JPH039184B2 - - Google Patents

Info

Publication number
JPH039184B2
JPH039184B2 JP243284A JP243284A JPH039184B2 JP H039184 B2 JPH039184 B2 JP H039184B2 JP 243284 A JP243284 A JP 243284A JP 243284 A JP243284 A JP 243284A JP H039184 B2 JPH039184 B2 JP H039184B2
Authority
JP
Japan
Prior art keywords
content
stress corrosion
less
corrosion cracking
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP243284A
Other languages
Japanese (ja)
Other versions
JPS60145365A (en
Inventor
Yoshimitsu Myaki
Masakazu Hirano
Hitoaki Tanaka
Yutaka Kaneda
Shoshi Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP243284A priority Critical patent/JPS60145365A/en
Publication of JPS60145365A publication Critical patent/JPS60145365A/en
Publication of JPH039184B2 publication Critical patent/JPH039184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接性および耐応力腐蝕割れ性が優れ
たAl−Zn−Mg合金の製造法に関する。 一般に、Al−Zn−Mg系合金は、その機械的性
質や溶接性が優れているため、鉄道車輌や種々の
陸上構造物等に非常に広範囲に、かつ、多く使用
されている。 しかしながら、この種高力Al合金は、高強度
になるに従つて応力腐蝕割れが発生し易くなり、
Al−Zn−Mg系合金も例外ではなく、強度を高め
るためにMg、Zn含有量を増加すると耐応力腐蝕
割れ性が劣化してくる。また、Al−Zn−Mg系合
金は、Al合金のうちで溶接が行なえる最高強度
の材料であるが、Mg、Zn含有量が増加すると溶
接性も劣化してくる。このようなことが高強度溶
接構造用材料の開発が妨げられている原因ともな
つている。 しかして、応力腐蝕割れについては現在まで
に、含有成分および製造条件等の改良によつて、
板および形材の平行方向および直角方向において
は応力腐蝕割れ発生の可能性は少なくなつたが、
板厚方向および溶接部については、使用条件によ
つては応力腐蝕割れ発生の可能性がある。 そして、近年になつて、構造物の大型化および
設計・施工の合理化のために、厚肉材料の使用が
増加してきており、板厚方向および溶接部に発生
する応力が大きく、耐応力腐蝕割れ性の向上が強
く要望されている。 本発明は上記に説明したような高力Al合金に
おける種々の問題点を解決したものであり、特
に、溶接性および耐応力腐蝕割れ性が優れたAl
−Zn−Mg合金の製造法を提供するものである。 本発明に係る溶接性および耐応力腐蝕割れ性が
優れたAl−Zn−Mg合金の製造法の特徴とすると
ころは、Zn3.0〜8.0wt%、Mg0.3〜3.0wt%、
Ti0.005〜0.20wt%、B0.0005〜0.05wt%、Ni0.5
〜1.5wt%(0.5wt%を含まず)を含有し、かつ、
Cu0.03〜0.5wt%、Ag0.03〜0.5wt%、Si0.2〜
0.7wt%のうちから選んだ1種以上を含み、およ
び、Mn0.05〜0.40wt%、Cr0.05〜0.40wt%、
Zr0.05〜0.25wt%のうちから選んだ1種以上を含
み、残部Alおよび不純物からなるAl合金の結晶
粒径を1500μm以下に微細化した鋳塊を、400〜
550℃の温度で均質化処理を行なつた後、350〜
500℃の温度で60%以上の加工率で熱間加工を行
ない、最終熱処理後の結晶粒の短径と長径の比を
1:5以上とし、かつ、短径の長さを80μm以下
とすることにある。 本発明に係る溶接性および耐応力腐蝕割れ性が
優れたAl−Zn−Mg合金の製造法は、溶接性を損
なうことなく耐応力腐蝕割れ性を向上させるもの
であり、即ち、応力腐蝕割れは結晶粒界に発生す
る一種の脆性破壊であり、その発生初期の原因は
結晶粒界と粒内の電位差による粒界の優先溶出と
されており、Mg、Zn含有量を増加すると強度は
高くなるがそれに伴つて粒界と粒内の電位差が大
きくなるので応力腐蝕割れが発生し易くなるもの
であるが、Niの含有は結晶粒界の優先溶出を妨
げ、耐応力腐蝕割れ性を向上させる効果があり、
また、Cu、Ag、Siの単独の含有でも耐応力腐蝕
割れ性が向上するが含有量が増加すると溶接性が
劣化するようになる。従つて、Cu、Ag、Siのう
ちから選んだ1種以上を微量組合せて重複含有さ
せることによつて、溶接性を劣化させることなく
耐応力腐蝕割れ性を著しく向上させることがで
き、また、Ti、Bは組織微細化のため重要な元
素であつてて、含有されることにより溶接性を向
上させ、さらに、Mn、Cr、Zrは組織安定化の元
素である。 また、Mg、Zn含有量が増加すると粒界の溶融
温度が低下するので、溶接時の温度上昇および凝
固時の収縮応力により結晶粒界における割れが起
り易くなるが、鋳塊の結晶粒界を1500μm以下に
微細化し、400〜550℃の温度で、例えば、1〜24
時間の均質化処理後に、350〜500℃の温度で60%
以上の熱間加工を行なつて、結晶粒の短径と長径
の比を1:5以上とし、かつ、短径の長さを80μ
m以下とすることにより溶接性を向上させるので
ある。 本発明に係る溶接性および耐応力腐蝕割れ性が
優れたAl−Zn−Mg合金の製造法(以下単に本発
明に係る製造法ということがある。)について説
明する。 先ず、本発明に係る製造法において使用する
Al−Zn−Mg合金の含有成分および成分割合につ
いて説明する。 Zn強度を向上させるための最も重要な元素で
あり、含有量が3.0wt%未満では充分な強度を得
ることができず、また、8.0wt%を越えて含有さ
れると応力腐蝕割れが発生し易くなる。よつて、
Zn含有量は3.0〜8.0wt%とする。 MgはZnと同様に、強度向上に重要な元素であ
り、含有量が0.3wt%未満では充分な強度が得ら
れず、また、3.0wt%を越えて含有されると応力
腐蝕割れが発生し易くなる。よつて、Mg含有量
は0.3〜3.0wt%とする。 Ti、Bは鋳塊の組織微細化のための重要な元
素であり、Ti含有量が0.005wt%未満およびB含
有量が0.0005wt%未満では結晶粒微細化に効果が
なく、また、Ti0.20wt%およびB0.05wt%を越え
て含有されると巨大化合物が発生する可能性があ
る。よつて、Ti含有量は0.005〜0.20wt%および
B含有量は0.0005〜0.05wt%とする。 Niは耐応力腐蝕割れ性を向上させる元素であ
り、含有量が0.5wt%未満では以下説明するCu、
Si、Agの含有量が少ない場合には、このような
効果がなく、また、1.5wt%を越えて含有される
と溶接性が劣化する。よつて、Ni含有量は0.5〜
1.5wt%とし、0.5wt%は含まないものとする。 Cu、Ag、Siはこのうちから選んだ1種以上を
含有させることにより耐応力腐蝕割れ性を著しく
向上させるが、含有量がCu0.03wt%未満、
Ag0.03wt%未満、Si0.2wt%未満では組合せて重
複含有させてもこのような効果はなく、また、
Cu0.5wt%、Ag0.5wt%、Si0.7wt%を越えて含有
されると溶接性が劣化する。よつて、Cu含有量
は0.03〜0.5wt%、Ag含有量は0.03〜0.5wt%、Si
含有量0.2〜0.7wt%とする。 Mn、Cr、Zrは組織安定化のために必要な元素
であり、均質化、熱間加工の組合せによつて結晶
粒を微細に制御するが、含有量がMn0.05wt%未
満、Cr0.05wt%未満、Zr0.05wt%未満ではこの
効果はなく、また、Mn0.40wt%、Cr0.40wt%、
Zr0.25wt%を越えて含有されると巨大化合物が
発生する可能性がある。よつて、Mn含有量は
0.05〜0.40wt%、Cr含有量は0.05〜0.40wt%、Zr
含有量は0.05〜0.25wt%とする。 このような含有成分および成分割合のAl−Zn
−Mg合金を溶解して鋳造した鋳塊の結晶粒径を
1500μm以下に微細化するのであり、結晶粒径が
1500μmより大きいと製品の粒径が肥大して溶接
性を劣化させるので、鋳塊の結晶粒径は1500μm
以下としなければならない。 次に熱処理について説明する。 上記の鋳塊を400〜550℃の温度で、例えば、1
〜24時間の均質化処理を行なうのであるが、400
℃未満の温度では、Mn、Cr、Zrの析出が充分で
なく、製品の結晶粒が肥大し、また、550℃を越
える温度ではMn、Cr、Zrの析出物が再固溶し始
めて、鋳塊の結晶粒が微細であつても製品の結晶
粒径が肥大して溶接性が劣化する。 この均質化処理後、350〜500℃(好ましくは
400〜450℃)の温度で60%以上(好ましくは80%
以上)の熱間加工を行なうことにより、Mn、
Cr、Zrの析出物を核として準安定の形での転位
を微細均一に分布させ、後工程の溶体化・焼入れ
等における再結晶過程で短径と長径の比を1:5
以上とし、かつ、短径の長さを80μm以下に制御
する。しかして、熱間圧延、熱間押出、熱間鋳造
等の熱間加工は、350℃未満の低温度では加工が
困難となり、500℃を越える高温度では熱間割れ
の可能性があり、製品の結晶粒径が肥大して溶接
性が劣化する。また、加工率が60%未満では製品
の結晶粒径が肥大し、さらに、最終的に得られた
製品の短径と長径の比が1:5未満および短径が
80μmを越える大きさでは溶接性が劣るようにな
る。 本発明に係る溶接性および耐応力腐蝕割れ性が
優れたAl−Zn−Mg合金の製造法の実施例を比較
例と共に説明する。 実施例 第1表に示す含有成分および成分割合のAl−
Zn−Mg合金を通常の方法により溶製し鋳造した
鋳塊を下記の条件により処理した。 (1) 本発明に係る溶接性および耐応力腐蝕割れ性
が優れたAl−Zn−Mg合金の製造法の条件(A) 450℃の温度で24時間の近質化処理後、400〜
450℃の温度で90%の熱間圧延を行なつて、25
mmtの板材を製作した。 (2) 比較条件(B) 570℃の温度で24時間の均質化処理後、450〜
500℃の温度で90%の熱間圧延を行なつて、25
mmtの板材を製作した。 これらの板材を450℃の温度で30分間の溶体
化処理を行なつた後、水冷し、120℃の温度で
24時間の時効を行なつた。 第2表にこの板材の性質を調査した結果を示
す。
The present invention relates to a method for producing an Al-Zn-Mg alloy having excellent weldability and stress corrosion cracking resistance. In general, Al--Zn--Mg alloys have excellent mechanical properties and weldability, and are therefore widely used in railway vehicles and various land structures. However, as this type of high-strength Al alloy increases in strength, stress corrosion cracking becomes more likely to occur.
Al-Zn-Mg alloys are no exception; when the Mg and Zn contents are increased to increase strength, stress corrosion cracking resistance deteriorates. Further, Al-Zn-Mg alloy is the material with the highest strength among Al alloys that can be welded, but as the Mg and Zn contents increase, weldability also deteriorates. This is also the reason why the development of high-strength welded structural materials is hindered. However, to date, stress corrosion cracking has been reduced by improving the ingredients and manufacturing conditions.
Although the possibility of stress corrosion cracking occurring in the parallel and perpendicular directions of plates and sections was reduced,
Depending on the usage conditions, stress corrosion cracking may occur in the plate thickness direction and at welded areas. In recent years, the use of thick-walled materials has increased in order to increase the size of structures and rationalize design and construction, and the stress generated in the plate thickness direction and welded parts is large, resulting in stress corrosion resistance and cracking. There is a strong demand for improved sexual performance. The present invention solves various problems in high-strength Al alloys as explained above.
-Provides a method for producing a Zn-Mg alloy. The manufacturing method of the Al-Zn-Mg alloy with excellent weldability and stress corrosion cracking resistance according to the present invention is characterized by Zn3.0-8.0wt%, Mg0.3-3.0wt%,
Ti0.005~0.20wt%, B0.0005~0.05wt%, Ni0.5
~1.5wt% (excluding 0.5wt%), and
Cu0.03~0.5wt%, Ag0.03~0.5wt%, Si0.2~
Contains one or more selected from 0.7wt%, and Mn0.05-0.40wt%, Cr0.05-0.40wt%,
An ingot containing one or more types selected from 0.05 to 0.25 wt% of Zr, and the balance consisting of Al and impurities with a grain size of 1500 μm or less, is
After homogenization treatment at a temperature of 550℃, 350~
Hot working is carried out at a temperature of 500℃ with a processing rate of 60% or more, and after the final heat treatment, the ratio of the short axis to the long axis of the crystal grains is 1:5 or more, and the length of the short axis is 80 μm or less. There is a particular thing. The method for producing an Al-Zn-Mg alloy with excellent weldability and stress corrosion cracking resistance according to the present invention improves stress corrosion cracking resistance without impairing weldability. This is a type of brittle fracture that occurs at grain boundaries, and the initial cause is said to be preferential elution of grain boundaries due to the potential difference between grain boundaries and within grains, and as the Mg and Zn contents increase, the strength increases. As a result, the potential difference between the grain boundaries and the grain increases, making stress corrosion cracking more likely to occur. However, the inclusion of Ni prevents preferential elution of grain boundaries and improves stress corrosion cracking resistance. There is,
Further, even if Cu, Ag, or Si is contained alone, stress corrosion cracking resistance is improved, but as the content increases, weldability deteriorates. Therefore, by containing a small amount of one or more selected from Cu, Ag, and Si in combination, stress corrosion cracking resistance can be significantly improved without deteriorating weldability, and Ti and B are important elements for microstructural refinement, and their inclusion improves weldability, and Mn, Cr, and Zr are elements for stabilizing the structure. In addition, as the Mg and Zn contents increase, the melting temperature at the grain boundaries decreases, so cracking at the grain boundaries becomes more likely to occur due to temperature increases during welding and shrinkage stress during solidification. Refine to 1500 μm or less and heat at a temperature of 400 to 550°C, e.g. 1 to 24
60% at a temperature of 350-500℃ after homogenization treatment for an hour
By performing the above hot working, the ratio of the short axis to the long axis of the crystal grains is 1:5 or more, and the length of the short axis is 80 μm.
Weldability is improved by setting it to less than m. The method of manufacturing an Al-Zn-Mg alloy having excellent weldability and stress corrosion cracking resistance according to the present invention (hereinafter sometimes simply referred to as the manufacturing method according to the present invention) will be explained. First, used in the manufacturing method according to the present invention
The components and component ratios of the Al-Zn-Mg alloy will be explained. Zn is the most important element for improving strength; if the content is less than 3.0wt%, sufficient strength cannot be obtained, and if the content exceeds 8.0wt%, stress corrosion cracking will occur. It becomes easier. Afterwards,
Zn content shall be 3.0 to 8.0wt%. Like Zn, Mg is an important element for improving strength; if the content is less than 0.3wt%, sufficient strength cannot be obtained, and if the content exceeds 3.0wt%, stress corrosion cracking will occur. It becomes easier. Therefore, the Mg content is set to 0.3 to 3.0 wt%. Ti and B are important elements for refining the structure of the ingot, and if the Ti content is less than 0.005wt% and the B content is less than 0.0005wt%, it will not be effective in refining the grains, and Ti0. If the content exceeds 20wt% and B0.05wt%, giant compounds may occur. Therefore, the Ti content is 0.005 to 0.20 wt% and the B content is 0.0005 to 0.05 wt%. Ni is an element that improves stress corrosion cracking resistance, and if the content is less than 0.5wt%, Cu, which will be explained below,
If the content of Si or Ag is small, there is no such effect, and if the content exceeds 1.5 wt%, weldability deteriorates. Therefore, the Ni content is 0.5~
1.5wt%, excluding 0.5wt%. Cu, Ag, and Si can significantly improve stress corrosion cracking resistance by containing one or more selected from them, but if the Cu content is less than 0.03wt%,
If Ag is less than 0.03wt% and Si is less than 0.2wt%, there is no such effect even if they are contained in combination.
If the content exceeds Cu0.5wt%, Ag0.5wt%, or Si0.7wt%, weldability deteriorates. Therefore, the Cu content is 0.03 to 0.5 wt%, the Ag content is 0.03 to 0.5 wt%, and the Si content is 0.03 to 0.5 wt%.
The content should be 0.2-0.7wt%. Mn, Cr, and Zr are elements necessary to stabilize the structure, and the crystal grains are finely controlled by a combination of homogenization and hot working, but the content is less than 0.05wt% Mn and 0.05wt% Cr. %, Zr less than 0.05wt%, this effect is not present, and Mn0.40wt%, Cr0.40wt%,
If Zr is contained in excess of 0.25wt%, giant compounds may occur. Therefore, the Mn content is
0.05~0.40wt%, Cr content is 0.05~0.40wt%, Zr
The content is 0.05-0.25wt%. Al−Zn with such components and component ratios
−The grain size of the ingot cast by melting Mg alloy.
It is refined to 1500μm or less, and the grain size is
If it is larger than 1500μm, the grain size of the product will increase and weldability will deteriorate, so the crystal grain size of the ingot should be 1500μm.
Must be as follows. Next, heat treatment will be explained. The above ingot is heated at a temperature of 400 to 550℃, for example, 1
The homogenization process is carried out for ~24 hours, but the
At temperatures below 550°C, the precipitation of Mn, Cr, and Zr is insufficient and the crystal grains of the product become enlarged. At temperatures above 550°C, the precipitates of Mn, Cr, and Zr begin to dissolve again, resulting in poor casting. Even if the crystal grains of the lump are fine, the crystal grain size of the product increases and weldability deteriorates. After this homogenization treatment, the temperature is 350-500℃ (preferably
60% or more (preferably 80%) at a temperature of 400-450℃)
(above)), Mn,
Dislocations are finely and uniformly distributed in a metastable form using Cr and Zr precipitates as nuclei, and the ratio of the short axis to the long axis is set to 1:5 in the recrystallization process in the subsequent process of solution treatment, quenching, etc.
or more, and the length of the short axis is controlled to be 80 μm or less. However, hot processing such as hot rolling, hot extrusion, and hot casting becomes difficult at low temperatures below 350°C, and at high temperatures exceeding 500°C, there is a possibility of hot cracking, resulting in product damage. The crystal grain size increases and weldability deteriorates. In addition, if the processing rate is less than 60%, the crystal grain size of the product will increase, and the ratio of the short axis to the long axis of the final product will be less than 1:5, and the short axis will be too small.
If the size exceeds 80 μm, weldability will be poor. Examples of the method for producing an Al-Zn-Mg alloy having excellent weldability and stress corrosion cracking resistance according to the present invention will be described together with comparative examples. Example Al- with the components and component ratios shown in Table 1
An ingot produced by melting and casting a Zn-Mg alloy by a conventional method was treated under the following conditions. (1) Conditions for the production method of the Al-Zn-Mg alloy with excellent weldability and stress corrosion cracking resistance according to the present invention (A) After 24 hours of parenchyma treatment at a temperature of 450°C, 400 ~
By performing 90% hot rolling at a temperature of 450℃, 25
mmt plate material was manufactured. (2) Comparative conditions (B) After 24 hours of homogenization at a temperature of 570°C, 450 ~
25 by performing 90% hot rolling at a temperature of 500℃
mmt plate material was manufactured. These plates were solution-treated at a temperature of 450°C for 30 minutes, then cooled with water and then heated at a temperature of 120°C.
The 24-hour statute of limitations has expired. Table 2 shows the results of investigating the properties of this plate material.

【表】【table】

【表】【table】

【表】 *1:鋳塊の結晶粒度
*2:製造条件
(1) 結晶粒径:板および形材の長手方向に平行断
面観察。 (2) 耐応力腐蝕割れ性:C−Ring試験片を用い
て厚さ方向に応力を負荷し、100℃の3g/
NaCl−30g/K2Cr2O7−36g/CrO3混合
水溶液に浸漬した。 〇α:α分で割れなし、×α:α分で割れ発
生。 (3) スリツト型割れ試験:厚さ12mmtのスリツト
溶接割れ試験片を用いた。 割れ%=(割れ長さ/溶接全長)×100 溶加材 5356 電流 280A 電圧 30V (4) ミクロフイツシヤー:突合せ溶接材の溶接部
近傍を観察。 厚さ 6mmt 溶加材 5356 電流 260A 電圧30V 試験条件 100℃の3g/NaCl−36g/CrO3−30
g/K2Cr2O7混合水溶液に浸漬して割れを観
察した。 この第2表から明らかなように、本発明(A)の条
件により製造した板材は、比較条件(B)により製造
した板材に比して、溶接性に優れ、さらに、耐応
力腐蝕割れ性に優れていることがわかる。
[Table] *1: Grain size of ingot *2: Manufacturing conditions
(1) Grain size: Observation of a cross section parallel to the longitudinal direction of plates and shapes. (2) Stress corrosion cracking resistance: Using a C-Ring test piece, stress was applied in the thickness direction, and 3 g/
It was immersed in a mixed aqueous solution of NaCl- 30g / K2Cr2O7-36g / CrO3 . 〇α: No cracking at α minute, ×α: Cracking occurred at α minute. (3) Slit type crack test: A slit weld crack test piece with a thickness of 12 mm was used. Cracking % = (Crack length / Total weld length) × 100 Filler metal 5356 Current 280A Voltage 30V (4) Microfissure: Observe the vicinity of the weld of butt welded material. Thickness 6mm Filler metal 5356 Current 260A Voltage 30V Test conditions 100℃ 3g/NaCl-36g/CrO 3-30
It was immersed in a mixed aqueous solution of g/K 2 Cr 2 O 7 and observed for cracks. As is clear from Table 2, the plates manufactured under the conditions of the present invention (A) have superior weldability and better stress corrosion cracking resistance than the plates manufactured under the comparative conditions (B). It turns out that it is excellent.

Claims (1)

【特許請求の範囲】[Claims] 1 Zn3.0〜8.0wt%、Mg0.3〜3.0wt%、Ti0.005
〜0.20wt%、B0.0005〜0.05wt%、Ni0.5〜1.5wt
%(0.5wt%を含まず)を含有し、かつ、Cu0.03
〜0.5wt%、Ag0.03〜0.5wt%、Si0.2〜0.7wt%の
うちから選んだ1種以上を含み、および、
Mn0.05〜0.40wt%、Cr0.05〜0.40wt%、Zr0.05〜
0.25wt%のうちから選んだ1種以上を含み、残部
Alおよび不純物からなるAl合金の結晶粒径を
1500μm以下に微細化した鋳塊を、400〜550℃の
温度で均質化処理を行なつた後、350〜500℃の温
度で60%以上の加工率で熱間加工を行ない、最終
熱処理後の結晶粒の短径と長径の比を1:5以上
とし、かつ、短径の長さを80μm以下とすること
を特徴とする溶接性および耐応力腐蝕割れ性が優
れたAl−Zn−Mg合金の製造法。
1 Zn3.0~8.0wt%, Mg0.3~3.0wt%, Ti0.005
~0.20wt%, B0.0005~0.05wt%, Ni0.5~1.5wt
% (excluding 0.5wt%) and Cu0.03
Contains one or more selected from ~0.5wt%, Ag0.03~0.5wt%, Si0.2~0.7wt%, and
Mn0.05~0.40wt%, Cr0.05~0.40wt%, Zr0.05~
Contains one or more species selected from 0.25wt%, the remainder
The grain size of an Al alloy consisting of Al and impurities is
After homogenizing the ingot, which has been refined to 1500μm or less, at a temperature of 400 to 550℃, hot working is performed at a temperature of 350 to 500℃ with a processing rate of 60% or more, and after the final heat treatment, An Al-Zn-Mg alloy with excellent weldability and stress corrosion cracking resistance, characterized in that the ratio of the short axis to the long axis of the crystal grains is 1:5 or more, and the length of the short axis is 80 μm or less. manufacturing method.
JP243284A 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking Granted JPS60145365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP243284A JPS60145365A (en) 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP243284A JPS60145365A (en) 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS60145365A JPS60145365A (en) 1985-07-31
JPH039184B2 true JPH039184B2 (en) 1991-02-07

Family

ID=11529098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP243284A Granted JPS60145365A (en) 1984-01-10 1984-01-10 Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS60145365A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875815B1 (en) 2004-09-24 2006-12-01 Pechiney Rhenalu Sa HIGH-TENACITY ALUMINUM ALLOY PRODUCTS AND PROCESS FOR PRODUCING THE SAME
US8157932B2 (en) 2005-05-25 2012-04-17 Alcoa Inc. Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings
JP6185870B2 (en) * 2014-03-27 2017-08-23 株式会社神戸製鋼所 Aluminum alloy forging for welded structural member and method for producing the same
CN116377297B (en) * 2023-04-13 2023-11-14 肇庆市大正铝业有限公司 Hard aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS60145365A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
CN106350716B (en) A kind of high intensity appearance member aluminum alloy materials and preparation method thereof
DE4436481C2 (en) Process for producing an aluminum alloy forging
AT413035B (en) ALUMINUM ALLOY
DE2517275A1 (en) ALUMINUM ALLOYS WITH IMPROVED MECHANICAL PROPERTIES AND FORMABILITY, AND THE PROCESS FOR THEIR PRODUCTION
JPH01154848A (en) Production of austenitic stainless steel having excellent seawater resistance
DE2921222C2 (en)
KR910009877B1 (en) Production of beryllium-copper alloys and alloys produced therby
DE102009012073A1 (en) Aluminum alloy, useful for producing casting a component of motor vehicle e.g. cylinder heads for internal combustion engines of automobiles, comprises e.g. silicon, magnesium, copper, zirconium, titanium, strontium, sodium and iron
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
JPS6058300B2 (en) Method for manufacturing Al-Zn-Mg alloy with excellent weldability and stress corrosion cracking resistance
DE60114281T2 (en) Cast and forged product using a copper-based alloy
DE102004007704A1 (en) Production of a material based on an aluminum alloy used for producing motor vehicle engine components comprises forming an aluminum base alloy containing silicon and magnesium, hot deforming and heat treating
DE19829047A1 (en) New aluminium-silicon-copper-magnesium alloy
DE2940970C2 (en)
KR20220078525A (en) aluminum alloy
JPH039184B2 (en)
US3403997A (en) Treatment of age-hardenable coppernickel-zinc alloys and product resulting therefrom
JPS6360821B2 (en)
JPH036985B2 (en)
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure
JPH0148337B2 (en)
JPH0250186B2 (en)
JPS62214163A (en) Manufacture of stress corrosion-resisting aluminum-magnesium alloy soft material