EP1838891B1 - High strength sheet made from al-zn-cu-mg alloy with low internal stresses - Google Patents
High strength sheet made from al-zn-cu-mg alloy with low internal stresses Download PDFInfo
- Publication number
- EP1838891B1 EP1838891B1 EP05825980.5A EP05825980A EP1838891B1 EP 1838891 B1 EP1838891 B1 EP 1838891B1 EP 05825980 A EP05825980 A EP 05825980A EP 1838891 B1 EP1838891 B1 EP 1838891B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thickness
- less
- plates
- alloy
- elastic energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
Definitions
- This invention relates to a method for reducing the level of residual stresses throughout the thickness of 7xxx series aluminum alloy plates which are subjected to traction with permanent elongation.
- Alloy plates of the 7xxx series (Al-Zn-Mg type alloys with or without copper) must be quenched quickly after being put in solution in order to be able to present, after income, high mechanical characteristics throughout their thickness.
- the presence at the time of quenching of strong thermal gradients near the surface of the strong plate leads to inhomogeneous plastic deformation. Therefore, when the sheet is completely cooled, it contains residual stresses (internal stresses). Specifically, there are compressive stresses near the surface, and tensile stresses in the center.
- the strength of these constraints depends on the alloy and the structure of the material, as well as the solution and quenching process; the order of magnitude is 200 MPa.
- Licences US 6,159,315 and US 6,406,567 discloses a method for relaxing the residual stresses of the hot plates after solution and quenching, which comprises a first step of L-shaped cold drawing, followed by a cold compression step in the TC direction.
- Plastic deformation typically reduces the residual stresses by a factor of about 10. This is illustrated in FIG. figure 2 .
- the residual stresses in thick semi-products considered to be identical can vary greatly. This may be related to the variation of their chemical composition, but also and especially to the variation of the parameters of the manufacturing processes, such as casting, rolling, quenching, traction and income; the influence of these process parameters on the level of residual stresses in the finished product is not always well understood.
- Some process modifications actually lead to a reduction in the level of residual stresses (such as the choice of a slower quenching or a higher tempering temperature), but they also modify the tradeoff between certain properties which are important for structural applications, such as, typically, mechanical strength, damage tolerance and corrosion resistance.
- Licences EP 0 731 185 and US 6,077,363 describe a method to reduce residual stresses in 2024 alloy plate.
- Such a sheet shows a better homogeneity of the mechanical characteristics as a function of the thickness, as well as a reduced level of residual stresses after traction.
- the sheets were pre-expanded to change from a plate width of 1100 mm to 2500 mm to a hot rolling up to 38 mm with an outlet temperature of 378 ° C solution at 475 ° C, a quenched with cold water, and a controlled pull at 2.8% permanent elongation after a delay of 1 h after quenching.
- Residual stresses in thick plates can be determined by the method of successive machining described in the publication of Heymes, Commet et al., Referenced above. A method based on this publication is described in detail below.
- the aim of the present invention is to present a method for obtaining thick aluminum alloy plates of the 7xxx series which, in the tractionned state, in the matured state or in any state of artificial aging, exhibits a lower residual stress level, without degrading mechanical strength and damage tolerance. More particularly, it is desired to have plates that do not deform during machining, which is observed when the total elastic energy stored in the sheet, W, is less than 2 kJ / m 3 and preferably less than 1 kJ / m 3 .
- the subject of the invention is a method for manufacturing thick plates made of Al-Zn-Cu-Mg type alloy comprising between 4 and 12% of zinc, less than 4% of magnesium and less than 4% of copper, minor elements ⁇ 0.5% each, the rest aluminum, said process comprising hot rolling, dissolution, quenching, traction controlled with a permanent elongation greater than 0.5%, as well as aging, characterized in that delay D between the end of quenching and the beginning of the controlled pull is less than 2 hours, and preferably less than 1 hour.
- Yet another subject of the invention is a control batch or a heat treatment batch of Al-Zn-Cu-Mg alloy thick plates comprising between 4 and 12% of zinc, less than 4% of magnesium and less of 4% copper, minor elements ⁇ 0.5% each, the rest aluminum, in the dissolved state, quenched, triturated and aged, characterized in that the total elastic energy W (expressed in kJ / m 3 ) plate shows a standard deviation less than or equal to 0 , 20 + 0 , 0030 ⁇ P p ⁇ 0 , 2 The MPa - 400 around an average value .
- Al-Zn-Cu-Mg alloy refers to an aluminum-based alloy that contains the elements of zinc, copper and magnesium alloy; such an alloy may contain in addition to other alloying elements as well as other elements, the presence of which may be intentional or not, for example impurities.
- the metallurgical states are defined in the European standard EN 515.
- the chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3.
- the static mechanical characteristics ie the breaking strength R m , the yield stress R p0,2 , and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1.
- K IC toughness was measured according to ASTM E 399.
- a "thick sheet” designates a sheet whose thickness is greater than 6 mm.
- the term "inspection lot” is defined in EN 12258-1; it means an expedition or part of an expedition, subject to control, and which includes products of the same quality or alloy, of the same shape, metallurgical condition, size, geometry, thickness or cross-section, and which have been produced by the same processes.
- heat treatment batch means a quantity of products of the same quality or alloy, of the same shape, thickness or cross-section, and which have been produced in the same way, including the heat treatment or solution solution followed quenching was carried out in a single charge; several batches can be dissolved in the same heat treatment batch.
- aging includes natural aging at room temperature (also called “ripening”), as well as any artificial aging (also known as “income”).
- machining includes any material removal process such as turning, machining, milling, drilling, reaming, tapping, EDM, grinding, polishing, chemical machining.
- structural element refers to an element used in mechanical engineering for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is usually prescribed or performed. It is typically a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
- these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage composed in particular of stabilizers Horizontal and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
- fuselage such as fuselage skin (fuselage skin in English
- stiffeners or stringers such as the wing skin
- the stiffeners stringers or stiffeners
- ribs ribs
- spars spars
- empennage composed in particular of stabilizers Horizontal and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
- monolithic structure element refers to a structural element that has been obtained, most often by machining, from a single piece of laminated, extruded, forged or molded semi-finished product, such as riveting, welding, gluing, with another piece.
- the directions L (Long direction), TL (cross-long direction) and TC (short-path direction) in a rolled product refer to the rolling direction corresponding to the direction L. These three directions are defined on the figure 1 .
- the residual stresses were determined using the method based on the successive removal of layers described in the publication " Development of New Alloy for Distortion Free Machined Aluminum Aircraft Components ", F. Heymes, B.Commet, B.Dubost, P.Lassince, P.Lequeu, GM.Raynaud, in 1st International Non-Ferrous Processing & Technology Conference, 10- March 12, 1997 - Adams's Mark Hotel, St. Louis, Missouri .
- This method is especially applicable to tractionned heavy plates, in which the state of stress can be considered as biaxial; the two main components being located in the directions L and TL, and there is therefore no component in the direction TC.
- This method is based on the determination of the residual stresses in the directions L and TL on rectangular bars, cut in full thickness of the sheet in the direction parallel to the indicated directions. These bars are machined in the TC step by step direction. After each step, the stress and / or deflection are measured and the thickness of the bar is measured.
- a particularly preferred method is to set a strain gauge at mid-length of the bar, on the surface opposite to that which is machined. This makes it possible to calculate the residual stress profiles in the L and TL directions. The bar should be long enough to avoid edge effects.
- Table 1 Dimensions [mm] used for the method of successive layer removal Thickness of the sheet (h) Width (w) Length (1) 20 ⁇ h ⁇ 100 24 ⁇ 1 5h ⁇ 1 h> 100 30 ⁇ 1 5h ⁇ 1
- Unidirectional strain gauges with compensation for thermal expansion are glued to the lower surface of the bar (see figure 3 ), following the manufacturer's instructions. Then they are covered with an insulating lacquer. The value read on each of these gauges is taken as zero.
- the machining depth must not be less than 1 mm, in order to obtain a good quality of cut; for very thick sheets, it can reach 10 mm.
- Chemical machining can also be used to remove a very small thickness of metal.
- the machining pitch should be the same for both samples (i.e. in the L direction and in the TL direction).
- the bar is detached from the vice, and the temperature is allowed to stabilize before measuring the deformation.
- the thickness h (i) and the strain ⁇ (i) are noted .
- the scheme of the figure 4 shows how we collect this data.
- the problem is solved by a modification of the manufacturing process so that the ripening (natural aging) between the end of the quenching and the beginning of the controlled pull is minimized so that the energy total elasticity (W) in the return state remains below a certain limit value.
- This limit value represents a maximum value to keep the machining deformity at a level that is still acceptable; for most applications, this limit value is 2 kJ / m 3 for a sheet having a thickness of between 60 mm and 100 mm, and preferably of 1.5 kJ / m 3 . For particularly complex parts, it must be 1 kJ / m 3 .
- the figure 5 shows the diagram of the heat treatment process that a sheet undergoes after rolling.
- the dissolution can be carried out in a single stage, in several stages, or in ramp with or without definite stage. The same is true of income.
- the critical phase in the context of the present invention is the delay D between the end of the quenching and the beginning of the controlled pull.
- the inventors have found that a long delay D leads to a greater heterogeneity of the mechanical characteristics between areas near the surface and areas near the mid-thickness of the material. This heterogeneity can be mainly attributed to differences in cooling rate in the thickness of the sheet.
- the figure 6 shows the evolution of the yield strength L, determined close to the surface and at mid-thickness, as a function of the curing time for very high alloy plates AA7010 and AA7050 and for different nominal quenching rates. These quenching speeds were obtained on tensile test pieces but they are representative of the differences in quenching velocity observed between the surface and the core of a thick sheet. It can be seen that the difference between the levels of mechanical strength increases over time.
- the inventors have found that the variation of the residual stresses across the thickness of the alloy sheets 7xxx depends on (i) the variation of the cooling rates and the plastic deformation during quenching, (ii) the heterogeneities of the microstructure granular structure and texture that are generated during rolling, and (iii) local variations in chemical composition that result from the casting process (including solidification and homogenization). Between the end of the quenching and the beginning of the traction, a maturation is observed throughout the thickness of the sheet, but the speed of this maturation depends on the thickness: the limit of elasticity increases faster close to a surface only half thickness.
- the inventors have found by a calculation based on a finite element model that an increase in the heterogeneity of the mechanical characteristics (i.e. the elastic limit or the coefficients of work hardening) leads to an increase in the residual stresses after pulling.
- the figure 7 shows the effect of increasing the variation of elastic limit values on the residual stress profiles after quenching.
- the method according to the invention does not give an improved result in the case of other alloys with structural hardening, such as the 2xxx and 6xxx series alloys.
- the stored energy is very high, and the improvement obtained with the process according to the invention. invention does not appear to be significant.
- These alloys also have difficulty responding to solution treatment.
- R p0,2 (L) denotes the yield strength of the finished sheet measured according to EN 10002-1 and EN 485-1.
- the influence of the thickness on the level of residual stresses and the total elastic energy is here expressed in terms of the limited elasticity, measured as recommended by the EN 485-1 standard.
- the method according to the invention can advantageously be applied to the manufacture of a plurality of sheets whose thickness is between about 10 mm and about 250 mm, and even more advantageously to sheets whose thickness is greater than 25 mm. , but these values are not limiting.
- the method according to the invention also makes it possible to reduce the dispersion between the values of W for a plurality of sheets belonging to the same control lot or batch of heat treatment, so that all the plates have a standard deviation of the total elastic energy W of the various sheets around a mean value less than or equal to 0 , 20 + 0 , 0086 ⁇ P p ⁇ 0 , 2
- the MPa - 400 and preferably less than or equal to 0 , 20 + 0 , 0030 ⁇ P p ⁇ 0 , 2
- the MPa - 400 denotes the average of the measurements of R p0,2 (L) carried out according to the standard for each of the finished sheets of the batch, according to the standards EN10002-1 and EN485-1.
- the standard deviation between the measurements of the total elastic energy W of the different sheets of a batch can depend on the number of sheets contained in the batch. In particular, a standard deviation obtained on two measurements is weakly significant and can randomly be very high or very low. From 3 sheets, the standard deviation of the measurements can be considered but, in a preferred manner, the control or heat treatment batches used in the context of the present invention contain at least 5 sheets.
- the use of the method according to the invention enables the manufacturer to guarantee that such a control batch or such a batch of heat treatment comprises sheets whose average total elastic energy is less than 3 kJ / m 3 .
- this average value is less than 2 kJ / m 3 , and a value less than 1 kJ / m 3 is preferred, which requires excellent control of the critical processes and very rigorous management of the product streams at the stages of production. dissolution, quenching and traction.
- the implementation of the method according to the invention may require an adaptation of the metal flows inside the plant, because if the producer wants to produce plates with a delay D less than a few hours, it is necessary to synchronize the tempering furnace with the traction bench.
- the maturation is carried out at low temperature, that is to say at a temperature below 10 ° C. and preferably at a temperature below 5 ° C., which makes it possible to obtain similar results in terms of total elastic energy W for delays D between 2h and 3h.
- the invention is particularly advantageous for thick plates of AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175 alloys.
- the advantage of the process according to the invention is the overall reduction of the stress level in the heavy plates. This generally reduces the deformation during machining.
- Another advantage of the process according to the invention is that the control of the time which elapses between the end of the quenching and the beginning of the traction also makes it possible to reduce the dispersion of the stress level which is observed between different sheets nominally. identical, even within the same manufacturing batch or batch of heat treatment. This allows a better standardization of the machining processes for a given series of products, and reduces the number of incidents during the manufacture of machined parts in the machine shop.
- Three AA7010 alloy rolling plates were cast by semi-continuous casting. After homogenization, they were hot-rolled to a thickness of 100 mm. At the outlet of the hot rolling mill, they were subjected to quenching followed by a controlled pull, and finally to a treatment of income.
- the metallurgical state of the three products A1, A2 and A3 thus obtained was the T7651 state. For these three products, all manufacturing parameters were nominally identical and well controlled. The only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
- Table 2 shows the stored elastic energy of the various sheets obtained, determined in the final state. When reducing the waiting time D between the end of the quenching and the beginning of tensile stress relief, a reduction in the overall stress level as measured by W L , W LT and W is observed. Table 2 Stored elastic energy (in the final state) as a function of the ripening time for three alloy plates 7010 and 7050.
- Table 3 Static mechanical characteristics (L direction) in the final state as a function of the maturation time D for alloy plates 7010 and 7050 sheet metal Alloy / state Maturation time D [h] Location R m (L) [MPa] R p0.2 (L) [MPa] A (L) [%] A1 7010 T7651 1.17 1 ⁇ 4 thickness 524 479 14.0 1 ⁇ 2 thickness 519 468 12.7 3 ⁇ 4 thickness 533 471 11.0 A2 7010 T7651 9 1 ⁇ 4 thickness 529 480 14.4 1 ⁇ 2 thickness 523 477 11.5 3 ⁇ 4 thickness 539 480 9.6 A3 7010 T7651 48.92 1 ⁇ 4 thickness 521 472 12.6 1 ⁇ 2 thickness 516 466 9.2 3 ⁇ 4 thickness 528 472 8.2 B1 7050 T7451 1.25 1 ⁇ 4 thickness 536 482 13.0 1 ⁇ 2 thickness 519 465 10.4 3 ⁇ 4 thickness 531 470 9.6 B2 7050 T7451 8.83 1 ⁇ 4 thickness 534 479 14.2 1 ⁇
- K IC toughness was also measured in LT and TL directions at 1 ⁇ 4 thickness. The results, shown in Table 6, show that maturation has no significant influence on toughness.
- Table 6 Tenacity (in the final state) in the final state as a function of the aging time D for heavy plates in alloys 7010 and 7050 sheet metal Alloy / state Maturation time D [h]
- K IC (TL) MPa ⁇ m)
- Table 7 shows the stored elastic energy of the various sheets obtained, determined in the final state (ie after controlled pulling).
- a reduction in the overall stress level W L , W LT and W is observed.
- Table 7 Elastic energy stored according to ripening time D for flat plate alloy 7475 W51 sheet metal Alloy / state Maturation time D [h] W [kJ / m 3 ] W L [kJ / m 3 ] W LT [kJ / m 3 ] C1 7475 W51 1.75 2.24 1.6 0.64 C2 7475 W51 22.5 4.51 3.61 0.9 C3 7475 W51 48 5.18 3.97 1.21
- Two AA7449 alloy rolling plates were converted by homogenization, hot rolling to a thickness between 16.5 and 21.5 mm, quenching and controlled pulling, followed by tempering.
- the metallurgical state of the two products D1 and D2 thus obtained was the T651 state.
- all manufacturing parameters were nominally identical and well controlled, and the only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
- Table 8 shows the stored elastic energy of the various sheets obtained, determined in the final state (ie after controlled pulling).
- Table 8 Stored elastic energy (in the final state) as a function of the aging time D for alloy plates 7449 T651 sheet metal Alloy / state Thickness [mm] Maturation time D [h] W [kJ / m 3 ] W L [kJ / m 3 ] W LT [kJ / m 3 ] D1 7449 T651 16.5 10.5 6.3 5.56 0.74 D2 7449 T651 21.5 3 4.17 3.66 0.51
- the stored energy is maximum.
- the method according to the invention leads, for a given thickness, firstly to a reduction in the overall level of residual stresses (that is to say of the stored energy W totat ) of approximately 50%, and of on the other hand, a significant reduction in the statistical dispersion of this value.
- the effect of the invention on the overall level of residual stresses is particularly remarkable for thicknesses of between 40 and 150 mm and even more clearly for thicknesses of between 50 and 100 or even 80 mm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Description
Cette invention concerne une méthode pour réduire le niveau de contraintes résiduelles dans toute l'épaisseur de tôles fortes en alliage d'aluminium de la série 7xxx qui subissent une traction avec un allongement permanent.This invention relates to a method for reducing the level of residual stresses throughout the thickness of 7xxx series aluminum alloy plates which are subjected to traction with permanent elongation.
On sait que dans les alliages d'aluminium de la série 7xxx, la maturation (vieillissement naturel) débute immédiatement après la trempe. Le mécanisme microstructural sous-jacent est lié à la formation de zones Guinier-Preston par nucléation, et à la formation de phases métastables qui précipitent à partir d'une matrice d'aluminium sursaturée. La nucléation et croissance de ces précipités conduit à une augmentation rapide de la limite d'élasticité, car ces précipités gênent le déplacement de dislocations dans le réseau cristallin. Le degré de durcissement par ces mécanismes à un endroit donné dans une tôle épaisse dépendra de la composition chimique, de la vitesse de trempe, de la structure de grains et de sous-grains du métal, ainsi que de sa texture cristallographique.It is known that in aluminum alloys of the 7xxx series, ripening (natural aging) begins immediately after quenching. The underlying microstructural mechanism is related to the formation of Guinier-Preston zones by nucleation, and to the formation of metastable phases that precipitate from a supersaturated aluminum matrix. The nucleation and growth of these precipitates leads to a rapid increase of the elastic limit, because these precipitates hinder the dislocation displacement in the crystal lattice. The degree of hardening by these mechanisms at a given location in a thick plate will depend on the chemical composition, the quenching rate, the grain and subgrain structure of the metal, as well as its crystallographic texture.
Les tôles fortes en alliages de la série 7xxx (alliages de type Al-Zn-Mg avec ou sans cuivre) doivent être trempées rapidement après leur mise en solution pour pouvoir présenter, après revenu, des hautes caractéristiques mécaniques dans toute leur épaisseur. La présence au moment de la trempe de forts gradients thermiques proche de la surface de la tôle forte conduit à une déformation plastique inhomogène. Par conséquent, lorsque la tôle est complètement refroidie, elle renferme des contraintes résiduelles (contraintes internes). Plus précisément, on trouve des contraintes compressives à proximité de la surface, et des contraintes de traction au centre. La force de ces contraintes dépend de l'alliage et de la structure du matériau, ainsi que du procédé de mise en solution et de trempe ; l'ordre de grandeur est de 200 MPa. On trouve une description détaillée des contraintes résiduelles dans les alliages de type 7xxx dans les publications suivantes :
Les méthodes les plus répandues pour relaxer les contraintes résiduelles dans des tôles fortes en alliage de la série 7xxx font appel à la déformation plastique, soit par traction au sens L, soit par compression au sens TC. L'avantage de ces méthodes est qu'elles n'affectent pas de manière significative le potentiel de durcissement du matériau au cours d'une étape ultérieure de revenu. On considère que la traction est plus efficace que la compression, car elle conduit en général à une déformation plastique plus homogène.The most common methods for relaxing residual stresses in alloy plates of the 7xxx series use plastic deformation, either by L-direction tensile or by TC compression. The advantage of these methods is that they do not significantly affect the curing potential of the material during a subsequent stage of income. Traction is considered to be more effective than compression because it generally leads to a more homogeneous plastic deformation.
Les brevets
La demande de brevet
La déformation plastique permet typiquement de réduire les contraintes résiduelles par un facteur d'environ 10. Cela est illustré sur la
L'influence critique des contraintes résiduelles sur la distorsion lors de l'usinage a été décrite largement dans la littérature. Dans l'industrie aéronautique, on usine souvent des pièces complexes à partir de tôles épaisses en alliage d'aluminium ; cela conduit souvent à plus de 80 % de copeaux. Une trop forte distorsion à l'usinage doit être compensée par des mesures correctives complexes et coûteuses, telles que : (a) le redressage mécanique, (b) le grenaillage (en anglais : shot peening), (c) l'optimisation de la localisation de la pièce visée dans l'épaisseur de la tôle forte, c'est-à-dire par rapport au profil en profondeur des contraintes résiduelles, ou (d) la modification de la forme de la pièce en vue de minimiser sa déformation (étant entendu que la déformation permanente de la pièce usinée est faible si sa forme est proche d'un forme symétrique par rapport à l'axe longitudinal de la tôle épaisse dans laquelle ladite pièce est usinée). Les constructeurs d'avions préfèrent par conséquent des tôles fortes dont les contraintes résiduelles sont non seulement plus faibles, mais aussi sous contrôle, c'est-à-dire présentant une faible variation pour un type de produits donné (alliage, épaisseur, état métallurgique).The critical influence of residual stresses on the distortion during machining has been widely described in the literature. In the aerospace industry, complex parts are often machined from thick aluminum alloy sheets; this often leads to more than 80% chips. Too much distortion in machining must be compensated for by complex and costly corrective measures, such as: (a) mechanical straightening, (b) shot peening, (c) optimization of localization of the target part in the thickness of the plate, that is to say with respect to the depth profile of the residual stresses, or (d) the modification of the shape of the part in order to minimize its deformation ( it being understood that the permanent deformation of the machined part is small if its shape is close to a symmetrical shape with respect to the longitudinal axis of the thick plate in which said part is machined). Aircraft manufacturers therefore prefer heavy plates whose residual stresses are not only lower, but also under control, that is to say with a small variation for a given type of product (alloy, thickness, metallurgical state). ).
Les brevets
Pour les tôles fortes en 7xxx, on préfère en général garder une microstructure largement non recristallisée, notamment pour des applications qui exigent une forte ténacité, telles que les éléments de structure pour avions. Cela ressort de la publication de
Les contraintes résiduelles dans des tôles épaisses peuvent être déterminées par la méthode de l'usinage successif décrite dans la publication de Heymes, Commet et al., référencée ci-dessus. Une méthode basée sur cette publication est décrite en détail ci-dessous.Residual stresses in thick plates can be determined by the method of successive machining described in the publication of Heymes, Commet et al., Referenced above. A method based on this publication is described in detail below.
La présente invention a pour but de présenter une méthode pour obtenir des tôles épaisses en alliage d'aluminium de la série 7xxx qui présente, à l'état tractionné, à l'état matûré ou dans n'importe quel état de vieillissement artificiel, un niveau de contraintes résiduelles plus faible, sans dégrader la résistance mécanique et la tolérance aux dommages. Plus particulièrement, on souhaite disposer de tôles fortes qui ne se déforment pas lors de l'usinage, ce qui est observé lorsque l'énergie élastique totale stockée dans la tôle, W, est inférieure à 2 kJ/m3 et préférentiellement inférieure à 1 kJ/m3.The aim of the present invention is to present a method for obtaining thick aluminum alloy plates of the 7xxx series which, in the tractionned state, in the matured state or in any state of artificial aging, exhibits a lower residual stress level, without degrading mechanical strength and damage tolerance. More particularly, it is desired to have plates that do not deform during machining, which is observed when the total elastic energy stored in the sheet, W, is less than 2 kJ / m 3 and preferably less than 1 kJ / m 3 .
L'invention a pour objet un procédé de fabrication de tôles épaisses en alliage de type Al-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, ledit procédé comprenant le laminage à chaud, la mise en solution, la trempe, la traction contrôlée avec un allongement permanent supérieur à 0,5%, ainsi que le vieillissement,
caractérisé en ce que délai D entre la fin de la trempe et le début de la traction contrôlée est inférieur à 2 heures, et préférentiellement inférieur à 1 heure.The subject of the invention is a method for manufacturing thick plates made of Al-Zn-Cu-Mg type alloy comprising between 4 and 12% of zinc, less than 4% of magnesium and less than 4% of copper, minor elements ≤ 0.5% each, the rest aluminum, said process comprising hot rolling, dissolution, quenching, traction controlled with a permanent elongation greater than 0.5%, as well as aging,
characterized in that delay D between the end of quenching and the beginning of the controlled pull is less than 2 hours, and preferably less than 1 hour.
Un autre objet de la présente invention est une tôle épaisse en alliage de type AI-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, laminée à chaud, mise en solution, trempée, tractionnée avec un allongement permanent supérieur à 0,5%, vieillie, caractérisée en ce son énergie élastique totale est inférieure ou égale à
Encore un autre objet de l'invention est un lot de contrôle ou un lot de traitement thermique de tôles épaisses en alliage de type Al-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, à l'état mis en solution, trempé, tractionné et vieilli, caractérisé en ce l'énergie élastique totale W (exprimée en kJ/m3) des tôles montre un écart-type inférieur ou égal à
-
La
figure 1 montre de manière schématique la définition des trois directions principales dans une tôle.Thefigure 1 shows schematically the definition of the three main directions in a sheet. -
La
figure 2 montre de manière schématique une courbe de traction. La courbe 2 représente l'état de contraintes au coeur de la tôle. La courbe 1 montre l'état de contraintes en surface. Cette figure montre le principe du détensionnement par traction contrôlée : avant la traction contrôlée, l'écart des contraintes entre la surface et lé coeur est défini par x et -x. La traction contrôlée réduit cet écart (défini par y et - y) typiquement d'un facteur 10.Thefigure 2 shows schematically a traction curve.Curve 2 represents the state of stresses in the core of the sheet.Curve 1 shows the state of surface stresses. This figure shows the principle of controlled tensile stress relief: before the controlled tension, the stress deviation between the surface and the core is defined by x and -x. Controlled traction reduces this difference (defined by y and y) typically by a factor of 10. -
La
figure 3 montre la définition des paramètres h, l et w d'une tôle. En bas, on voit de manière schématique la jauge de déformation (avec son fil de raccordement).Thefigure 3 shows the definition of the parameters h, l and w of a sheet. Below, we see schematically the strain gauge (with its connecting wire). -
La
figure 4 montre de manière schématique les séquences de la mesure et des calculs pour déterminer un profil de contraintes résiduelles dans l'épaisseur de la tôle à l'aide de la méthode par enlèvement successif de couches.Thefigure 4 schematically shows the measurement and calculation sequences to determine a residual stress profile in the sheet thickness using the successive layer removal method. -
La
figure 5 montre de manière schématique la partie critique du procédé selon l'invention. D désigne l'intervalle de temps entre la fin de la trempe et le début de la traction contrôlée.Thefigure 5 shows schematically the critical part of the method according to the invention. D denotes the time interval between the end of quenching and the beginning of the controlled pull. -
La
figure 6 montre la cinétique de maturation de tôles épaisses en alliages 7010 et 7050 pour deux vitesses de trempe différentes. L'abscisse montre la limite d'élasticité dans le sens L, l'ordonnée le temps de maturation.Thefigure 6 shows the kinetics of maturation of thick plates in alloys 7010 and 7050 for two different quenching speeds. The abscissa shows the limit of elasticity in the direction L, the ordinate the time of maturation. -
La
figure 7 montre l'effet de l'augmentation de la variation des valeurs de limite d'élasticité sur les profils de contraintes résiduelles après trempe.Thefigure 7 shows the effect of increasing the variation of elastic limit values on the residual stress profiles after quenching. -
La
figure 8 montre l'énergie élastique totale en fonction de l'épaisseur pour des lots de tôles en alliage 7xxx selon l'invention (avec D ≤ 1 heure) (points ouverts) et selon l'état de la technique (avec D ≥ 8 heures) (carrés noirs).Thefigure 8 shows the total elastic energy as a function of the thickness for batches of alloy sheets 7xxx according to the invention (with D ≤ 1 hour) (open points) and according to the state of the art (with D ≥ 8 hours) (black squares).
Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. La désignation des alliages suit les règles de The Aluminum Association, connues de l'homme du métier. L'expression « alliage de type Al-Zn-Cu-Mg » se réfère à un alliage à base d'aluminium qui contient les éléments d'alliage zinc, cuivre et magnésium; un tel alliage peut contenir en plus d'autres éléments d'alliage ainsi que d'autres éléments, dont la présence peut être intentionnelle ou non, par exemple des impuretés.Unless stated otherwise, all the information relating to the chemical composition of the alloys is expressed in percent by weight. The designation of the alloys follows the rules of The Aluminum Association, known to those skilled in the art. The term "Al-Zn-Cu-Mg alloy" refers to an aluminum-based alloy that contains the elements of zinc, copper and magnesium alloy; such an alloy may contain in addition to other alloying elements as well as other elements, the presence of which may be intentional or not, for example impurities.
Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans la norme EN 485-1. La ténacité KIC a été mesurée selon la norme ASTM E 399.The metallurgical states are defined in the European standard EN 515. The chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3. Unless otherwise stated, the static mechanical characteristics, ie the breaking strength R m , the yield stress R p0,2 , and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1. K IC toughness was measured according to ASTM E 399.
Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent.Unless otherwise stated, the definitions of the European standard EN 12258-1 apply.
Dans le cadre de la présente invention, une « tôle épaisse » désigne une tôle dont l'épaisseur est supérieure àu égale à 6 mm.In the context of the present invention, a "thick sheet" designates a sheet whose thickness is greater than 6 mm.
Le terme « lot de contrôle » est défini dans la norme EN 12258-1 ; il désigne une expédition ou partie d'une expédition, soumise à un contrôle, et qui comprend des produits de même qualité ou alliage, de même forme, état métallurgique, taille, géométrie, épaisseur ou section transversale, et qui ont été produits par les même procédés.The term "inspection lot" is defined in EN 12258-1; it means an expedition or part of an expedition, subject to control, and which includes products of the same quality or alloy, of the same shape, metallurgical condition, size, geometry, thickness or cross-section, and which have been produced by the same processes.
Le terme « lot de traitement thermique » désigne une quantité de produits de même qualité ou de même alliage, de même forme, épaisseur ou section transversale, et qui ont été produits de la même façon, dont le traitement thermique ou la mise en solution suivie de trempe a été effectué en une seule charge ; plusieurs lots peuvent être mis en solution dans une même charge de traitement thermique.The term "heat treatment batch" means a quantity of products of the same quality or alloy, of the same shape, thickness or cross-section, and which have been produced in the same way, including the heat treatment or solution solution followed quenching was carried out in a single charge; several batches can be dissolved in the same heat treatment batch.
Le terme « vieillissement » comprend le vieillissement naturel à température ambiante (appelé aussi « maturation »), ainsi que tout vieillissement artificiel (appelé aussi « revenu »).The term "aging" includes natural aging at room temperature (also called "ripening"), as well as any artificial aging (also known as "income").
Le terme « usinage » comprend tout procédé d'enlèvement de matière tel que le tournage, le décolletage, le fraisage, le perçage, l'alésage, le taraudage, l'électroérosion, la rectification, le polissage, l'usinage chimique.The term "machining" includes any material removal process such as turning, machining, milling, drilling, reaming, tapping, EDM, grinding, polishing, chemical machining.
Le terme « élément de structure » se réfère à un élément utilisé en construction mécanique pour lequel les caractéristiques mécaniques statiques et / ou dynamiques ont une importance particulière pour la performance et l'intégrité de la structure, et pour lequel un calcul de la structure est généralement prescrit ou effectué. Il s'agit typiquement d'une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.The term "structural element" refers to an element used in mechanical engineering for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is usually prescribed or performed. It is typically a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others. For an aircraft, these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage composed in particular of stabilizers Horizontal and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
Le terme « élement de structure monolithique » se réfère à un élément de structure qui a été obtenu, le plus souvent par usinage, à partir d'une seule pièce de demi-produit laminé, filé, forgé ou moulé, sans assemblage, tel que rivetage, soudage, collage, avec une autre pièce.The term "monolithic structure element" refers to a structural element that has been obtained, most often by machining, from a single piece of laminated, extruded, forged or molded semi-finished product, such as riveting, welding, gluing, with another piece.
Les directions L (sens Long), TL (sens travers-long) et TC (sens travers-court) dans un produit laminé se réfèrent à la direction de laminage qui correspond à la direction L. Ces trois directions sont définies sur la
Dans le cadre de la présente invention, les contraintes résiduelles ont été déterminées à l'aide de la méthode basée sur l'enlèvement successif de couches décrite dans la publication "
Cette méthode s'applique surtout aux tôles fortes tractionnées, dans lesquelles l'état de contrainte peut être considéré comme biaxial ; les deux composantes principales étant situées dans les directions L et TL, et il n'y a donc pas de composante dans la direction TC. Cette méthode est basée sur la détermination des contraintes résiduelles dans les directions L et TL sur des barres rectangulaires, coupées en pleine épaisseur de la tôle dans le sens parallèle aux directions indiquées. Ces barres sont usinées dans le sens TC étape par étape. Après chaque étape on mesure la contrainte et/ou la déflection et relève l'épaisseur de la barre. Une méthode particulièrement préférée consiste à fixer une jauge de déformation à mi-longueur de la barre, sur la surface opposée à celle qui est usinée. Cela permet de calculer les profils de contraintes résiduelles dans les directions L et TL. La barre doit être suffisamment longue pour éviter des effets de bord. Les dimensions recommandées en fonction de l'épaisseur de la tôle sont indiquées dans le tableau 1.
Les jauges de déformation unidirectionnelles avec une compensation de la dilatation thermique sont collées sur la surface inférieure de la barre (voir
On effectue une mesure après chaque passe d'usinage. On prend typiquement entre 18 et 25 passes pour obtenir un nombre de points suffisant pour calculer le profil de contraintes. La profondeur d'usinage ne doit pas être inférieure à 1 mm, afin d'obtenir une bonne qualité de coupe ; pour des tôles très épaisses, elle peut atteindre 10 mm. On peut aussi utiliser l'usinage chimique pour enlever une très faible épaisseur de métal. Le pas d'usinage devrait être le même pour les deux échantillons (i.e. dans le sens L et dans le sens TL).A measurement is taken after each machining pass. Typically, between 18 and 25 passes are used to obtain a sufficient number of points to calculate the stress profile. The machining depth must not be less than 1 mm, in order to obtain a good quality of cut; for very thick sheets, it can reach 10 mm. Chemical machining can also be used to remove a very small thickness of metal. The machining pitch should be the same for both samples (i.e. in the L direction and in the TL direction).
Après chaque passe d'usinage, la barre est détachée de l'étau, et on laisse la température se stabiliser avant de mesurer la déformation. A chaque pas i, on relève l'épaisseur h(i) et la déformation ε(i). Le schéma de la
Ces données permettent de calculer le profil de contraintes initial dans chaque barre sous la forme d'une courbe u(i), qui correspond à la contrainte moyenne dans la couche enlevée lors du pas d'usinage i, donnée par les équations suivantes :
- Pour i = 1 à N-1 :
- Pour i = 1 à N-1
- For i = 1 to N-1:
- For i = 1 to N-1
De même, d'autres techniques peuvent être utilisées pour mesurer le gradient de contraintes dans l'épaisseur des tôles. Après obtention des profils de contraintes σL et σLT dans l'épaisseur, les mêmes formules des sommes incrémentales ci-dessus permettent de calculer les énergies stockées WL et WLT. Il est donc possible d'obtenir les énergies stockées par toutes techniques permettant des mesures de contraintes dans l'épaisseur.Similarly, other techniques can be used to measure the stress gradient in the thickness of the sheets. After obtaining the stress profiles σ L and σ LT in the thickness, the same formulas of the incremental sums above make it possible to calculate the stored energies W L and W LT . It is therefore possible to obtain the stored energies by any technique allowing measurements of stresses in the thickness.
La présente invention s'applique aux tôles, et surtout aux tôles fortes, en alliage d'aluminium de la série 7xxx, dont la composition chimique répond aux critères suivants:
- 4 < Zn < 12 ; Mg < 4 ; Cu < 4 ;
- éléments mineurs ≤ 0,5 chacun
- le reste aluminium,
- <Zn <12; Mg <4; Cu <4;
- minor elements ≤ 0.5 each
- the rest aluminum,
Selon l'invention, le problème est résolu par une modification du procédé de fabrication de manière à ce que la maturation (vieillissement naturel) entre la fin de la trempe et le début de la traction contrôlée est minimisée de manière à ce que l'énergie élastique totale (W) à l'état revenu reste inférieure à une certaine valeur limite. Cette valeur limite représente une valeur maximale pour garder la déformation à l'usinage à un niveau qui est encore acceptable ; pour la plupart des applications, cette valeur limite est de 2 kJ/m3 pour une tôle d'une épaisseur comprise entre 60 mm et 100 mm, et préférentiellement de 1,5 kJ/m3. Pour des pièces particulièrement complexes, elle doit être de 1 kJ/m3.According to the invention, the problem is solved by a modification of the manufacturing process so that the ripening (natural aging) between the end of the quenching and the beginning of the controlled pull is minimized so that the energy total elasticity (W) in the return state remains below a certain limit value. This limit value represents a maximum value to keep the machining deformity at a level that is still acceptable; for most applications, this limit value is 2 kJ / m 3 for a sheet having a thickness of between 60 mm and 100 mm, and preferably of 1.5 kJ / m 3 . For particularly complex parts, it must be 1 kJ / m 3 .
La
Les inventeurs ont constaté que la variation des contraintes résiduelles à travers l'épaisseur des tôles en alliage 7xxx dépend (i) de la variation des vitesses de refroidissement et de la déformation plastique au cours de la trempe, (ii) des hétérogénéités de la microstructure structure granulaire et de la texture qui sont générées au cours du laminage, et (iii) des variations locales de la composition chimique qui résultent du procédé de coulée (y compris la solidification et l'homogénéisation). Entre la fin de la trempe et le début de la traction, on observe une maturation dans toute l'épaisseur de la tôle, mais la vitesse de cette maturation dépend de l'épaisseur : la limite d'élasticité augmente plus vite à proximité d'une surface qu'à mi-épaisseur. Cela est probablement dû à la cinétique de précipitation : d'une part, la teneur de la solution solide sursaturée en éléments potentiellement durcissants est plus grande proche de la surface qu'à mi-épaisseur (car le procédé de coulée semi-continue adopté conduit à une macro-segrégation telle que la concentration d'éléments eutectiques, tels que Cu, Mn et Zn, est plus forte proche de la surface, et la vitesse de refroidissement au cours de la coulée y est également plus grande), et d'autre part, on trouve proche de la surface une plus grande densité de sites hétérogènes (lacunes, dislocations etc) qui facilitent la précipitation et qui résultent de la plus grande vitesse de refroidissement et de la plus grande plasticité au cours de la trempe.The inventors have found that the variation of the residual stresses across the thickness of the alloy sheets 7xxx depends on (i) the variation of the cooling rates and the plastic deformation during quenching, (ii) the heterogeneities of the microstructure granular structure and texture that are generated during rolling, and (iii) local variations in chemical composition that result from the casting process (including solidification and homogenization). Between the end of the quenching and the beginning of the traction, a maturation is observed throughout the thickness of the sheet, but the speed of this maturation depends on the thickness: the limit of elasticity increases faster close to a surface only half thickness. This is probably due to the kinetics of precipitation: on the one hand, the content of the solid solution supersaturated in potentially hardening elements is greater close to the surface than in mid-thickness (because the adopted semi-continuous casting process leads a macro-segregation such that the concentration of eutectic elements, such as Cu, Mn and Zn, is higher close to the surface, and the cooling rate during casting is also greater), and on the other hand, a greater density of heterogeneous sites (vacancies, dislocations, etc.) is found close to the surface, which facilitates precipitation and which results from the greater rate of cooling and greater plasticity during quenching.
Les inventeurs ont trouvé par un calcul basé sur un modèle à éléments finis qu'une augmentation de l'hétérogénéité des caractéristiques mécaniques (c'est-à-dire de la limite d'élasticité ou des coefficients d'écrouissage) conduit à une augmentation des contraintes résiduelles après traction. La
Cette tentative d'explication métallurgique du procédé selon l'invention n'implique cependant aucune limitation de la présente invention aux phénomènes sous-jacents. Par ailleurs, les inventeurs ont constaté que l'effet est plus grand en réalité que les valeurs obtenues par le modèle mathématique..This attempt at metallurgical explanation of the process according to the invention does not, however, imply any limitation of the present invention to the underlying phenomena. Moreover, the inventors have found that the effect is greater in reality than the values obtained by the mathematical model.
Enfin, un changement du procédé de fabrication qui conduirait à améliorer l'homogénéité des limites d'écoulement (Rp02) dans l'épaisseur de la tôle forte après la trempe, entraînerait une baisse des contraintes résiduelles après traction contrôlée ou après tout détensionnement par déformation plastique.Finally, a change in the manufacturing process that would improve the homogeneity of the flow limits (R pO 2 ) in the thickness of the strong plate after quenching, would result in a reduction of the residual stresses after controlled pulling or after any stress relief. plastic deformation.
Le procédé selon l'invention ne donne pas de résultat amélioré dans le cas d'autres alliages à durcissement structural, tels que les alliages des séries 2xxx et 6xxx. Pour les alliages très chargés, c'est-à-dire présentant une teneur en Zn > 12%, Mg > 4% et Cu > 4%, l'énergie stockée est très élevée, et l'amélioration obtenue avec le procédé selon l'invention ne paraît pas être significative. Ces alliages répondent par ailleurs difficilement à un traitement de mise en solution.The method according to the invention does not give an improved result in the case of other alloys with structural hardening, such as the 2xxx and 6xxx series alloys. For very heavy alloys, that is to say having a content of Zn> 12%, Mg> 4% and Cu> 4%, the stored energy is very high, and the improvement obtained with the process according to the invention. invention does not appear to be significant. These alloys also have difficulty responding to solution treatment.
Le procédé selon l'invention permet de fabriquer des tôles caractérisées par une valeur de l'énergie élastique totale qui est inférieure ou égale à
Le procédé selon l'invention permet aussi de réduire la dispersion entre les valeurs de W pour une pluralité de tôles appartenant à un même lot de contrôle ou lot de traitement thermique, de manière à ce toutes les tôles ont un écart-type de l'énergie élastique totale W des différentes tôles autour d'une valeur moyenne inférieur ou égal à
L'écart-type entre les mesures de l'énergie élastique totale W des différentes tôles d'un lot peut dépendre du nombre de tôles contenues dans le lot. En particulier, un écart-type obtenu sur deux mesures est faiblement significatif et peut aléatoirement être très élevé ou très faible. A partir de 3 tôles, l'écart-type des mesures peut être considéré mais d'une manière préférée, les lots de contrôle ou de traitement thermique utilisés dans le cadre de la présente invention contiennent au moins 5 tôles.The standard deviation between the measurements of the total elastic energy W of the different sheets of a batch can depend on the number of sheets contained in the batch. In particular, a standard deviation obtained on two measurements is weakly significant and can randomly be very high or very low. From 3 sheets, the standard deviation of the measurements can be considered but, in a preferred manner, the control or heat treatment batches used in the context of the present invention contain at least 5 sheets.
L'utilisation du procédé selon l'invention permet au fabricant de garantir qu'un tel lot de contrôle ou un tel lot de traitement thermique comprend des tôles dont l'énergie élastique totale moyenne est inférieure à 3 kJ/m3. De manière préférée, cette valeur moyenne est inférieure à 2 kJ/m3, et on préfère une valeur inférieure à 1 kJ/m3, ce qui nécessite une excellente maîtrise des procédés critiques et une gestion très rigoureuse des flux de produits aux stades de la mise en solution, de la trempe et de la traction. En effet, la mise en oeuvre du procédé selon l'invention peut nécessiter une adaptation des flux de métal à l'intérieur de l'usine, car si le producteur veut produire des tôles avec un délai D inférieur à quelques heures, il faut synchroniser le four de trempe avec le banc de traction. En pratique, cela implique de limiter au minimum le stock intermédiaire entre ces deux machines; ceci s'applique notamment aux modes de réalisation particulièrement préférés avec D < 1 heure ou D < 30 minutes. La demande de brevet
Dans un autre mode de réalisation de l'invention, la maturation est effectuée à basse température, c'est à dire à une température inférieure à 10 °C et de manière préférée à une température inférieure à 5 °C, ce qui permet d'obtenir des résultats semblables en terme d'énergie élastique totale W pour des délais D compris entre 2h et 3h.In another embodiment of the invention, the maturation is carried out at low temperature, that is to say at a temperature below 10 ° C. and preferably at a temperature below 5 ° C., which makes it possible to obtain similar results in terms of total elastic energy W for delays D between 2h and 3h.
D'autres modes de réalisation préférés de l'invention sont indiqués dans les revendications dépendantes. L'invention est particulièrement avantageuse pour des tôles épaisses en alliages AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175.Other preferred embodiments of the invention are indicated in the dependent claims. The invention is particularly advantageous for thick plates of AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175 alloys.
L'avantage du procédé selon l'invention est la diminution globale du niveau de contraintes dans les tôles fortes. Cela diminue globalement la déformation à l'usinage.The advantage of the process according to the invention is the overall reduction of the stress level in the heavy plates. This generally reduces the deformation during machining.
Un autre avantage du procédé selon l'invention est que le contrôle du temps qui s'écoule entre la fin de la trempe et le début de la traction permet également de diminuer la dispersion du niveau de contrainte que l'on observe entre différentes tôles nominalement identiques, même à l'intérieur d'un même lot de fabrication ou lot de traitement thermique. Cela permet une meilleure standardisation des procédés d'usinage pour une série de produits donnée, et diminue le nombre d'incidents lors de la fabrication de pièces usinées dans l'atelier d'usinage.Another advantage of the process according to the invention is that the control of the time which elapses between the end of the quenching and the beginning of the traction also makes it possible to reduce the dispersion of the stress level which is observed between different sheets nominally. identical, even within the same manufacturing batch or batch of heat treatment. This allows a better standardization of the machining processes for a given series of products, and reduces the number of incidents during the manufacture of machined parts in the machine shop.
Dans les exemples qui suivent, on décrit à titre d'illustration des modes de réalisation avantageux de l'invention. Ces exemples n'ont pas de caractère limitatif.In the examples which follow, advantageous embodiments of the invention are illustrated by way of illustration. These examples are not limiting in nature.
Trois plaques de laminage en alliage AA7010 ont été coulées par coulée semi-continue. Après homogénéisation, on les a laminées à chaud jusqu'à une épaisseur de 100 mm. A la sortie du laminoir à chaud, on les a soumis à une trempe suivie d'une traction contrôlée, et finalement à un traitement de revenu. L'état métallurgique des trois produits A1, A2 et A3 ainsi obtenus était l'état T7651. Pour ces trois produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés. La seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.Three AA7010 alloy rolling plates were cast by semi-continuous casting. After homogenization, they were hot-rolled to a thickness of 100 mm. At the outlet of the hot rolling mill, they were subjected to quenching followed by a controlled pull, and finally to a treatment of income. The metallurgical state of the three products A1, A2 and A3 thus obtained was the T7651 state. For these three products, all manufacturing parameters were nominally identical and well controlled. The only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
Par un procédé analogue, on a transformé trois plaques de laminage en alliage AA7050 par homogénéisation, laminage à chaud jusqu'à une épaisseur de 100 mm, trempe, traction contrôlée et revenu. L'état métallurgique des trois produits B1, B2 et B3 ainsi obtenus était l'état T7451. Pour ces trois produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés, et la seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.By a similar process, three AA7050 alloy rolling plates were converted by homogenization, hot rolling to a thickness of 100 mm, quenching, controlled pulling and tempering. The metallurgical state of the three products B1, B2 and B3 thus obtained was the T7451 state. For all three products, all manufacturing parameters were nominally identical and well controlled, and the only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
Le tableau 2 montre l'énergie élastique stockée des différentes tôles obtenues, déterminée à l'état final. Lorsque l'on réduit le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction, on observe une réduction du niveau global de contraintes tel que mesuré par WL, WLT and W.
Les caractéristiques mécaniques statiques ont été mesurées à l'état de traitement thermique final dans les directions L, TL et TC à ¼, ½ et ¾ épaisseur. Les résultats sont rassemblés dans les tableaux 3, 4 et 5. On observe que la durée de maturation D n'a pas d'influence significative sur les caractéristiques mécaniques statiques.
On a également mesuré la ténacité KIC dans les direction L-T et T-L à ¼ épaisseur. Les résultats, rassemblés dans le tableau 6, montrent que la maturation n'a pas d'influence significatif sur la ténacité.
On a transformé trois plaques de laminage en alliage AA7475 par homogénéisation, laminage à chaud jusqu'à une épaisseur de 46 mm, trempe et traction contrôlée. L'état métallurgique des trois produits C1, C2 et C3 ainsi obtenus était l'état W51. Pour ces trois produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés, et la seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.Three AA7475 alloy rolling plates were processed by homogenization, hot rolling to a thickness of 46 mm, quenching and controlled pulling. The metallurgical state of the three products C1, C2 and C3 thus obtained was the state W51. For all three products, all manufacturing parameters were nominally identical and well controlled, and the only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
Le tableau 7 montre l'énergie élastique stockée des différentes tôles obtenues, déterminée à l'état final (i.e. après traction contrôlée). Lorsque l'on réduit le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction, on observe une réduction du niveau global de contraintes WL, WLT and W.
On a transformé deux plaques de laminage en alliage AA7449 par homogénéisation, laminage à chaud jusqu'à une épaisseur comprise entre 16,5 et 21,5 mm, trempe et traction contrôlée, suivi d'un revenu. L'état métallurgique des deux produits D1 et D2 ainsi obtenus était l'état T651. Pour ces deux produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés, et la seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.Two AA7449 alloy rolling plates were converted by homogenization, hot rolling to a thickness between 16.5 and 21.5 mm, quenching and controlled pulling, followed by tempering. The metallurgical state of the two products D1 and D2 thus obtained was the T651 state. For these two products, all manufacturing parameters were nominally identical and well controlled, and the only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
Le tableau 8 montre l'énergie élastique stockée des différentes tôles obtenues, déterminée à l'état final (i.e. après traction contrôlée). Lorsque l'on réduit le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction, on observe une réduction du niveau global de contraintes WL, WLT and W. La faible différence entre les épaisseurs des deux produits ne conduit pas en tant que telle à une différence significative entre leurs niveaux de contraintes.
Ce résultat confirme que même pour un alliage de type Al-Zn-Mg à haute teneur en zinc comme le 7449, on peut diminuer l'énergie élastique totale de manière très significative en diminuant la durée de maturation D.This result confirms that even for an alloy of the Al-Zn-Mg type with a high zinc content, such as 7449, the total elastic energy can be very significantly reduced by decreasing the maturation period D.
Par des procédés industriels qui ne se distinguaient que par le temps d'attente, on a préparé des lots de tôles de contrôle selon l'invention. On a mesuré l'énergie stockée. Ensuite, on a développé un modèle mathématique qui permet de calculer cette énergie stockée en fonction des paramètres critiques du procédé de fabrication. Les valeurs de l'énergie stockée mesurées pour les tôles selon l'invention ont été utilisées pour valider ce modèle mathématique. Ensuite, on a appliqué ce même modèle mathématique à des lots de tôles en alliages de type Al-Zn-Mg obtenues par des procédés selon l'état de la technique. La
On constate que pour une épaisseur comprise entre environ 60 mm et environ 100 mm, l'énergie stockée est maximale. Le procédé selon l'invention conduit, pour une épaisseur donnée, d'une part à une réduction du niveau global de contraintes résiduelles (c'est-à-dire de l'énergie stockée Wtotat) d'environ 50%, et d'autre part à une réduction significative de la dispersion statistique de cette valeur. L'effet de l'invention sur le niveau global de contraintes résiduelles est particulièrement remarquable pour des épaisseurs comprises entre 40 et 150 mm et il encore plus net pour des épaisseurs comprises entre 50 et 100 ou même 80 mm.It is found that for a thickness of between about 60 mm and about 100 mm, the stored energy is maximum. The method according to the invention leads, for a given thickness, firstly to a reduction in the overall level of residual stresses (that is to say of the stored energy W totat ) of approximately 50%, and of on the other hand, a significant reduction in the statistical dispersion of this value. The effect of the invention on the overall level of residual stresses is particularly remarkable for thicknesses of between 40 and 150 mm and even more clearly for thicknesses of between 50 and 100 or even 80 mm.
Claims (14)
- Method for producing Al-Zn-Cu-Mg type alloy thick plates having a thickness greater than 40 mm comprising between 4 and 12% zinc, less than 4% magnesium and less than 4% copper, minor elements ≤ 0.5% each, and the remainder aluminium, said method comprising hot rolling, solution heat-treatment, quenching, controlled stretching with permanent elongation greater than 0.5% and ageing,
characterised in that the elapsed time D between the end of quenching and the start of controlled stretching is less than 1 hour. - Method according to claim 1, wherein the elapsed time D is less than 30 minutes.
- Method according to claims 1 or 2, wherein said alloy is selected from the group consisting of the alloys AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175.
- Method according to any of claims 1 to 3, wherein the thickness of said plate is between 40 and 80 mm.
- Method according to any of claims 1 to 3, wherein the thickness of said plate is between 40 and 150 mm.
- Al-Zn-Cu-Mg type alloy thick plate with a thickness of at least 60 mm comprising between 4 and 12% zinc, less than 4% magnesium and less than 4% copper, minor elements ≤ 0.5% each, and the remainder aluminium, which is hot rolled, solution treated, quenched, stretched with a permanent elongation greater than 0.5%, aged,
characterised in that its total elastic energy is less than or equal to
and in that its total elastic energy is less than 1.5 kJ/m3. - Plate according to claim 6, characterised in that its thickness is greater than 100 mm and its total elastic energy is less than 1.0 kJ/m3.
- Inspection lot or heat treatment batch of Al-Zn-Cu-Mg type alloy thick plates with a nominal thickness of the plates between 40 and 100 mm comprising between 4 and 12% zinc, less than 4% magnesium and less than 4% copper, minor elements ≤ 0.5% each, the remainder aluminium, in a solution-treated, quenched, stretched and aged temper, characterised in that the total elastic energy W (expressed in kJ/m3) of the plates displays a standard deviation less than or equal to
- Inspection lot or heat treatment batch of thick plates according to claim 8, characterised in that said average total elastic energy value is less than W [kJ/m3] = 0.54 + 0.013 (Rp0.2(L) [MPa]- 400).
- Inspection lot or heat treatment batch of thick plates according to claim 9, characterised in that said average total elastic energy value is less than 3 kJ/m3.
- Inspection lot or heat treatment batch according to claim 9 characterised in that said average total elastic energy value is less than 2 kJ/m3, and preferentially less than 1 kJ/m3.
- Inspection lot or heat treatment batch according to any of claims 9 to 11, characterised in that the plates are made of alloy selected from the group consisting of AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175.
- Inspection lot or heat treatment batch according to any of claims 9 to 12, characterised that it consists of at least 3 plates and preferentially at least 5 plates.
- Use of plates according to any of claims 6 to 7 or of a heat treatment batch of plates according to any of claims 8 to 14 for the production of machined components.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0413204A FR2879217B1 (en) | 2004-12-13 | 2004-12-13 | STRONG ALLOY SHEETS AI-ZN-CU-MG WITH LOW INTERNAL CONSTRAINTS |
PCT/FR2005/003090 WO2006064113A1 (en) | 2004-12-13 | 2005-12-09 | High strength sheet made from al-zn-cu-mg alloy with low internal stresses |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1838891A1 EP1838891A1 (en) | 2007-10-03 |
EP1838891B1 true EP1838891B1 (en) | 2015-12-09 |
Family
ID=35094196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05825980.5A Revoked EP1838891B1 (en) | 2004-12-13 | 2005-12-09 | High strength sheet made from al-zn-cu-mg alloy with low internal stresses |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060151075A1 (en) |
EP (1) | EP1838891B1 (en) |
CN (1) | CN101076613A (en) |
FR (1) | FR2879217B1 (en) |
WO (1) | WO2006064113A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10835942B2 (en) | 2016-08-26 | 2020-11-17 | Shape Corp. | Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
US11072844B2 (en) | 2016-10-24 | 2021-07-27 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2879217B1 (en) | 2004-12-13 | 2007-01-19 | Pechiney Rhenalu Sa | STRONG ALLOY SHEETS AI-ZN-CU-MG WITH LOW INTERNAL CONSTRAINTS |
US8083871B2 (en) | 2005-10-28 | 2011-12-27 | Automotive Casting Technology, Inc. | High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting |
US8673209B2 (en) * | 2007-05-14 | 2014-03-18 | Alcoa Inc. | Aluminum alloy products having improved property combinations and method for artificially aging same |
US9314826B2 (en) | 2009-01-16 | 2016-04-19 | Aleris Rolled Products Germany Gmbh | Method for the manufacture of an aluminium alloy plate product having low levels of residual stress |
WO2010081889A1 (en) * | 2009-01-16 | 2010-07-22 | Aleris Aluminum Koblenz Gmbh | Method for the manufacture of an aluminium alloy plate product having low levels of residual stress |
US9163304B2 (en) | 2010-04-20 | 2015-10-20 | Alcoa Inc. | High strength forged aluminum alloy products |
CN103725941B (en) * | 2014-01-16 | 2016-01-20 | 南通波斯佳织造科技有限公司 | A kind of surface treated magnesium platina thin plate and preparation method thereof |
CN103725943B (en) * | 2014-01-16 | 2015-11-18 | 张霞 | A kind of magnesium alloy sheet and preparation method thereof |
GB2527486A (en) | 2014-03-14 | 2015-12-30 | Imp Innovations Ltd | A method of forming complex parts from sheet metal alloy |
JP6406971B2 (en) * | 2014-10-17 | 2018-10-17 | 三菱重工業株式会社 | Method for producing aluminum alloy member |
US9719150B2 (en) * | 2015-01-05 | 2017-08-01 | The Boeing Company | Methods of forming a workpiece made of a naturally aging alloy |
CN104846302B (en) * | 2015-06-02 | 2017-01-18 | 湖南大学 | Ageing heat treatment method for keeping aluminum alloy strength and reducing quenching residual stress |
RU2614321C1 (en) * | 2016-05-04 | 2017-03-24 | Открытое акционерное общество "Композит" (ОАО "Композит") | Weldable alloy based on aluminium for meteoroid protection |
CN106756672B (en) * | 2016-12-07 | 2018-02-23 | 北京科技大学 | A kind of processing method of raising automobile using Al Mg Si Cu systems alloy strength |
US20180171440A1 (en) * | 2016-12-21 | 2018-06-21 | Arconic Inc. | High zinc aluminum alloy products |
CN109234653B (en) * | 2018-10-23 | 2020-07-07 | 湖南大学 | Method for reducing residual stress of large complex aluminum alloy die forging |
CN111270114A (en) * | 2020-03-30 | 2020-06-12 | 天津忠旺铝业有限公司 | Preparation process of high-strength 7150 aluminum alloy medium plate |
FR3136242B1 (en) | 2022-06-01 | 2024-05-03 | Constellium Valais | Sheet metal for vacuum chamber elements made of aluminum alloy |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR413204A (en) | 1909-12-20 | 1910-08-03 | Pohlig Aktien Ges J | Device for raising railway wagons or the like on ramps |
US4511409A (en) | 1982-07-02 | 1985-04-16 | Cegedur Societe De Transformation De L'aluminium Pechiney | Process for improving both fatigue strength and toughness of high-strength Al alloys |
US5277719A (en) | 1991-04-18 | 1994-01-11 | Aluminum Company Of America | Aluminum alloy thick plate product and method |
EP0848073A1 (en) | 1996-12-16 | 1998-06-17 | Hoogovens Aluminium Walzprodukte GmbH | Stress relieving of an age hardenable aluminium alloy product |
US5865911A (en) | 1995-05-26 | 1999-02-02 | Aluminum Company Of America | Aluminum alloy products suited for commercial jet aircraft wing members |
US6027582A (en) | 1996-01-25 | 2000-02-22 | Pechiney Rhenalu | Thick alZnMgCu alloy products with improved properties |
EP1158068A1 (en) | 2000-05-24 | 2001-11-28 | Pechiney Rhenalu | Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products |
US6406567B1 (en) | 1996-12-16 | 2002-06-18 | Corus Aluminium Walzprodukte Gmbh | Stress relieving of an age hardenable aluminium alloy product |
US20020121319A1 (en) | 2000-12-21 | 2002-09-05 | Chakrabarti Dhruba J. | Aluminum alloy products having improved property combinations and method for artificially aging same |
US20020162609A1 (en) | 2001-02-07 | 2002-11-07 | Timothy Warner | Manufacturing process for a high strength work hardened product made of AlZnMgCu alloy |
WO2004053180A2 (en) | 2002-12-06 | 2004-06-24 | Pechiney Rhenalu | Edge-on stress-relief of thick aluminium plates |
WO2006064113A1 (en) | 2004-12-13 | 2006-06-22 | Alcan Rhenalu | High strength sheet made from al-zn-cu-mg alloy with low internal stresses |
US11299683B2 (en) | 2017-09-25 | 2022-04-12 | Shu-Min Chen | Liquid fuel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2715409B1 (en) * | 1994-01-25 | 1996-05-24 | Pechiney Rhenalu | Heavy sheets of fatigue-resistant aluminum alloys and process for obtaining them. |
-
2004
- 2004-12-13 FR FR0413204A patent/FR2879217B1/en not_active Expired - Fee Related
-
2005
- 2005-12-09 WO PCT/FR2005/003090 patent/WO2006064113A1/en active Application Filing
- 2005-12-09 EP EP05825980.5A patent/EP1838891B1/en not_active Revoked
- 2005-12-09 CN CNA2005800427472A patent/CN101076613A/en active Pending
- 2005-12-13 US US11/299,683 patent/US20060151075A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR413204A (en) | 1909-12-20 | 1910-08-03 | Pohlig Aktien Ges J | Device for raising railway wagons or the like on ramps |
US4511409A (en) | 1982-07-02 | 1985-04-16 | Cegedur Societe De Transformation De L'aluminium Pechiney | Process for improving both fatigue strength and toughness of high-strength Al alloys |
US5277719A (en) | 1991-04-18 | 1994-01-11 | Aluminum Company Of America | Aluminum alloy thick plate product and method |
US5865911A (en) | 1995-05-26 | 1999-02-02 | Aluminum Company Of America | Aluminum alloy products suited for commercial jet aircraft wing members |
US6027582A (en) | 1996-01-25 | 2000-02-22 | Pechiney Rhenalu | Thick alZnMgCu alloy products with improved properties |
US6406567B1 (en) | 1996-12-16 | 2002-06-18 | Corus Aluminium Walzprodukte Gmbh | Stress relieving of an age hardenable aluminium alloy product |
EP0848073A1 (en) | 1996-12-16 | 1998-06-17 | Hoogovens Aluminium Walzprodukte GmbH | Stress relieving of an age hardenable aluminium alloy product |
EP1158068A1 (en) | 2000-05-24 | 2001-11-28 | Pechiney Rhenalu | Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products |
US20020121319A1 (en) | 2000-12-21 | 2002-09-05 | Chakrabarti Dhruba J. | Aluminum alloy products having improved property combinations and method for artificially aging same |
US20020162609A1 (en) | 2001-02-07 | 2002-11-07 | Timothy Warner | Manufacturing process for a high strength work hardened product made of AlZnMgCu alloy |
WO2004053180A2 (en) | 2002-12-06 | 2004-06-24 | Pechiney Rhenalu | Edge-on stress-relief of thick aluminium plates |
WO2006064113A1 (en) | 2004-12-13 | 2006-06-22 | Alcan Rhenalu | High strength sheet made from al-zn-cu-mg alloy with low internal stresses |
US11299683B2 (en) | 2017-09-25 | 2022-04-12 | Shu-Min Chen | Liquid fuel |
Non-Patent Citations (35)
Title |
---|
"Aerospace Material Specification 4202 for Aluminum Alloy Plate 5.7Zn - 2.2Mg - 1.6Cu - 0.22Cr (7475-T7351", SAE AEROSPACE |
"Aluminium et alliages d'aluminium - Produits corroyés - Désignation des états métallurgiques", NORME EUROPEENNE EN 515 |
"Aluminum and Aluminum Alloys", ASM SPECIALTY HANDBOOK, pages p. 305 and p.317 |
"Heat Treating", ASM HANDBOOK, vol. 4, 1991 |
"International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys", UNIFIED NORTH AMERICAN AND INTERNATIONAL REGISTRATION RECORDS, THE ALUMINUM ASSOCIATION, vol. 900, 1998, 19th Street, N.W., Washington , D.C. 20008, pages 27 |
"Metallic Materials and Elements For Aerospace Vehicle Structures", DEPARTMENT OF DEFENSE HANDBOOK, vol. MIL-HDBK, 31 January 2003 (2003-01-31) |
"Metals Handbook", HEAT TREATING, vol. 4, no. Ninth Edition, 1981 |
A. HYODO ET AL.: "Empenamento em peças usinada a partir de placas laminadas de ligas de aluminio da série 7xxx.", CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIA DOS MATERIALS, vol. 14, 2000, São Pedro-SP, Anais, pages 42801 - 42812 |
ALEXANDRE HYODO, INFLUENCE OF RESIDUAL STRESS ON THE WARPING OF AIRCRAFT PARTS MACHINED FROM SERIES 7XXX ALUMINIUM ALLOYS ROLLED PLATES, 2002, São Carlos |
ALEXANDRE HYODO: "Influencia da tensão residual no empenament de peças aer- onauticas usinadas a partir de placas laminadas de ligas de aluminio da série 7xxx.", THESIS BEFORE THE UNIVERSIDADE FEDERAL DE SÃO CARLOS, 2002, XP055306992 |
ALUMINUM STANDARDS AND DATA 2003, 2003 |
DECLARATION BY DR PHILIPPE LEQUEU, 21 April 2009 (2009-04-21) |
DECLARATION OF INVENTOR PHILIPPE LEQUEU, WHICH WAS FILED DURING THE EXAMINATION PROCEEDINGS AS X1, 28 November 2013 (2013-11-28) |
F. HEYMES ET AL.: "Development of New Al Alloys for Distortion Free Machined Aluminium Aircraft Components", PROCEEDINGS OF THE 1ST INTERNATIONAL NON-FERROUS PROCESSING AND TECHNOLOGY CONFERENCE, 10 March 1997 (1997-03-10), St. Louis, Missouri, XP055307116 |
F. HEYMES ET AL.: "Development of new Al alloys for distortion free machined aluminium aircraft components.'';", PROCEEDINGS OF THE 1ST INTERNATIONAL NON- FERROUS PROCESSING AND TECHNOLOGY CONFERENCE, March 1997 (1997-03-01), pages 249 - 255 |
F. HEYMES ET AL.: "Development of New Al Alloys for Distortion Free Machined Aluminum Aircraft Components", PROCEEDINGS OF THE 1ST INTERNATIONAL NON- FERROUS PROCESSING AND TECHNOLOGY CONFERENCE, 10 March 1997 (1997-03-10), St . Louis, Missouri, pages 249 - 255 |
J. R. DAVIS: "Aluminum and Aluminum Alloys", ASM SPECIALTY HANDBOOK, 1993 |
J. T. STALEY ET AL.: "Heat Treating Characteristics of High Strength Al-Zn-Mg- Cu Alloys With and Without Silver Additions", METALLURGICAL TRANSACTIONS, 3 January 1972 (1972-01-03), pages 191 - 199, XP008036306, DOI: doi:10.1016/0001-6160(72)90180-0 |
J.R . DAVIS, ASM SPECIALTY HANDBOOK, ALUMINUM AND ALUMINUM ALLOYS, 1993 |
J.T. STALEY ET AL.: "Heat treating Characteristics of High Strength Al-Zn-Mg-Cu Alloys With and Without Silver Additions.", METALLURGICAL TRANSACTIONS, vol. 3, January 1972 (1972-01-01), pages 191 - 199, XP055306959 |
JIN HUANG, THE EFFECT OF PRE-DEFORMATION ON THE AGEING BEHAVIOUR OF 7030.60 AND 7108.82 ALLOYS, March 1999 (1999-03-01) |
JOHN E., ALUMINUM - PHYSICAL PROPERTIES AND PHYSICAL METALLURGY, 1984, Ohio |
M. B. PRIME ET AL.: "Residual stress, stress relief, and inhomogeneity in aluminum plate", SCRIPTA MATERIALIA, vol. 46, 2002, pages 77 - 82, XP004326269 |
M. J. KIEMELE ET AL., BASIC STATISTICS - TOOLS FOR CONTINUOUS IMPROVEMENT, 2000, Colorado, USA, XP055307118 |
MILITARY SPECIFICATION HEAT TREATMENT OF ALUMINUM ALLOYS, MIL-H-6088G, 1 April 1991 (1991-04-01) |
P. LEQUEU ET AL.: "Engineering for the future: weight saving and cost reduction initiatives", AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, vol. 73, no. 2, 2001, pages 147 - 159, XP055306971, DOI: doi:10.1108/00022660110386663 |
P. LEQUEU ET AL.: "Engineering for the future: weight saving and cost reduction initiatives.", AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, vol. 72, no. 2, 2001, pages 147 - 159, XP055306971 |
P. LEQUEU ET AL.: "Engineering for the future: weight saving and cost reduction initiatives'';", AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, vol. 73, no. 2, 2001, pages 147 - 159, XP055306971 |
PRODUCTION PART APPROVAL PROCESS PPAP, 2000 |
Q. WANG ET AL.: "Evaluation of residual stress relief of aluminum alloy 7050 by using crack compliance method.", TRANS. NONFERROUS MET. SOC. CHINA, vol. 13, no. 5, October 2003 (2003-10-01), pages 1190 - 1193, XP055306962 |
Q.WANG ET AL.: "Control and relief of residual stress in high-strength aluminum parts for aerospace industry.", JOURNAL OF AERONAUTICAL MATERIALS, vol. 11, no. 3, September 2002 (2002-09-01), pages 59 - 62, XP055306969 |
R. V. LENTH: "Some practical guidelines for effective sample size determination", THE AMERICAN STATISTICIAN, vol. 55, no. 3, 2001, pages 187 - 193, XP055307002 |
R.E. DAVIES ET AL.: "Design Mechanical Properties, Fracture Toughness, Fatigue Properties, Exfoliation and Stress-Corrosion Resistance of 7050 Sheet, Plate", HAND FORGINGS AND EXTRUSIONS, July 1975 (1975-07-01) |
R.V. LENTH: "Some practical guidelines for effective sample size determination.", THE AMERICAN STATISTICIAN, vol. 55, no. 3, August 2001 (2001-08-01), pages 187 - 193, XP055307002 |
TRANSLATION INTO ENGLISH OF D8A |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10835942B2 (en) | 2016-08-26 | 2020-11-17 | Shape Corp. | Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
US11072844B2 (en) | 2016-10-24 | 2021-07-27 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
Also Published As
Publication number | Publication date |
---|---|
FR2879217B1 (en) | 2007-01-19 |
CN101076613A (en) | 2007-11-21 |
FR2879217A1 (en) | 2006-06-16 |
EP1838891A1 (en) | 2007-10-03 |
US20060151075A1 (en) | 2006-07-13 |
WO2006064113A1 (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1838891B1 (en) | High strength sheet made from al-zn-cu-mg alloy with low internal stresses | |
EP1809779B1 (en) | High-strength aluminium alloy products and method for the production thereof | |
EP3124633B1 (en) | An automotive suspension part and method for producing same | |
FR2907796A1 (en) | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME | |
EP2288738B1 (en) | Al-zn-mg alloy product with reduced quench sensitivity | |
FR2907466A1 (en) | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME | |
EP2710163B1 (en) | Aluminum magnesium lithium alloy having improved toughness | |
CA2649571C (en) | Method for fabrication of a structural element for aeronautical construction including a differential work hardening | |
EP2652163B1 (en) | 7xxx alloy thick products and their process of manufacture | |
JP7282106B2 (en) | Manufacturing method of 7xxx series aluminum alloy plate product with improved fatigue fracture resistance | |
EP0876514B1 (en) | THICK AlZnMgCu ALLOY PRODUCTS HAVING IMPROVED PROPERTIES | |
EP2981632B1 (en) | Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages | |
JP2013525608A (en) | Damage-resistant aluminum material with hierarchical microstructure | |
KR102494375B1 (en) | Manufacturing method of aluminum alloy rolled products | |
WO2007009616A1 (en) | A wrought aluminum aa7000-series alloy product and method of producing said product | |
EP1644546B1 (en) | Use of pipes made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage | |
FR3067044B1 (en) | ALUMINUM ALLOY COMPRISING LITHIUM WITH IMPROVED FATIGUE PROPERTIES | |
EP1544315A1 (en) | Wrought product and structural part for aircraft in Al-Zn-Cu-Mg alloy | |
JP2001059124A (en) | Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION | |
US20230357902A1 (en) | Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability | |
EP2113576A1 (en) | Method for producing a structural material made of magnesium-containing aluminium-based alloy | |
WO2024018147A1 (en) | Method for manufacturing a 7xxx aluminum alloy sheet and 7xxx aluminum alloy sheet | |
WO2017064407A1 (en) | Thin sheets made from aluminium-magnesium-zirconium alloys for aerospace applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070710 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONSTELLIUM FRANCE |
|
17Q | First examination report despatched |
Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602005048075 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22F0001053000 Ipc: C22F0001050000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 21/10 20060101AFI20150423BHEP Ipc: C22F 1/05 20060101ALI20150423BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22F 1/05 20060101AFI20150511BHEP Ipc: C22C 21/10 20060101ALI20150511BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150701 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONSTELLIUM ISSOIRE |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 764610 Country of ref document: AT Kind code of ref document: T Effective date: 20151215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005048075 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 764610 Country of ref document: AT Kind code of ref document: T Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160310 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602005048075 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160409 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160411 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602005048075 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
26 | Opposition filed |
Opponent name: ALERIS ROLLED PRODUCTS GERMANY GMBH Effective date: 20160902 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: WITTMANN, ERNST ULRICH Effective date: 20160830 Opponent name: ALCOA INC. Effective date: 20160909 |
|
R26 | Opposition filed (corrected) |
Opponent name: ALERIS ROLLED PRODUCTS GERMANY GMBH Effective date: 20160902 Opponent name: WITTMANN, ERNST ULRICH Effective date: 20160830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151209 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20161227 Year of fee payment: 12 Ref country code: GB Payment date: 20161228 Year of fee payment: 12 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20161227 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161229 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20051209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151209 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R064 Ref document number: 602005048075 Country of ref document: DE Ref country code: DE Ref legal event code: R103 Ref document number: 602005048075 Country of ref document: DE |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PLX |
|
27W | Patent revoked |
Effective date: 20180113 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20180113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20151209 Ref country code: LI Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20151209 |