EP1809779B1 - High-strength aluminium alloy products and method for the production thereof - Google Patents

High-strength aluminium alloy products and method for the production thereof Download PDF

Info

Publication number
EP1809779B1
EP1809779B1 EP05805764A EP05805764A EP1809779B1 EP 1809779 B1 EP1809779 B1 EP 1809779B1 EP 05805764 A EP05805764 A EP 05805764A EP 05805764 A EP05805764 A EP 05805764A EP 1809779 B1 EP1809779 B1 EP 1809779B1
Authority
EP
European Patent Office
Prior art keywords
alloy
ingot
cast form
process according
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05805764A
Other languages
German (de)
French (fr)
Other versions
EP1809779A1 (en
Inventor
Bernard Bes
Philippe Jarry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Alcan Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Rhenalu SAS filed Critical Alcan Rhenalu SAS
Publication of EP1809779A1 publication Critical patent/EP1809779A1/en
Application granted granted Critical
Publication of EP1809779B1 publication Critical patent/EP1809779B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/062Obtaining aluminium refining using salt or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to a new manufacturing method for high tenacity and high fatigue resistant aluminum alloy rolled products, as well as products obtained by this process.
  • This process comprises a particular refining of the liquid metal.
  • These sheets can be used as aircraft fuselage liner.
  • Al-Si-Mg-Cu alloys can be used for fuselage structural members. These elements must have on the one hand a high mechanical strength, and on the other hand good toughness and good resistance to fatigue. Any new opportunity to improve one of these property groups without degrading others would be welcome.
  • the object of the present invention is to propose a new process for obtaining highly recrystallized wrought products, preferably laminated products, and in particular 6xxx series alloy thin metal sheets with high mechanical strength which also show excellent toughness and fatigue resistance.
  • Another object of the present invention is a rolling plate that can be obtained by the casting process.
  • Yet another object of the present invention is a sheet capable of being obtained from the process or from the rolling plate according to the invention.
  • the figure 1 shows the influence of refining and titanium content on the parameter p *.
  • the figure 2 shows the influence of refining and titanium content on the parameter s *.
  • the black triangle represents an alloy refined with TiB 2 , while the other alloys have been refined with AlTiC.
  • the designation of the alloys follows the rules of THE ALUMINUM ASSOCIATION.
  • the metallurgical states are defined in the European standard EN 515.
  • the chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3 as well as in the publications of THE ALUMINUM ASSOCIATION. These rules, standards and publications are known to those skilled in the art.
  • alloy of the 6xxx series or "alloy of the Al-Mg-Si type” is understood to mean aluminum alloys (i) whose chemical composition falls into one of the standardized designations of an alloy of the 6xxx series, or (ii) that is derived from an alloy corresponding to such a standardized designation by the addition or deletion of one or more chemical elements other than silicon or magnesium, and / or by the exceedance (to the up or down) of the standardized concentration limit of one or more chemical elements (including silicon and magnesium), it being understood that in both cases (i) and (ii), the application of the Standardized designation should lead to storing this modified alloy in the 6xxx series.
  • the static mechanical characteristics ie the breaking strength R m , the yield stress R p0,2 , and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1.
  • the fatigue strength is determined by a test according to ASTM E 466, the fatigue crack growth rate (so-called da / dn test) according to ASTM E 647, and the critical stress intensity factor K C , Kco or K App according to ASTM E 561.
  • the term "spun product” includes so-called “stretched” products, that is products that are made by spinning followed by stretching.
  • structural element or “structural element” of a mechanical construction a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames)), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage composed in particular of horizontal stabilizers and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
  • fuselage such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames)
  • the wings such as the wing skin
  • stiffeners stringers or stiffeners
  • ribs ribs
  • spars the empennage composed in particular of horizontal stabilizers and vertical (horizontal or vertical stabilizers), as
  • the present invention is applicable to wrought alloys AA6056 and AA 6156 It is based on the discovery that the refining of an aluminum alloy using a refining containing AlTiC-type phases added in the right proportion makes it possible to obtain a very particular microstructure of the cast raw form, and in particular a grain size greater than 500 ⁇ m and a regular distribution of intermetallic phases, observed by optical microscopy at a magnification Typically 50.
  • wrought products After hot transformation according to known processes, optionally followed by a cold conversion and a heat treatment, in particular for highly recrystallized products, wrought products are obtained which show, in a manner surprisingly, a significantly better toughness and a lower crack propagation rate than products made from raw forms obtained by known methods.
  • highly recrystallized product means a product for which the fraction of recrystallized grains measured between the quarter-thickness and the half-thickness of the finished products is greater than 70%.
  • the products from step (f) are strongly recrystallized. It is known for weakly recrystallized products that the casting microstructure can be reflected up to the properties of the transformed product (for example hot-rolled, cold-rolled and heat-treated), but in the present case the mechanism of this surprising phenomenon does not occur. has not yet been elucidated in terms of structural metallurgy.
  • the product produced by the process according to the invention differs from the products according to the state of the art by the presence of AlTiC type phases.
  • AlTiC type phases we mean any ternary Al-Ti-C phase as well as any Ti-C binary phase in an aluminum matrix; this term notably includes the AlTiC 2 and TiC phases. These phases are typically added in a refining yarn. Despite the small quantity of these phases, their effect on the microstructure of casting is very clear. Since wire refining containing AlTiC-type phases can substitute for the boron-containing wire refining (such as AT5B) commonly used, the raw form produced by the process according to the invention may contain less than 0, 0001% boron.
  • the casting microstructure obtained by the process according to the invention is characterized by two parameters, p * (dimension [ ⁇ m]) and s * (dimension [ ⁇ m -1 ]). These parameters characterize more particularly the smoothness and the uniformity of the microsegrégation.
  • the parameter p * characterizes the average distance between precipitates in the solidification structures, and therefore the average size of the zones without precipitates.
  • the parameter s * characterizes the uniformity of the distribution of these distances.
  • the precise definition of these two parameters as well as the method for their determination are specified in the article "Quantification of Spatial Distribution of As-Cast Microstructural Features" by Ph. Jarry, M. Boehm, and S. Antoine, published in Proceedings of the Light Metals 2001 Conference, Ed.
  • Digital image analysis is an iterative closing of the image with a step up.
  • the step i which closes the image C i is defined by i successive dilations of the image of the same object (a dilation consisting of the replacement of each pixel of an image by the maximum value of its neighbors) followed by i successive erosions of the image of the same object (an erosion consisting of the replacement of each pixel of an image by the minimal value of its neighbors) of the image d (note that erosion and expansion operations are not commutative).
  • the surface ratio A which represents the surface fraction of the objects, is plotted as a function of the number of closing steps i .
  • A denotes the surface fraction of objects after transformation
  • a min denotes the initial surface fraction of intermetallic particles after thresholding
  • a max denotes their surface fraction corresponding to the conventional filling at which the algorithm is stopped (in practice 90%) in order to avoid problems of slow convergence at the end of filling
  • i is the number of calculation steps
  • is an adjustment coefficient of the slope of the sigmoid.
  • the parameter p * represents the average distance between particles present in the matrix.
  • a rolling plate is manufactured according to the method of the invention, so as to obtain a value of s * greater than 0.92 ⁇ m -1 , and preferably greater than 0.94. -1 .mu.m and simultaneously obtain a value of p * of less than 107 .mu.m.
  • the raw form obtained at the end of the casting such as a spinning billet, a forge billet or a rolling plate, is transformed hot and optionally cold to its final thickness.
  • the product of final thickness is then subjected to a solution and quenching heat treatment, followed by controlled tensile stress relieving with a permanent elongation of between 0.5 and 5%, and optionally followed by an income. If the permanent elongation obtained during tensioning by controlled tensing is less than 0.5%, the product does not reach sufficient flatness. If the permanent elongation achieved during controlled tensile stress relieving is greater than 5%, the damage tolerance properties may be affected.
  • the process according to the invention is particularly well suited for producing wrought products made of alloy AA6056, AA6156 or similar alloys.
  • alloy AA6056, AA6156 or similar alloys it is preferred to limit the iron content to 0.15%, and even 0.13%, in order to reduce the tendency to microsegregate during casting.
  • An advantageous embodiment for heat-treated alloys comprises converting the hot-rolling sheet into a sheet having a thickness of between 3 and 12 mm, and heat treating to the T6 state.
  • this process leads to a sheet with a tolerance to damage K R , determined in TL direction for a crack extension ⁇ a eff of 20 mm from a curve R measured according to ASTM E561, from minus 115 MPa ⁇ m, and preferably at least 116 MPa ⁇ m.
  • a sheet of AA6056 or AA6156 alloys manufactured by the method according to the invention also has in the T6 temper in a thickness between 3 and 12 mm a damage tolerance K R determined in the TL direction to an extension of cracks .DELTA.a eff 60 mm obtained from a curve R measured according to ASTM E561, of at least 175 Pa ⁇ m.
  • the improvement of the parameter K R which results from the method according to the present invention may make it possible to increase the guaranteed minimum value of this parameter for a given constraint, knowing that this parameter, like all the parameters which characterize a product metallurgical, always shows a certain statistical dispersion.
  • An AA6056 alloy was cast into two industrial-size rolling plates, in particular 446 mm thick, at a speed of 55 mm / min and at a temperature of 680 ° C.
  • Table 1 gives the refining method (AlT3C0,15 or AT5B wire.)
  • the designation A1T3C0,15 corresponds to a composition Al-3% Ti-0,15% C.
  • the designation AT5B corresponds to an Al-5% Ti composition.
  • -1% B this product is also known under the commercial designation "AlTiB 5: 1", the Ti content (in ppm mass), the inoculation rate and mean values for the parameters s * and p * as defined above.
  • the parameters s * and p * were determined on samples cut at about 140 mm from the skin and at the third width of the rolling plates.
  • Table 1 Reference Ti [ppm] Inoculation rate refining s * p * [Kg / t] 4032A 180 0.7 AT5B 0.88 110 4032B 180 0.5 AlT3C0,15 0.99 101
  • plated plates having a final thickness of 5 mm in the T6 state were produced using the same transformation range comprising homogenization, hot rolling, dissolution, quenching. , controlled traction stress relief and income.
  • the permanent elongation obtained during controlled tensile stress relaxation was 1.5%.
  • the fraction of recrystallized grains measured between the quarter-thickness and the mid-thickness of the finished products was close to 100%.
  • the static mechanical characteristics and the damage tolerance of these sheets have been determined.
  • the results are collated in Table 2.
  • the parameter K R (20) refers to a crack extension value ⁇ a eff of 20 mm.
  • figure 1 gives a comparison of the fineness of the casting microstructures (parameter p *) as a function of the Ti content and the type of refining agent.
  • figure 2 gives a comparison of the regularity of the casting microstructures (parameter s *).
  • Table 4 summarizes the total Ti content in the alloys of Examples 1 and 2, as well as the size of the foundry grains.
  • Table 4 Reference refining Ti [ppm] Fe [%] Grain size Type Kg / t Average [ ⁇ m] Standard deviation IC 4031A AlTiC 0.5 50 0.09 902 214 153 4031B AlTiC 1 50 0.09 655 101 72 4032A AT5B 0.7 180 0.08 388 38 27 4032B AlTiC 0.5 180 0.08 713 112 80 4033A AlTiC 0.5 430 0.07 757 143 102 4033B AlTiC 2 430 0.07 664 200 143 4034A AlTiC 0.5 630 0.2 833 201 144 4034B AlTiC 2 630 0.2 644 113 81 4035A AlTiC 0.5 80 0.2 771 171 122 4035B AlTiC 0.5 80 0.2 822 118 84

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

Process for manufacturing aluminium alloy products, with high toughness and fatigue resistance comprising: (a) preparing an aluminium alloy bath, (b) adding a refining agent containing particles of AlTiC type phases into the bath, (c) casting an as-cast form such as an extrusion ingot, a forging ingot or a rolling ingot, (d) hot transforming the as-cast form, possibly after scalping, to form a blank or a product with final thickness, (e) optionally cold transforming the blank to a final thickness, (f) applying a solution heat treatment and quenching the product output from (d) or (e), followed by relaxation by controlled stretching with permanent elongation between 0.5 and 5%, and optionally annealing, wherein the quantity of refining agent is chosen such that the average casting grain size of the as-cast form is more than 500 mum. The present invention may be used, for example, to manufacture fuselage sheet or light-gauge plates made with 6056 alloy.

Description

Domaine de l'inventionField of the invention

L'invention concerne un nouveau procédé de fabrication pour des produits laminés en alliage d'aluminium à haute ténacité et haute résistance à la fatigue, ainsi que des produits obtenus par ce procédé. Ce procédé comprend un affinage particulier du métal liquide. Ces tôles peuvent être utilisées comme revêtement de fuselage d'avions.The invention relates to a new manufacturing method for high tenacity and high fatigue resistant aluminum alloy rolled products, as well as products obtained by this process. This process comprises a particular refining of the liquid metal. These sheets can be used as aircraft fuselage liner.

Etat de la techniqueState of the art

On sait que lors de la fabrication de demi-produits et éléments structuraux pour construction aéronautique, les diverses propriétés recherchées ne peuvent pas être optimisées toutes en même temps et les unes indépendamment des autres. Lorsque l'on modifie la composition chimique de l'alliage ou les paramètres des procédés d'élaboration des produits, plusieurs propriétés critiques peuvent même montrer des tendances antagonistes. Tel est parfois le cas des propriétés rassemblées sous le terme « résistance mécanique statique » (notamment la résistance à la rupture Rm et la limite d'élasticité Rp0.2) d'une part, et des propriétés rassemblées sous le terme « tolérance aux dommages » (notamment la ténacité et la résistance à la propagation des fissures) d'autre part. Par ailleurs, certaines propriétés d'usage comme la résistance à la fatigue, la résistance à la corrosion, l'aptitude à la mise en forme et l'allongement à rupture sont liées d'une façon complexe et souvent imprévisible aux propriétés (ou « caractéristiques ») mécaniques. L'optimisation de l'ensemble des propriétés d'un matériau pour construction mécanique, par exemple dans le secteur aéronautique, fait donc très souvent intervenir un compromis entre plusieurs paramètres-clé.It is known that during the manufacture of semi-finished products and structural elements for aeronautical construction, the various desired properties can not be optimized all at the same time and independently of each other. When modifying the chemical composition of the alloy or the parameters of the product development processes, several critical properties can even show antagonistic tendencies. This is sometimes the case of the properties grouped under the term "static mechanical resistance" (in particular the tensile strength R m and the yield strength R p0.2 ) on the one hand, and the properties gathered under the term "tolerance". damage "(including toughness and resistance to crack propagation) on the other hand. On the other hand, certain properties such as fatigue strength, corrosion resistance, formability and elongation at break are complex and often unpredictable to properties (or mechanical characteristics. The optimization of all the properties of a material for mechanical engineering, for example in the aeronautical sector, therefore very often involves a compromise between several key parameters.

A titre d'exemple, dans les avions civils de grande capacité, on peut utiliser pour les éléments de structure de fuselage des alliages de type Al-Si-Mg-Cu. Ces éléments doivent présenter d'une part une haute résistance mécanique, et d'autre part une bonne ténacité et une bonne résistance à la fatigue. Toute nouvelle possibilité d'améliorer l'un de ces groupes de propriétés sans dégrader les autres serait la bienvenue.For example, in large-capacity civil aircraft, Al-Si-Mg-Cu alloys can be used for fuselage structural members. These elements must have on the one hand a high mechanical strength, and on the other hand good toughness and good resistance to fatigue. Any new opportunity to improve one of these property groups without degrading others would be welcome.

Jusqu'à présent, les efforts principaux ont porté sur l'optimisation de la composition chimique des alliages, ainsi que sur l'optimisation des conditions de transformation des tôles, c'est-à-dire des séquences de laminage et de traitement thermiques.So far, the main efforts have focused on the optimization of the chemical composition of alloys, as well as on the optimization of sheet transformation conditions, that is to say, rolling and heat treatment sequences.

Ainsi, il est bien connu que dans les alliages des séries 2xxx et 7xxx, la réduction des impuretés fer et silicium conduit à une augmentation de la ténacité (voir l'article de J.T. Staley, « Microstructure and Toughness of High-Strength Aluminium Alloys » publié dans le livre « Properties Related to Fracture Toughness », ASTM Special Technical Publication 65, 1976, pp. 71-103 ). Dans certains cas, elle tend également à augmenter la résistance à a fatigue.Thus, it is well known that in alloys of the 2xxx and 7xxx series, the reduction of iron and silicon impurities leads to an increase in toughness (see JT Staley, "Microstructure and Toughness of High-Strength Aluminum Alloys" published in the book "Properties Related to Fracture Toughness", ASTM Special Technical Publication 65, 1976, pp. 71-103 ). In some cases, it also tends to increase the resistance to fatigue.

Il n'y a que peu d'études portant sur l'influence des conditions d'affinage du métal liquide et de coulée des formes brutes (telles que billettes et plaques) sur la ténacité des produits obtenus à partir de telles formes brutes.There is little research on the influence of liquid metal refining conditions and the casting of raw forms (such as billets and plates) on the toughness of products obtained from such raw forms.

La demande de brevet EP 1 205 567 A (Alcoa Inc.) enseigne que l'ajout de Ti et B ou C à un alliage de corroyage, à raison de 0,003 à 0,010 %, conduit à une taille de grains de fonderie inférieure ou égale à 200 µm.The patent application EP 1 205 567 A (Alcoa Inc.) teaches that the addition of Ti and B or C to a workout alloy at a rate of 0.003 to 0.010% results in a grit size of less than or equal to 200 μm.

La demande de brevet EP 1 158 068 A (Pechiney Rhenalu ) enseigne que la ténacité des tôles épaisses en alliage d'aluminium à durcissement structural dans les états métallurgiques peu recristallisés, c'est à dire dont la fraction de grains recristallisés est inférieure à 35%,est influencée par la microstructure de coulée : une grande taille de grains de coulée peut, dans certains cas, conduire à une meilleure ténacité qu'une faible taille de grain. Ce résultat est obtenu notamment par un contrôle soigneux de la teneur en titane et bore, des éléments qui, ajoutés sous forme de TiB2, affinent le grain du métal lors de sa solidification.The patent application EP 1 158 068 A (Pechiney Rhenalu ) teaches that the toughness of structural hardening aluminum alloy thick plates in metallurgical states with little recrystallization, that is to say, the fraction of recrystallized grains is less than 35%, is influenced by the casting microstructure: a large Casting size may, in some cases, lead to better toughness than a small grain size. This result is obtained in particular by a careful control of the titanium and boron content, elements which, added in the form of TiB 2 , refine the grain of the metal during its solidification.

Le brevet US 5,104,616 (Baeckerud ) s'intéresse en particulier aux problèmes posés par les particules dures de borures dans les industries de la boite boisson ou de la feuille mince en aluminium et enseigne qu'il peut être avantageux de remplacer un affinant contenant du bore par un affinant contenant du carbone. Cependant, les problèmes rencontrés dans l'industrie de l'emballage aluminium tels que les perces ne sont pas comparables à ceux rencontrés dans l'industrie aéronautique.The patent US 5,104,616 (Baeckerud ) is particularly interested in the problems posed by hard boride particles in the beverage or aluminum foil industries and teaches that it may be advantageous to replace a refining containing boron by a refining agent containing carbon. However, the problems encountered in the aluminum packaging industry such as percussion are not comparable to those encountered in the aviation industry.

La présente invention a pour but de proposer un nouveau procédé pour obtenir des produits corroyés fortement recristallisés, de préférence laminés, et notamment des tôles minces en alliage de la série 6xxx à haute résistance mécanique qui montrent également une excellente ténacité et résistance à la fatigue.The object of the present invention is to propose a new process for obtaining highly recrystallized wrought products, preferably laminated products, and in particular 6xxx series alloy thin metal sheets with high mechanical strength which also show excellent toughness and fatigue resistance.

Objet de l'inventionObject of the invention

L'invention a pour objet un procédé de fabrication de produits en alliage d'aluminium, notamment de produits fortement recristallisés, à haute ténacité et résistance à la fatigue, qui comprend les étapes suivantes

  1. (a) on prépare un bain d'un alliage d'aluminium,
  2. (b) on introduit dans ledit bain un affinant,
  3. (c) on coule une forme brute, telle qu'une billette de filage, une billette de forge ou une plaque de laminage,
  4. (d) on transforme à chaud ladite forme brute, éventuellement après scalpage, pour former une ébauche ou un produit d'épaisseur finale,
  5. (e) on transforme optionnellement à froid l'ébauche jusqu'à son épaisseur finale,
  6. (f) on soumet le produit issu de l'étape (d) ou (e) à un traitement thermique de mise en solution et trempe, suivi d'un détensionnement par traction contrôlée avec un allongement permanent compris entre 0,5 et 5%, et éventuellement un revenu
    caractérisé en ce que ledit affinant contient des particules de phases de type AlTiC, en ce que la quantité d'affinant est choisie de manière à ce que la taille moyenne de grain de fonderie de ladite forme brute soit supérieure à 500 µm et en ce que ledit alliage est un alliage AA6056 ou un alliage AA6156.
The subject of the invention is a process for manufacturing aluminum alloy products, in particular highly recrystallized products, with high tenacity and fatigue resistance, which comprises the following steps:
  1. (a) preparing a bath of an aluminum alloy,
  2. (b) introducing into said bath a refining,
  3. (c) pouring a raw form, such as a spinning billet, a forge billet or a rolling plate,
  4. (d) hot-forming said raw form, optionally after scalping, to form a blank or a product of final thickness,
  5. (e) optionally converting the blank to coldness to its final thickness,
  6. (f) subjecting the product resulting from step (d) or (e) to a heat treatment for dissolving and quenching, followed by controlled tensile stress relieving with a permanent elongation of between 0.5 and 5% , and possibly an income
    characterized in that said refiner contains AlTiC type phase particles, in that the amount of refining is chosen so that the average size of the foundry grain of said raw form is greater than 500 μm and that said alloy is an AA6056 alloy or an AA6156 alloy.

Un autre objet de la présente invention est une plaque de laminage susceptible d'être obtenue par le procédé de coulée.Another object of the present invention is a rolling plate that can be obtained by the casting process.

Encore un autre objet de la présente invention est une tôle susceptible d'être obtenue à partir du procédé ou à partir de la plaque de laminage selon l'invention.Yet another object of the present invention is a sheet capable of being obtained from the process or from the rolling plate according to the invention.

Description des figuresDescription of figures

La figure 1 montre l'influence de l'affinant et de la teneur en titane sur le paramètre p*. La figure 2 montre l'influence de l'affinant et de la teneur en titane sur le paramètre s*. Dans ce deux figures, le triangle noir représente un alliage affiné au TiB2, alors que les autres,alliages ont été affinés au AlTiC.The figure 1 shows the influence of refining and titanium content on the parameter p *. The figure 2 shows the influence of refining and titanium content on the parameter s *. In this two figures, the black triangle represents an alloy refined with TiB 2 , while the other alloys have been refined with AlTiC.

Description de l'inventionDescription of the invention a) Définitionsa) Definitions

Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Lorsque la concentration est exprimée en ppm (parts per million), cette indication se réfère également une concentration massique.Unless stated otherwise, all the information relating to the chemical composition of the alloys is expressed in percent by weight. When the concentration is expressed in ppm (parts per million), this indication also refers to a mass concentration.

La désignation des alliages suit les règles de THE ALUMINIUM ASSOCIATION. Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3 ainsi que dans les publications de THE ALUMINUM ASSOCIATION. Ces règles, normes et publications sont connues de l'homme du métier. On entend ici par « alliage de la série 6xxx » ou « alliage de type Al-Mg-Si » les alliages d'aluminium (i) dont la composition chimique tombe dans une des désignations normalisées d'un alliage de la série 6xxx, ou (ii) qui est dérivé d'un alliage correspondant à une telle désignation normalisée par l'ajout ou la suppression d'un ou plusieurs éléments chimiques autre que le silicium ou le magnésium, et/ou par le dépassement (vers le haut ou vers le bas) de la limite de concentration normalisée d'un ou plusieurs éléments chimiques (y compris le silicium et le magnésium), étant entendu que dans les deux cas (i) et (ii), l'application des règles de désignation normalisées doit conduire à ranger cet alliage modifié dans la série 6xxx.The designation of the alloys follows the rules of THE ALUMINUM ASSOCIATION. The metallurgical states are defined in the European standard EN 515. The chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3 as well as in the publications of THE ALUMINUM ASSOCIATION. These rules, standards and publications are known to those skilled in the art. The term "alloy of the 6xxx series" or "alloy of the Al-Mg-Si type" is understood to mean aluminum alloys (i) whose chemical composition falls into one of the standardized designations of an alloy of the 6xxx series, or (ii) that is derived from an alloy corresponding to such a standardized designation by the addition or deletion of one or more chemical elements other than silicon or magnesium, and / or by the exceedance (to the up or down) of the standardized concentration limit of one or more chemical elements (including silicon and magnesium), it being understood that in both cases (i) and (ii), the application of the Standardized designation should lead to storing this modified alloy in the 6xxx series.

Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans la norme EN 485-1. La résistance à la fatigue est déterminée par un essai selon ASTM E 466, la vitesse de propagation de fissures en fatigue (essai dit da/dn) selon ASTM E 647, et le facteur d'intensité de contrainte critique KC, Kco ou Kapp selon ASTM E 561. Le terme « produit filé » inclut les produits dits « étirés », c'est-à-dire des produits qui sont élaborés par filage suivi d'un étirage.Unless otherwise stated, the static mechanical characteristics, ie the breaking strength R m , the yield stress R p0,2 , and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1. The fatigue strength is determined by a test according to ASTM E 466, the fatigue crack growth rate (so-called da / dn test) according to ASTM E 647, and the critical stress intensity factor K C , Kco or K App according to ASTM E 561. The term "spun product" includes so-called "stretched" products, that is products that are made by spinning followed by stretching.

Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent.Unless otherwise stated, the definitions of the European standard EN 12258-1 apply.

On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, de ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames)), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.Here is called "structural element" or "structural element" of a mechanical construction a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others. For an aircraft, these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames)), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage composed in particular of horizontal stabilizers and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.

b) Description détaillée de l'inventionb) Detailed description of the invention

La présente invention peut s'appliquer à des alliages de corroyage AA6056 et AA 6156 Elle est basée sur la découverte que l'affinage d'un alliage d'aluminium à l'aide d'un affinant contenant des phases de type AlTiC ajouté dans la bonne proportion permet d'obtenir une microstructure très particulière de la forme brute coulée, et notamment une taille de grains supérieure à 500 µm et une distribution régulière des phases intermétalliques, observés par microscopie optique à un grossissement typiquement de 50. Après une transformation à chaud selon des procédés connus, suivie éventuellement d'une transformation à froid et d'un traitement thermique, on obtient, en particulier pour des produits fortement recristallisés, des produits corroyés qui montrent, d'une manière surprenante, une ténacité significativement meilleure et une vitesse de propagation de fissures plus faible que des produits élaborés à partir de formes brutes obtenues par les procédés connus. On entend par produit fortement recristallisé un produit pour lequel la fraction de grains recristallisés mesurée entre le quart-épaisseur et la mi-épaisseur des produits finis est supérieure à 70%. Dans une réalisation avantageuse de l'invention, les produits issus de l'étape (f) sont fortement recristallisés. On sait pour des produits faiblement recristallisés que la microstructure de coulée peut se répercuter jusqu'aux propriétés du produit transformé (par exemple laminé à chaud, à froid et traité thermiquement), mais dans le cas présent, le mécanisme de ce phénomène surprenant n'a pas encore pu être élucidé en termes de métallurgie structurale. Le produit élaboré par le procédé selon l'invention se distingue des produits selon l'état de la technique par la présence de phases de type AlTiC. Nous entendons par « phases de type AlTiC » toute phase ternaire Al-Ti-C ainsi que toute phase binaire Ti-C dans une matrice d'aluminium ; ce terme comprend notamment les phases AlTiC2 et TiC. Ces phases sont typiquement ajoutées dans un fil d'affinant. Malgré la faible quantité de ces phases, leur effet sur la microstructure de coulée est très net. Puisque l'affinage au fil contenant des phases de type AlTiC peut se substituer à l'affinage au fil contenant du bore (tel que le AT5B) couramment utilisé, la forme brute élaborée par le procédé selon l'invention peut contenir moins de 0,0001 % de bore.The present invention is applicable to wrought alloys AA6056 and AA 6156 It is based on the discovery that the refining of an aluminum alloy using a refining containing AlTiC-type phases added in the right proportion makes it possible to obtain a very particular microstructure of the cast raw form, and in particular a grain size greater than 500 μm and a regular distribution of intermetallic phases, observed by optical microscopy at a magnification Typically 50. After hot transformation according to known processes, optionally followed by a cold conversion and a heat treatment, in particular for highly recrystallized products, wrought products are obtained which show, in a manner surprisingly, a significantly better toughness and a lower crack propagation rate than products made from raw forms obtained by known methods. The term "highly recrystallized product" means a product for which the fraction of recrystallized grains measured between the quarter-thickness and the half-thickness of the finished products is greater than 70%. In an advantageous embodiment of the invention, the products from step (f) are strongly recrystallized. It is known for weakly recrystallized products that the casting microstructure can be reflected up to the properties of the transformed product (for example hot-rolled, cold-rolled and heat-treated), but in the present case the mechanism of this surprising phenomenon does not occur. has not yet been elucidated in terms of structural metallurgy. The product produced by the process according to the invention differs from the products according to the state of the art by the presence of AlTiC type phases. By "AlTiC type phases" we mean any ternary Al-Ti-C phase as well as any Ti-C binary phase in an aluminum matrix; this term notably includes the AlTiC 2 and TiC phases. These phases are typically added in a refining yarn. Despite the small quantity of these phases, their effect on the microstructure of casting is very clear. Since wire refining containing AlTiC-type phases can substitute for the boron-containing wire refining (such as AT5B) commonly used, the raw form produced by the process according to the invention may contain less than 0, 0001% boron.

La microstructure de coulée obtenue par le procédé selon l'invention est caractérisée par deux paramètres, p* (dimension [µm]) et s* (dimension [µm-1]). Ces paramètres caractérisent plus particulièrement la finesse et l'uniformité de la microsegrégation. Le paramètre p* caractérise la distance moyenne entre précipités dans les structures de solidification, et donc la dimension moyenne des zones dépourvues de précipités. Le paramètre s* caractérise l'uniformité de la répartition de ces distances. La définition précise de ces deux paramètres ainsi que la méthode pour leur détermination sont précisées dans l'article « Quantification of Spatial Distribution of as-cast Microstructural Features » par Ph. Jarry, M. Boehm et S. Antoine, paru dans Proceedings of the Light Metals 2001 Conference, Ed. J.L. Anjier, TMS, p. 903 - 909 . La détermination du paramètre p* a fait l'objet d'un essai interlaboratoire dans le cadre du projet Européen VIRCAST, voir l'article de Ph. Jarry et A. Johansen « Characterisation by the p* method of eutectic aggregates spatial distribution in 5xxx and 3xxx aluminum alloys cast in wedge moulds and comparison with SDAS measurements", paru dans Solidification of Alloys, ed. M.G. Chu, D.A. Granger et Q. Han, TMS 2004 .The casting microstructure obtained by the process according to the invention is characterized by two parameters, p * (dimension [μm]) and s * (dimension [μm -1 ]). These parameters characterize more particularly the smoothness and the uniformity of the microsegrégation. The parameter p * characterizes the average distance between precipitates in the solidification structures, and therefore the average size of the zones without precipitates. The parameter s * characterizes the uniformity of the distribution of these distances. The precise definition of these two parameters as well as the method for their determination are specified in the article "Quantification of Spatial Distribution of As-Cast Microstructural Features" by Ph. Jarry, M. Boehm, and S. Antoine, published in Proceedings of the Light Metals 2001 Conference, Ed. JL Anjier, TMS, p. 903 - 909 . The determination of the parameter p * has been the subject of an inter-laboratory test within the framework of the European project VIRCAST, see the article of Ph. Jarry and A. Johansen "Characterization by the p * method of eutectic aggregates spatial distribution in 5xxx and 3xxx aluminum alloys cast in wedge molds and comparison with SDAS measurements", published in Solidification of Alloys, MG Chu ed., DA Granger and Q. Han, TMS 2004 .

Les parameters p* et s* sont basés sur l'analyse par microscopie optique de coupes polies de la forme brute à un grossissement typiquement de 50, ou tout autre grossissement qui réalise un bon compromis entre un échantillonnage représentatif de la microstructure étudiée et la résolution nécessaire. L'acquisition des images est effectuée typiquement par une caméra couleur de type CCD (charge-coupled device), reliée à un ordinateur d'analyse d'images. La procédure d'analyse, décrite en détail dans l'article précité de Ph. Jarry, M. Boehm et S. Antoine, comprend les étapes suivantes :

  1. a. acquisition de l'image
  2. b. seuillage des phases noires et analyse binaire des images présentant des niveaux de gris,
  3. c. suppression des phases de très petite taille (pour un grandissement de 50, un groupe de moins de 5 pixels est considéré comme du bruit électronique),
  4. d. analyse numérique de l'image à l'aide d'un algorithme de fermeture.
Parameters p * and s * are based on optical microscopy analysis of polished slices of the bulk form at a magnification typically of 50, or any other magnification that achieves a good compromise between a representative sample of the microstructure studied and the resolution necessary. Image acquisition is typically performed by a color CCD camera (charge-coupled device) connected to an image analysis computer. The analysis procedure, described in detail in the aforementioned article by Ph. Jarry, M. Boehm and S. Antoine, comprises the following steps:
  1. at. image acquisition
  2. b. thresholding of black phases and binary analysis of images with gray levels,
  3. vs. suppression of very small phases (for a magnification of 50, a group of less than 5 pixels is considered as electronic noise),
  4. d. digital analysis of the image using a closure algorithm.

L'analyse numérique de l'image consiste en une fermeture itérative de l'image avec un pas grandissant. Le pas i qui ferme l'image Ci est défini par i dilatations successives de l'image du même objet (une dilatation consistant en le remplacement de chaque pixel d'une image par la valeur maximale de ses voisins) suivies par i érosions successives de l'image du même objet (une érosion consistant en le remplacement de chaque pixel d'une image par la valeur minimale de ses voisins) de l'image d, (à noter que les opérations d'érosion et de dilatation ne sont pas commutatives). Le rapport de surface A, qui représente la fraction surfacique des objets, est tracé en fonction du nombre de pas de fermeture i. On obtient une courbe sigmoïdale, qui est ensuite ajustée par une fonction sigmoïdale afin d'en extraire les paramètres caractéristiques p* et s*, sachant que p* est l'abscisse du point d'inflexion, exprimée en unités de longueur, et s* la pente au point d'inflexion de la courbe sigmoïdale.Digital image analysis is an iterative closing of the image with a step up. The step i which closes the image C i is defined by i successive dilations of the image of the same object (a dilation consisting of the replacement of each pixel of an image by the maximum value of its neighbors) followed by i successive erosions of the image of the same object (an erosion consisting of the replacement of each pixel of an image by the minimal value of its neighbors) of the image d (note that erosion and expansion operations are not commutative). The surface ratio A, which represents the surface fraction of the objects, is plotted as a function of the number of closing steps i . We obtain a sigmoidal curve, which is then adjusted by a sigmoidal function in order to extract the characteristic parameters p * and s *, knowing that p * is the abscissa of the point of inflection, expressed in units of length, and s * the slope at the point of inflection of the sigmoidal curve.

Le paramètre p* est ainsi défini par l'équation A = A min + A max - A min 1 + exp α p * - i .

Figure imgb0001
dans laquelle
A désigne la fraction surfacique d'objets après transformation,
Amin désigne la fraction surfacique initiale de particules intermétalliques après seuillage,
Amax désigne leur fraction surfacique correspondant au remplissage conventionnel auquel on arrêt l'algorithme (en pratique 90%) afin d'éviter les problèmes de convergence lente en fin de remplissage,
i est le nombre de pas de calcul,
et α est un coefficient d'ajustement de la pente de la sigmoïde.The parameter p * is thus defined by the equation AT = AT min + AT max - AT min 1 + exp α p * - i .
Figure imgb0001
in which
A denotes the surface fraction of objects after transformation,
A min denotes the initial surface fraction of intermetallic particles after thresholding,
A max denotes their surface fraction corresponding to the conventional filling at which the algorithm is stopped (in practice 90%) in order to avoid problems of slow convergence at the end of filling,
i is the number of calculation steps,
and α is an adjustment coefficient of the slope of the sigmoid.

Le paramètre p* représente la distance moyenne entre particules présentes dans la matrice.The parameter p * represents the average distance between particles present in the matrix.

L'autre paramètre est s* défini par l'équation s * = α × A max - A min 4

Figure imgb0002
Il a été montré que 1/s* est proportionnel à l'écart type de la distribution des distances au premier voisin entre particules. Le paramètre s* est donc une mesure de la régularité de la distribution des phases dans la matrice.The other parameter is s * defined by the equation s * = α × AT max - AT min 4
Figure imgb0002
It has been shown that 1 / s * is proportional to the standard deviation of the distance distribution to the first neighbor between particles. The parameter s * is therefore a measure of the regularity of the phase distribution in the matrix.

La description de la structure de coulée par les paramètres s* et p* tient donc bien compte à la fois de la finesse et de l'uniformité de la microségrégation. La demanderesse a constaté que s* est plus significatif pour décrire la régularité de la distribution de particules, alors que p* est plus significatif pour décrire la finesse de leur distribution spatiale. Dans une réalisation préférée de l'invention, on fabrique une plaque de laminage selon le procédé de l'invention, de manière à obtenir une valeur de s* supérieure à 0,92 µm-1, et de manière préférée supérieure à 0,94 µm-1 et à obtenir simultanément une valeur de p* inférieure à 107 µm.The description of the casting structure by the parameters s * and p * therefore takes into account both the smoothness and the uniformity of microsegregation. The Applicant has found that it is no longer significant to describe the regularity of the particle distribution, whereas p * is more significant for describing the smoothness of the particle distribution. their spatial distribution. In a preferred embodiment of the invention, a rolling plate is manufactured according to the method of the invention, so as to obtain a value of s * greater than 0.92 μm -1 , and preferably greater than 0.94. -1 .mu.m and simultaneously obtain a value of p * of less than 107 .mu.m.

Selon l'invention, la forme brute obtenue à l'issue de la coulée, telle qu'une billette de filage, une billette de forge ou une plaque de laminage, est transformée à chaud et optionnelement à froid jusqu'à son épaisseur finale. On soumet ensuite le produit d'épaisseur finale à un traitement thermique de mise en solution et trempe, suivi d'un détensionnement par traction contrôlée avec un allongement permanent compris entre 0,5 et 5%, et éventuellement suivi d'un revenu. Si l'allongement permanent obtenu lors du détensionnement par traction contrôlée est inférieur à 0,5%, le produit n'atteint pas une planéité suffisante. Si l'allongement permanent obtenu lors du détensionnement par traction contrôlée est supérieur à 5%, les propriétés de tolérance aux dommages peuvent être affectées.According to the invention, the raw form obtained at the end of the casting, such as a spinning billet, a forge billet or a rolling plate, is transformed hot and optionally cold to its final thickness. The product of final thickness is then subjected to a solution and quenching heat treatment, followed by controlled tensile stress relieving with a permanent elongation of between 0.5 and 5%, and optionally followed by an income. If the permanent elongation obtained during tensioning by controlled tensing is less than 0.5%, the product does not reach sufficient flatness. If the permanent elongation achieved during controlled tensile stress relieving is greater than 5%, the damage tolerance properties may be affected.

Le procédé selon l'invention est particulièrement bien adapté pour élaborer des produits corroyés en alliage AA6056, en AA6156 ou en alliages similaires. Pour ces deux alliages, on préfère limiter la teneur en fer à 0,15%, et même à 0,13%, afin de diminuer la tendance à la microsegrégation lors de la coulée. Un mode de réalisation avantageux pour les alliages à traitement thermique comprend la transformation de la plaque de laminage par laminage à chaud en tôle d'une épaisseur comprise entre 3 et 12 mm, et le traitement thermique jusqu'à l'état T6. Appliqué aux alliages AA6056 ou AA6156, ce procédé conduit à une tôle avec une tolérance aux dommages KR , déterminée au sens T-L pour une extension de fissure Δaeff de 20 mm à partir d'une courbe R mesurée selon ASTM E561, d'au moins 115 MPa√m, et préférentiellement d'au moins 116 MPa√m.The process according to the invention is particularly well suited for producing wrought products made of alloy AA6056, AA6156 or similar alloys. For these two alloys, it is preferred to limit the iron content to 0.15%, and even 0.13%, in order to reduce the tendency to microsegregate during casting. An advantageous embodiment for heat-treated alloys comprises converting the hot-rolling sheet into a sheet having a thickness of between 3 and 12 mm, and heat treating to the T6 state. Applied to alloys AA6056 or AA6156, this process leads to a sheet with a tolerance to damage K R , determined in TL direction for a crack extension Δa eff of 20 mm from a curve R measured according to ASTM E561, from minus 115 MPa√m, and preferably at least 116 MPa√m.

On peut également appliquer, en utilisant des modes opératoires connus, un placage sur l'une ou les deux faces de ladite plaque de laminage, après scalpage ou éventuellement après une première séquence de laminage à chaud ; à titre d'exemple, cela peut être avantageux avec les alliages AA6056 et AA6156.It is also possible, using known procedures, to apply a plating on one or both sides of said rolling plate, after scalping or possibly after a first hot rolling sequence; for example, this may be advantageous with alloys AA6056 and AA6156.

Une tôle en alliages AA6056 ou AA6156 fabriquée par le procédé selon l'invention possède par ailleurs à l'état T6 dans une épaisseur comprise entre 3 et 12 mm une tolérance aux dommages KR , déterminée au sens T-L pour une extension de fissures Δaeff de 60 mm obtenue à partir d'une courbe R mesurée selon ASTM E561, d'au moins 175 Pa√m.A sheet of AA6056 or AA6156 alloys manufactured by the method according to the invention also has in the T6 temper in a thickness between 3 and 12 mm a damage tolerance K R determined in the TL direction to an extension of cracks .DELTA.a eff 60 mm obtained from a curve R measured according to ASTM E561, of at least 175 Pa√m.

Par ailleurs, sa vitesse de propagation de fissures da/dn au sens T-L, mesurée selon ASTM E 561 sur un panneau de largeur w = 400 pour Δk = 50 NTa√m et R = 0.1, est inférieure à 2 10-2 mm/cycle.Moreover, its crack propagation speed da / dn in the TL direction, measured according to ASTM E 561 on a panel of width w = 400 for Δk = 50 NTa√m and R = 0.1, is less than 2 10 -2 mm / cycle.

Dans la pratique industrielle, l'amélioration du paramètre KR qui résulte du procédé selon la présente invention pourra permettre d'augmenter la valeur minimale garantie de ce paramètre pour une contrainte donnée, sachant que ce paramètre, comme tous les paramètres qui caractérisent un produit métallurgique, montre toujours une certaine dispersion statistique.In industrial practice, the improvement of the parameter K R which results from the method according to the present invention may make it possible to increase the guaranteed minimum value of this parameter for a given constraint, knowing that this parameter, like all the parameters which characterize a product metallurgical, always shows a certain statistical dispersion.

Dans les exemples qui suivent, on décrit à titre d'illustration des modes de réalisation avantageux de l'invention. Ces exemples n'ont pas de caractère limitatif.In the examples which follow, advantageous embodiments of the invention are illustrated by way of illustration. These examples are not limiting in nature.

Exemples :Examples: Exemple 1 : Example 1

On a coulé un alliage AA6056 en deux plaques de laminage de taille industrielle et notamment d'une épaisseur de 446 mm, à une vitesse de 55 mm/minute et à une température de 680°C. La composition chimique comprenait (en % massiques) : Si 0,81 Mg 0,70 Cu 0,93 Mn 0,49 Fe 0,09. An AA6056 alloy was cast into two industrial-size rolling plates, in particular 446 mm thick, at a speed of 55 mm / min and at a temperature of 680 ° C. The chemical composition included (in mass%): If 0.81 Mg 0.70 Cu 0.93 Mn 0.49 Fe 0.09.

Le Tableau 1 donne la méthode d'affinage (fil AlT3C0,15 ou AT5B. La désignation A1T3C0,15 correspond à une composition Al-3%Ti-0,15%C. La désignation AT5B correspond à une composition Al-5%Ti-1%B ; ce produit est connu aussi sous la désignation commerciale « AlTiB 5 :1 »), la teneur en Ti (en ppm massiques), le taux d'inoculation ainsi que des valeurs moyennes pour les paramètres s* et p* tels que définis ci-dessus. Les paramètres s* et p* ont été déterminés sur des échantillons coupées à environ 140 mm de la peau et au tiers largeur des plaques de laminage. Tableau 1 Référence Ti [ppm] Taux d'inoculation Affinant s* p* [kg/t] 4032A 180 0,7 AT5B 0,88 110 4032B 180 0,5 AlT3C0,15 0,99 101 Table 1 gives the refining method (AlT3C0,15 or AT5B wire.) The designation A1T3C0,15 corresponds to a composition Al-3% Ti-0,15% C. The designation AT5B corresponds to an Al-5% Ti composition. -1% B, this product is also known under the commercial designation "AlTiB 5: 1"), the Ti content (in ppm mass), the inoculation rate and mean values for the parameters s * and p * as defined above. The parameters s * and p * were determined on samples cut at about 140 mm from the skin and at the third width of the rolling plates. Table 1 Reference Ti [ppm] Inoculation rate refining s * p * [Kg / t] 4032A 180 0.7 AT5B 0.88 110 4032B 180 0.5 AlT3C0,15 0.99 101

A partir de ces plaques de laminage, on a fabriqué des tôles plaquées d'une épaisseur finale de 5 mm à l'état T6 en utilisant la même gamme de transformation comportant une homogénéisation, le laminage à chaud, la mise en solution, la trempe, le détensionnement par traction contrôlée et un revenu. L'allongement permanent obtenu lors du détensionnement par traction contrôlée était de 1,5%, La fraction de grains recristallisés mesurée entre le quart-épaisseur et la mi-épaisseur des produits finis était proche de 100%.From these rolling plates, plated plates having a final thickness of 5 mm in the T6 state were produced using the same transformation range comprising homogenization, hot rolling, dissolution, quenching. , controlled traction stress relief and income. The permanent elongation obtained during controlled tensile stress relaxation was 1.5%. The fraction of recrystallized grains measured between the quarter-thickness and the mid-thickness of the finished products was close to 100%.

On a déterminé les caractéristiques mécaniques statiques ainsi que la tolérance aux dommages de ces tôles. Les résultats sont rassemblés au tableau 2. Le paramètre KR(20) se réfère à une valeur d'extension de fissure Δaeff de 20 mm.The static mechanical characteristics and the damage tolerance of these sheets have been determined. The results are collated in Table 2. The parameter K R (20) refers to a crack extension value Δa eff of 20 mm.

On a également déterminé la vitesse de propagation de fissures da/dn selon ASTM E 647 à partir d'une tôle de largeur w = 400 mm au sens T-L, avec un rapport R = 0,1. Tableau 2 Référence / Paramètre 4032A 4032B Rm(L) [MPa] 369 373 Rp0,2(L) [MPa] 353 355 A(L) [%] 15,0 14,2 Rm(TL) [MPa] 372 375 Rp0,2(TL) [MPa] 340 342 A(TL) [%] 13,0 12,5 KR(20)(T-L) [MPa√m] 113 119 KR(40)(T-L) [MPa√m] 148 153 KR(60)(T-L) [MPa√m] 172 178 da/dn pour Δk =10 MPa√m [mm/cycle] 1,10 10-4 1,5 10-4 da/dn pour Δk = 30 MPa√m [mm/cycle] 3,62 10-3 2,90 10-3 da/dn pour Δk = 50 MPa√m [mm/cycle] 2,62 10-2 1,85 10-2 The crack propagation rate da / dn according to ASTM E 647 was also determined from a sheet of width w = 400 mm in the TL direction, with a ratio R = 0.1. Table 2 Reference / Parameter 4032A 4032B R m (L) [MPa] 369 373 R p0.2 (L) [MPa] 353 355 A (L) [%] 15.0 14.2 R m (TL) [MPa] 372 375 R p0.2 (TL) [MPa] 340 342 A (TL) [%] 13.0 12.5 K R (20) (TL) [MPa√m] 113 119 K R (40) (TL) [MPa√m] 148 153 K R (60) (TL) [MPa√m] 172 178 da / dn for Δk = 10 MPa√m [mm / cycle] 1.10 10 -4 1.5 10 -4 da / dn for Δk = 30 MPa√m [mm / cycle] 3.62 10 -3 2.90 10 -3 da / dn for Δk = 50 MPa√m [mm / cycle] 2.62 10 -2 1.85 10 -2

On constate que les caractéristiques mécaniques statiques des deux tôles ne diffèrent guère de manière significative. En revanche, la résistance aux dommages, représentée par le paramètre KR, augmente de manière significative lorsque l'affinage du métal liquide a été effectué avec un fil contenant des phases de type AlTiC. Pour ce dernier produit, la vitesse de propagation de fissures est plus faible lorsque le facteur d'intensité de contrainte atteint environ 30 MPa√m.It can be seen that the static mechanical characteristics of the two sheets hardly differ significantly. However, resistance to damage, represented by the R parameter K, increases significantly when refining molten metal was carried out with a wire containing AlTiC type phases. For the latter product, the crack propagation rate is lower when the stress intensity factor reaches about 30 MPa√m.

Exemple 2 : Example 2

On a coulé d'autres plaques de laminage en alliage AA6056 en utilisant le procédé selon l'invention. Les paramètres d'affinage et de microstructure de coulée sont résumés dans le tableau 3. Tableau 3 Référence Ti [ppm] Taux d'inoculation [kg/t] Affinant s* p* 4031A 50 0,5 AlT3C0,15 0,95 106 4031B 50 1 AlT3C0,15 0,98 101 4033A 430 0,5 AlT3C0,15 1,00 99 4033B 430 2 AlT3C0,15 1,04 87 4034A 630 0,5 AlT3C0,15 0,98 97 4034B 630 2 AlT3C0,15 1,01 94 4035A 80 0,5 AlT3C0,15 0,99 95 4035B 80 0,5 AlT3C0,15 0,98 96 Other AA6056 alloy rolling plates were cast using the process according to the invention. The refining and casting microstructure parameters are summarized in Table 3. Table 3 Reference Ti [ppm] Inoculation rate [kg / t] refining s * p * 4031A 50 0.5 AlT3C0,15 0.95 106 4031B 50 1 AlT3C0,15 0.98 101 4033A 430 0.5 AlT3C0,15 1.00 99 4033B 430 2 AlT3C0,15 1.04 87 4034A 630 0.5 AlT3C0,15 0.98 97 4034B 630 2 AlT3C0,15 1.01 94 4035A 80 0.5 AlT3C0,15 0.99 95 4035B 80 0.5 AlT3C0,15 0.98 96

Sur la base des données et résultats des tableaux 1 et 3, la figure 1 donne une comparaison des finesses des microstructures de coulée (paramètre p*) en fonction de la teneur en Ti et du type d'affinant. De même, la figure 2 donne une comparaison de la régularité des microstructures de coulée (paramètre s*).On the basis of the data and results of Tables 1 and 3, the figure 1 gives a comparison of the fineness of the casting microstructures (parameter p *) as a function of the Ti content and the type of refining agent. Similarly, figure 2 gives a comparison of the regularity of the casting microstructures (parameter s *).

Commentaire concernant les exemples 1 et 2 : Commentary on Examples 1 and 2 :

Le tableau 4 résume la teneur en Ti totale dans les alliages des exemples 1 et 2, ainsi que la taille de grains de fonderie. Tableau 4 Référence Affinant Ti [ppm] Fe [%] Taille de grain Type Kg/t Moyenne [µm] Ecart-type IC 4031A AlTiC 0,5 50 0,09 902 214 153 4031B AlTiC 1 50 0,09 655 101 72 4032A AT5B 0,7 180 0,08 388 38 27 4032B AlTiC 0,5 180 0,08 713 112 80 4033A AlTiC 0,5 430 0,07 757 143 102 4033B AlTiC 2 430 0,07 664 200 143 4034A AlTiC 0,5 630 0,2 833 201 144 4034B AlTiC 2 630 0,2 644 113 81 4035A AlTiC 0,5 80 0,2 771 171 122 4035B AlTiC 0,5 80 0,2 822 118 84 Table 4 summarizes the total Ti content in the alloys of Examples 1 and 2, as well as the size of the foundry grains. Table 4 Reference refining Ti [ppm] Fe [%] Grain size Type Kg / t Average [μm] Standard deviation IC 4031A AlTiC 0.5 50 0.09 902 214 153 4031B AlTiC 1 50 0.09 655 101 72 4032A AT5B 0.7 180 0.08 388 38 27 4032B AlTiC 0.5 180 0.08 713 112 80 4033A AlTiC 0.5 430 0.07 757 143 102 4033B AlTiC 2 430 0.07 664 200 143 4034A AlTiC 0.5 630 0.2 833 201 144 4034B AlTiC 2 630 0.2 644 113 81 4035A AlTiC 0.5 80 0.2 771 171 122 4035B AlTiC 0.5 80 0.2 822 118 84

La teneur en Ti et C apportée par le fil d'affinage peut être-calculée à partir du taux d'inoculation et de la composition du fil :

  • Un affinage classique à 0,7 kg/t d'ATB5 introduit environ 7 ppm de B. Un affinage avec 1 kg/t de fil de type AT3C0.15 tel qu'utilisé pour ces essais introduit environ 1,5 ppm de C. Un affinage de 0,5 kg/t du même fil introduit la moitié, soit environ 0,75 ppm de C, alors qu'un affinage de 2 kg/t introduit le double, soit environ 3 ppm. Pour le titane, un affinage de 1 kg/t de AT3C0.15 introduit environ 30 ppm, un affinage de 0,5 kg/t la moitié (environ 15 ppm), et un affinage de 2 kg/t le double (environ 60 ppm).
The content of Ti and C provided by the ripening yarn can be calculated from the inoculation rate and the composition of the yarn:
  • A conventional refining at 0.7 kg / t ATB5 introduces about 7 ppm B. A refining with 1 kg / t of AT3C0.15 type wire as used for these tests introduces about 1.5 ppm of C. A refining of 0.5 kg / t of the same thread introduces half, or about 0.75 ppm of C, while a refining of 2 kg / t introduced the double, or about 3 ppm. For titanium, a refining of 1 kg / t of AT3C0.15 introduces about 30 ppm, a refining of 0.5 kg / t half (about 15 ppm), and a refining of 2 kg / t double (about 60 ppm).

Claims (14)

  1. Process for manufacturing aluminium alloy products, with high toughness and fatigue resistance that includes the following steps:
    (a) an aluminium alloy bath is prepared,
    (b) a refining agent containing particles of AlTiC type phases is added into the said bath,
    (c) an as-cast form such as an extrusion ingot, a forging ingot or a rolling ingot is cast,
    (d) the said as -cast form is hot transformed, possibly after scalping, to form a blank or a product with the final thickness,
    (e) optionally the blank is cold transformed to its final thickness,
    (f) a solution heat treatment and quenching is applied to the product output from step (d) or (e), followed by relaxation by controlled stretching with permanent elongation between 0.5 and 5%, and possibly annealing,
    characterised in that the quantity of refining agent is chosen such that the average casting grain size of the said as-cast form is more than 500 µm and in that said alloy is an AA6056 or AA6156 alloy.
  2. Process according to claim 1, characteri sed in that the quantity of refining agent is chosen such that there is a uniform distribution of intermetallic phases of the said as cast form, observed by an optical microscope with a magnification of 50.
  3. Process according to claim 1 or 2, characteris ed in that the recrystallised fraction measured between the quarter thickness and the mid -thickness of products output from step (f) is greater than 70%.
  4. Process according to claims 1 to 3, characterised in that said as-cast form contains less than 0.0001% of boron.
  5. Process according to any one of claims 1 to 4, in which the iron content does not exceed 0.15%, and preferably does not exceed 0.13%.
  6. Process according to any one of claims 1 to 5, in which the said as-cast form is a rolling ingot.
  7. Process according to claim 6, in which the said rolling ingot is cladded on one or both sides, after scalping or possibly after a first hot rolling sequence.
  8. Rolling ingot made of an alloy AA6056 or AA6156 with an average casting grain size higher than 5 00 µm that can be obtained by a process including steps (a) to (c) of the process according to any one of claims 1 or 4 to 7 characterized by a parameter s* greater than 0.92 µm-1, and preferably greater than 0.94 µm and by a parameter p* of less than 107 µm,
    wherein parameter p* is defined according to the equation A = A min + A max - A min 1 + exp α p * - i
    Figure imgb0005

    and wherein parameter s* is defined by the equation s * = α × A max - A min 4
    Figure imgb0006

    in which:
    A denotes the surface area fraction of objects after transformation,
    Amin denotes the initial surface area fraction of intermetallic particles after thresholding,
    Amax denotes their surface area fraction corresponding to conventional filling at which the algorithm is normally stopped (in practice 90%) in order to avoid slow convergence problems at the end of filling,
    i is the number of calculation steps,
    and α is a sigmoid slope adjustment factor.
  9. Rolling ingot according to claim 8 characterized in that the boron content is at least 0,0001%.
  10. Rolled sheet that can be obtained star ting from a rolling ingot according to any one of claims 8 to 9
  11. Rolled sheet made from an AA6056 or AA6156 alloy according to claim 10, characterised in that it is in the T6 temper with a thickness between 3 and 12 mm, a damage tolerance K R determined in the T -L direction for a crack extension of Δaeff equal to 20 mm using an R curve measured according to ASTM E561, equal to at least 115 MPa √m, and preferably at least 116 MPa√M.
  12. Rolled sheet made from an AA6056 or AA6156 alloy according to claim 10 or 11, characterised in that it is in the T6 temper with a thickness between 3 and 12 mm, has a damage tolerance KR determined in the T-L direction for a crack extension Δaeff equal to 60 mm using an R curve measured according to ASTM E561, equal to at least 175 MPa√m.
  13. Rolled sheet made from an AA6056 or AA6156 alloy according to one of claims 10 to 12, characterised in that its crack propagation rate da/dn in the T -L direction, measured according to ASTM E 561 on a panel with width w = 400 for Δk = 50 MPa√m and R = 0.1, is less than 2 x 10-2 mm/cycle.
  14. Rolled sheet made from an AA6056 or AA6156 alloy according to one of claims 10 to 13 characterized in that it is cladded on one or two sides.
EP05805764A 2004-09-24 2005-09-19 High-strength aluminium alloy products and method for the production thereof Active EP1809779B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410138A FR2875815B1 (en) 2004-09-24 2004-09-24 HIGH-TENACITY ALUMINUM ALLOY PRODUCTS AND PROCESS FOR PRODUCING THE SAME
PCT/FR2005/002310 WO2006035133A1 (en) 2004-09-24 2005-09-19 High-strength aluminium alloy products and method for the production thereof

Publications (2)

Publication Number Publication Date
EP1809779A1 EP1809779A1 (en) 2007-07-25
EP1809779B1 true EP1809779B1 (en) 2010-04-07

Family

ID=34949428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05805764A Active EP1809779B1 (en) 2004-09-24 2005-09-19 High-strength aluminium alloy products and method for the production thereof

Country Status (8)

Country Link
US (2) US7615125B2 (en)
EP (1) EP1809779B1 (en)
CN (1) CN101027419B (en)
AT (1) ATE463588T1 (en)
DE (1) DE602005020487D1 (en)
ES (1) ES2344213T3 (en)
FR (1) FR2875815B1 (en)
WO (1) WO2006035133A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2292331B2 (en) * 2003-03-17 2009-09-16 Corus Aluminium Walzprodukte Gmbh METHOD TO PRODUCE A MONOLITICAL STRUCTURE OF INTEGRATED ALUMINUM AND A MACHINED ALUMINUM PRODUCT FROM THAT STRUCTURE.
DE102005014606A1 (en) * 2005-03-31 2006-10-05 Richard Bergner Verbindungstechnik Gmbh & Co. Kg Method for producing a fastening element and fastening element, in particular screw
CN101590591B (en) * 2008-05-30 2011-08-03 杰出材料科技股份有限公司 Manufacturing method of aluminium alloy section with easy weld and high strength
US8168015B2 (en) 2008-10-23 2012-05-01 GM Global Technology Operations LLC Direct quench heat treatment for aluminum alloy castings
US8636855B2 (en) * 2009-03-05 2014-01-28 GM Global Technology Operations LLC Methods of enhancing mechanical properties of aluminum alloy high pressure die castings
CN102009164B (en) * 2010-12-07 2012-07-04 陕西宏远航空锻造有限责任公司 Casting method for ZL205 aluminium alloy investment casting
US8672020B2 (en) * 2011-03-15 2014-03-18 Shenzhen Sunxing Light Alloys Materials Co., Ltd. Method for producing aluminum-zirconium-carbon intermediate alloy
CN102206777B (en) * 2011-06-10 2013-07-10 深圳市新星轻合金材料股份有限公司 Method for preparing aluminum-zirconium-titanium-carbon intermediate alloy
CN102392117A (en) * 2011-11-02 2012-03-28 沈阳飞机工业(集团)有限公司 Method for solving chemical milling deformation of domestic un-prestretched sheets
CN102528397A (en) * 2012-01-31 2012-07-04 西南铝业(集团)有限责任公司 Method for producing aluminium alloy row material used for shoe mold
CN102925732B (en) * 2012-09-26 2014-05-07 霍山县龙鑫金属制品有限公司 Method for smelting aluminium alloy doped with magnesium element
CN103031454B (en) * 2012-12-05 2015-06-03 安徽徽铝铝业有限公司 Preparation method of refining agent for smelting aluminum alloy
RU2542183C2 (en) * 2013-07-09 2015-02-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Production of compacted articles from 6000-series aluminium alloy
FR3011252B1 (en) * 2013-09-30 2015-10-09 Constellium France INTRADOS SHEET HAS PROPERTIES OF TOLERANCE TO IMPROVED DAMAGE
CN107557604A (en) * 2017-10-30 2018-01-09 湖南博溥立材料科技有限公司 Aluminum refining agent and preparation method thereof
FR3086872B1 (en) * 2018-10-05 2022-05-27 C Tec Tech Center METHOD FOR MANUFACTURING AN ALUMINUM ALLOY PART
CN112410692A (en) * 2020-11-28 2021-02-26 四川航天长征装备制造有限公司 2219 aluminum alloy grain refining process

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU701000A1 (en) 1978-04-22 1996-03-27 В.И. Добаткин Method of continuous casting
JPS60145365A (en) * 1984-01-10 1985-07-31 Kobe Steel Ltd Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking
CA1289748C (en) * 1985-03-01 1991-10-01 Abinash Banerji Producing titanium carbide
US4873054A (en) * 1986-09-08 1989-10-10 Kb Alloys, Inc. Third element additions to aluminum-titanium master alloys
SE8702149L (en) * 1987-05-22 1988-11-23 Baeckerud Innovation Ab ALUMINIUMFOERLEGERING
CH682402A5 (en) * 1990-12-21 1993-09-15 Alusuisse Lonza Services Ag A method for producing a liquid-solid metal alloy phase having thixotropic properties.
JPH04292449A (en) 1991-03-19 1992-10-16 Kubota Corp Ceramics-based board material having woody scent
US5186238A (en) * 1991-04-25 1993-02-16 International Business Machines Corporation Liquid film interface cooling chuck for semiconductor wafer processing
JPH07292449A (en) * 1994-04-21 1995-11-07 Sky Alum Co Ltd Production of aluminum alloy sheet for anodic oxidation treatment
US5480498A (en) * 1994-05-20 1996-01-02 Reynolds Metals Company Method of making aluminum sheet product and product therefrom
US6077363A (en) * 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
FR2782463B1 (en) * 1998-08-24 2000-09-29 Pechiney Rhenalu PROCESS FOR IMPROVING THE PLANEITY OF A METAL SHEET
US6645321B2 (en) * 1999-09-10 2003-11-11 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US7135077B2 (en) * 2000-05-24 2006-11-14 Pechiney Rhenalu Thick products made of heat-treatable aluminum alloy with improved toughness and process for manufacturing these products
FR2811337B1 (en) * 2000-07-05 2002-08-30 Pechiney Rhenalu PLATED ALUMINUM ALLOY SHEETS FOR AIRCRAFT STRUCTURAL ELEMENTS
DE60110523D1 (en) * 2000-11-10 2005-06-09 Alcoa Inc Production of an ultrafine grain structure in as-cast aluminum alloys
CN1144886C (en) * 2001-12-14 2004-04-07 温景林 Process for solidifying and shaping AlTiC alloy wire as fining agent
CN100347330C (en) * 2002-06-24 2007-11-07 克里斯铝轧制品有限公司 Method of producing a high strength balanced AL-MG-SI alloy and a weldable product of that alloy
CN1418973A (en) * 2002-12-18 2003-05-21 涿州市精英铝合金材料有限责任公司 Refining agent for crystalline grain of aluminium titanium carbon intermediate alloy

Also Published As

Publication number Publication date
US20100006186A1 (en) 2010-01-14
WO2006035133A1 (en) 2006-04-06
US7615125B2 (en) 2009-11-10
FR2875815B1 (en) 2006-12-01
CN101027419A (en) 2007-08-29
ATE463588T1 (en) 2010-04-15
EP1809779A1 (en) 2007-07-25
FR2875815A1 (en) 2006-03-31
DE602005020487D1 (en) 2010-05-20
CN101027419B (en) 2010-06-16
ES2344213T3 (en) 2010-08-20
US20060065331A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
EP1809779B1 (en) High-strength aluminium alloy products and method for the production thereof
EP1838891B1 (en) High strength sheet made from al-zn-cu-mg alloy with low internal stresses
EP1492895B1 (en) Al-zn-mg-cu alloy products
FR2907467A1 (en) PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
FR2838135A1 (en) PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
FR2853667A1 (en) IMPROVED AL-AN-MG-CU ALLOY AS REGARDS ITS COMBINED PROPERTIES OF DAMAGE TOLERANCE AND MECHANICAL STRENGTH
CA2961712C (en) Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP0876514B1 (en) THICK AlZnMgCu ALLOY PRODUCTS HAVING IMPROVED PROPERTIES
EP3728667B1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet
EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
EP1644546A2 (en) Products made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
WO2018073533A1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
EP3635146B1 (en) Aluminium alloy comprising lithium with improved fatigue properties
EP3610048B1 (en) Low-density aluminium-copper-lithium alloy products
EP1544316A2 (en) Thick sheet made of Al-Zn-Cu-Mg recrystallised alloy with low Zirconium content
FR3080861A1 (en) METHOD FOR MANUFACTURING LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED RESISTANCE AND TENABILITY
WO2024018147A1 (en) Method for manufacturing a 7xxx aluminum alloy sheet and 7xxx aluminum alloy sheet
WO2023144492A1 (en) Improved thin sheet made of aluminium-copper-lithium alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071107

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005020487

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2344213

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100407

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

26N No opposition filed

Effective date: 20110110

BERE Be: lapsed

Owner name: ALCAN RHENALU

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005020487

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005020487

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005020487

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005020487

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005020487

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005020487

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005020487

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101008

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20130111

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM FRANCE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005020487

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005020487

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005020487

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: CONSTELLIUM ISSOIRE; FR

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: CONSTELLIUM FRANCE

Effective date: 20160719

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190927

Year of fee payment: 15

Ref country code: NL

Payment date: 20190926

Year of fee payment: 15

Ref country code: IT

Payment date: 20190920

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190927

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20191001

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200919

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230925

Year of fee payment: 19

Ref country code: DE

Payment date: 20230927

Year of fee payment: 19