 2 Cu and Al 2 CuMg, are effectively put back in solution.
  • the quality of the dissolution can be assessed by differential enthalpy analysis (AED) by measuring the specific energy using the area of the peak on the thermogram. This specific energy must preferably be less than 2 J / g.
  • AED differential enthalpy analysis
  • This cold working can be a controlled pull with a permanent elongation of between 1 and 5% bringing the product to a T351 state. Controlled traction with a permanent elongation of between 1.5% and 3.5% is preferred. It can also be a cold-rolled transformation in the case of sheets or stretching in the case of profiles, with a permanent elongation of up to 15%, bringing the product to state T39, or in the state T3951 if rolling or stretching is combined with traction. The product finally undergoes natural aging at room temperature. The final microstructure is generally largely recrystallized, with relatively fine and fairly equiaxized grains.
  • the product according to the present invention is well suited for use as an aircraft structural element, for example as a fuselage skin element, and especially as an element for the fuselage skin panel (skin).
  • These sheets preferably plated, have a thickness of between 1 and 16 mm, and have good resistance to intergranular corrosion and corrosion on riveted assembly. They have a breaking strength in the L direction and / or TL direction greater than 430 MPa, and preferably greater than 440 MPa, and a yield strength in the L and / or TL direction greater than 300 MPa, and preferably greater than 320. MPa.
  • the sheet according to the invention may be a sheet plated with at least one face with an alloy of the 1xxx series, and preferably with an alloy selected from the group consisting of alloys 1050, 1070, 1300 and 1145.
  • riveting is the most frequently used assembly method for fuselage skins
  • fuselage coating of plated sheets according to the invention which are particularly resistant to corrosion by galvanic coupling.
  • plated sheets which exhibit a galvanic corrosion current of less than 4 ⁇ A / cm 2 , and preferably less than 2.5 ⁇ A / cm 2 , for exposure of up to 200 hours, during corrosion tests in a riveted assembly are preferred, placing the core alloy in a non-deaerated solution containing 0.06 M NaCl and the plating alloy in 0.02 M AlCl 3 solution deaerated by nitrogen sparging.
  • Table 1 Chemical composition Alloy Yes Fe Cu mn mg Zn Cr N0 0.03 0.08 4.16 0.41 1.35 0.59 * 0,001 N1 0.03 0.08 4.00 0.40 1.22 0.63 N2 0.03 0.07 3.98 0.39 1.32 0.59 N3 0.06 0.07 4.14 0.43 1.26 1.28 * E 0.06 0.19 4.14 0.51 1.36 0.11 0,007 F 0.06 0.16 4.15 0.51 1.38 0.12 0.014 Plating 1050 0.14 0.25 0,003 0,029 0,001 0,017 * chemical analysis carried out on solutions
  • alloy plating 1050 is about 2% of the thickness.
  • alloys according to the prior art alloys E and F
  • the plates were heated to around 450 ° C and then hot rolled at the reversing mill to a thickness of about 20 mm.
  • the strips thus obtained were rolled on a tandem rolling mill with three stands to a final thickness close to 5 mm, and then wound (at temperatures of 320 ° C. and 260 ° C. respectively for alloys F and E).
  • the coil thus obtained was cold rolled to a thickness of 3.2 mm.
  • Sheets were cut, dissolved in a salt bath oven at a temperature of 498.5 ° C for a duration of 30 min (sheet E of thickness 5 mm) or 25 min (sheet F of thickness 3, 2 mm), then completed (wrinkling followed by controlled traction with a permanent elongation of between 1.5 and 3%).
  • the N0 plate has undergone the following homogenization cycle: 8h at 495 ° C + 12h at 500 ° C (nominal values) while alloys N1, N2 and N3 have been homogenized for 12 hours at 500 ° C.
  • the plates After reheating (about 18 hours at 425-445 ° C), the plates were hot-rolled (inlet temperature: 413 ° C) to a thickness of about 90 mm.
  • the N0 band thus obtained was cut in half in the direction perpendicular to the rolling direction. There were thus obtained two bands, labeled N01 and N02. These strips were rolled on a tandem hot rolling mill 3 cages to a final thickness of 6 mm (winding temperature about 320 - 325 ° C).
  • N1 and N3 alloy plate and one N3 alloy plate were hot rolled at 5.5 mm before being cold rolled to the final thickness of 3.2 mm, and another N1 alloy plate. was hot rolled to 4.5 mm before being cold rolled to the final thickness of 1.6 mm.
  • N2 alloy plate was hot rolled to a final thickness of 6 mm (tandem winding temperature 270 ° C).
  • the N01 coil did not undergo another rolling pass, while the NO2 coil was cold rolled to a final thickness of 3.2 mm.
  • the sheets once cut were dissolved in a salt bath oven (thickness 6 mm: 60 minutes at 500 ° C., thickness 3.2 mm: 40 minutes at 500 ° C., thickness 1, 6 mm: 30 minutes at 500 ° C) followed by quenching with water at about 23 ° C. After quenching, the sheets have undergone wrinkling and traction with a cumulative permanent elongation of between 1.5 and 3.5%. The waiting time between quenching and wrinkling did not exceed 6 hours.
  • the tensile strength R m (in MPa), the conventional yield stress at 0.2% elongation R p0.2 (in MPa) and the elongation at break A (in%) were measured by a tensile test according to EN 10002-1.
  • Table 2 Static mechanical characteristics sheet metal Ep [mm] Meaning L TL direction R m [MPa] R p0,2 [MPa] AT [%] R m [MPa] R p0,2 [MPa] AT [%] N01 6.0 442 336 22.8 442 323 23.5 N02 3.2 456 353 20.3 449 318 24.7 N1 1.6 455 359 20.2 434 298 21.8 N1 3.2 460 360 19.3 438 308 22.3 N2 6 471 384 19.8 462 343 19.9 N3 3.2 453 360 21.3 443 317 24.2 E 5.0 Not measured 456 341 17.7 F 3.2 454 318 19.2
  • Table 3 Results of the R curve test sheet metal Ep [Mm] meaning K r [MPa ⁇ m] for a value ⁇ a eff of 10 mm 20 mm 30 mm 40 mm 50 mm 60 mm N02 3.2 TL 81 108 129 148 164 180 N01 6.0 TL 77 105 127 144 159 173 N1 1.6 TL 102 123 138 152 164 175 N1 3.2 TL 85 110 130 147 161 175 N2 6 TL 89 117 137 153 167 179 N3 3.2 TL 91 119 139 155 168 181 F 3.2 TL 82 107 125 139 151 162 E 5.0 TL 83 105 120 132 142 151 N2 3.2 LT 84 119 145 166 184 199 N1 6.0 LT 90 122 145 163 179 193 N1 1.6 LT 92 118 138 157 174 191 N1 3.2 .
  • the product according to the invention thus has a better breaking strength in the case of a cracked panel.
  • the sheets of 2024 especially for ⁇ K ⁇ 20 MPa ⁇ m, have a cracking rate two to three times higher than for the product according to the invention. The latter therefore allows longer inspection intervals (at given mass of structure) or lightening of the fixed inspection interval structure.
  • the breaking K values for a limiting load greater than 200 MPa are greater than about 120 MPa ⁇ m for the described R curves, with apparent K (K r ) greater than about 110 MPa m.
  • K r apparent K
  • the corrosion resistance of the sheets has also been characterized. It is found that the alloy according to the invention shows intrinsically, that is to say after machining displacement, an intergranular corrosion resistance, measured according to ASTM G 110, substantially comparable to that of the reference 2024.
  • the test consists in measuring the current which is established naturally between the anode (alloy of plating placed in a cell containing a solution of AlCl 3 (0,02 M, deaerated by sparging of nitrogen)) and the cathode (alloy core placed in a cell containing a solution of NaCl (0.06 M, aerated)), a salt bridge ensuring the electrolytic contact between the two cells. Both elements (veneer and core) have the same surface (2.54 cm 2 ). The coupling current densities are recorded throughout the duration of the test. It is observed that the current reaches a plateau after about 55 hours and hardly changes during the tests (200 hours or 15 days, depending on the sample). The results are summarized in Table 6.
  • the product according to the invention (N1 and N2) has a corrosion current and a loss of mass much lower than the standard product according to the prior art. For some applications, for example structural elements for aircraft, this provides a very significant advantage in terms of service life.
  • state F From hot-rolled and possibly cold-rolled sheets (state F) of the alloy according to the invention (see example 1), several other metallurgical states were developed in the form of a size of 600 mm (L-direction) x 160 mm (TL direction) x thickness.
  • the marks ending in A, D, F and I correspond to T351 states.
  • the different samples were characterized by tensile tests (L and TL directions) as well as by toughness tests.
  • the tenacity was first evaluated in the TL and LT directions using the maximum stress R e (in MPa) and the flow energy E ec according to the Kahn test.
  • the stress Kahn is equal to the ratio of the maximum load F max that the specimen can withstand on the section of the specimen (product of the thickness B by the width W).
  • the flow energy is determined as the area under the Force-Displacement curve up to the maximum force F max supported. by the test tube.
  • the test is described in the article Kahn-Type Tear Test and Crack Toughness of Aluminum Alloy Sheet, published in Materials Research & Standards, April 1964, p. 151-155 .
  • the test specimen used for the Kahn toughness test is described, for example, in the "Metals Handbook", 8th Edition, Vol. 1, American Society for Metals, pp. 241-242 .
  • the tenacity was also approached for sheets of thickness 6 mm, using a curve-type test R, in the TL direction, but on smaller specimens than that described in Example 1.
  • Table 8 Static mechanical characteristics landmark Maturation Traction Static characteristics sense L Static characteristics TL sense R m [MPa] R p0,2 [MPa] AT [%] R m [MPa] R p0,2 [MPa] AT [%] N0A ⁇ 2h 2% 450 345 21.6 444 307 23.7 N0B ⁇ 2h 4% 456 369 21.4 448 322 21.1 N0C ⁇ 2h 6% 464 394 17.6 453 339 18.2 N0D 24 2% 457 351 22.1 449 313 23.2 N0E 24 6% 473 413 18.7 464 352 18.6 N0F ⁇ 2h 2% 433 334 22.5 432 297 21.5 N0G ⁇ 2h 4% 437 353 22.3 436 308 21.1 N0H ⁇ 2h 6% 443 375 19.5 443 324 20.9 N0I 24 2% 440 338 24.1 443
  • Sheets made according to Example 2 were subjected to a 5% cold work (by controlled pulling) after quenching.
  • Tables 10 and 11 show the results of the characterizations.
  • Table 10 Static mechanical characteristics sheet metal Ep [mm] Meaning L TL direction rm [MPa] R p0,2 [MPa] AT [%] rm [MPa] R p0,2 [MPa] AT [%] N1 1.6 468 404 20.1 456 341 20.6 N1 3.2 472 408 18.2 464 348 19.3 N2 6 488 422 19.1 475 368 20.2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

Weldable product, notably rolled, drawn or forged, is made in an alloy with the following composition (by weight %): (a) Cu: 3.8 - 4.3; (b) Mg: 1.25 - 1.45; (c) Mn: 0.2 - 0.5; (d) Zn: 0.4 - 1.3; (e) Fe less than 0.15; (f) Si less than 0.15; (g) Zr at most 0.05; (h) Ag less than 0.01; (i) other elements each less than 0.05 and less than 0.15 in total; (j) remainder Al; (k) treated by putting into solution, tempering and cold drawing, with a permanent deformation of between 0.5 and 15 %, and preferably of between 1.5 and 3.5 %. The cold drawing is achieved by controlled traction and/or cold transformation, such as rolling or drawing. Independent claims are also included for: (i) a plated sheet of this alloy; (ii) an aircraft structural element of this alloy; (iii) a method for the fabrication of a weldable product of this alloy.

Description

Domaine de l'inventionField of the invention

L'invention concerne des éléments de structure d'avion, notamment des tôles pour fuselage d'avions commerciaux de grande capacité, réalisés à partir de produits laminés, filés ou forgés en alliage AlCuMg à l'état traité par mise en solution, trempe et écrouissage à froid, et présentant, par rapport aux produits de l'art antérieur utilisés pour la même application, un compromis amélioré entre les différentes propriétés d'emploi requises.The invention relates to aircraft structural elements, in particular fuselage sheets for commercial aircraft of large capacity, made from rolled, spun or forged products made of AlCuMg alloy in the treated, solution-quenched and quenched state. cold work hardening, and having, compared with the products of the prior art used for the same application, an improved compromise between the different required use properties.

Etat de la techniqueState of the art

Le fuselage d'avions commerciaux de grande capacité est typiquement constitué d'une peau en tôles en alliage de type AlCuMg, ainsi que de raidisseurs longitudinaux et de cadres circonférentiels. On utilise le plus souvent un alliage de type 2024 qui a, selon la désignation de l'Aluminum Association ou la norme EN 573-3 la composition chimique suivante (% en poids) :
Si < 0,5   Fe < 0,5   Cu : 3,8 - 4,9   Mg : 1,2 - 1,8   Mn : 0,3 - 0,9    Cr < 0,10   Zn < 0,25   Ti < 0,15.
The fuselage of commercial aircraft of large capacity is typically made of an AlCuMg alloy sheet skin, as well as longitudinal stiffeners and circumferential frames. A type 2024 alloy is used which, according to the designation of the Aluminum Association or the standard EN 573-3, has the following chemical composition (% by weight):
If <0.5 Fe <0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr <0.10 Zn <0.25 Ti <0 15.

On utilise également des variantes de cet alliage. On demande à ces éléments structuraux un compromis entre plusieurs propriétés telles que : la résistance mécanique (i.e. les caractéristiques mécaniques statiques), la tolérance aux dommages (ténacité et vitesse de fissuration en fatigue), la résistance à la fatigue (notamment oligocyclique), la résistance aux différentes formes de corrosion, l'aptitude à la mise en forme. Dans certains cas, notamment pour les avions supersoniques, la résistance au fluage peut être critique.Variants of this alloy are also used. These structural elements are required to compromise between several properties such as: mechanical resistance (ie static mechanical characteristics), damage tolerance (toughness and speed of fatigue cracking), fatigue resistance (particularly oligocyclic), resistance to different forms of corrosion, fitness. In some cases, especially for supersonic aircraft, creep resistance can be critical.

Dans le but d'améliorer le compromis entre les différentes propriétés requises, notamment la résistance mécanique et la ténacité, diverses solutions alternatives ont été proposées. Boeing a développé l'alliage 2034 de composition :
Si < 0,10   Fe < 0,12   Cu: 4,2 - 4,8   Mg: 1,3 - 1,9    Mn: 0,8 - 1,3   Cr < 0,05   Zn < 0,20   Ti < 0,15   Zr : 0,08 - 0,15
In order to improve the compromise between the different properties required, in particular the mechanical strength and toughness, various alternative solutions have been proposed. Boeing developed the alloy 2034 of composition:
If <0.10 Fe <0.12 Cu: 4.2 - 4.8 Mg: 1.3 - 1.9 Mn: 0.8 - 1.3 Cr <0.05 Zn <0.20 Ti <0 , 15 Zr: 0.08 - 0.15

Cet alliage a fait l'objet du brevet EP 0 031 605 (= US 4 336 075 ). Il présente, par rapport au 2024 à l'état T351, une meilleure limite d'élasticité spécifique due à l'augmentation de la teneur en manganèse et à l'ajout d'un autre antirecristallisant (Zr), ainsi qu'une ténacité et une résistance à la fatigue améliorées.This alloy was the subject of the patent EP 0 031 605 (= US 4,336,075 ). Compared with 2024 in the T351 state, it has a better specific yield stress due to the increase in manganese content and the addition of another antirecrystallizer (Zr), as well as toughness and improved fatigue resistance.

Le brevet US 5 652 063 (Alcoa) concerne un élément de structure d'avion réalisé à partir d'un alliage de composition (% en poids) :
Cu : 4,85 - 5,3   Mg: 0,51 - 1,0   Mn : 0,4 - 0,8   Ag: 0,2 - 0,8    Si < 0,1   Fe < 0,1   Zr < 0,25   avec Cu/Mg compris entre 5 et 9.
La tôle de cet alliage à l'état T8 présente une limite d'élasticité > 77 ksi (531 MPa). L'alliage est particulièrement destiné aux avions supersoniques.
The patent US 5,652,063 (Alcoa) relates to an aircraft structural element made from a composition alloy (% by weight):
Cu: 4.85 - 5.3 Mg: 0.51 - 1.0 Mn: 0.4 - 0.8 Ag: 0.2 - 0.8 If <0.1 Fe <0.1 Zr <0, With Cu / Mg between 5 and 9.
The sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa). The alloy is particularly intended for supersonic aircraft.

Le brevet EP 0 473 122 (= US 5 213 639 ) d'Alcoa décrit un alliage, enregistré à l'Aluminum Association comme 2524, de composition : Si < 0,10   Fe < 0,12    Cu : 3,8 - 4,5   Mg : 1,2 - 1,8   Mn : 0,3 - 0,9   pouvant contenir éventuellement un autre antirecristallisant (Zr, V, Hf, Cr, Ag ou Sc). Cet alliage est destiné plus particulièrement aux tôles minces pour fuselage et présente une ténacité et une résistance à la propagation de fissures améliorées par rapport au 2024.The patent EP 0 473 122 (= US 5,213,639 ) of Alcoa discloses an alloy, registered in the Aluminum Association as 2524, of composition: Si <0.10 Fe <0.12 Cu: 3.8 - 4.5 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 possibly containing another antirecrystallizer (Zr, V, Hf, Cr, Ag or Sc). This alloy is intended more particularly for thin fuselage sheets and has improved toughness and resistance to crack propagation compared to 2024.

La demande de brevet EP 0 731 185 de la demanderesse concerne un alliage, enregistré ultérieurement sous le n° 2024A, de composition : Si < 0,25   Fe < 0,25    Cu : 3,5 - 5   Mg : 1 - 2   Mn < 0,55   avec la relation : 0 < Mn - 2Fe < 0,2
Les tôles épaisses en cet alliage présentent à la fois une ténacité améliorée et un niveau réduit de contraintes résiduelles, sans perte sur les autres propriétés.
The patent application EP 0 731 185 of the Applicant relates to an alloy, subsequently recorded under No. 2024A, of composition: Si <0.25 Fe <0.25 Cu: 3.5 - 5 Mg: 1 - 2 Mn <0.55 with the relation: 0 <Mn - 2Fe <0.2
The thick plates in this alloy have both improved toughness and a reduced level of residual stresses, without loss on the other properties.

Le brevet US 5 593 516 (Reynolds) concerne un alliage pour applications aéronautiques contenant de 2,5 à 5,5% Cu et 0,1 à 2,3% Mg, dans lequel les teneurs en Cu et Mg sont maintenues en dessous de leur limite de solubilité dans l'aluminium, et sont liées par les équations : C u m a x = 5 , 59 - 0 , 91 M g e t C u m i n = 4 , 59 - 0 , 91 M g

Figure imgb0001
L'alliage peut contenir également : Zr < 0,20%   V < 0,20%   Mn < 0,80% Ti < 0,05%   Fe < 0,15%   Si < 0,10%.The patent US 5,593,516 (Reynolds) relates to an alloy for aeronautical applications containing 2.5 to 5.5% Cu and 0.1 to 2.3% Mg, in which Cu and Mg contents are maintained below their solubility limit in aluminum, and are linked by the equations: VS u m at x = 5 , 59 - 0 , 91 M boy Wut e t VS u m i not = 4 , 59 - 0 , 91 M boy Wut
Figure imgb0001
The alloy may also contain: Zr <0.20% V <0.20% Mn <0.80% Ti <0.05% Fe <0.15% Si <0.10%.

Les brevets US 5 376 192 et US 5 512 112 , issus de la même demande initiale, concernent des alliages de ce type contenant de 0,1 à 1% d'argent. On peut remarquer que l'utilisation d'argent dans ce type d'alliage conduit à une augmentation du coût d'élaboration et des difficultés pour le recyclage des chutes de fabrication.Licences US 5,376,192 and US 5,512,112 , from the same initial application, relate to alloys of this type containing from 0.1 to 1% of silver. It should be noted that the use of silver in this type of alloy leads to an increase in the cost of production and difficulties in the recycling of manufacturing scrap.

La demande de brevet EP 1 170 394 A2 (Alcoa) décrit quatre alliages de type AlCu qui ont, respectivement, la composition

  • Cu 4,08 , Mn 0,29 , Mg 1,36 , Zr 0,12, Fe 0,02, Si 0,01;
  • Cu 4,33 , Mn 0,30, Mg 1,38 , Zr 0,10, Fe 0,01 , Si 0,00 ;
  • Cu 4,09, Mn 0,58 , Mg 1,35 , Zr 0,11 , Fe 0,02 , Si 0,01 ; et
  • Cu 4,22 , Mn 0,66 , Mg 1,32 , Zr 0,10, Fe 0,01 , Si 0,01.
Le brevet enseigne comment transformer ces produits en tôles présentant une structure à grains allongés, dans laquelle les grains montrent un rapport de longueur sur épaisseur supérieur à 4. En respectant à la fois une microstructure et une texture bien spécifiques, ce produit a de bonnes caractéristiques de résistance mécanique et de tolérance aux dommages. Un des inconvénients de ces alliages est d'être basé sur un aluminium de grande pureté (très faible teneur en silicium et fer), qui est cher. Un autre brevet du même demandeur, US 5,630,889 , divulgue une tôle à l'état T6 ou T8 en alliage AlCuMg contenant :
Cu 4,66, Mg 0,81, Mn 0,62, Fe 0,06, Si 0,04, Zn 0,36 %.
Un ajout d'argent améliore les propriétés de cet alliage. Toutefois, l'argent est un élément coûteux, et il limite les possibilités de recyclage des produits ainsi obtenus ainsi que de leurs chutes de production, ce qui contribue à augmenter encore plus le coût de revient desdits produits.The patent application EP 1 170 394 A2 (Alcoa) describes four AlCu alloys that have, respectively, the composition
  • Cu 4.08, Mn 0.29, Mg 1.36, Zr 0.12, Fe 0.02, Si 0.01;
  • Cu 4.33, Mn 0.30, Mg 1.38, Zr 0.10, Fe 0.01, Si 0.00;
  • Cu 4.09, Mn 0.58, Mg 1.35, Zr 0.11, Fe 0.02, Si 0.01; and
  • Cu 4.22, Mn 0.66, Mg 1.32, Zr 0.10, Fe 0.01, Si 0.01.
The patent teaches how to convert these products into sheets having an elongated grain structure, wherein the grains have a length to thickness ratio of greater than 4. While respecting both a specific microstructure and texture, this product has good characteristics. mechanical resistance and damage tolerance. One of the disadvantages of these alloys is to be based on a high purity aluminum (very low silicon and iron content), which is expensive. Another patent of the same applicant, US 5,630,889 discloses a sheet in the T6 or T8 state of AlCuMg alloy containing:
Cu 4.66, Mg 0.81, Mn 0.62, Fe 0.06, Si 0.04, Zn 0.36%.
A silver addition enhances the properties of this alloy. However, money is an expensive element, and it limits the possibilities of recycling of the products thus obtained as well as their production falls, which contributes to increase even more the cost price of these products.

La présente invention a pour but d'obtenir des éléments de structure d'avion, et notamment des éléments de fuselage, en alliage AlCuMg, présentant, par rapport à l'art antérieur, une tolérance aux dommages améliorée, une résistance mécanique au moins égale, une résistance à la corrosion améliorée, et ceci sans recourir à des éléments d'addition coûteux et gênants pour le recyclage.The present invention aims to obtain aircraft structural elements, and in particular fuselage elements, AlCuMg alloy, having, compared with the prior art, improved damage tolerance, mechanical strength at least equal , improved corrosion resistance, and this without resorting to expensive and troublesome addition elements for recycling.

Objet de l'inventionObject of the invention

L'invention a pour objet un produit corroyé, notamment un produit laminé, filé ou forgé, en alliage de composition (% en poids) :
Cu 3,80 - 4,30, Mg 1,25 - 1,45, Mn 0,20 - 0,50, Zn 0,40 - 0,70, Zr ≤ 0,05, Fe < 0,15, Si < 0,15, Ag < 0,01
autres éléments < 0,05 chacun et < 0,15 au total, reste Al,
le dit produit pouvant être traité par mise en solution, trempe, et écrouissage à froid, avec une déformation permanente comprise entre 0,5 % et 15 %, préférentiellement entre 1 % et 5 %, et encore plus préférentiellement entre 1,5 % et 3,5 %. L'écrouissage à froid peut être obtenu par traction contrôlée et/ou transformation à froid, par exemple laminage ou étirage.
The subject of the invention is a wrought product, in particular a laminated, spun or forged product, made of an alloy of composition (% by weight):
Cu 3.80 - 4.30, Mg 1.25 - 1.45, Mn 0.20 - 0.50, Zn 0.40 - 0.70, Zr ≤ 0.05, Fe <0.15, Si < 0.15, Ag <0.01
other elements <0.05 each and <0.15 in total, remain Al,
said product can be treated by dissolving, quenching, and cold working, with a permanent deformation of between 0.5% and 15%, preferably between 1% and 5%, and even more preferably between 1.5% and 3.5%. Cold working can be obtained by controlled pulling and / or cold processing, for example rolling or drawing.

L'invention a également pour objet un élément de structure pour construction aéronautique, notamment un élément de fuselage d'aéronef, fabriqué à partir d'un tel produit corroyé, et notamment à partir d'un tel produit laminé.The invention also relates to a structural element for aircraft construction, including an aircraft fuselage element, manufactured from such a wrought product, and in particular from such a rolled product.

Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles de The Aluminum Association. Les états métallurgiques sont définis dans la norme européenne EN 515. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1. Le terme « produit filé » inclut les produits dits « étirés », c'est-à-dire des produits qui sont élaborés par filage suivi d'un étirage.Unless stated otherwise, all the information relating to the chemical composition of the alloys is expressed in percent by weight. Therefore, in a mathematical expression, "0.4 Zn" means: 0.4 times the zinc content, expressed in mass percent; this applies mutatis mutandis to other chemical elements. The designation of the alloys follows the rules of The Aluminum Association. The metallurgical states are defined in the European standard EN 515. Unless stated otherwise, the static mechanical characteristics, that is to say the breaking strength R m , the yield strength R p0,2 , and the elongation at the rupture A, are determined by a tensile test according to EN 10002-1. The term "spun product" includes so-called "stretched" products, i.e., products that are made by spinning followed by stretching.

Dans les alliages AlCuMg de l'art antérieur les plus performants pour la fabrication d'éléments de structure de fuselage d'avion, un bon niveau de ténacité est obtenu en spécifiant des niveaux très bas en fer et en silicium, et en limitant les teneurs en cuivre et en magnésium pour faciliter la mise en solution des particules intermétalliques grossières. Pour obtenir un niveau suffisant de résistance mécanique, l'homme de métier est enclin à maintenir une teneur significative en manganèse, puisque celui-ci contribue au durcissement de l'alliage. La quasi-totalité des alliages de la série 2xxx ne contiennent pas plus que 0,25 % de zinc.In the most advanced prior art AlCuMg alloys for the manufacture of aircraft fuselage structural elements, a good level of toughness is obtained by specifying very low levels of iron and silicon, and limiting the contents. copper and magnesium to facilitate the dissolution of coarse intermetallic particles. To obtain a sufficient level of mechanical strength, the skilled person is inclined to maintain a significant content of manganese, since it contributes to the hardening of the alloy. Virtually all alloys in the 2xxx series contain no more than 0.25% zinc.

La teneur en cuivre de l'alliage selon l'invention est comprise entre 3,80 et 4,30 %, et de préférence entre 4,05 et 4,30 % ; elle se situe donc dans la moitié basse de l'intervalle de teneur de l'alliage 2024, de manière à limiter la fraction volumique résiduelle de particules grossières au cuivre. Pour la même raison, l'intervalle de la teneur en magnésium, qui doit être comprise entre 1,25 et 1,45 % et de préférence entre 1,28 et 1,42 %, est décalé vers le bas par rapport à celui du 2024. La teneur en manganèse est maintenue entre 0,20 et 0,50 %, de préférence entre 0,30 et 0,50, et encore plus préférentiellement entre 0,35 et 0,48 %. La mise en oeuvre de l'invention ne nécessite pas d'ajout significatif de zirconium à une teneur supérieure à 0,05 %.The copper content of the alloy according to the invention is between 3.80 and 4.30%, and preferably between 4.05 and 4.30%; it is therefore in the lower half of the content range of alloy 2024, so as to limit the residual volume fraction of coarse copper particles. For the same reason, the interval of the magnesium content, which must be between 1.25 and 1.45% and preferably between 1.28 and 1.42%, is shifted downwards relative to that of the 2024. The manganese content is maintained between 0.20 and 0.50%, preferably between 0.30 and 0.50, and even more preferably between 0.35 and 0.48%. The implementation of the invention does not require significant addition of zirconium at a content greater than 0.05%.

La présente invention nécessite un contrôle soigneux de la teneur en zinc, l'alliage étant déchargé en cuivre, magnésium et manganèse. La teneur en zinc doit être comprise entre 0,40 et 0,70 %, et préférentiellement entre 0,50 et 0,70 %. Dans un mode de réalisation avantageux, lorsque les teneurs en cuivre, magnésium et manganèse sont inférieures à, respectivement, 4,20 %, 1,38 % et 0,42 %, il est préférable que la teneur en zinc soit au moins égale à (1,2Cu - 0,3Mg + 0,3Mn - 3,75).The present invention requires careful control of the zinc content, the alloy being discharged into copper, magnesium and manganese. The zinc content must be between 0.40 and 0.70%, and preferably between 0.50 and 0.70%. In an advantageous embodiment, when the contents of copper, magnesium and manganese are less than 4.20%, 1.38% and 0.42% respectively, it is preferable for the zinc content to be at least equal to (1.2Cu - 0.3Mg + 0.3Mn - 3.75).

Selon les constatations de la demanderesse, ce déchargement de la teneur en cuivre, magnésium et manganèse et l'ajout d'une quantité exactement contrôlée de zinc conduit, en utilisant des procédés de mise en oeuvre appropriés, à des tôles qui ont approximativement la même résistance mécanique, mais une meilleure tolérance aux dommages par rapport aux tôles qui ne contiennent pas cet ajout de zinc, à une formabilité au moins aussi bonne, et à une meilleure résistance à la corrosion.According to the findings of the applicant, this unloading of the content of copper, magnesium and manganese and the addition of an exactly controlled amount of zinc leads, using appropriate methods of implementation, to sheets which are approximately the same. mechanical strength, but better damage tolerance compared to sheet metal that does not contain this zinc addition, at least as good formability, and better corrosion resistance.

Les teneurs en silicium et en fer sont maintenues chacune en dessous de 0,15%, et de préférence en dessous de 0,10%, pour avoir une bonne ténacité. L'homme du métier sait que la diminution de la teneur en fer et silicium améliore la tolérance aux dommages des alliages AlCuMg et AlZnMgCu utilisés en construction aéronautique (voir l'article de J.T. Staley, « Microstructure and Toughness of High Strength Aluminium Alloys », paru dans « Properties Related to Fracture Toughness », ASTM STP605, ASTM, 1976, pp. 71-103 ). Toutefois, ce n'est que dans des cas très particuliers (en fonction du type d'alliage et de l'application visée) que le gain en tolérance aux dommages lié à l'utilisation d'un aluminium contenant moins de 0,06 % de fer et silicium chacun est suffisamment important pour pouvoir être valorisé. La mise en oeuvre de la présente invention n'exige pas que la teneur en fer et silicium soit inférieure à 0,06% chacun, car dans l'intervalle de composition sélectionné, la tolérance aux dommages est très bonne.The silicon and iron contents are each maintained below 0.15%, and preferably below 0.10%, to have good toughness. The person skilled in the art knows that the reduction in the content of iron and silicon improves the damage tolerance of the AlCuMg and AlZnMgCu alloys used in aircraft construction (see the article by JT Staley, "Microstructure and Toughness of High Strength Aluminum Alloys," published in "Properties Related to Fracture Toughness," ASTM STP605, ASTM, 1976, pp. 71-103 ). However, only in very specific cases (depending on the type of alloy and the intended application) does the damage tolerance gain associated with the use of aluminum containing less than 0.06% of iron and silicon each is important enough to be valued. The implementation of the present invention does not require that the iron and silicon content be less than 0.06% each, because in the selected composition range, the damage tolerance is very good.

Enfin, contrairement aux alliages décrits dans les brevets US 5 376 192 , US 5 512 112 et US 5 593 516 , l'alliage ne contient aucune addition d'argent, ni d'un autre élément susceptible d'augmenter le coût de production de l'alliage et de polluer les autres alliages produits sur le même site par recyclage des chutes de fabrication.Finally, unlike the alloys described in the patents US 5,376,192 , US 5,512,112 and US 5,593,516 , the alloy contains no silver addition, nor any other element likely to increase the production cost of the alloy and pollute the other alloys produced on the same site by recycling manufacturing scrap.

Le procédé de fabrication préféré comporte la coulée de plaques, dans le cas où le produit à fabriquer est une tôle laminée, ou de billettes dans le cas où il s'agit d'un profilé filé ou d'une pièce forgée. La plaque ou la billette est scalpée, puis homogénéisée entre 450 et 500 °C. On effectue ensuite la transformation à chaud par laminage, filage ou forgeage, éventuellement complétée par une étape de transformation à froid. Le demi-produit laminé, filé ou forgé est ensuite mis en solution entre 480 et 505°C, de manière à ce que cette mise en solution soit aussi complète que possible, c'est-à-dire que le maximum de phases potentiellement solubles, notamment les précipités Al2Cu et Al2CuMg, soient effectivement remises en solution. La qualité de la mise en solution peut être appréciée par analyse enthalpique différentielle (AED) en mesurant l'énergie spécifique à l'aide de l'aire du pic sur le thermogramme. Cette énergie spécifique doit être, de préférence, inférieure à 2 J/g.The preferred method of manufacture comprises casting of plates, in the case where the product to be made is a rolled sheet, or billets in the case where it is a spun section or a forged part. The plate or the billet is scalped, then homogenized between 450 and 500 ° C. The hot transformation is then carried out by rolling, spinning or forging, optionally completed by a cold transformation step. The laminated, spun or forged half-product is then dissolved between 480 and 505 ° C., so that this dissolution is as complete as possible, that is to say that the maximum of potentially soluble phases , in particular the precipitates Al 2 Cu and Al 2 CuMg, are effectively put back in solution. The quality of the dissolution can be assessed by differential enthalpy analysis (AED) by measuring the specific energy using the area of the peak on the thermogram. This specific energy must preferably be less than 2 J / g.

Puis on procède à la trempe à l'eau froide, et ensuite à un écrouissage à froid conduisant à un allongement permanent compris entre 0,5 % et 15%. Cet écrouissage à froid peut être une traction contrôlée avec un allongement permanent compris entre 1 et 5 % amenant le produit à un état T351. On préfère une traction contrôlée avec un allongement permanent compris entre 1,5 % et 3,5 %. Ce peut être aussi une transformation à froid par laminage dans le cas des tôles ou par étirage dans le cas des profilés, avec un allongement permanent pouvant aller jusqu'à 15%, amenant le produit à l'état T39, ou à l'état T3951 si on combine le laminage ou l'étirage avec la traction. Le produit subit enfin un vieillissement naturel à température ambiante. La microstructure finale est en général largement recristallisée, avec des grains relativement fins et assez équiaxes.Then the quenching with cold water, and then a cold work hardening leading to a permanent elongation of between 0.5% and 15%. This cold working can be a controlled pull with a permanent elongation of between 1 and 5% bringing the product to a T351 state. Controlled traction with a permanent elongation of between 1.5% and 3.5% is preferred. It can also be a cold-rolled transformation in the case of sheets or stretching in the case of profiles, with a permanent elongation of up to 15%, bringing the product to state T39, or in the state T3951 if rolling or stretching is combined with traction. The product finally undergoes natural aging at room temperature. The final microstructure is generally largely recrystallized, with relatively fine and fairly equiaxized grains.

Le produit selon la présente invention se prête bien pour l'utilisation en tant qu'élément de structure d'aéronef, par exemple en tant qu'élément de peau de fuselage, et notamment comme élément pour la tôle de revêtement (peau) de fuselage. Ces tôles, de préférence plaquées, sont d'une épaisseur comprise entre 1 et 16 mm, et présentent une bonne résistance à la corrosion intergranulaire ainsi qu'à la corrosion sur assemblage riveté. Elles présentent une résistance à la rupture au sens L et / ou sens TL supérieure à 430 MPa, et préférentiellement supérieure à 440 MPa, et une limite d'élasticité en sens L et / ou TL supérieure à 300 MPa, et préférentiellement supérieure à 320 MPa. Elles présentent une bonne formabilité (allongement à rupture au sens L et / ou TL supérieur à 19 % et préférentiellement supérieur à 20 %), et une tolérance aux dommages Kr, calculée à partir d'une courbe R obtenue selon ASTM E 561 pour une valeur Δaeff de 60 mm, supérieure à 165 MPa√m dans les sens T-L et L-T, supérieure à 180 MPa√m dans le sens L-T, ainsi qu'une vitesse de propagation de fissures da/dN, déterminée selon la norme ASTM E 647 dans le sens T-L ou L-T pour une valeur ΔK de 50 MPa√m, inférieure à 2,5.10-2 mm / cycle (et préférentiellement inférieure à 2,0 10-2 mm / cycle) et un rapport de charges R=0,1. Ce type de compromis de propriétés est particulièrement adéquat pour le revêtement de fuselage. La tôle selon l'invention peut être une tôle plaquée d'au moins une face avec un alliage de la série 1xxx, et préférentiellement avec un alliage sélectionné dans le groupe constitué par les alliages 1050, 1070, 1300 et 1145.The product according to the present invention is well suited for use as an aircraft structural element, for example as a fuselage skin element, and especially as an element for the fuselage skin panel (skin). . These sheets, preferably plated, have a thickness of between 1 and 16 mm, and have good resistance to intergranular corrosion and corrosion on riveted assembly. They have a breaking strength in the L direction and / or TL direction greater than 430 MPa, and preferably greater than 440 MPa, and a yield strength in the L and / or TL direction greater than 300 MPa, and preferably greater than 320. MPa. They have a good formability (elongation at break L and / or TL greater than 19% and preferably greater than 20%), and a damage tolerance Kr, calculated from a curve R obtained according to ASTM E 561 for a Δa eff value of 60 mm, greater than 165 MPa√m in the TL and LT directions, greater than 180 MPa√m in the LT direction, and a crack propagation rate da / dN, determined according to the ASTM E standard. 647 in the TL or LT direction for a ΔK value of 50 MPa√m, less than 2.5 × 10 -2 mm / cycle (and preferably less than 2.0 × 10 -2 mm / cycle) and a charge ratio R = 0 1. This type of property compromise is particularly suitable for fuselage lining. The sheet according to the invention may be a sheet plated with at least one face with an alloy of the 1xxx series, and preferably with an alloy selected from the group consisting of alloys 1050, 1070, 1300 and 1145.

Compte tenu du fait que le rivetage est le mode d'assemblage le plus fréquemment utilisé pour des peaux de fuselage, on préfère pour l'application comme revêtement de fuselage des tôles plaquées selon l'invention qui résistent particulièrement bien à la corrosion par couplage galvanique dans un assemblage riveté. Plus particulièrement, on préfère des tôles plaquées qui montrent un courant de corrosion galvanique inférieur à 4µA/cm2, et préférentiellement inférieur à 2,5µA/cm2, pour une exposition allant jusqu'à 200 heures, pendant des essais de corrosion dans un assemblage riveté, en plaçant l'alliage d'âme dans un solution non désaérée contenant 0,06 M de NaCl et l'alliage de placage dans une solution à 0,02 M de AlCl3 désaérée par barbotage d'azote.In view of the fact that riveting is the most frequently used assembly method for fuselage skins, it is preferred for the application as fuselage coating of plated sheets according to the invention which are particularly resistant to corrosion by galvanic coupling. in a riveted assembly. More particularly, plated sheets which exhibit a galvanic corrosion current of less than 4 μA / cm 2 , and preferably less than 2.5 μA / cm 2 , for exposure of up to 200 hours, during corrosion tests in a riveted assembly, are preferred, placing the core alloy in a non-deaerated solution containing 0.06 M NaCl and the plating alloy in 0.02 M AlCl 3 solution deaerated by nitrogen sparging.

Dans les exemples qui suivent on décrit à titre d'illustration des modes de réalisation avantageux de l'invention. Ces exemples n'ont pas de caractère limitatif.In the examples which follow, advantageous embodiments of the invention are illustrated by way of illustration. These examples are not limiting in nature.

ExemplesExamples Exemple 1Example 1

On a élaboré quatre alliages N0, N1, N2 et N3, la composition chimique de N0, N1 et N2 étant conforme à l'invention. Le métal liquide a été traité d'abord dans le four de maintien par injection de gaz à l'aide d'un rotor de type connu sous la marque IRMA, et puis dans une poche de type connu sous la marque Alpur. L'affinage a été fait en ligne, c'est-à-dire entre le four de maintien et la poche Alpur, avec du fil AT5B (0,7 kg/t pour N0, N1 et N3, 0,3 kg/t pour N2). On a coulée des plaques de 3,0 m de long et de section 1450 mm x 377 mm (sauf pour N3 : section 1450 x 446 mm). Elles ont été détendues pendant 10h à 350°C.Four alloys N0, N1, N2 and N3 were developed, the chemical composition of N0, N1 and N2 being in accordance with the invention. The liquid metal was first treated in the gas injection holding furnace using a rotor of a type known under the trademark IRMA, and then in a pocket of the type known under the trademark Alpur. The refining was done in line, that is to say between the holding oven and the Alpur bag, with AT5B wire (0.7 kg / t for N0, N1 and N3, 0.3 kg / t for N2). Plates 3.0 m long and 1450 mm x 377 mm (except for N3: section 1450 x 446 mm) were cast. They were relaxed for 10h at 350 ° C.

Des plaques en alliage 2024 selon l'art antérieur (références E et F) ont également été élaborés selon le même procédé.Alloy plates 2024 according to the prior art (references E and F) have also been produced by the same method.

Les compositions chimiques des alliages N0, N1, N2, N3, E et F, mesurées sur un pion de spectrométrie prélevé dans le chenal de coulée, sont rassemblées dans le tableau 1 : Tableau 1 : Composition chimique Alliage Si Fe Cu Mn Mg Zn Cr N0 0,03 0,08 4,16 0,41 1,35 0,59* 0,001 N1 0,03 0,08 4,00 0,40 1,22 0,63 N2 0,03 0,07 3,98 0,39 1,32 0,59 N3 0,06 0,07 4,14 0,43 1,26 1,28 * E 0,06 0,19 4,14 0,51 1,36 0,11 0,007 F 0,06 0,16 4,15 0,51 1,38 0,12 0,014 Placage 1050 0,14 0,25 0,003 0,029 0,001 0,017 * analyse chimique effectuée sur solutions The chemical compositions of the alloys N0, N1, N2, N3, E and F, measured on a spectrometric counter taken from the casting channel, are collated in Table 1: Table 1: Chemical composition Alloy Yes Fe Cu mn mg Zn Cr N0 0.03 0.08 4.16 0.41 1.35 0.59 * 0,001 N1 0.03 0.08 4.00 0.40 1.22 0.63 N2 0.03 0.07 3.98 0.39 1.32 0.59 N3 0.06 0.07 4.14 0.43 1.26 1.28 * E 0.06 0.19 4.14 0.51 1.36 0.11 0,007 F 0.06 0.16 4.15 0.51 1.38 0.12 0.014 Plating 1050 0.14 0.25 0,003 0,029 0,001 0,017 * chemical analysis carried out on solutions

Dans tous les cas, le placage en alliage 1050 correspond à environ 2 % de l'épaisseur.In all cases, alloy plating 1050 is about 2% of the thickness.

Pour les alliages selon l'art antérieur (alliages E et F), les plaques ont été réchauffées aux alentours de 450°C, puis laminées à chaud au laminoir réversible jusqu'à une épaisseur d'environ 20 mm. Les bandes ainsi obtenues ont été laminées sur un laminoir tandem à trois cages jusqu'à une épaisseur finale voisine de 5 mm, puis bobinées (à des températures de 320°C et 260°C, respectivement pour les alliages F et E). Dans le cas de l'alliage F, la bobine ainsi obtenue a été laminée à froid jusqu'à une épaisseur de 3,2 mm. Des tôles ont été découpées, mise en solution en four à bain de sel à une température de 498,5°C pendant une durée de 30 min (tôle E d'épaisseur 5 mm) ou 25 min (tôle F d'épaisseur 3,2 mm), puis parachevées (défripage suivi d'une traction contrôlée avec un allongement permanent compris entre 1.5 et 3%).For alloys according to the prior art (alloys E and F), the plates were heated to around 450 ° C and then hot rolled at the reversing mill to a thickness of about 20 mm. The strips thus obtained were rolled on a tandem rolling mill with three stands to a final thickness close to 5 mm, and then wound (at temperatures of 320 ° C. and 260 ° C. respectively for alloys F and E). In the case of the alloy F, the coil thus obtained was cold rolled to a thickness of 3.2 mm. Sheets were cut, dissolved in a salt bath oven at a temperature of 498.5 ° C for a duration of 30 min (sheet E of thickness 5 mm) or 25 min (sheet F of thickness 3, 2 mm), then completed (wrinkling followed by controlled traction with a permanent elongation of between 1.5 and 3%).

S'agissant des alliages selon l'invention, la plaque N0 a subi le cycle d'homogénéisation suivant :
8h à 495°C + 12h à 500°C (valeurs nominales)
alors que les alliages N1, N2 et N3 ont subi une homogénéisation de 12 h à 500 °C.
As regards the alloys according to the invention, the N0 plate has undergone the following homogenization cycle:
8h at 495 ° C + 12h at 500 ° C (nominal values)
while alloys N1, N2 and N3 have been homogenized for 12 hours at 500 ° C.

Après un réchauffage (environ 18 h entre 425 et 445 °C), les plaques ont été laminées à chaud (température d'entrée : 413 °C) jusqu'à une épaisseur d'environ 90 mm. La bande N0 ainsi obtenue a été coupée en deux dans le sens perpendiculaire à la direction de laminage. On a ainsi obtenu deux bandes, repérées N01 et N02. Ces bandes ont été laminées sur un laminoir à chaud tandem 3 cages jusqu'à une épaisseur finale de 6 mm (température de bobinage environ 320 - 325 °C).After reheating (about 18 hours at 425-445 ° C), the plates were hot-rolled (inlet temperature: 413 ° C) to a thickness of about 90 mm. The N0 band thus obtained was cut in half in the direction perpendicular to the rolling direction. There were thus obtained two bands, labeled N01 and N02. These strips were rolled on a tandem hot rolling mill 3 cages to a final thickness of 6 mm (winding temperature about 320 - 325 ° C).

Une plaque de l'alliage N1 et N3 et une plaque de l'alliage N3 ont été laminées à chaud à 5.5 mm avant d'être laminées à froid à l'épaisseur finale de 3.2 mm, et une autre plaque de l'alliage N1 a été laminée à chaud à 4.5 mm avant d'être laminée à froid à l'épaisseur finale de 1.6 mm.One N1 and N3 alloy plate and one N3 alloy plate were hot rolled at 5.5 mm before being cold rolled to the final thickness of 3.2 mm, and another N1 alloy plate. was hot rolled to 4.5 mm before being cold rolled to the final thickness of 1.6 mm.

Une plaque de l'alliage N2 a été laminée à chaud à l'épaisseur finale de 6 mm (température de bobinage tandem 270°C).An N2 alloy plate was hot rolled to a final thickness of 6 mm (tandem winding temperature 270 ° C).

La bobine N01 n'a pas subi d'autre passe de laminage, tandis que la bobine N02 a été laminée à froid jusqu'à une épaisseur finale de 3,2 mm.The N01 coil did not undergo another rolling pass, while the NO2 coil was cold rolled to a final thickness of 3.2 mm.

Les tôles une fois débitées ont été mises en solution dans un four à bain de sel (épaisseur 6 mm : 60 minutes à 500 °C ; épaisseur 3,2 mm : 40 minutes à 500 °C ; épaisseur 1 ,6 mm : 30 minutes à 500 °C) suivie d'une trempe à l'eau à environ 23 °C. Après trempe, les tôles ont subi un défripage et une traction avec un allongement permanent cumulé compris entre 1,5 et 3,5 %. Le temps d'attente entre trempe et défripage ne dépassait pas 6 heures.The sheets once cut were dissolved in a salt bath oven (thickness 6 mm: 60 minutes at 500 ° C., thickness 3.2 mm: 40 minutes at 500 ° C., thickness 1, 6 mm: 30 minutes at 500 ° C) followed by quenching with water at about 23 ° C. After quenching, the sheets have undergone wrinkling and traction with a cumulative permanent elongation of between 1.5 and 3.5%. The waiting time between quenching and wrinkling did not exceed 6 hours.

On a mesuré la résistance à la rupture Rm (en MPa), la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 (en MPa) et l'allongement à la rupture A (en %) par un essai de traction selon EN 10002-1.The tensile strength R m (in MPa), the conventional yield stress at 0.2% elongation R p0.2 (in MPa) and the elongation at break A (in%) were measured by a tensile test according to EN 10002-1.

Les résultats des mesures des caractéristiques mécaniques statiques à l'état T351 sont présentés dans le tableau 2 : Tableau 2 : Caractéristiques mécaniques statiques Tôle Ep [mm] Sens L Sens TL Rm[MPa] Rp0,2
[MPa]
A [%] Rm [MPa] Rp0,2
[MPa]
A [%]
N01 6,0 442 336 22,8 442 323 23,5 N02 3,2 456 353 20,3 449 318 24,7 N1 1,6 455 359 20,2 434 298 21,8 N1 3,2 460 360 19,3 438 308 22,3 N2 6 471 384 19,8 462 343 19,9 N3 3,2 453 360 21,3 443 317 24,2 E 5,0 Non mesuré 456 341 17.7 F 3,2 454 318 19.2
The results of measurements of static mechanical properties in the T351 state are shown in Table 2: Table 2: Static mechanical characteristics sheet metal Ep [mm] Meaning L TL direction R m [MPa] R p0,2
[MPa]
AT [%] R m [MPa] R p0,2
[MPa]
AT [%]
N01 6.0 442 336 22.8 442 323 23.5 N02 3.2 456 353 20.3 449 318 24.7 N1 1.6 455 359 20.2 434 298 21.8 N1 3.2 460 360 19.3 438 308 22.3 N2 6 471 384 19.8 462 343 19.9 N3 3.2 453 360 21.3 443 317 24.2 E 5.0 Not measured 456 341 17.7 F 3.2 454 318 19.2

L'aptitude à la mise en forme caractérisée par la ductilité en traction (valeur de l'allongement A) semble meilleure pour l'alliage selon l'invention, et ce, pour les deux épaisseurs considérées. La formabilité des tôles d'épaisseur supérieure à 4mm a été également caractérisée à l'aide de l'essai LDH (Limit Dome Height) sur des formats de 500 mm x 500 mm à l'état T351. Les résultats suivants ont été obtenus : Tôle N01 (ép. 6 mm) LDH = 81 mm Tôle E (ép. 5 mm) LDH = 75 mm Cela confirme la meilleure aptitude à la mise en forme de l'alliage selon l'invention.The formability characterized by the ductility in tension (value of the elongation A) seems better for the alloy according to the invention, and this, for the two thicknesses considered. The formability of sheets with a thickness greater than 4 mm was also characterized using the LDH (Limit Dome Height) test on formats of 500 mm x 500 mm in the T351 state. The following results were obtained: Sheet N01 (thickness 6 mm) LDH = 81 mm Sheet E (thickness 5 mm) LDH = 75 mm This confirms the best formability of the alloy according to the invention.

La tolérance au dommage a été caractérisé de plusieurs façons. La courbe R a été mesurée selon la norme ASTM E 561 sur des éprouvettes de type CCT, de largeur W = 760 mm, 2a0 = 253 mm, e = épaisseur de la tôle, avec un pilotage en déplacement de piston et une vitesse de traction de 1 mm/min, en utilisant un montage anti-voilage en acier. Les éprouvettes étaient prélevées au sens T-L et au sens L-T. On a calculé la valeur de Kr [MPa√m] pour différentes valeurs de Δaeff [mm].The damage tolerance has been characterized in several ways. Curve R was measured according to ASTM standard E 561 on specimens of CCT type, W = 760 mm wide, 2a0 = 253 mm, e = sheet thickness, with piston displacement control and a pulling speed. of 1 mm / min, using anti-warp steel mounting. The specimens were taken in the TL and LT directions. The value of K r [MPa√m] has been calculated for different values of Δa eff [mm].

Les résultats sont indiqués dans le tableau 3 : Tableau 3 : Résultats de l'essai de courbe R Tôle Ep
[mm]
sens Kr [MPa√m] pour une valeur Δaeff de
10 mm 20 mm 30 mm 40 mm 50 mm 60 mm
N02 3,2 T-L 81 108 129 148 164 180 N01 6,0 T-L 77 105 127 144 159 173 N1 1,6 T-L 102 123 138 152 164 175 N1 3,2 T-L 85 110 130 147 161 175 N2 6 T-L 89 117 137 153 167 179 N3 3,2 T-L 91 119 139 155 168 181 F 3,2 T-L 82 107 125 139 151 162 E 5,0 T-L 83 105 120 132 142 151 N2 3,2 L-T 84 119 145 166 184 199 N1 6,0 L-T 90 122 145 163 179 193 N1 1,6 L-T 92 118 138 157 174 191 N1 3,2 L-T 88 119 142 162 179 196 N2 6 L-T 87 121 145 164 180 194 N3 3,3 L-T 93 125 148 168 184 199 E 5,0 L-T 104 126 141 154 165 174
The results are shown in Table 3: Table 3: Results of the R curve test sheet metal Ep
[Mm]
meaning K r [MPa√m] for a value Δa eff of
10 mm 20 mm 30 mm 40 mm 50 mm 60 mm
N02 3.2 TL 81 108 129 148 164 180 N01 6.0 TL 77 105 127 144 159 173 N1 1.6 TL 102 123 138 152 164 175 N1 3.2 TL 85 110 130 147 161 175 N2 6 TL 89 117 137 153 167 179 N3 3.2 TL 91 119 139 155 168 181 F 3.2 TL 82 107 125 139 151 162 E 5.0 TL 83 105 120 132 142 151 N2 3.2 LT 84 119 145 166 184 199 N1 6.0 LT 90 122 145 163 179 193 N1 1.6 LT 92 118 138 157 174 191 N1 3.2 LT 88 119 142 162 179 196 N2 6 LT 87 121 145 164 180 194 N3 3.3 LT 93 125 148 168 184 199 E 5.0 LT 104 126 141 154 165 174

On constate que pour des fortes valeurs de Δaeff [mm], le produit selon l'invention dépasse le produit standard en alliage 2024.It is found that for high values of Δa eff [mm], the product according to the invention exceeds the standard product alloy 2024.

Le produit selon l'invention présente donc une meilleure résistance à la rupture dans le cas d'un panneau fissuré.The product according to the invention thus has a better breaking strength in the case of a cracked panel.

La vitesse de fissuration da/dN (en mm/cycle) pour différents niveaux de ΔK (exprimés en MPa√m) a été déterminée selon la norme ASTM E 647 sur des éprouvettes de type CCT prélevées dans le sens T-L et dans le sens L-T, de largeur W = 400 mm, 2ao = 4 mm, e = épaisseur de la tôle, dans des conditions de R = 0,1 et avec une contrainte maximale de 120 MPa et un dispositif anti-voilage pour les éprouvettes d'épaisseur inférieure à 3,2 mm. Les résultats sont indiqués dans le tableau 4. Tableau 4 : Résultats de l'essai de vitesse de propagation Tôle Ep
[mm]
sens da/dN [mm / cycle] pour ΔK[MPa√m] de
10 20 30 40 50
N02 3,2 T-L 1,5 10-4 6,5 10-4 1,5 10-3 0,4 10-2 1,0 10-2 N01 6,0 T-L 1,5 10-4 9,3 10-4 1,8 10-3 0,6 10-2 1,4 10-2 N1 1.6 T-L 1.6 10-4 4.6 10-4 1.4 10-3 0.4 10-2 1.0 10-2 N1 3.2 T-L 1.8 10-4 7.2 10-4 1.6 10-3 0.4 10-2 1.0 10-2 N2 6 T-L 2.1 10-4 8.7 10-4 2.3 10-3 0.6 10-2 1.6 10-2 N3 3.2 T-L 1.6 10-4 7.0 10-4 1.4 10-3 0.4 10-2 0.8 10-2 F 3,2 T-L 1,4 10-4 8,2 10-4 3,2 10-3 1,0 10-2 2,9 10-2 E 5,0 T-L 1,9 10-4 14,0 10-4 6,1 10-3 1,9 10-2 4,4 10-2 N02 3,2 L-T 1,5 10-4 5,4 10-4 1,8 10-3 0,5 10-2 1,4 10-2 N01 6,0 L-T 1,8 10-4 8,8 10-4 1,4 10-3 0,5 10-2 1,1 10-2 N1 1.6 L-T 1.2 10-4 4.42 10-4 1.2 10-3 0.3 10-2 0.8 10-2 N1 3.2 L-T 1.7 10-4 4.9 10-4 1.8 10-3 0.6 10-2 1.6 10-2 N2 6 L-T 1.9 10-4 10.4 10-4 2.5 10-3 0.7 10-2 1.3 10-2 N3 3.2 L-T 1.66 10-4 5.1 10-4 1.6 10-3 0.4 10-2 1.0 10-2 E 5,0 L-T 1,5 10-4 7,6 10-4 2,4 10-3 0,8 10-2 2,2 10-2
The cracking rate da / dN (in mm / cycle) for different levels of ΔK (expressed in MPa√m) was determined according to the ASTM E 647 standard on CCT specimens taken in the TL direction and in the LT direction. , width W = 400 mm, 2ao = 4 mm, e = thickness of the sheet, under conditions of R = 0.1 and with a maximum stress of 120 MPa and an anti-fogging device for the lower thickness test pieces at 3.2 mm. The results are shown in Table 4. Table 4: Results of the propagation velocity test sheet metal Ep
[Mm]
meaning da / dN [mm / cycle] for ΔK [MPa√m] of
10 20 30 40 50
N02 3.2 TL 1.5 10 -4 6.5 10 -4 1.5 10 -3 0.4 10 -2 1.0 10 -2 N01 6.0 TL 1.5 10 -4 9.3 10 -4 1.8 10 -3 0.6 10 -2 1.4 10 -2 N1 1.6 TL 1.6 10 -4 4.6 10 -4 1.4 10 -3 0.4 10 -2 1.0 10 -2 N1 3.2 TL 1.8 10 -4 7.2 10 -4 1.6 10 -3 0.4 10 -2 1.0 10 -2 N2 6 TL 2.1 10 -4 8.7 10 -4 2.3 10 -3 0.6 10 -2 1.6 10 -2 N3 3.2 TL 1.6 10 -4 7.0 10 -4 1.4 10 -3 0.4 10 -2 0.8 10 -2 F 3.2 TL 1.4 10 -4 8.2 10 -4 3.2 10 -3 1.0 10 -2 2.9 10 -2 E 5.0 TL 1.9 10 -4 14.0 10 -4 6.1 10 -3 1.9 10 -2 4.4 10 -2 N02 3.2 LT 1.5 10 -4 5.4 10 -4 1.8 10 -3 0.5 10 -2 1.4 10 -2 N01 6.0 LT 1.8 10 -4 8.8 10 -4 1.4 10 -3 0.5 10 -2 1.1 10 -2 N1 1.6 LT 1.2 10 -4 4.42 10 -4 1.2 10 -3 0.3 10 -2 0.8 10 -2 N1 3.2 LT 1.7 10 -4 4.9 10 -4 1.8 10 -3 0.6 10 -2 1.6 10 -2 N2 6 LT 1.9 10 -4 10.4 10 -4 2.5 10 -3 0.7 10 -2 1.3 10 -2 N3 3.2 LT 1.66 10 -4 5.1 10 -4 1.6 10 -3 0.4 10 -2 1.0 10 -2 E 5.0 LT 1.5 10 -4 7.6 10 -4 2.4 10 -3 0.8 10 -2 2.2 10 -2

On constate que les tôles de 2024, notamment pour ΔK ≥ 20 MPa√m, présentent une vitesse de fissuration deux à trois fois plus élevée que pour le produit selon l'invention. Ce dernier permet donc des intervalles d'inspection plus longs (à masse de structure donnée) ou bien des allègements de la structure à intervalle d'inspection fixé.It is found that the sheets of 2024, especially for ΔK ≥ 20 MPa√m, have a cracking rate two to three times higher than for the product according to the invention. The latter therefore allows longer inspection intervals (at given mass of structure) or lightening of the fixed inspection interval structure.

En ce qui concerne les courbes R et les valeurs de ΔK, il convient de noter que les valeurs les plus significatives vis à vis du comportement de la structure réelle d'un aéronef se situent dans le domaine compris entre 15 et 60 MPa√m.With regard to the curves R and the values of ΔK, it should be noted that the most significant values with respect to the behavior of the real structure of an aircraft lie in the range between 15 and 60 MPa√m.

En effet, les contraintes de fatigue dans une peau de fuselage sont généralement de l'ordre de 50 à 100 MPa, pour des défauts détectables de l'ordre de 20 à 50 mm, sachant que K = σ √(πa), où σ est la contrainte et le paramètre a signifie la taille du défaut.Indeed, the fatigue stresses in a fuselage skin are generally of the order of 50 to 100 MPa, for detectable defects of the order of 20 to 50 mm, knowing that K = σ √ (πa), where σ is the constraint and the parameter a means the size of the defect.

Pour un espacement entre raidisseurs supérieur à 100 mm, les valeurs de K à rupture pour une charge limite supérieure à 200 MPa sont supérieures à environ 120 MPa√m pour les courbes R décrites, avec des K apparents (Kr) supérieurs à environ 110 MPa√m. Ceci signifie que la portion dimensionnante de la courbe R est constituée de points correspondant à une avancée de fissure statique Δaeff de plus de 20 mm.For a stiffener spacing greater than 100 mm, the breaking K values for a limiting load greater than 200 MPa are greater than about 120 MPa√m for the described R curves, with apparent K (K r ) greater than about 110 MPa m. This means that the dimensioning portion of the curve R consists of points corresponding to a static crack advance Δa eff of more than 20 mm.

On a également caractérisé la résistance à la corrosion des tôles. On constate que l'alliage selon l'invention montre intrinsèquement, c'est-à-dire après déplacage par usinage, une résistance à la corrosion intergranulaire, mesurée selon la norme ASTM G 110, sensiblement comparable à celle du 2024 de référence.The corrosion resistance of the sheets has also been characterized. It is found that the alloy according to the invention shows intrinsically, that is to say after machining displacement, an intergranular corrosion resistance, measured according to ASTM G 110, substantially comparable to that of the reference 2024.

Sur des tôles plaquées, la mesure du potentiel de corrosion dans l'âme et dans le placage selon la norme ASTM G 69 a donné les résultats donnés dans le tableau 5 ci-après. Ces résultats ne montrent pas de différence significative en ce qui concerne l'écart de potentiel entre âme et placage (caractéristique du pouvoir de protection cathodique d'un placage). Cela est surprenant dans la mesure où, conformément aux données publiées (voir notamment « ASM Handbook », 9th Edition, Volume 13, « Corrosion », page 584, figure 5 ), l'ajout de zinc dans un alliage d'aluminium diminue significativement le potentiel de corrosion, ce qui aurait dû avoir comme effet de limiter l'écart de potentiel entre âme et placage de l'alliage selon l'invention. Tableau 5 : Potentiels [mV/ECS] et écarts de potentiel [mV] Tôle Ep [mm] Potentiel de l'âme
[mV/ECS]
Potentiel du
placage [mV/ECS]
Ecart de potentiel
[mV]
N02 3.2 -620 -768 148 N01 6.0 -611 -801 190 N1 1.6 -634 -772 138 N1 3.2 -632 -775 143 N2 6 -636 -770 134 N3 3.2 -636 -755 119 E 5.0 -609 -775 166
On plated plates, measurement of the corrosion potential in the core and in the plating according to ASTM G 69 gave the results given in Table 5 below. These results show no significant difference in the potential difference between core and plating (characteristic of the cathodic protection power of a plating). This is surprising to the extent that, according to published data (see in particular "ASM Handbook", 9th Edition, Volume 13, "Corrosion", page 584, Figure 5 ), the addition of zinc in an aluminum alloy significantly reduces the corrosion potential, which should have had the effect of limiting the potential difference between the core and the plating of the alloy according to the invention. Table 5: Potential [mV / ECS] and potential deviations [mV] sheet metal Ep [mm] Potential of the soul
[MV / SCE]
Potential of
veneer [mV / ECS]
Potential gap
[MV]
N02 3.2 -620 -768 148 N01 6.0 -611 -801 190 N1 1.6 -634 -772 138 N1 3.2 -632 -775 143 N2 6 -636 -770 134 N3 3.2 -636 -755 119 E 5.0 -609 -775 166

En revanche, et de façon surprenante, on constate que lors d'un essai de corrosion par couplage galvanique dans un assemblage riveté, le produit selon l'invention se comporte de façon significativement meilleure. Selon les constatations de la demanderesse, cet essai, qui a été décrit par exemple dans le brevet EP 0 623 462 B1 , est particulièrement pertinent pour évaluer l'aptitude de tôles plaquées à l'usage en construction aéronautique. L'essai consiste à mesurer le courant qui s'établit naturellement entre l'anode (alliage de placage placé dans une cellule contenant une solution de AlCl3 (0,02 M, désaérée par barbotage d'azote)) et la cathode (alliage d'âme placée dans une cellule contenant une solution de NaCl (0,06 M, aérée)), un pont salin assurant le contact électrolytique entre les deux cellules. Les deux éléments (placage et âme) ont la même surface (2,54 cm2). On enregistre les densités de courant de couplage pendant toute la durée de l'essai. On observe que le courant atteint un plateau après environ 55 heures et n'évolue pratiquement plus pendant la durée des essais (200 h ou 15 jours, selon l'échantillon). Les résultats sont résumés dans le tableau 6. Tableau 6 : Simulation électrochimique de l'assemblage Tôle N2 Tôle N1 Tôle F Tôle E Courant plateau après 55 heures [µA/cm2] 1,6 1,2 2,8 2,4 Perte de masse mesurée [mg/cm2] après 5 jours d'essai 1,06 0,79 1,57 Non mesurée On the other hand, and surprisingly, it is found that during a corrosion test by galvanic coupling in a riveted assembly, the product according to the invention behaves significantly better. According to Applicant's findings, this test, which has been described, for example, in the EP 0 623 462 B1 , is particularly relevant for assessing the suitability of plated sheets for use in aircraft construction. The test consists in measuring the current which is established naturally between the anode (alloy of plating placed in a cell containing a solution of AlCl 3 (0,02 M, deaerated by sparging of nitrogen)) and the cathode (alloy core placed in a cell containing a solution of NaCl (0.06 M, aerated)), a salt bridge ensuring the electrolytic contact between the two cells. Both elements (veneer and core) have the same surface (2.54 cm 2 ). The coupling current densities are recorded throughout the duration of the test. It is observed that the current reaches a plateau after about 55 hours and hardly changes during the tests (200 hours or 15 days, depending on the sample). The results are summarized in Table 6. Table 6: Electrochemical simulation of the assembly Sheet N2 Sheet N1 Sheet F Sheet E Current plateau after 55 hours [μA / cm 2 ] 1.6 1.2 2.8 2.4 Measured mass loss [mg / cm 2 ] after 5 days of testing 1.06 0.79 1.57 Not measured

A titre de comparaison, les exemples décrits dans le fascicule de brevet EP 0 623 462 B1 donnent pour l'alliage standard 2024 plaqué avec un alliage 1070 un courant plateau de 3,1 µA/cm2.By way of comparison, the examples described in the patent specification EP 0 623 462 B1 give for standard alloy 2024 plated with a 1070 alloy a plateau current of 3.1 μA / cm 2 .

On constate que le produit selon l'invention (N1 et N2) présente un courant de corrosion et une perte de masse beaucoup plus faibles que le produit standard selon l'art antérieur. Pour certaines applications, par exemple des éléments structuraux pour aéronef, cela procure un avantage très significatif en termes de durée de vie.It is found that the product according to the invention (N1 and N2) has a corrosion current and a loss of mass much lower than the standard product according to the prior art. For some applications, for example structural elements for aircraft, this provides a very significant advantage in terms of service life.

Exemple 2Example 2

A partir de tôles laminées à chaud et éventuellement à froid (état F) de l'alliage selon l'invention (voir exemple 1), on a élaboré plusieurs autres états métallurgiques sous forme de format de dimensions 600 mm (sens L) x 160 mm (sens TL) x épaisseur. Les tôles brutes de laminage d'épaisseur 3,2 mm (brut de laminage à froid) ou 6,0 mm (brut de laminage à chaud) ont été soumises à une mise en solution suivie d'une trempe, une maturation et une traction contrôlée, comme indiqué dans le Tableau 7 : Tableau 7 : Conditions d'élaboration des tôles de l'exemple 2 Repère Epaisseur
[mm]
Durée de mise en
solution à 500°C [min]
Durée de
maturation
Traction
contrôlée
N0A 3,2 30 < 2 h 2% N0B 3,2 30 < 2 h 4% N0C 3,2 30 < 2 h 6% N0D 3,2 30 24 h 2% N0E 3,2 30 24 h 6% N0F 6,0 40 < 2 h 2% N0G 6,0 40 < 2 h 4% N0H 6,0 40 < 2 h 6% N0I 6,0 40 24 h 2% N0J 6,0 40 24 h 6%
From hot-rolled and possibly cold-rolled sheets (state F) of the alloy according to the invention (see example 1), several other metallurgical states were developed in the form of a size of 600 mm (L-direction) x 160 mm (TL direction) x thickness. Raw lamination sheets of 3.2 mm (cold rolled) or 6.0 mm (hot rolled) were subjected to dissolution followed by quenching, ripening and pulling controlled, as shown in Table 7: Table 7: Conditions for preparing the sheets of Example 2 landmark Thickness
[Mm]
Duration of implementation
solution at 500 ° C [min]
Duration
maturation
Traction
controlled
N0A 3.2 30 <2 h 2% N0B 3.2 30 <2 h 4% N0C 3.2 30 <2 h 6% N0D 3.2 30 24 h 2% N0E 3.2 30 24 h 6% N0F 6.0 40 <2 h 2% N0G 6.0 40 <2 h 4% N0H 6.0 40 <2 h 6% N0I 6.0 40 24 h 2% N0J 6.0 40 24 h 6%

Les repères se terminant par A, D, F et I correspondent à des états T351. Les différents échantillons ont été caractérisés par des essais de traction (sens L et TL) ainsi que par des essais de ténacité.The marks ending in A, D, F and I correspond to T351 states. The different samples were characterized by tensile tests (L and TL directions) as well as by toughness tests.

La ténacité a tout d'abord été évaluée dans les sens T-L et L-T à l'aide de la contrainte maximale Re (en MPa) et de l'énergie d'écoulement Eec selon l'essai Kahn. La contrainte Kahn est égale au rapport de la charge maximale Fmax que peut supporter l'éprouvette sur la section de l'éprouvette (produit de l'épaisseur B par la largeur W). L'énergie d'écoulement est déterminée comme l'aire sous la courbe Force-Déplacement jusqu'à la force maximale Fmax supportée par l'éprouvette. L'essai est décrit dans l'article « Kahn-Type Tear Test and Crack Toughness of Aluminum Alloy Sheet », paru dans la revue Materials Research & Standards, Avril 1964, p. 151- 155 . L'éprouvette utilisée pour l'essai de ténacité Kahn est décrite, par exemple, dans le « Metals Handbook », 8th Edition, vol. 1, American Society for Metals, pp. 241-242 .The tenacity was first evaluated in the TL and LT directions using the maximum stress R e (in MPa) and the flow energy E ec according to the Kahn test. The stress Kahn is equal to the ratio of the maximum load F max that the specimen can withstand on the section of the specimen (product of the thickness B by the width W). The flow energy is determined as the area under the Force-Displacement curve up to the maximum force F max supported. by the test tube. The test is described in the article Kahn-Type Tear Test and Crack Toughness of Aluminum Alloy Sheet, published in Materials Research & Standards, April 1964, p. 151-155 . The test specimen used for the Kahn toughness test is described, for example, in the "Metals Handbook", 8th Edition, Vol. 1, American Society for Metals, pp. 241-242 .

La ténacité a également été abordée pour les tôles d'épaisseur 6mm, à l'aide d'un essai de type courbe R, dans le sens T-L, mais sur des éprouvettes de taille plus restreinte que celle décrite dans l'exemple 1. On a utilisé des eprouvettes de type CT, de largeur W = 127 mm, a0 = 38.5 mm, e = épaisseur de la tôle, avec un pilotage en déplacement de piston et une vitesse de traction de 1 mm/min.The tenacity was also approached for sheets of thickness 6 mm, using a curve-type test R, in the TL direction, but on smaller specimens than that described in Example 1. used CT specimens, width W = 127 mm, at 0 = 38.5 mm, e = sheet thickness, with piston displacement control and a tensile speed of 1 mm / min.

Les différents résultats sont donnés dans les tableaux 8 et 9 ci-après. Tableau 8 : Caractéristiques mécaniques statiques Repère Maturation Traction Caractéristiques statiques
sens L
Caractéristiques statiques
sens TL
Rm
[MPa]
Rp0,2
[MPa]
A
[%]
Rm
[MPa]
Rp0,2
[MPa]
A
[%]
N0A < 2h 2% 450 345 21.6 444 307 23.7 N0B < 2h 4% 456 369 21.4 448 322 21.1 N0C < 2h 6% 464 394 17.6 453 339 18.2 N0D 24h 2% 457 351 22.1 449 313 23.2 N0E 24h 6% 473 413 18.7 464 352 18.6 N0F < 2h 2% 433 334 22.5 432 297 21.5 N0G < 2h 4% 437 353 22.3 436 308 21.1 N0H < 2h 6% 443 375 19.5 443 324 20.9 N0I 24h 2% 440 338 24.1 443 308 23.1 N0J 24h 6% 459 399 20.2 460 347 18.6
Tableau 9 : Caractéristiques de ténacité Repère Maturation Traction Essai sur éprouvette
« Kahn »
Essai de courbe R sur
éprouvette CT127
Re [MPa] / Eec [J] Sens T-L Sens T-L Sens L-T Kapp [MPa√m] Keff[MPa√m]
N0A < 2h 2% 163/15,0 166/15,4 Non mesuré N0B < 2h 4% 164/13,3 169/13,7 Non mesuré N0C < 2h 6% 167/12,3 172/12,9 Non mesuré N0D 24h 2% 164/14,3 168/15,5 Non mesuré N0E 24h 6% 172/12,0 176/12,4 Non mesuré N0F < 2h 2% 160/29,0 163/30,7 99,3 149,2 N0G < 2h 4% 165/28,4 166/27,8 99,9 137,6 N0H < 2h 6% 167/25,5 167/25,1 93,8 125,5 N0I 24h 2% 165/30,0 165/28,9 99,6 149,3 N0J 24h 6% 172/24,0 172/24,2 101,1 137,1
The different results are given in Tables 8 and 9 below. Table 8: Static mechanical characteristics landmark Maturation Traction Static characteristics
sense L
Static characteristics
TL sense
R m
[MPa]
R p0,2
[MPa]
AT
[%]
R m
[MPa]
R p0,2
[MPa]
AT
[%]
N0A <2h 2% 450 345 21.6 444 307 23.7 N0B <2h 4% 456 369 21.4 448 322 21.1 N0C <2h 6% 464 394 17.6 453 339 18.2 N0D 24 2% 457 351 22.1 449 313 23.2 N0E 24 6% 473 413 18.7 464 352 18.6 N0F <2h 2% 433 334 22.5 432 297 21.5 N0G <2h 4% 437 353 22.3 436 308 21.1 N0H <2h 6% 443 375 19.5 443 324 20.9 N0I 24 2% 440 338 24.1 443 308 23.1 N0J 24 6% 459 399 20.2 460 347 18.6
Toughness characteristics landmark Maturation Traction Test on test-tube
"Kahn"
R curve test on
test tube CT127
R e [MPa] / E ec [J] TL direction TL direction Meaning of LT K app [MPa√m] K eff [MPa√m]
N0A <2h 2% 163 / 15.0 166 / 15.4 Not measured N0B <2h 4% 164 / 13.3 169 / 13.7 Not measured N0C <2h 6% 167 / 12.3 172 / 12.9 Not measured N0D 24 2% 164 / 14.3 168 / 15.5 Not measured N0E 24 6% 172 / 12.0 176 / 12.4 Not measured N0F <2h 2% 160 / 29.0 163 / 30.7 99.3 149.2 N0G <2h 4% 165 / 28.4 166 / 27.8 99.9 137.6 N0H <2h 6% 167 / 25.5 167 / 25.1 93.8 125.5 N0I 24 2% 165 / 30.0 165 / 28.9 99.6 149.3 N0J 24 6% 172 / 24.0 172 / 24.2 101.1 137.1

Exemple 3 : Example 3

Des tôles élaborées selon l'exemple 2 ont été soumis à un écrouissage de 5 % (par traction contrôlée) après la trempe. Les tableaux 10 et 11 montrent les résultats des caractérisations. Tableau 10 : Caractéristiques mécaniques statiques Tôle Ep [mm] Sens L Sens TL Rm
[MPa]
Rp0,2
[MPa]
A [%] Rm
[MPa]
Rp0,2
[MPa]
A [%]
N1 1.6 468 404 20.1 456 341 20.6 N1 3.2 472 408 18.2 464 348 19.3 N2 6 488 422 19.1 475 368 20.2
Tableau 11 : Résultats de l'essai de courbe R sur tôles fractionnées 5% Tôle Ep
[mm]
Sens Kr [MPa√m] pour une valeur Δaeff de
10mm 20mm 30mm 40mm 50mm 60mm
N1 1.6 T-L 66 91 112 130 148 164 N1 3.2 T-L 96 124 144 160 173 186 N2 6 T-L 84 111 131 147 161 173 N1 1.6 L-T 86 111 132 152 171 189 N1 3.2 L-T 101 133 157 178 195 212 N2 6 L-T 82 112 136 157 175 192
Sheets made according to Example 2 were subjected to a 5% cold work (by controlled pulling) after quenching. Tables 10 and 11 show the results of the characterizations. Table 10: Static mechanical characteristics sheet metal Ep [mm] Meaning L TL direction rm
[MPa]
R p0,2
[MPa]
AT [%] rm
[MPa]
R p0,2
[MPa]
AT [%]
N1 1.6 468 404 20.1 456 341 20.6 N1 3.2 472 408 18.2 464 348 19.3 N2 6 488 422 19.1 475 368 20.2
Results of the R-curve test on split sheets 5% sheet metal Ep
[Mm]
Meaning K r [MPa√m] for a value Δa eff of
10mm 20mm 30mm 40mm 50mm 60mm
N1 1.6 TL 66 91 112 130 148 164 N1 3.2 TL 96 124 144 160 173 186 N2 6 TL 84 111 131 147 161 173 N1 1.6 LT 86 111 132 152 171 189 N1 3.2 LT 101 133 157 178 195 212 N2 6 LT 82 112 136 157 175 192

Claims (23)

  1. A wrought product, such as a rolled, extruded or forged product, comprising an AlCuMg type alloy of the following composition (% by weight):
    Cu 3.80 - 4.30; Mg 1.25 - 1.45; Mn 0.20 - 0.50; Zn 0.40 - 0,70; Fe < 0.15; Si<0.15; Zr ≤ 0.05; Wag < 0.01
    other elements < 0.05 each and < 0.15 total,
    remainder Al.
  2. Product according to claim 1, wherein Cu 4.05 - 4.30.
  3. Product according to claims 1 or 2, wherein Mg 1.28 - 1.42.
  4. Product according to any of claims 1 to 3, wherein Mn 0.30 - 0.50, and preferably Mn 0.35 - 0.48.
  5. Product according to any of claims 1 to 4, wherein Zn 0.50 - 0,70.
  6. Product according to any of claims 1 to 5, wherein Fe < 0.10.
  7. Product according to any of claims 1 to 6, wherein Si < 0.10.
  8. Product according to any of claims 1 to 7, wherein Cu < 4.20; Mg < 1.38; Mn < 0.42; and Zn ≥ (1.2Cu - 0.3Mg + 0.3Mn - 3.75).
  9. Product according to any of claims 1 to 8, wherein said product has been treated with a solution heat treatment, quenching and cold strain-hardening with a permanent set between 0.5% and 15%, preferably between 1% and 5%, and still more preferably between 1.5% and 3.5%.
  10. Product according to any of claims 1 to 9, wherein said product is a sheet or plate between 1 and 16 mm thick.
  11. Product according to any of claims 1 to 10, wherein said sheet or plate is clad on at least one face thereof with an alloy in the 1 xxx series, and preferably with an alloy selected from the group consisting of the alloys 1100, 1070, 1300 and 1145.
  12. Product according to any of claims 1 to 11, having an ultimate tensile strength in the L and/or TL direction that is more than 430 MPa, and preferably more than 440 MPa.
  13. Product according to any of claims 1 to 12, having a yield stress in the L and/or TL direction that is more than 300 MPa, and preferably more than 320 MPa.
  14. Product according to any of claims 1 to 13, having an elongation at failure in the L and/or TL direction that is greater than 19%, and preferably greater than 20%.
  15. Product according to any of claims 1 to 14, having a damage tolerance Kr calculated from a R curve obtained according to ASTM E 561 for a value Δaeff equal to 60 mm that is greater than 165 MPa√m in the T-L and L-T directions.
  16. Product according to any of claims 1 to 15, having a damage tolerance Kr calculated from a R curve obtained according to ASTM E 561 for a value Δaeff equal to 60 mm that is greater than 180 MPa√m in the L-T direction.
  17. Product according to any of claims 1 to 16, having a crack propagation rate da/dN determined according to ASTM standard E 647 in the T-L or the L-T direction for a load ratio R = 0.1 and a value ΔK of 50 MPa√m, that is less than 2.5 x 10-2 mm/cycle, and preferably less than 2.0 x 10-2 mm/cycle.
  18. A clad sheet or plate according to any of claims 1 to 17, wherein the galvanic corrosion current is smaller than 4 µA/cm2 for an exposure of a riveted assembly to a corrosion test up to 200 hours, in which the cladding alloy is placed in a cell containing a solution of AlCl3 (0.02 M, deaerated by nitrogen bubbling) and the core alloy placed in a cell containing a solution of NaCl (0.02 M, aerated).
  19. Clad metal sheet or plate as claimed in claim 18, wherein said galvanic corrosion current is less than 2.5 µA/cm2.
  20. Aircraft structural member made from at least one product according to any of claims 1 to 19.
  21. Structural element as claimed in claim 20, wherein said structural member is a member of the skin of a fuselage.
  22. Method for the production of a wrought product according to any of claims 1 to 19, comprising:
    (a) casting a plate or ingot,
    (b) homogenizing between 450 and 500 °C,
    (c) hot transforming by extruding, rolling or forging,
    (d) optionally cold transforming,
    (e) solution heat treating at a temperature of between 480 and 505 °C,
    (f) quenching,
    (g) cold working with a permanent set comprised between 0.5 and 15 %.
  23. Method according to claim 22, wherein the cold working is done with a permanent set comprised between 1 and 5%, and preferably between 1.5 and 3.5 %.
EP03356108A 2002-07-11 2003-07-09 Wrought product in Al-Cu-Mg alloy for aircraft structural element Expired - Lifetime EP1382698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE60300004T DE60300004T3 (en) 2002-07-11 2003-07-09 Kneaded product of Al-Cu-Mg alloy for the structural component of an aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0208737A FR2842212B1 (en) 2002-07-11 2002-07-11 A1-CU-MG ALLOY AIRCRAFT STRUCTURAL ELEMENT
FR0208737 2002-07-11

Publications (3)

Publication Number Publication Date
EP1382698A1 EP1382698A1 (en) 2004-01-21
EP1382698B1 EP1382698B1 (en) 2004-05-26
EP1382698B2 true EP1382698B2 (en) 2013-01-09

Family

ID=29763743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03356108A Expired - Lifetime EP1382698B2 (en) 2002-07-11 2003-07-09 Wrought product in Al-Cu-Mg alloy for aircraft structural element

Country Status (6)

Country Link
US (2) US7294213B2 (en)
EP (1) EP1382698B2 (en)
AT (1) ATE267885T1 (en)
DE (1) DE60300004T3 (en)
ES (1) ES2220902T5 (en)
FR (1) FR2842212B1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
WO2004090185A1 (en) 2003-04-10 2004-10-21 Corus Aluminium Walzprodukte Gmbh An al-zn-mg-cu alloy
US7883591B2 (en) * 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
RU2455529C2 (en) * 2006-04-29 2012-07-10 Ёрликон Лайбольд Вакуум Гмбх Rotor or stator of turbomolecular pump
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8002913B2 (en) * 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
DE602008002822D1 (en) * 2007-03-14 2010-11-11 Aleris Aluminum Koblenz Gmbh AL-CU ALLOY PRODUCT SUITABLE FOR AIR AND SPACE APPLICATION
WO2010042498A1 (en) * 2008-10-10 2010-04-15 Gkn Sinter Metals, Llc Aluminum alloy powder metal bulk chemistry formulation
CA2750394C (en) 2009-01-22 2015-12-08 Alcoa Inc. Improved aluminum-copper alloys containing vanadium
SI3141624T1 (en) 2011-09-16 2021-11-30 Ball Corporation Impact extruded containers from recycled aluminium scrap
CN102732849A (en) * 2012-06-29 2012-10-17 武汉理工大学 Method for surface modification and high strength connection of magnesium alloy and aluminum alloy
CN107985713A (en) 2013-04-09 2018-05-04 鲍尔公司 The Aluminum Bottle of the impact extrusion with threaded neck manufactured by the aluminium and the alloy of enhancing that recycle
CN104711498B (en) * 2013-12-13 2016-09-07 天津大学 The control method of surface orange peel effect in the shaping of high-strength aluminum alloy succeeding stretch
CN104451298A (en) * 2014-11-19 2015-03-25 无锡鸿声铝业有限公司 Improved 2024 aluminum alloy
DE102016205221A1 (en) * 2016-03-30 2017-10-05 Sms Group Gmbh Apparatus and method for plating a hot slab
US20180044155A1 (en) 2016-08-12 2018-02-15 Ball Corporation Apparatus and Methods of Capping Metallic Bottles
CA3032261A1 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
EP3529394A4 (en) 2016-10-24 2020-06-24 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
BR122020012460B1 (en) 2016-12-30 2022-09-06 Ball Corporation ALUMINUM ALLOY, METHOD FOR PRODUCING A CONTAINER AND CONTAINER
MX2019009745A (en) 2017-02-16 2020-02-07 Ball Corp Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers.
US11185909B2 (en) 2017-09-15 2021-11-30 Ball Corporation System and method of forming a metallic closure for a threaded container
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236441A (en) 1990-02-14 1991-10-22 Nkk Corp Manufacture of high strength aluminum alloy and high strength aluminum alloy material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1133113A (en) * 1965-02-05 1968-11-06 Aluminum Co Of America Improvements in forged aluminium base alloy members
US3333990A (en) * 1965-02-05 1967-08-01 Aluminum Co Of America Aluminum base alloy forgings
US3826688A (en) * 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
US4336075A (en) * 1979-12-28 1982-06-22 The Boeing Company Aluminum alloy products and method of making same
US5137686A (en) * 1988-01-28 1992-08-11 Aluminum Company Of America Aluminum-lithium alloys
US5213639A (en) 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
BR9103666A (en) * 1990-08-27 1992-05-19 Aluminum Co Of America METHOD OF PRODUCTION OF AN ALUMINUM-BASED ALLOY LEAF PRODUCT AND PRODUCT MADE BY SUCH METHOD
GB9021565D0 (en) * 1990-10-04 1990-11-21 Allied Colloids Ltd Dewatering compositions and processes
US5376192A (en) * 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
FR2704557B1 (en) 1993-04-28 1995-06-02 Pechiney Rhenalu Al-based coating alloy and composite product plated on 2000 or 6000 alloys.
FR2731440B1 (en) * 1995-03-10 1997-04-18 Pechiney Rhenalu AL-CU-MG ALLOY SHEETS WITH LOW LEVEL OF RESIDUAL CONSTRAINTS
US5879475A (en) * 1995-03-22 1999-03-09 Aluminum Company Of America Vanadium-free, lithium-free aluminum alloy suitable for forged aerospace products
US5652063A (en) * 1995-03-22 1997-07-29 Aluminum Company Of America Sheet or plate product made from a substantially vanadium-free aluminum alloy
US5630889A (en) * 1995-03-22 1997-05-20 Aluminum Company Of America Vanadium-free aluminum alloy suitable for extruded aerospace products
US6077363A (en) * 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
FR2792001B1 (en) * 1999-04-12 2001-05-18 Pechiney Rhenalu PROCESS FOR MANUFACTURING TYPE 2024 ALUMINUM ALLOY SHAPED PARTS
JP2001330757A (en) * 2000-05-23 2001-11-30 Yazaki Corp Optical connector
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236441A (en) 1990-02-14 1991-10-22 Nkk Corp Manufacture of high strength aluminum alloy and high strength aluminum alloy material

Also Published As

Publication number Publication date
FR2842212A1 (en) 2004-01-16
DE60300004T2 (en) 2005-01-20
ES2220902T3 (en) 2004-12-16
DE60300004D1 (en) 2004-07-01
US7294213B2 (en) 2007-11-13
US7993474B2 (en) 2011-08-09
EP1382698A1 (en) 2004-01-21
EP1382698B1 (en) 2004-05-26
US20080210350A1 (en) 2008-09-04
ES2220902T5 (en) 2013-05-09
US20040086418A1 (en) 2004-05-06
DE60300004T3 (en) 2013-06-20
ATE267885T1 (en) 2004-06-15
FR2842212B1 (en) 2004-08-13

Similar Documents

Publication Publication Date Title
EP1382698B2 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
CA2485525C (en) Method of producing high strength balanced al-mg-si alloy and a weldable product of that alloy
EP2811042B1 (en) ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
EP3124633B1 (en) An automotive suspension part and method for producing same
JP4115936B2 (en) Weldable high strength Al-Mg-Si alloy
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2655680B1 (en) Aluminium-copper-lithium alloy with improved compressive strength and toughness
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
JP3053352B2 (en) Heat-treated Al alloy with excellent fracture toughness, fatigue properties and formability
FR2726007A1 (en) PROCESS FOR MANUFACTURING ALSIMGCU ALLOY PRODUCTS HAVING IMPROVED RESISTANCE TO INTERCRYSTAL CORROSION
WO2013007471A1 (en) Method of manufacturing an al-mg alloy sheet product
WO2009062866A1 (en) Al-mg-zn wrought alloy product and method of its manufacture
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
CA2798480C (en) Aluminum-copper-lithium alloy for lower surface element
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP1644546B1 (en) Use of pipes made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
EP1026270B1 (en) AlCuMg alloy product for aircraft body member
CN113302329B (en) Method for manufacturing AlMgSc series alloy products
CN103710580A (en) High-strength aluminum alloy extruded material and method for manufacturing the same
EP3824110A1 (en) Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly
EP1143027B1 (en) Process for making avionic structural elements from an Al-Si-Mg alloy
CA3013955A1 (en) Al-cu-li-mg-mn-zn alloy wrought product
FR2789405A1 (en) New quenched and stretched aluminum-copper-magnesium alloy product, for aircraft wing intrados skin and wing or fuselage intrados strut manufacture has a large plastic deformation range
FR2807448A1 (en) Aircraft fuselage structural elements production from a tempered rolled, spun or forged aluminum-silicon-magnesium alloy

Legal Events

Date Code Title Description
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040526

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60300004

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040709

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040827

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040825

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040526

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2220902

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

EUG Se: european patent has lapsed
PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

26 Opposition filed

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Opponent name: ALCOA INC.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050709

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050709

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Opponent name: ALCOA INC.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCAN RHENALU

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALCAN RHENALU

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041026

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Opponent name: ALCOA INC.

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALCOA INC.

Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

Effective date: 20050214

Opponent name: ALCOA INC.

Effective date: 20050228

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: PECHINEY RHENALU

Free format text: PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM FRANCE, FR

Effective date: 20111123

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONSTELLIUM FRANCE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM FRANCE SAS

Free format text: PECHINEY RHENALU#7, PLACE DE CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR)

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60300004

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60300004

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: PECHINEY RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

BECA Be: change of holder's address

Owner name: CONSTELLIUM FRANCE

Effective date: 20120816

Owner name: 40-44 RUE WASHINGTON,F-75008 PARIS

Effective date: 20120816

BECN Be: change of holder's name

Owner name: CONSTELLIUM FRANCE

Effective date: 20120816

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130109

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 60300004

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20131101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 60300004

Country of ref document: DE

Effective date: 20130109

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2220902

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20130509

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE SAS, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60300004

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 60300004

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: CONSTELLIUM ISSOIRE; FR

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: CONSTELLIUM FRANCE

Effective date: 20160719

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170726

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170727

Year of fee payment: 15

Ref country code: ES

Payment date: 20170801

Year of fee payment: 15

Ref country code: IT

Payment date: 20170725

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170727

Year of fee payment: 15

Ref country code: SE

Payment date: 20170727

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180801

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CONSTELLIUM ISSOIRE; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT NOM PROPRIETAIRE, NOM + ADRESSE; FORMER OWNER NAME: CONSTELLIUM FRANCE

Effective date: 20160225

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180709

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200727

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60300004

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731