JPS60145365A - Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking - Google Patents

Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking

Info

Publication number
JPS60145365A
JPS60145365A JP243284A JP243284A JPS60145365A JP S60145365 A JPS60145365 A JP S60145365A JP 243284 A JP243284 A JP 243284A JP 243284 A JP243284 A JP 243284A JP S60145365 A JPS60145365 A JP S60145365A
Authority
JP
Japan
Prior art keywords
alloy
stress corrosion
corrosion cracking
content
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP243284A
Other languages
Japanese (ja)
Other versions
JPH039184B2 (en
Inventor
Yoshimitsu Miyaki
美光 宮木
Masakazu Hirano
正和 平野
Hitoaki Tanaka
田中 仁朗
Yutaka Kaneda
豊 金田
Shoshi Koga
詔司 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP243284A priority Critical patent/JPS60145365A/en
Publication of JPS60145365A publication Critical patent/JPS60145365A/en
Publication of JPH039184B2 publication Critical patent/JPH039184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain an Al-Zn-Mg alloy having superior weldability and resistance to stress corrosion cracking by specifying the composition of an Al-Zn-Mg alloy and conditions during the treatment and working of the alloy. CONSTITUTION:An Al alloy consisting of, by weight, 3.0-8.0% Zn, 0.3-3.0% Mg, 0.005-0.20% Ti, 0.0005-0.05% B, >0.5-1.5% Ni, one or more among 0.03-0.5% Cu, 0.03-0.5% Ag and 0.2-0.7% Si, one or more among 0.05-0.40% Mn, 0.05-0.40% Cr and 0.05-0.25% Zr, and the balance Al is melted and cast. The grain size of the resulting ingot is reduced to <=1,500mum, and the ingot is homogenized at 400-550 deg.C and hot worked at 350-500 deg.C and >=60% reduction of area. It is then subjected to final heat treatment so as to adjust the ratio between the minor and major axis sizes of the grains to 1:>=5 and the minor axis size to <=80mum.

Description

【発明の詳細な説明】 本発明は溶接性および耐応力腐蝕割れ性が優れたAl−
Zn−Mg合金の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an Al-
The present invention relates to a method for manufacturing a Zn-Mg alloy.

一般に、AI Zn Mg系合金は、その機械的性質や
溶接性が優れているため、鉄道車輌や種々の陸上構造物
等1こ非常に広範囲に、かつ、多く使用されている。
In general, AIZnMg-based alloys have excellent mechanical properties and weldability, and are therefore widely used in railway vehicles and various land structures.

し劣化なが呟この種高力A1合金は、高強度になるに従
って応力腐蝕割れが発生し易くなり、AI Zn Mg
系合金も例外ではなく、強度を高めるためにMg、Zn
含有量を増加すると耐応力腐蝕割れ性が劣化してくる。
This kind of high-strength A1 alloy is prone to stress corrosion cracking as the strength increases, and AI Zn Mg
These alloys are no exception, and Mg and Zn are added to increase their strength.
As the content increases, stress corrosion cracking resistance deteriorates.

また、AI Zn Mg系合金は、A)合金のうちで溶
接が行なえる最高強度の材料であるが、Mg、Zn含有
量が増加すると溶接性も劣化してくる。このようなこと
が高強度溶接構造用材料の開発が妨げられている原因と
もなっている。
Furthermore, AI Zn Mg alloy is the material with the highest strength that can be welded among the A) alloys, but as the Mg and Zn contents increase, weldability also deteriorates. This is also the cause of hindering the development of high-strength welded structural materials.

しかして、応力腐蝕割れについては現在までに、含有成
分および製造条件等の改良によって、板および形材の平
行方向および直角方向においては応力腐蝕割れ発生の可
能性は少なくなったが、板厚方向および溶接部について
は、使用条件によっては応力腐蝕割れ発生の可能性があ
る。
However, with regard to stress corrosion cracking, improvements in ingredients and manufacturing conditions have reduced the possibility of stress corrosion cracking in the parallel and perpendicular directions of plates and sections, but in the thickness direction. Regarding welded parts, stress corrosion cracking may occur depending on the usage conditions.

そして、近年になっ′て、構造物の大型化および設計・
施工の合理化のために、厚内材料の使用か増加してきて
おり、板厚方向および溶接部に発生する応力が大すく、
耐応力腐蝕割れ性の向上が強く要望されている。
In recent years, structures have become larger and the design and
In order to streamline construction, the use of thicker materials is increasing, and the stress generated in the plate thickness direction and welded parts is large.
There is a strong demand for improved stress corrosion cracking resistance.

本発明は上記に説明したよ′、シ高力A1合金における
種々の問題点を解決したものであり、特に、溶接性およ
びilj;I応力腐蝕割れ性が優れたAl−Zn−Mg
合金の製造法を提供するものである。
As explained above, the present invention solves various problems in high-strength A1 alloy, and in particular, Al-Zn-Mg which has excellent weldability and Ilj; I stress corrosion cracking resistance.
The present invention provides a method for manufacturing an alloy.

本発明に係る溶接性および耐応力腐蝕割れ性が優れたA
I Z、n−Mg合金の製造法の特徴とするところは、
Zn3.0〜8.0田t%、MgO,3〜3.0田1%
、Ti 0.005〜0.20+ut%、B O,00
05〜0.05田t%、Ni 0.5〜1.5+ut%
(0,5u+t%を含まず)を含有し、かつ、CLl 
0.03〜0.5t%、Ag0.03〜0,51%、S
i0.2〜0.7田L%のうちから選んだ1種以」−を
含み、および、M n 0.05−0.40u+t%、
Cr O,05−0,40+ut%、Zr0.05〜0
.25+u1%のうちから選んだ1種以上を含み、残部
A1および不純物からなるA1合金の結晶粒径を150
0μm0以下に微細化した鋳塊を、400〜550’C
の温度で均質化処理を行なった後、350・・500°
Cの温度で60%以」二の加工率で熱間加]二を行ない
、最終熱処理後の結晶粒の短径と長径の比を1:5以−
1−とじ、がっ、短径の長さを80μIl+以下とする
ことにある。
A with excellent weldability and stress corrosion cracking resistance according to the present invention
The characteristics of the manufacturing method of IZ, n-Mg alloy are as follows:
Zn3.0~8.0t%, MgO, 3~3.0t% 1%
, Ti 0.005-0.20+ut%, BO,00
05~0.05 t%, Ni 0.5~1.5+ut%
(excluding 0.5u+t%) and CLl
0.03-0.5t%, Ag0.03-0.51%, S
Mn 0.05-0.40u+t%,
CrO, 05-0, 40+ut%, Zr0.05-0
.. The crystal grain size of A1 alloy containing one or more selected from 25+u1% and the balance A1 and impurities is 150%.
The ingot refined to 0 μm or less is heated at 400 to 550'C.
After homogenization at a temperature of 350...500°
After the final heat treatment, the ratio of the short axis to the long axis of the crystal grains is 1:5 or more.
1- The length of the short axis should be 80μIl+ or less when closing.

本発明に係る溶接性および耐応力腐蝕割れ性が優れたA
I Zn P=旬金合金製造法は、溶接性を損なうこと
なく耐応力腐蝕割れ性を向」二させるものであり、即ち
、応力腐蝕割れは結晶粒界に発生する−・種の脆性破壊
であり、その発生初期の原因は結晶粒界と粒内の電位差
による粒界の優先溶出とされており、Mg、、 Zn含
有量を増加すると強度は高くなるがそれに伴って粒界と
粒内の電位差が大きくなるので応力腐蝕割れが発生し易
くなるもので弗るが、Niの含有は結晶粒界の優先溶出
を妨げ、耐応力腐蝕割れ性を向上させる効果があり、ま
た′、Cu、Ag、Siの単独の含有でも耐応カ腐蝕割
れ性か向−1−するか含有量か増加すると溶接・Vl−
が劣化するようになる。従って、Cu、 Ag、 Si
のうちから選んだ1種以」二を微量組合せて重複含有さ
せることによって、溶接性を劣化させることなく耐応力
腐蝕割れ性を著しく向」ニさせることかでき、また、T
1、Bは組m微細化のため重要な元素であって、含有さ
れることにより溶接性を向上させ、さらに、M n、C
r、Zrは組織安定化の元素である。
A with excellent weldability and stress corrosion cracking resistance according to the present invention
The I Zn P = Junkin alloy manufacturing method improves stress corrosion cracking resistance without impairing weldability. In other words, stress corrosion cracking is a type of brittle fracture that occurs at grain boundaries. The initial cause of this phenomenon is said to be preferential elution of grain boundaries due to the potential difference between grain boundaries and within grains.Increasing the Mg, Zn content increases the strength, but the Since the potential difference increases, stress corrosion cracking becomes more likely to occur, but Ni content prevents preferential elution of grain boundaries and has the effect of improving stress corrosion cracking resistance. , even the inclusion of Si alone improves resistance to corrosion and cracking, and as the content increases, welding and Vl-
begins to deteriorate. Therefore, Cu, Ag, Si
By repeatedly containing one or more selected from the following in small amounts in combination, stress corrosion cracking resistance can be significantly improved without deteriorating weldability.
1. B is an important element for the refinement of M, and its inclusion improves weldability, and furthermore, M n, C
r and Zr are elements for stabilizing the structure.

また、Mg、 Z++含有量が増加すると粒界の溶融温
度が低下するので、溶接時の温度士別および凝固時の収
縮応力により結晶粒界における割れが起り易くなるが、
鋳塊の結晶粒径を1500μm以下に微細化し、400
〜550’Cの温度で、例えば、1〜24時間の均質化
処理後に、350〜500℃の温度で60%以上の熱間
加工を行なって、結晶粒の短径と長径の比を1:5以−
1−とじ、がっ、短径の長さを80μTo以下とするこ
とにより溶接性を向」ニさせるのである。
In addition, as the Mg and Z++ contents increase, the melting temperature at the grain boundaries decreases, so cracking at the grain boundaries becomes more likely to occur due to temperature differences during welding and shrinkage stress during solidification.
The crystal grain size of the ingot is refined to 1500 μm or less, and
For example, after homogenization treatment for 1 to 24 hours at a temperature of ~550'C, hot working of 60% or more is performed at a temperature of 350 to 500°C to reduce the ratio of the short axis to the long axis of the crystal grains to 1: 5 or more
1- Weldability is improved by setting the short axis length to 80μTo or less.

本発明に係る溶接性および耐応力腐蝕割れ性が4− 優tしたAI−Zll−Mg合金の製造法(以下単に本
発明に係る製造法ということがある。)について説明す
る。
The method for manufacturing an AI-Zll-Mg alloy having 4-T superior weldability and stress corrosion cracking resistance according to the present invention (hereinafter simply referred to as the manufacturing method according to the present invention) will be described.

先ず、本発明に係る製造法において使用するl〜1−Z
n−Mg合金の含有成分および成分割合にて′)いて説
明する。
First, 1 to 1-Z used in the production method according to the present invention
The content and proportion of the n-Mg alloy will be explained below.

(2’、11は強度を向」−さぜるだめの最も重要な元
素文゛あり、含有量か3.0w1%未γBiでは充分な
強度をj゛得ることができず、また、8.0+ut%を
越えて含有、゛、されると応力腐蝕割れが発生し易くな
る。よって、Zn含有量は3.0−8.0IIIt%と
する。
(2' and 11 are for strength) - the most important elemental text for stirring, and if the content is less than 3.0w1% γBi, sufficient strength cannot be obtained, and 8.0+ut If the Zn content exceeds 3.0% to 8.0%, stress corrosion cracking is likely to occur. Therefore, the Zn content is set to 3.0-8.0IIIt%.

MgはZnと同様に、強度向」−に重要な元素であり、
含有量が0.3IIIt%未満では充分な強度が得られ
ず、また、3.0II11%を越えて含有されると応力
腐蝕割れか発生し易くなる。よって、Mg含有量は0.
3〜3.0IIIt%とする。
Like Zn, Mg is an important element for strength.
If the content is less than 0.3IIIt%, sufficient strength cannot be obtained, and if the content exceeds 3.0IIIt%, stress corrosion cracking is likely to occur. Therefore, the Mg content is 0.
3 to 3.0 IIIt%.

Ti、Bは鋳塊の組織微細化のための重要な元素であり
、T1含有量が0.005u+j%未満およびB含有量
が0.00051%未満では結晶粒微細化に効果がなく
、また、Ti 0.20+ut%およヒB 0.05u
+t%を越えて含有されると巨大化合物が発生する可能
性がある。よって、Ti含有量は0.005〜0.20
…t%およびB含有量は0.0005〜0.05u+t
%とする。
Ti and B are important elements for refining the structure of the ingot, and if the T1 content is less than 0.005u+j% and the B content is less than 0.00051%, there is no effect on grain refining, and Ti 0.20+ut% and B 0.05u
If the content exceeds +t%, there is a possibility that giant compounds will be generated. Therefore, the Ti content is 0.005 to 0.20
...t% and B content are 0.0005 to 0.05u+t
%.

Niは耐応力腐蝕割れ性を向」ニさせる元素であり、含
有量が0.5m1%未′Tl:)jでは以下説明するC
LI、Sl、Agの含有量が少ない場合には、このよう
な効果か少なく、また、1.5urt%を越えて含有さ
れると溶接性が劣化する。よって、Ni含有量は0.5
〜1.5u+1%とし、0.5側t%は含まないものと
する。
Ni is an element that improves stress corrosion cracking resistance.
When the content of LI, Sl, and Ag is small, this effect is small, and when the content exceeds 1.5 urt%, weldability deteriorates. Therefore, the Ni content is 0.5
~1.5u+1%, and 0.5 side t% shall not be included.

Cu、Ag、Siはこのうちから選んだ1種以」−を含
有させることにより耐応力腐蝕割れ性を着しく向−1−
させるが、含有量かCLIo、03d%未満、Ag 0
003u+j%未満、Si0.2u+j%未満では組合
せて重複含有させてもこのような効果はなく、また、C
LIo、5田L%、Ag 0.5+ut%、Si0.7
田t%を越えて含有されると溶接性が劣化する。よって
、Cu含有量は0.03へ・0.5…1%、At(含有
量は0.03〜0.5u+t%、81含有量0.2〜0
,7u+t%とする。
By containing one or more of Cu, Ag, and Si selected from these, the stress corrosion cracking resistance can be improved.
However, the content is CLIo, less than 03d%, Ag 0
If the content is less than 0.003u+j% and Si is less than 0.2u+j%, there will be no such effect even if they are contained in combination and overlappingly.
LIo, 5Tan L%, Ag 0.5+ut%, Si0.7
If the content exceeds t%, weldability deteriorates. Therefore, Cu content is 0.03/0.5...1%, At (content is 0.03~0.5u+t%, 81 content is 0.2~0
, 7u+t%.

Mn、 Cr、 Zr1.L41織安定化のために必要
な元素であり、均質化、熱間加工の糾合せによって結晶
粒を微細に制御するが、含有量がMn 0005u+1
%未満、Cr 0.05u+1%未満、Zr 0.05
LIII%未満でほこの効果はなく、また、Mn 0.
40wt%、Cr O,40+01%、Zr O,25
+ut%を越えて含有されると巨大化合物が発生する可
能性かある。よって、M1〕含有量1j: 0.05−
0.40+ut%、Cr含有量1.t 0105−0.
40u+1%、Zr含有量は0.05−0.25+ut
%とする。
Mn, Cr, Zr1. L41 It is an element necessary for weave stabilization, and the crystal grains are finely controlled by homogenization and hot working, but the content is Mn 0005u+1
%, Cr 0.05u+1%, Zr 0.05
There is no effect on the skin at less than LIII%, and Mn is less than 0.
40wt%, CrO, 40+01%, ZrO, 25
If the content exceeds +ut%, there is a possibility that giant compounds will be generated. Therefore, M1] content 1j: 0.05-
0.40+ut%, Cr content 1. t 0105-0.
40u+1%, Zr content is 0.05-0.25+ut
%.

このような含有成分および成分割合のAI−Zn−M、
合金を溶解してりj造した鋳塊の結晶粒径を1500μ
m0以下に微細化するのであり、結晶粒径が1500μ
mより大といと製品の粒径が肥大して溶接性を劣化させ
るので、gj塊の結晶粒径は1500μ[)1以下とし
なければならない。
AI-Zn-M with such components and component ratios,
The crystal grain size of the ingot made by melting the alloy is 1500μ.
It is refined to less than m0, and the crystal grain size is 1500 μm.
If it is larger than m, the grain size of the product increases and weldability deteriorates, so the grain size of the gj lump must be 1500μ[)1 or less.

次に熱処理について説明する。Next, heat treatment will be explained.

」1記の鋳塊を400〜550’Cの温度で、例えば、
1〜24時間の均質化処理を行なうのであるが、400
’C未満の温度では、Mn、C,r、 Zrの析出が充
分でなく、製品の結晶粒が肥大し、また、550°Cを
越える温度ではM n、Cr、Zrの析出物が再固溶し
始めて、鋳塊の結晶粒が微細であっても製品の結晶粒径
が肥大して溶接性が劣化する。
"The ingot of item 1 is heated at a temperature of 400 to 550'C, for example,
Homogenization treatment is carried out for 1 to 24 hours, but 400
At temperatures below 550°C, the precipitation of Mn, C, r, and Zr is insufficient and the crystal grains of the product become enlarged, and at temperatures above 550°C, the precipitates of Mn, Cr, and Zr solidify again. When melting begins, even if the crystal grains of the ingot are fine, the crystal grain size of the product increases and weldability deteriorates.

この均質化処理後、350へ・500°C(望ましくは
400〜450°C)の温度で60%以上(望ましくは
80%以−1−)の熱間加工を行なうことにより、M 
n、Cr、Zrの析出物を核として準安定の形での転位
を微細均一に分布させ、後工程の溶体化・焼入れ等にお
ける再結晶過程で短径と長径の比を1:5以」二とし、
かつ、短径の長さを80μm ’QJ、下に制御する。
After this homogenization treatment, the M
Dislocations are finely and uniformly distributed in a metastable form using precipitates of n, Cr, and Zr as nuclei, and the ratio of the short axis to the long axis is set to 1:5 or more in the recrystallization process in the subsequent process such as solution treatment and quenching. Second,
In addition, the length of the short axis is controlled to be 80 μm'QJ or less.

しかして、熱間圧延、熱間押出、熱間鍛造等の熱間加工
は、350°C未満の低温度では加工か困難とな1〕、
500°Cを越える高温度では熱開割れの可能性かあり
、製品の結晶粒径が肥大して溶接性が劣化する。また、
加工率か60%未満では製品の結晶粒径か肥大し、さら
に、最終的に得られた製品の短径と長径の比が1:5未
満および短径が80μ口1を越える大とさでは溶接性が
劣るようになる。
However, hot processing such as hot rolling, hot extrusion, and hot forging is difficult at low temperatures below 350°C.
At high temperatures exceeding 500°C, there is a possibility of thermal open cracking, which increases the crystal grain size of the product and deteriorates weldability. Also,
If the processing rate is less than 60%, the crystal grain size of the product will increase, and furthermore, if the ratio of the short axis to the long axis of the final product is less than 1:5 and the short axis is larger than 80μ. Weldability becomes poor.

本発明に係る溶接性および耐応力腐蝕割れ性が優れたA
I−Zn−MB合金の製造法の実施例を比較例と共に説
明する。
A with excellent weldability and stress corrosion cracking resistance according to the present invention
An example of a method for producing an I-Zn-MB alloy will be described together with a comparative example.

実施例 第1表に示す含有成分および成分割合のAI−Zn−M
B合金を通常の方法により溶製し鋳造した鋳塊を下記の
条件により処理した。
Example AI-Zn-M with the components and component ratios shown in Table 1
An ingot produced by melting and casting Alloy B by a conventional method was treated under the following conditions.

(1)本発明に係る溶接性および耐応力腐蝕割れ性が優
れたAI−Zn−M、、合金の製造法の条件(A) 450°Cの温度で24時間の均質化処理後、400〜
450’Cの温度で90%の熱間圧延を行なって、25
m m[の板材を製作した。
(1) Conditions for the manufacturing method of the AI-Zn-M alloy with excellent weldability and stress corrosion cracking resistance according to the present invention (A) After homogenization treatment for 24 hours at a temperature of 450 ° C.
By performing 90% hot rolling at a temperature of 450'C, 25
A board of mm[ was manufactured.

(2)比較条件 (B) 570℃の温度で24時間の均質化処理後、450〜5
00°Cの温度で90%の熱間圧延を行なって、25 
l1lI111の板材を製作した。
(2) Comparative conditions (B) After homogenization treatment at a temperature of 570°C for 24 hours, 450-5
25% by hot rolling at a temperature of 00°C.
A plate material of l1lI111 was manufactured.

これらの板材を450℃の温度で30分間の溶体化処理
を行なった後、水冷し、120’Cの温度で24時間の
時効を行なった。
These plates were subjected to solution treatment at a temperature of 450° C. for 30 minutes, then cooled with water, and aged at a temperature of 120° C. for 24 hours.

第2表にこの板祠の性質を調査した結果を示す。Table 2 shows the results of investigating the properties of this board shrine.

1)結晶粒径:板および形材の長手方向に平行断面観察
1) Grain size: Observation of cross sections parallel to the longitudinal direction of plates and shapes.

2)耐応力腐蝕割れ性:C−R1n8試験片を用いて厚
さ方向に応力を負荷し、] OC1’Cの3g/lNa
C1−30H/lK、cr20736g/1cro3混
合水溶液に浸漬した。
2) Stress corrosion cracking resistance: Stress was applied in the thickness direction using a C-R1n8 test piece,] 3g/lNa of OC1'C
It was immersed in a mixed aqueous solution of C1-30H/lK and cr20736g/1cro3.

Oα:0分で割れなし、×a: 0分で割れ発生。Oα: No cracking at 0 minutes, ×a: Cracking occurred at 0 minutes.

3)スリット型割れ試験:厚さ1.2 m+nlのスリ
ット型溶接割れ試験片を用いた。
3) Slit type crack test: A slit type weld crack test piece with a thickness of 1.2 m+nl was used.

割れ%=(割れ長さ/混接全長)X 1. O(1溶加
材 5356 電 流 280A 電圧 30V 4)ミクロフィンシャー:突合せ溶接材の溶接部近傍を
観察。
Cracking % = (Crack length/Full length of weld) x 1. O (1 Filler metal 5356 Current 280A Voltage 30V 4) Micro fin shear: Observe the vicinity of the weld of the butt weld material.

厚さ 6+n+nl 溶加材 5356 電流 26 +’) A 電圧30V 試験条件 10 (1’Cの3g/lNacl−36g/1cro
、、−30g/lK2Cr2O7混合水溶液に浸漬して
割れを観察した。
Thickness 6+n+nl Filler metal 5356 Current 26 +') A Voltage 30V Test conditions 10 (1'C 3g/lNaCl-36g/1cro
,, -30 g/l K2Cr2O7 mixed aqueous solution was immersed and cracks were observed.

この第2表から明らかなように、本発明(A)の条件に
より製造した板材は、比較条件(B)により製造した板
材に比して、溶接性に優れ、さらに、耐応力腐蝕割れ性
に優れていることがわかる。
As is clear from Table 2, the plates manufactured under the conditions of the present invention (A) have superior weldability and better stress corrosion cracking resistance than the plates manufactured under the comparative conditions (B). It turns out that it is excellent.

Claims (1)

【特許請求の範囲】[Claims] Zn 3.G−8,0wt%、IVf 0.3−3.0
+ut%、TiO,005−0,20u+1%、B O
,0005−0,05u+t%、Ni005〜1,5u
+t%(0,5田t%を含まず)を含有し、かつ、Cu
 O,03−0,5u+t%、A go、03−0.5
11It%、S10.2〜0.7u+t%のうちから選
んだ1種以上を含み、および、M n 0.05−0.
40+u1%、Cr O,05−0,40u+t%、Z
r0.05〜0.25…t%のうちから選んだ1種以上
を含み、残部A1および不純物からなるA1合金の結晶
粒径を1500μτ11以下に微細化した鋳塊を、40
0〜550°Cの温度で均質化処理を行なった後、35
0〜500℃の温度で60%以上の加工率で熱間加工を
行ない、最終熱処理後の結晶粒の短径と長径の比を1:
5以上とし、かつ、短径の長さを80μm以下とするこ
とを特徴とする溶接性および耐応力腐蝕割れ性が優れた
AI Zn h輸合金の製造法。
Zn 3. G-8,0wt%, IVf 0.3-3.0
+ut%, TiO, 005-0,20u+1%, B O
,0005-0,05u+t%,Ni005~1,5u
+t% (excluding 0.5t%), and Cu
O, 03-0, 5u+t%, A go, 03-0.5
11It%, S10.2~0.7u+t%, and Mn 0.05-0.
40+u1%, CrO, 05-0,40u+t%, Z
An ingot containing one or more selected from r0.05 to 0.25...t% and having a refined crystal grain size of A1 alloy consisting of the balance A1 and impurities to 1500 μτ11 or less is 40
After homogenization treatment at a temperature of 0 to 550 °C, 35
Hot working is carried out at a temperature of 0 to 500°C with a processing rate of 60% or more, and the ratio of the short axis to the long axis of the crystal grains after the final heat treatment is 1:
5 or more, and the length of the minor axis is 80 μm or less.
JP243284A 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking Granted JPS60145365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP243284A JPS60145365A (en) 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP243284A JPS60145365A (en) 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS60145365A true JPS60145365A (en) 1985-07-31
JPH039184B2 JPH039184B2 (en) 1991-02-07

Family

ID=11529098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP243284A Granted JPS60145365A (en) 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS60145365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875815A1 (en) * 2004-09-24 2006-03-31 Pechiney Rhenalu Sa HIGH-TENACITY ALUMINUM ALLOY PRODUCTS AND PROCESS FOR PRODUCING THE SAME
US8157932B2 (en) 2005-05-25 2012-04-17 Alcoa Inc. Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings
JP2015188899A (en) * 2014-03-27 2015-11-02 株式会社神戸製鋼所 Aluminum alloy forged material for welded structural member and production method thereof
CN116377297A (en) * 2023-04-13 2023-07-04 肇庆市大正铝业有限公司 Hard aluminum alloy and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875815A1 (en) * 2004-09-24 2006-03-31 Pechiney Rhenalu Sa HIGH-TENACITY ALUMINUM ALLOY PRODUCTS AND PROCESS FOR PRODUCING THE SAME
WO2006035133A1 (en) * 2004-09-24 2006-04-06 Alcan Rhenalu High-strength aluminium alloy products and method for the production thereof
US7615125B2 (en) 2004-09-24 2009-11-10 Alcan Rhenalu Aluminum alloy products with high toughness and production process thereof
US8157932B2 (en) 2005-05-25 2012-04-17 Alcoa Inc. Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings
JP2015188899A (en) * 2014-03-27 2015-11-02 株式会社神戸製鋼所 Aluminum alloy forged material for welded structural member and production method thereof
CN116377297A (en) * 2023-04-13 2023-07-04 肇庆市大正铝业有限公司 Hard aluminum alloy and preparation method thereof
CN116377297B (en) * 2023-04-13 2023-11-14 肇庆市大正铝业有限公司 Hard aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH039184B2 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
EP0157600B1 (en) Aluminum lithium alloys
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
US6056835A (en) Superplastic aluminum alloy and process for producing same
DE4436481C2 (en) Process for producing an aluminum alloy forging
AT413035B (en) ALUMINUM ALLOY
DE112008000587T5 (en) Forgings made of an aluminum alloy and process for their production
DE112014003155T5 (en) Aluminum alloy brazing sheet and process for its production
EP0030070B1 (en) Method for producing aircraft stringer material
US4797165A (en) Aluminum-lithium alloys having improved corrosion resistance and method
JPS6058300B2 (en) Method for manufacturing Al-Zn-Mg alloy with excellent weldability and stress corrosion cracking resistance
DE60114281T2 (en) Cast and forged product using a copper-based alloy
DE1921359C3 (en) Process for increasing the ductility at high temperatures of cast nickel-based alloys
DE19829047A1 (en) New aluminium-silicon-copper-magnesium alloy
JP2020164946A (en) Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
US3403997A (en) Treatment of age-hardenable coppernickel-zinc alloys and product resulting therefrom
JPS60145365A (en) Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking
DE102020208143A1 (en) Aluminum alloy plating material
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JPS6360821B2 (en)
DE102020208144A1 (en) Aluminum alloy plating material
JPS60145350A (en) Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure
JPS6365744B2 (en)
JPS62214163A (en) Manufacture of stress corrosion-resisting aluminum-magnesium alloy soft material
JPS6296643A (en) Superplastic aluminum alloy