EP1838891B1 - TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES - Google Patents

TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES Download PDF

Info

Publication number
EP1838891B1
EP1838891B1 EP05825980.5A EP05825980A EP1838891B1 EP 1838891 B1 EP1838891 B1 EP 1838891B1 EP 05825980 A EP05825980 A EP 05825980A EP 1838891 B1 EP1838891 B1 EP 1838891B1
Authority
EP
European Patent Office
Prior art keywords
thickness
less
plates
alloy
elastic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05825980.5A
Other languages
German (de)
English (en)
Other versions
EP1838891A1 (fr
Inventor
Sjoerd Van Der Veen
Fabrice Heymes
Julien Boselli
Philippe Lequeu
Philippe Lassince
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35094196&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1838891(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP1838891A1 publication Critical patent/EP1838891A1/fr
Application granted granted Critical
Publication of EP1838891B1 publication Critical patent/EP1838891B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • This invention relates to a method for reducing the level of residual stresses throughout the thickness of 7xxx series aluminum alloy plates which are subjected to traction with permanent elongation.
  • Alloy plates of the 7xxx series (Al-Zn-Mg type alloys with or without copper) must be quenched quickly after being put in solution in order to be able to present, after income, high mechanical characteristics throughout their thickness.
  • the presence at the time of quenching of strong thermal gradients near the surface of the strong plate leads to inhomogeneous plastic deformation. Therefore, when the sheet is completely cooled, it contains residual stresses (internal stresses). Specifically, there are compressive stresses near the surface, and tensile stresses in the center.
  • the strength of these constraints depends on the alloy and the structure of the material, as well as the solution and quenching process; the order of magnitude is 200 MPa.
  • Licences US 6,159,315 and US 6,406,567 discloses a method for relaxing the residual stresses of the hot plates after solution and quenching, which comprises a first step of L-shaped cold drawing, followed by a cold compression step in the TC direction.
  • Plastic deformation typically reduces the residual stresses by a factor of about 10. This is illustrated in FIG. figure 2 .
  • the residual stresses in thick semi-products considered to be identical can vary greatly. This may be related to the variation of their chemical composition, but also and especially to the variation of the parameters of the manufacturing processes, such as casting, rolling, quenching, traction and income; the influence of these process parameters on the level of residual stresses in the finished product is not always well understood.
  • Some process modifications actually lead to a reduction in the level of residual stresses (such as the choice of a slower quenching or a higher tempering temperature), but they also modify the tradeoff between certain properties which are important for structural applications, such as, typically, mechanical strength, damage tolerance and corrosion resistance.
  • Licences EP 0 731 185 and US 6,077,363 describe a method to reduce residual stresses in 2024 alloy plate.
  • Such a sheet shows a better homogeneity of the mechanical characteristics as a function of the thickness, as well as a reduced level of residual stresses after traction.
  • the sheets were pre-expanded to change from a plate width of 1100 mm to 2500 mm to a hot rolling up to 38 mm with an outlet temperature of 378 ° C solution at 475 ° C, a quenched with cold water, and a controlled pull at 2.8% permanent elongation after a delay of 1 h after quenching.
  • Residual stresses in thick plates can be determined by the method of successive machining described in the publication of Heymes, Commet et al., Referenced above. A method based on this publication is described in detail below.
  • the aim of the present invention is to present a method for obtaining thick aluminum alloy plates of the 7xxx series which, in the tractionned state, in the matured state or in any state of artificial aging, exhibits a lower residual stress level, without degrading mechanical strength and damage tolerance. More particularly, it is desired to have plates that do not deform during machining, which is observed when the total elastic energy stored in the sheet, W, is less than 2 kJ / m 3 and preferably less than 1 kJ / m 3 .
  • the subject of the invention is a method for manufacturing thick plates made of Al-Zn-Cu-Mg type alloy comprising between 4 and 12% of zinc, less than 4% of magnesium and less than 4% of copper, minor elements ⁇ 0.5% each, the rest aluminum, said process comprising hot rolling, dissolution, quenching, traction controlled with a permanent elongation greater than 0.5%, as well as aging, characterized in that delay D between the end of quenching and the beginning of the controlled pull is less than 2 hours, and preferably less than 1 hour.
  • Yet another subject of the invention is a control batch or a heat treatment batch of Al-Zn-Cu-Mg alloy thick plates comprising between 4 and 12% of zinc, less than 4% of magnesium and less of 4% copper, minor elements ⁇ 0.5% each, the rest aluminum, in the dissolved state, quenched, triturated and aged, characterized in that the total elastic energy W (expressed in kJ / m 3 ) plate shows a standard deviation less than or equal to 0 , 20 + 0 , 0030 ⁇ P p ⁇ 0 , 2 The MPa - 400 around an average value .
  • Al-Zn-Cu-Mg alloy refers to an aluminum-based alloy that contains the elements of zinc, copper and magnesium alloy; such an alloy may contain in addition to other alloying elements as well as other elements, the presence of which may be intentional or not, for example impurities.
  • the metallurgical states are defined in the European standard EN 515.
  • the chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3.
  • the static mechanical characteristics ie the breaking strength R m , the yield stress R p0,2 , and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1.
  • K IC toughness was measured according to ASTM E 399.
  • a "thick sheet” designates a sheet whose thickness is greater than 6 mm.
  • the term "inspection lot” is defined in EN 12258-1; it means an expedition or part of an expedition, subject to control, and which includes products of the same quality or alloy, of the same shape, metallurgical condition, size, geometry, thickness or cross-section, and which have been produced by the same processes.
  • heat treatment batch means a quantity of products of the same quality or alloy, of the same shape, thickness or cross-section, and which have been produced in the same way, including the heat treatment or solution solution followed quenching was carried out in a single charge; several batches can be dissolved in the same heat treatment batch.
  • aging includes natural aging at room temperature (also called “ripening”), as well as any artificial aging (also known as “income”).
  • machining includes any material removal process such as turning, machining, milling, drilling, reaming, tapping, EDM, grinding, polishing, chemical machining.
  • structural element refers to an element used in mechanical engineering for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is usually prescribed or performed. It is typically a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage composed in particular of stabilizers Horizontal and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
  • fuselage such as fuselage skin (fuselage skin in English
  • stiffeners or stringers such as the wing skin
  • the stiffeners stringers or stiffeners
  • ribs ribs
  • spars spars
  • empennage composed in particular of stabilizers Horizontal and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
  • monolithic structure element refers to a structural element that has been obtained, most often by machining, from a single piece of laminated, extruded, forged or molded semi-finished product, such as riveting, welding, gluing, with another piece.
  • the directions L (Long direction), TL (cross-long direction) and TC (short-path direction) in a rolled product refer to the rolling direction corresponding to the direction L. These three directions are defined on the figure 1 .
  • the residual stresses were determined using the method based on the successive removal of layers described in the publication " Development of New Alloy for Distortion Free Machined Aluminum Aircraft Components ", F. Heymes, B.Commet, B.Dubost, P.Lassince, P.Lequeu, GM.Raynaud, in 1st International Non-Ferrous Processing & Technology Conference, 10- March 12, 1997 - Adams's Mark Hotel, St. Louis, Missouri .
  • This method is especially applicable to tractionned heavy plates, in which the state of stress can be considered as biaxial; the two main components being located in the directions L and TL, and there is therefore no component in the direction TC.
  • This method is based on the determination of the residual stresses in the directions L and TL on rectangular bars, cut in full thickness of the sheet in the direction parallel to the indicated directions. These bars are machined in the TC step by step direction. After each step, the stress and / or deflection are measured and the thickness of the bar is measured.
  • a particularly preferred method is to set a strain gauge at mid-length of the bar, on the surface opposite to that which is machined. This makes it possible to calculate the residual stress profiles in the L and TL directions. The bar should be long enough to avoid edge effects.
  • Table 1 Dimensions [mm] used for the method of successive layer removal Thickness of the sheet (h) Width (w) Length (1) 20 ⁇ h ⁇ 100 24 ⁇ 1 5h ⁇ 1 h> 100 30 ⁇ 1 5h ⁇ 1
  • Unidirectional strain gauges with compensation for thermal expansion are glued to the lower surface of the bar (see figure 3 ), following the manufacturer's instructions. Then they are covered with an insulating lacquer. The value read on each of these gauges is taken as zero.
  • the machining depth must not be less than 1 mm, in order to obtain a good quality of cut; for very thick sheets, it can reach 10 mm.
  • Chemical machining can also be used to remove a very small thickness of metal.
  • the machining pitch should be the same for both samples (i.e. in the L direction and in the TL direction).
  • the bar is detached from the vice, and the temperature is allowed to stabilize before measuring the deformation.
  • the thickness h (i) and the strain ⁇ (i) are noted .
  • the scheme of the figure 4 shows how we collect this data.
  • the problem is solved by a modification of the manufacturing process so that the ripening (natural aging) between the end of the quenching and the beginning of the controlled pull is minimized so that the energy total elasticity (W) in the return state remains below a certain limit value.
  • This limit value represents a maximum value to keep the machining deformity at a level that is still acceptable; for most applications, this limit value is 2 kJ / m 3 for a sheet having a thickness of between 60 mm and 100 mm, and preferably of 1.5 kJ / m 3 . For particularly complex parts, it must be 1 kJ / m 3 .
  • the figure 5 shows the diagram of the heat treatment process that a sheet undergoes after rolling.
  • the dissolution can be carried out in a single stage, in several stages, or in ramp with or without definite stage. The same is true of income.
  • the critical phase in the context of the present invention is the delay D between the end of the quenching and the beginning of the controlled pull.
  • the inventors have found that a long delay D leads to a greater heterogeneity of the mechanical characteristics between areas near the surface and areas near the mid-thickness of the material. This heterogeneity can be mainly attributed to differences in cooling rate in the thickness of the sheet.
  • the figure 6 shows the evolution of the yield strength L, determined close to the surface and at mid-thickness, as a function of the curing time for very high alloy plates AA7010 and AA7050 and for different nominal quenching rates. These quenching speeds were obtained on tensile test pieces but they are representative of the differences in quenching velocity observed between the surface and the core of a thick sheet. It can be seen that the difference between the levels of mechanical strength increases over time.
  • the inventors have found that the variation of the residual stresses across the thickness of the alloy sheets 7xxx depends on (i) the variation of the cooling rates and the plastic deformation during quenching, (ii) the heterogeneities of the microstructure granular structure and texture that are generated during rolling, and (iii) local variations in chemical composition that result from the casting process (including solidification and homogenization). Between the end of the quenching and the beginning of the traction, a maturation is observed throughout the thickness of the sheet, but the speed of this maturation depends on the thickness: the limit of elasticity increases faster close to a surface only half thickness.
  • the inventors have found by a calculation based on a finite element model that an increase in the heterogeneity of the mechanical characteristics (i.e. the elastic limit or the coefficients of work hardening) leads to an increase in the residual stresses after pulling.
  • the figure 7 shows the effect of increasing the variation of elastic limit values on the residual stress profiles after quenching.
  • the method according to the invention does not give an improved result in the case of other alloys with structural hardening, such as the 2xxx and 6xxx series alloys.
  • the stored energy is very high, and the improvement obtained with the process according to the invention. invention does not appear to be significant.
  • These alloys also have difficulty responding to solution treatment.
  • R p0,2 (L) denotes the yield strength of the finished sheet measured according to EN 10002-1 and EN 485-1.
  • the influence of the thickness on the level of residual stresses and the total elastic energy is here expressed in terms of the limited elasticity, measured as recommended by the EN 485-1 standard.
  • the method according to the invention can advantageously be applied to the manufacture of a plurality of sheets whose thickness is between about 10 mm and about 250 mm, and even more advantageously to sheets whose thickness is greater than 25 mm. , but these values are not limiting.
  • the method according to the invention also makes it possible to reduce the dispersion between the values of W for a plurality of sheets belonging to the same control lot or batch of heat treatment, so that all the plates have a standard deviation of the total elastic energy W of the various sheets around a mean value less than or equal to 0 , 20 + 0 , 0086 ⁇ P p ⁇ 0 , 2
  • the MPa - 400 and preferably less than or equal to 0 , 20 + 0 , 0030 ⁇ P p ⁇ 0 , 2
  • the MPa - 400 denotes the average of the measurements of R p0,2 (L) carried out according to the standard for each of the finished sheets of the batch, according to the standards EN10002-1 and EN485-1.
  • the standard deviation between the measurements of the total elastic energy W of the different sheets of a batch can depend on the number of sheets contained in the batch. In particular, a standard deviation obtained on two measurements is weakly significant and can randomly be very high or very low. From 3 sheets, the standard deviation of the measurements can be considered but, in a preferred manner, the control or heat treatment batches used in the context of the present invention contain at least 5 sheets.
  • the use of the method according to the invention enables the manufacturer to guarantee that such a control batch or such a batch of heat treatment comprises sheets whose average total elastic energy is less than 3 kJ / m 3 .
  • this average value is less than 2 kJ / m 3 , and a value less than 1 kJ / m 3 is preferred, which requires excellent control of the critical processes and very rigorous management of the product streams at the stages of production. dissolution, quenching and traction.
  • the implementation of the method according to the invention may require an adaptation of the metal flows inside the plant, because if the producer wants to produce plates with a delay D less than a few hours, it is necessary to synchronize the tempering furnace with the traction bench.
  • the maturation is carried out at low temperature, that is to say at a temperature below 10 ° C. and preferably at a temperature below 5 ° C., which makes it possible to obtain similar results in terms of total elastic energy W for delays D between 2h and 3h.
  • the invention is particularly advantageous for thick plates of AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175 alloys.
  • the advantage of the process according to the invention is the overall reduction of the stress level in the heavy plates. This generally reduces the deformation during machining.
  • Another advantage of the process according to the invention is that the control of the time which elapses between the end of the quenching and the beginning of the traction also makes it possible to reduce the dispersion of the stress level which is observed between different sheets nominally. identical, even within the same manufacturing batch or batch of heat treatment. This allows a better standardization of the machining processes for a given series of products, and reduces the number of incidents during the manufacture of machined parts in the machine shop.
  • Three AA7010 alloy rolling plates were cast by semi-continuous casting. After homogenization, they were hot-rolled to a thickness of 100 mm. At the outlet of the hot rolling mill, they were subjected to quenching followed by a controlled pull, and finally to a treatment of income.
  • the metallurgical state of the three products A1, A2 and A3 thus obtained was the T7651 state. For these three products, all manufacturing parameters were nominally identical and well controlled. The only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
  • Table 2 shows the stored elastic energy of the various sheets obtained, determined in the final state. When reducing the waiting time D between the end of the quenching and the beginning of tensile stress relief, a reduction in the overall stress level as measured by W L , W LT and W is observed. Table 2 Stored elastic energy (in the final state) as a function of the ripening time for three alloy plates 7010 and 7050.
  • Table 3 Static mechanical characteristics (L direction) in the final state as a function of the maturation time D for alloy plates 7010 and 7050 sheet metal Alloy / state Maturation time D [h] Location R m (L) [MPa] R p0.2 (L) [MPa] A (L) [%] A1 7010 T7651 1.17 1 ⁇ 4 thickness 524 479 14.0 1 ⁇ 2 thickness 519 468 12.7 3 ⁇ 4 thickness 533 471 11.0 A2 7010 T7651 9 1 ⁇ 4 thickness 529 480 14.4 1 ⁇ 2 thickness 523 477 11.5 3 ⁇ 4 thickness 539 480 9.6 A3 7010 T7651 48.92 1 ⁇ 4 thickness 521 472 12.6 1 ⁇ 2 thickness 516 466 9.2 3 ⁇ 4 thickness 528 472 8.2 B1 7050 T7451 1.25 1 ⁇ 4 thickness 536 482 13.0 1 ⁇ 2 thickness 519 465 10.4 3 ⁇ 4 thickness 531 470 9.6 B2 7050 T7451 8.83 1 ⁇ 4 thickness 534 479 14.2 1 ⁇
  • K IC toughness was also measured in LT and TL directions at 1 ⁇ 4 thickness. The results, shown in Table 6, show that maturation has no significant influence on toughness.
  • Table 6 Tenacity (in the final state) in the final state as a function of the aging time D for heavy plates in alloys 7010 and 7050 sheet metal Alloy / state Maturation time D [h]
  • K IC (TL) MPa ⁇ m)
  • Table 7 shows the stored elastic energy of the various sheets obtained, determined in the final state (ie after controlled pulling).
  • a reduction in the overall stress level W L , W LT and W is observed.
  • Table 7 Elastic energy stored according to ripening time D for flat plate alloy 7475 W51 sheet metal Alloy / state Maturation time D [h] W [kJ / m 3 ] W L [kJ / m 3 ] W LT [kJ / m 3 ] C1 7475 W51 1.75 2.24 1.6 0.64 C2 7475 W51 22.5 4.51 3.61 0.9 C3 7475 W51 48 5.18 3.97 1.21
  • Two AA7449 alloy rolling plates were converted by homogenization, hot rolling to a thickness between 16.5 and 21.5 mm, quenching and controlled pulling, followed by tempering.
  • the metallurgical state of the two products D1 and D2 thus obtained was the T651 state.
  • all manufacturing parameters were nominally identical and well controlled, and the only difference was the waiting time D between the end of quenching and the beginning of tensile stress relief.
  • Table 8 shows the stored elastic energy of the various sheets obtained, determined in the final state (ie after controlled pulling).
  • Table 8 Stored elastic energy (in the final state) as a function of the aging time D for alloy plates 7449 T651 sheet metal Alloy / state Thickness [mm] Maturation time D [h] W [kJ / m 3 ] W L [kJ / m 3 ] W LT [kJ / m 3 ] D1 7449 T651 16.5 10.5 6.3 5.56 0.74 D2 7449 T651 21.5 3 4.17 3.66 0.51
  • the stored energy is maximum.
  • the method according to the invention leads, for a given thickness, firstly to a reduction in the overall level of residual stresses (that is to say of the stored energy W totat ) of approximately 50%, and of on the other hand, a significant reduction in the statistical dispersion of this value.
  • the effect of the invention on the overall level of residual stresses is particularly remarkable for thicknesses of between 40 and 150 mm and even more clearly for thicknesses of between 50 and 100 or even 80 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

    Domaine de l'invention
  • Cette invention concerne une méthode pour réduire le niveau de contraintes résiduelles dans toute l'épaisseur de tôles fortes en alliage d'aluminium de la série 7xxx qui subissent une traction avec un allongement permanent.
  • Etat de la technique
  • On sait que dans les alliages d'aluminium de la série 7xxx, la maturation (vieillissement naturel) débute immédiatement après la trempe. Le mécanisme microstructural sous-jacent est lié à la formation de zones Guinier-Preston par nucléation, et à la formation de phases métastables qui précipitent à partir d'une matrice d'aluminium sursaturée. La nucléation et croissance de ces précipités conduit à une augmentation rapide de la limite d'élasticité, car ces précipités gênent le déplacement de dislocations dans le réseau cristallin. Le degré de durcissement par ces mécanismes à un endroit donné dans une tôle épaisse dépendra de la composition chimique, de la vitesse de trempe, de la structure de grains et de sous-grains du métal, ainsi que de sa texture cristallographique.
  • Les tôles fortes en alliages de la série 7xxx (alliages de type Al-Zn-Mg avec ou sans cuivre) doivent être trempées rapidement après leur mise en solution pour pouvoir présenter, après revenu, des hautes caractéristiques mécaniques dans toute leur épaisseur. La présence au moment de la trempe de forts gradients thermiques proche de la surface de la tôle forte conduit à une déformation plastique inhomogène. Par conséquent, lorsque la tôle est complètement refroidie, elle renferme des contraintes résiduelles (contraintes internes). Plus précisément, on trouve des contraintes compressives à proximité de la surface, et des contraintes de traction au centre. La force de ces contraintes dépend de l'alliage et de la structure du matériau, ainsi que du procédé de mise en solution et de trempe ; l'ordre de grandeur est de 200 MPa. On trouve une description détaillée des contraintes résiduelles dans les alliages de type 7xxx dans les publications suivantes : J.C. Chevrier, F. Moreaux, G. Beck, J. Bouvaist, « Contribution à l'étude des contraintes thermiques de trempe. Application aux alliages d'aluminium. » Mémoires Scientifiques - Revue de Métallurgie vol 72, n° 1, p. 83-94 (1975) ; P. Jeanmart, J. Bouvaist, « Finite element calculation and measurement of thermal stresses in quenched plate of high-strength 7075 aluminium alloy », Materials Science and Technology Vol. 1, n° 10, p. 765 - 769 (1985) ; D. Godard, Thèse de doctorat, Institut National Polytechnique de Lorraine, Nancy 1999, notamment pages 285 - 290 et 209 - 250.
  • Les méthodes les plus répandues pour relaxer les contraintes résiduelles dans des tôles fortes en alliage de la série 7xxx font appel à la déformation plastique, soit par traction au sens L, soit par compression au sens TC. L'avantage de ces méthodes est qu'elles n'affectent pas de manière significative le potentiel de durcissement du matériau au cours d'une étape ultérieure de revenu. On considère que la traction est plus efficace que la compression, car elle conduit en général à une déformation plastique plus homogène.
  • Les brevets US 6,159,315 et US 6,406,567 (Corus Aluminium Walzprodukte GmbH) divulguent une méthode pour relaxer les contraintes résiduelles des tôles fortes après mise en solution et trempe, qui comporte une première étape de traction à froid au sens L, suivie par une étape de compression à froid au sens TC.
  • La demande de brevet WO 2004/053180 (Pechiney Rhenalu ) décrit une méthode de relaxation des contraintes résiduelles d'une tôle forte par compression sur les champs. Même si elle permet d'obtenir des tôles avec des faibles énergies résiduelles, cette méthode en compression est cependant difficile à mettre en oeuvre..
  • La déformation plastique permet typiquement de réduire les contraintes résiduelles par un facteur d'environ 10. Cela est illustré sur la figure 2. Néanmoins, en pratique, les contraintes résiduelles dans des semi-produits épais considérés comme identiques peuvent varier fortement. Cela peut être lié à la variation de leur composition chimique, mais aussi et surtout à la variation des paramètres des procédés de fabrication, tels que la coulée, le laminage, la trempe, la traction et le revenu ; l'influence de ces paramètres de procédé sur le niveau de contraintes résiduelles dans le produit fini n'est pas toujours bien compris. Certaines modifications de procédé conduisent effectivement à une réduction du niveau des contraintes résiduelles (telles que le choix d'une trempe plus lente ou d'une température de revenu plus élevée), mais elles modifient également le compromis entre certaines propriétés qui sont importantes pour les application structurales, telles que, typiquement, la résistance mécanique, la tolérance aux dommages et la résistance à la corrosion. Cet état de la technique est connu des publications suivantes: R. Habachou, M. Boivin, «Numerical predictions of quenching and relieving by stretching of aluminium alloys cylindrical bars », Journal de Mécanique Théorique et Appliquée, Vol 4, pp. 701-723, 1985 ; J.C. Boyer et M. Boivin, "Numerical calculations of residual stress relaxation in quenched plates", Materials Science and Technology Vol. 1 1985 pp. 786-792 ; R. Vignaud, P .Jeanmart, J. Bouvaist, B. Dubost (1990), « Détensionnement par déformation plastique », Physique et mécanique de la mise en forme des métaux, Ecole d'été d'Oléron, dirigée par F. Moussy et P. Franciosi, éditée aux Presses du CNRS, 1990, pp. 632-642.
  • L'influence critique des contraintes résiduelles sur la distorsion lors de l'usinage a été décrite largement dans la littérature. Dans l'industrie aéronautique, on usine souvent des pièces complexes à partir de tôles épaisses en alliage d'aluminium ; cela conduit souvent à plus de 80 % de copeaux. Une trop forte distorsion à l'usinage doit être compensée par des mesures correctives complexes et coûteuses, telles que : (a) le redressage mécanique, (b) le grenaillage (en anglais : shot peening), (c) l'optimisation de la localisation de la pièce visée dans l'épaisseur de la tôle forte, c'est-à-dire par rapport au profil en profondeur des contraintes résiduelles, ou (d) la modification de la forme de la pièce en vue de minimiser sa déformation (étant entendu que la déformation permanente de la pièce usinée est faible si sa forme est proche d'un forme symétrique par rapport à l'axe longitudinal de la tôle épaisse dans laquelle ladite pièce est usinée). Les constructeurs d'avions préfèrent par conséquent des tôles fortes dont les contraintes résiduelles sont non seulement plus faibles, mais aussi sous contrôle, c'est-à-dire présentant une faible variation pour un type de produits donné (alliage, épaisseur, état métallurgique).
  • Les brevets EP 0 731 185 et US 6,077,363 décrivent une méthode pour réduire les contraintes résiduelles dans les tôles fortes en alliage 2024. L'optimisation de la teneur en manganèse et de la température de sortie du laminoir à chaud permet d'obtenir un taux de recristallisation de plus de 50% dans toute l'épaisseur. Une telle tôle montre une meilleure homogénéité des caractéristiques mécaniques en fonction de l'épaisseur, ainsi qu'un niveau réduit de contraintes résiduelles après traction.
  • EP1231290 décrit la fabrication de produits corroyés par laminage, filage ou forgeage en alliage d'aluminium du type AlZnMgCu à haute résistance mécanique, utilisés notamment dans la construction aéronautique, en particulier pour les extrados d'ailes d'avions. On a réalisé des tôles en alliage 7449 d'épaisseur 38 mm. La composition de l'alliage était la suivante (% en poids) : Zn = 8,11 Mg = 2,19 Cu = 1,94 Si = 0,04 Fe = 0,07 Zr = 0,09 Cr = 0,005 Ti = 0,025 reste aluminium et impuretés (< 0,05 chacune). Les tôles ont subi un pré-élargissement pour passer d'une largeur de plaque de 1100 mm à 2500 mm un laminage à chaud jusqu'à 38 mm avec une température de sortie à 378° C une mise en solution à 475°C, une trempe à l'eau froide, et une traction contrôlée à 2.8% d'allongement permanent après une délai de 1 h après trempe.
  • Pour les tôles fortes en 7xxx, on préfère en général garder une microstructure largement non recristallisée, notamment pour des applications qui exigent une forte ténacité, telles que les éléments de structure pour avions. Cela ressort de la publication de F. Heymes, B. Commet, B. Dubost, P. Lassince, P. Lequeu, and G. M. Raynaud, "Development of new Al alloys for distortion free machined aluminium aircraft components", parue dans 1st International Non-Ferrous Processing and Technology Conference, St. Louis, Missouri, 1997, 249-255.
  • Les contraintes résiduelles dans des tôles épaisses peuvent être déterminées par la méthode de l'usinage successif décrite dans la publication de Heymes, Commet et al., référencée ci-dessus. Une méthode basée sur cette publication est décrite en détail ci-dessous.
  • La présente invention a pour but de présenter une méthode pour obtenir des tôles épaisses en alliage d'aluminium de la série 7xxx qui présente, à l'état tractionné, à l'état matûré ou dans n'importe quel état de vieillissement artificiel, un niveau de contraintes résiduelles plus faible, sans dégrader la résistance mécanique et la tolérance aux dommages. Plus particulièrement, on souhaite disposer de tôles fortes qui ne se déforment pas lors de l'usinage, ce qui est observé lorsque l'énergie élastique totale stockée dans la tôle, W, est inférieure à 2 kJ/m3 et préférentiellement inférieure à 1 kJ/m3.
  • Objet de l'invention
  • L'invention a pour objet un procédé de fabrication de tôles épaisses en alliage de type Al-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, ledit procédé comprenant le laminage à chaud, la mise en solution, la trempe, la traction contrôlée avec un allongement permanent supérieur à 0,5%, ainsi que le vieillissement,
    caractérisé en ce que délai D entre la fin de la trempe et le début de la traction contrôlée est inférieur à 2 heures, et préférentiellement inférieur à 1 heure.
  • Un autre objet de la présente invention est une tôle épaisse en alliage de type AI-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, laminée à chaud, mise en solution, trempée, tractionnée avec un allongement permanent supérieur à 0,5%, vieillie, caractérisée en ce son énergie élastique totale est inférieure ou égale à W kJ / m 3 = 0 , 54 + 0 , 013 R p 0 , 2 L MPa - 400 .
    Figure imgb0001
  • Encore un autre objet de l'invention est un lot de contrôle ou un lot de traitement thermique de tôles épaisses en alliage de type Al-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, à l'état mis en solution, trempé, tractionné et vieilli, caractérisé en ce l'énergie élastique totale W (exprimée en kJ/m3) des tôles montre un écart-type inférieur ou égal à 0 , 20 + 0 , 0030 P p 0 , 2 L MPa - 400 autour dʹune valeur moyenne .
    Figure imgb0002
  • Description des figures
    • La figure 1 montre de manière schématique la définition des trois directions principales dans une tôle.
    • La figure 2 montre de manière schématique une courbe de traction. La courbe 2 représente l'état de contraintes au coeur de la tôle. La courbe 1 montre l'état de contraintes en surface. Cette figure montre le principe du détensionnement par traction contrôlée : avant la traction contrôlée, l'écart des contraintes entre la surface et lé coeur est défini par x et -x. La traction contrôlée réduit cet écart (défini par y et - y) typiquement d'un facteur 10.
    • La figure 3 montre la définition des paramètres h, l et w d'une tôle. En bas, on voit de manière schématique la jauge de déformation (avec son fil de raccordement).
    • La figure 4 montre de manière schématique les séquences de la mesure et des calculs pour déterminer un profil de contraintes résiduelles dans l'épaisseur de la tôle à l'aide de la méthode par enlèvement successif de couches.
    • La figure 5 montre de manière schématique la partie critique du procédé selon l'invention. D désigne l'intervalle de temps entre la fin de la trempe et le début de la traction contrôlée.
    • La figure 6 montre la cinétique de maturation de tôles épaisses en alliages 7010 et 7050 pour deux vitesses de trempe différentes. L'abscisse montre la limite d'élasticité dans le sens L, l'ordonnée le temps de maturation.
    • La figure 7 montre l'effet de l'augmentation de la variation des valeurs de limite d'élasticité sur les profils de contraintes résiduelles après trempe.
    • La figure 8 montre l'énergie élastique totale en fonction de l'épaisseur pour des lots de tôles en alliage 7xxx selon l'invention (avec D ≤ 1 heure) (points ouverts) et selon l'état de la technique (avec D ≥ 8 heures) (carrés noirs).
    Description de l'invention a) Terminologie
  • Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. La désignation des alliages suit les règles de The Aluminum Association, connues de l'homme du métier. L'expression « alliage de type Al-Zn-Cu-Mg » se réfère à un alliage à base d'aluminium qui contient les éléments d'alliage zinc, cuivre et magnésium; un tel alliage peut contenir en plus d'autres éléments d'alliage ainsi que d'autres éléments, dont la présence peut être intentionnelle ou non, par exemple des impuretés.
  • Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans la norme EN 485-1. La ténacité KIC a été mesurée selon la norme ASTM E 399.
  • Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent.
  • Dans le cadre de la présente invention, une « tôle épaisse » désigne une tôle dont l'épaisseur est supérieure àu égale à 6 mm.
  • Le terme « lot de contrôle » est défini dans la norme EN 12258-1 ; il désigne une expédition ou partie d'une expédition, soumise à un contrôle, et qui comprend des produits de même qualité ou alliage, de même forme, état métallurgique, taille, géométrie, épaisseur ou section transversale, et qui ont été produits par les même procédés.
  • Le terme « lot de traitement thermique » désigne une quantité de produits de même qualité ou de même alliage, de même forme, épaisseur ou section transversale, et qui ont été produits de la même façon, dont le traitement thermique ou la mise en solution suivie de trempe a été effectué en une seule charge ; plusieurs lots peuvent être mis en solution dans une même charge de traitement thermique.
  • Le terme « vieillissement » comprend le vieillissement naturel à température ambiante (appelé aussi « maturation »), ainsi que tout vieillissement artificiel (appelé aussi « revenu »).
  • Le terme « usinage » comprend tout procédé d'enlèvement de matière tel que le tournage, le décolletage, le fraisage, le perçage, l'alésage, le taraudage, l'électroérosion, la rectification, le polissage, l'usinage chimique.
  • Le terme « élément de structure » se réfère à un élément utilisé en construction mécanique pour lequel les caractéristiques mécaniques statiques et / ou dynamiques ont une importance particulière pour la performance et l'intégrité de la structure, et pour lequel un calcul de la structure est généralement prescrit ou effectué. Il s'agit typiquement d'une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.
  • Le terme « élement de structure monolithique » se réfère à un élément de structure qui a été obtenu, le plus souvent par usinage, à partir d'une seule pièce de demi-produit laminé, filé, forgé ou moulé, sans assemblage, tel que rivetage, soudage, collage, avec une autre pièce.
  • Les directions L (sens Long), TL (sens travers-long) et TC (sens travers-court) dans un produit laminé se réfèrent à la direction de laminage qui correspond à la direction L. Ces trois directions sont définies sur la figure 1.
  • b) Détermination des contraintes résiduelles
  • Dans le cadre de la présente invention, les contraintes résiduelles ont été déterminées à l'aide de la méthode basée sur l'enlèvement successif de couches décrite dans la publication "Development of New Alloy for Distortion Free Machined Aluminum Aircraft Components", F.Heymes, B.Commet, B.Dubost, P.Lassince, P.Lequeu, GM.Raynaud, in 1st International Non-Ferrous Processing & Technology Conference, 10-12 March 1997 - Adams's Mark Hotel, St Louis, Missouri.
  • Cette méthode s'applique surtout aux tôles fortes tractionnées, dans lesquelles l'état de contrainte peut être considéré comme biaxial ; les deux composantes principales étant situées dans les directions L et TL, et il n'y a donc pas de composante dans la direction TC. Cette méthode est basée sur la détermination des contraintes résiduelles dans les directions L et TL sur des barres rectangulaires, coupées en pleine épaisseur de la tôle dans le sens parallèle aux directions indiquées. Ces barres sont usinées dans le sens TC étape par étape. Après chaque étape on mesure la contrainte et/ou la déflection et relève l'épaisseur de la barre. Une méthode particulièrement préférée consiste à fixer une jauge de déformation à mi-longueur de la barre, sur la surface opposée à celle qui est usinée. Cela permet de calculer les profils de contraintes résiduelles dans les directions L et TL. La barre doit être suffisamment longue pour éviter des effets de bord. Les dimensions recommandées en fonction de l'épaisseur de la tôle sont indiquées dans le tableau 1. Tableau 1
    Dimensions [mm] utilisées pour la méthode de l'enlèvement successif de couches
    Épaisseur de la tôle (h) Largeur (w) Longueur (1)
    20<h≤100 24 ± 1 5h ± 1
    h>100 30 ± 1 5h ± 1
  • Les jauges de déformation unidirectionnelles avec une compensation de la dilatation thermique sont collées sur la surface inférieure de la barre (voir figure 3), en suivant les instructions du fabricant. Ensuite, elles sont recouvertes d'une laque isolante. La valeur lue sur chacune de ces jauges est prise pour zéro.
  • On effectue une mesure après chaque passe d'usinage. On prend typiquement entre 18 et 25 passes pour obtenir un nombre de points suffisant pour calculer le profil de contraintes. La profondeur d'usinage ne doit pas être inférieure à 1 mm, afin d'obtenir une bonne qualité de coupe ; pour des tôles très épaisses, elle peut atteindre 10 mm. On peut aussi utiliser l'usinage chimique pour enlever une très faible épaisseur de métal. Le pas d'usinage devrait être le même pour les deux échantillons (i.e. dans le sens L et dans le sens TL).
  • Après chaque passe d'usinage, la barre est détachée de l'étau, et on laisse la température se stabiliser avant de mesurer la déformation. A chaque pas i, on relève l'épaisseur h(i) et la déformation ε(i). Le schéma de la figure 4 montre comment on collecte ces données.
  • Ces données permettent de calculer le profil de contraintes initial dans chaque barre sous la forme d'une courbe u(i), qui correspond à la contrainte moyenne dans la couche enlevée lors du pas d'usinage i, donnée par les équations suivantes :
    • Pour i = 1 à N-1 : u i = - E ε i + 1 - ε i h i + 1 2 h i - h i + 1 3 h i - h i + 1 - S i
      Figure imgb0003
      avec : S i = E k = 1 i - 1 ε k + 1 - ε k 1 - 3 h k h i + h i + 1 3 h k - h k + 1 h k + 1
      Figure imgb0004
      E est le module de Young de la tôle épaisse. On obtient ainsi deux profiles : u(i)L et u(i)LT qui correspondent à des barres à section rectangulaire dans les directions L et TL. Les profiles de contraintes dans la tôle sont obtenus par les équations suivantes :
    • Pour i = 1 à N-1 σ i L = u i L + vu i LT 1 - ν 2
      Figure imgb0005
      σ i LT = u i LT + vu i L 1 - ν 2
      Figure imgb0006
      où v est le coefficient de Poisson de la tôle forte. On peut ensuite calculer l'énergie stockée dans la tôle (WL, WLT et W) à partir des equations : W L = 500 Eh i = 1 N - 1 σ i L σ i L - νσ i L dh i
      Figure imgb0007
      W LT = 500 Eh i = 1 N - 1 σ i LT σ i LT - νσ i L dh i
      Figure imgb0008
      W = W L + W LT
      Figure imgb0009
      où WL représente l'énergie élastique stockée qui résulte du profil de contraintes résiduelles dans la direction L, et WLT représente l'énergie stockée qui résulte du profil de contraintes résiduelles dans la direction TL. W est l'énergie élastique totale dans la tôle (exprimé en kJ ou kJ/m3). La méthode de mesure des contraintes et d'obtention des énergies élastiques stockées est décrite ci-dessus d'une manière précise en donnant par exemple les dimensions des barreaux qui sont utilisés en pratique. Il faut noter que ces dimensions ne sont pas obligatoires et ne limitent pas la méthode. La largeur du barreau n'a pas d'influence sur le résultat. Une longueur de deux fois h plus trois fois la longueur de la jauge est suffisante dans le cas de mesures à l'aide de jauges de déformation. Les dimensions données sont issues de l'expérience pratique et ont été adaptées aux moyens d'usinage et de mesures utilisés. L'homme du métier sera aisément en mesure de sélectionner d'autres dimensions sans altérer les résultats.
  • De même, d'autres techniques peuvent être utilisées pour mesurer le gradient de contraintes dans l'épaisseur des tôles. Après obtention des profils de contraintes σL et σLT dans l'épaisseur, les mêmes formules des sommes incrémentales ci-dessus permettent de calculer les énergies stockées WL et WLT. Il est donc possible d'obtenir les énergies stockées par toutes techniques permettant des mesures de contraintes dans l'épaisseur.
  • c) Description détaillée de l'invention
  • La présente invention s'applique aux tôles, et surtout aux tôles fortes, en alliage d'aluminium de la série 7xxx, dont la composition chimique répond aux critères suivants:
    • 4 < Zn < 12 ; Mg < 4 ; Cu < 4 ;
    • éléments mineurs ≤ 0,5 chacun
    • le reste aluminium,
    et qui sont traités par mise en solution, trempe et traction contrôlée.
  • Selon l'invention, le problème est résolu par une modification du procédé de fabrication de manière à ce que la maturation (vieillissement naturel) entre la fin de la trempe et le début de la traction contrôlée est minimisée de manière à ce que l'énergie élastique totale (W) à l'état revenu reste inférieure à une certaine valeur limite. Cette valeur limite représente une valeur maximale pour garder la déformation à l'usinage à un niveau qui est encore acceptable ; pour la plupart des applications, cette valeur limite est de 2 kJ/m3 pour une tôle d'une épaisseur comprise entre 60 mm et 100 mm, et préférentiellement de 1,5 kJ/m3. Pour des pièces particulièrement complexes, elle doit être de 1 kJ/m3.
  • La figure 5 montre le schéma du procédé de traitement thermique que subit une tôle après laminage. La mise en solution peut être effectuée en un seul palier, en plusieurs paliers, ou en rampe avec ou sans palier bien défini. Il en est de même du revenu. La phase critique dans le cadre de la présente invention est le délai D entre la fin de la trempe et le début de la traction contrôlée. Les inventeurs ont trouvé qu'un délai D long conduit à une plus grande hétérogénéité des caractéristiques mécaniques entre les zones proches de la surface et les zones proches de la mi-épaisseur du matériau. Cette hétérogénéité peut être principalement attribuée aux différences de vitesse de refroidissement dans l'épaisseur de la tôle. La figure 6 montre l'évolution de la limite d'élasticité au sens L, déterminée proche de la surface et à mi-épaisseur, en fonction de la durée de maturation pour des tôles très fortes en alliages AA7010 et AA7050 et pour différentes vitesses nominales de trempe. Ces vitesses de trempe ont été obtenues sur des éprouvettes de traction mais elles sont représentatives des différences de vitesse de trempe observées entre la surface et le coeur d'une tôle épaisse. On voit que la différence entre les niveaux de résistance mécanique s'accentue au cours du temps.
  • Les inventeurs ont constaté que la variation des contraintes résiduelles à travers l'épaisseur des tôles en alliage 7xxx dépend (i) de la variation des vitesses de refroidissement et de la déformation plastique au cours de la trempe, (ii) des hétérogénéités de la microstructure structure granulaire et de la texture qui sont générées au cours du laminage, et (iii) des variations locales de la composition chimique qui résultent du procédé de coulée (y compris la solidification et l'homogénéisation). Entre la fin de la trempe et le début de la traction, on observe une maturation dans toute l'épaisseur de la tôle, mais la vitesse de cette maturation dépend de l'épaisseur : la limite d'élasticité augmente plus vite à proximité d'une surface qu'à mi-épaisseur. Cela est probablement dû à la cinétique de précipitation : d'une part, la teneur de la solution solide sursaturée en éléments potentiellement durcissants est plus grande proche de la surface qu'à mi-épaisseur (car le procédé de coulée semi-continue adopté conduit à une macro-segrégation telle que la concentration d'éléments eutectiques, tels que Cu, Mn et Zn, est plus forte proche de la surface, et la vitesse de refroidissement au cours de la coulée y est également plus grande), et d'autre part, on trouve proche de la surface une plus grande densité de sites hétérogènes (lacunes, dislocations etc) qui facilitent la précipitation et qui résultent de la plus grande vitesse de refroidissement et de la plus grande plasticité au cours de la trempe.
  • Les inventeurs ont trouvé par un calcul basé sur un modèle à éléments finis qu'une augmentation de l'hétérogénéité des caractéristiques mécaniques (c'est-à-dire de la limite d'élasticité ou des coefficients d'écrouissage) conduit à une augmentation des contraintes résiduelles après traction. La figure 7 montre l'effet de l'augmentation de la variation des valeurs de limite d'élasticité sur les profils de contraintes résiduelles après trempe.
  • Cette tentative d'explication métallurgique du procédé selon l'invention n'implique cependant aucune limitation de la présente invention aux phénomènes sous-jacents. Par ailleurs, les inventeurs ont constaté que l'effet est plus grand en réalité que les valeurs obtenues par le modèle mathématique..
  • Enfin, un changement du procédé de fabrication qui conduirait à améliorer l'homogénéité des limites d'écoulement (Rp02) dans l'épaisseur de la tôle forte après la trempe, entraînerait une baisse des contraintes résiduelles après traction contrôlée ou après tout détensionnement par déformation plastique.
  • Le procédé selon l'invention ne donne pas de résultat amélioré dans le cas d'autres alliages à durcissement structural, tels que les alliages des séries 2xxx et 6xxx. Pour les alliages très chargés, c'est-à-dire présentant une teneur en Zn > 12%, Mg > 4% et Cu > 4%, l'énergie stockée est très élevée, et l'amélioration obtenue avec le procédé selon l'invention ne paraît pas être significative. Ces alliages répondent par ailleurs difficilement à un traitement de mise en solution.
  • Le procédé selon l'invention permet de fabriquer des tôles caractérisées par une valeur de l'énergie élastique totale qui est inférieure ou égale à W kJ / m 3 = 0 , 54 + 0 , 013 R p 0 , 2 L MPa - 400 .
    Figure imgb0010
    Dans cette équation, Rp0,2(L) désigne la limite élastique de la tôle finie mesurée selon les normes EN 10002-1 et EN 485-1. L'influence de l'épaisseur sur le niveau de contraintes résiduelles et l'énergie élastique totale est ici exprimée en termes de la limité d'élasticité, mesurée comme préconisé par la norme EN 485-1. Le procédé selon l'invention peut être appliqué avantageusement à la fabrication d'une pluralité de tôles dont l'épaisseur se situe entre environ 10 mm et environ 250 mm, et encore plus avantageusement à des tôles dont l'épaisseur est supérieure à 25 mm, mais ces valeurs ne sont pas limitatives.
  • Le procédé selon l'invention permet aussi de réduire la dispersion entre les valeurs de W pour une pluralité de tôles appartenant à un même lot de contrôle ou lot de traitement thermique, de manière à ce toutes les tôles ont un écart-type de l'énergie élastique totale W des différentes tôles autour d'une valeur moyenne inférieur ou égal à 0 , 20 + 0 , 0086 P p 0 , 2 L MPa - 400
    Figure imgb0011
    et de manière préférée inférieur ou égal à 0 , 20 + 0 , 0030 P p 0 , 2 L MPa - 400 .
    Figure imgb0012
    Dans cette equation, Rp0,2(L) désigne la moyenne des mesures de Rp0,2(L) effectuées selon la norme pour chacune des tôle finies du lot, selon les normes EN10002-1 et EN485-1.
  • L'écart-type entre les mesures de l'énergie élastique totale W des différentes tôles d'un lot peut dépendre du nombre de tôles contenues dans le lot. En particulier, un écart-type obtenu sur deux mesures est faiblement significatif et peut aléatoirement être très élevé ou très faible. A partir de 3 tôles, l'écart-type des mesures peut être considéré mais d'une manière préférée, les lots de contrôle ou de traitement thermique utilisés dans le cadre de la présente invention contiennent au moins 5 tôles.
  • L'utilisation du procédé selon l'invention permet au fabricant de garantir qu'un tel lot de contrôle ou un tel lot de traitement thermique comprend des tôles dont l'énergie élastique totale moyenne est inférieure à 3 kJ/m3. De manière préférée, cette valeur moyenne est inférieure à 2 kJ/m3, et on préfère une valeur inférieure à 1 kJ/m3, ce qui nécessite une excellente maîtrise des procédés critiques et une gestion très rigoureuse des flux de produits aux stades de la mise en solution, de la trempe et de la traction. En effet, la mise en oeuvre du procédé selon l'invention peut nécessiter une adaptation des flux de métal à l'intérieur de l'usine, car si le producteur veut produire des tôles avec un délai D inférieur à quelques heures, il faut synchroniser le four de trempe avec le banc de traction. En pratique, cela implique de limiter au minimum le stock intermédiaire entre ces deux machines; ceci s'applique notamment aux modes de réalisation particulièrement préférés avec D < 1 heure ou D < 30 minutes. La demande de brevet EP 1 231 290 A1 décrit dans l'exemple 1 une tôle en alliage 7449 d'épaisseur 38 mm pour laquelle la traction contrôlée a été effectuée 1h après la trempe ; ce document ne donne cependant aucun enseignement sur l'intérêt de cette faible durée.. Le procédé selon l'invention a permis de réaliser des lots de contrôle ou des lots de traitement thermique pour lesquels le délai D entre la fin de la trempe et le début de la traction contrôlée est de manière systématique inférieur à 2 heures, ce qui a permis de minimiser la moyenne et l'écart-type de l'énergie élastique totale W des tôles de ces lots. La fabrication industriel d'un tel lot de contrôle nécessite cependant une réorganisation des flux de produits autour des machines nécessaires pour la mise en oeuvre du procédé selon l'invention.
  • Dans un autre mode de réalisation de l'invention, la maturation est effectuée à basse température, c'est à dire à une température inférieure à 10 °C et de manière préférée à une température inférieure à 5 °C, ce qui permet d'obtenir des résultats semblables en terme d'énergie élastique totale W pour des délais D compris entre 2h et 3h.
  • D'autres modes de réalisation préférés de l'invention sont indiqués dans les revendications dépendantes. L'invention est particulièrement avantageuse pour des tôles épaisses en alliages AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175.
  • L'avantage du procédé selon l'invention est la diminution globale du niveau de contraintes dans les tôles fortes. Cela diminue globalement la déformation à l'usinage.
  • Un autre avantage du procédé selon l'invention est que le contrôle du temps qui s'écoule entre la fin de la trempe et le début de la traction permet également de diminuer la dispersion du niveau de contrainte que l'on observe entre différentes tôles nominalement identiques, même à l'intérieur d'un même lot de fabrication ou lot de traitement thermique. Cela permet une meilleure standardisation des procédés d'usinage pour une série de produits donnée, et diminue le nombre d'incidents lors de la fabrication de pièces usinées dans l'atelier d'usinage.
  • Dans les exemples qui suivent, on décrit à titre d'illustration des modes de réalisation avantageux de l'invention. Ces exemples n'ont pas de caractère limitatif.
  • Exemples Exemple 1 :
  • Trois plaques de laminage en alliage AA7010 ont été coulées par coulée semi-continue. Après homogénéisation, on les a laminées à chaud jusqu'à une épaisseur de 100 mm. A la sortie du laminoir à chaud, on les a soumis à une trempe suivie d'une traction contrôlée, et finalement à un traitement de revenu. L'état métallurgique des trois produits A1, A2 et A3 ainsi obtenus était l'état T7651. Pour ces trois produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés. La seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.
  • Par un procédé analogue, on a transformé trois plaques de laminage en alliage AA7050 par homogénéisation, laminage à chaud jusqu'à une épaisseur de 100 mm, trempe, traction contrôlée et revenu. L'état métallurgique des trois produits B1, B2 et B3 ainsi obtenus était l'état T7451. Pour ces trois produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés, et la seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.
  • Le tableau 2 montre l'énergie élastique stockée des différentes tôles obtenues, déterminée à l'état final. Lorsque l'on réduit le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction, on observe une réduction du niveau global de contraintes tel que mesuré par WL, WLT and W. Tableau 2
    Energie élastique stockée (à l'état final) en fonction de la durée de maturation pour trois tôles fortes en alliages 7010 et 7050.
    Tôle Alliage / état Durée de maturation D [h] W [kJ/m3] WL [kJ/m3] WLT [kJ/m3]
    A1 7010 T7651 1.17 1.02 0.8 0.22
    A2 7010 T7651 9 1.76 1.37 0.4
    A3 7010 T7651 48.92 2.37 1.74 0.63
    B1 7050 T7451 1.25 1.22 0.84 0.38
    B2 7050 T7451 8.83 2.28 1.57 0.71
    B3 7050 T7451 49.08 3.15 2.02 1.12
  • Les caractéristiques mécaniques statiques ont été mesurées à l'état de traitement thermique final dans les directions L, TL et TC à ¼, ½ et ¾ épaisseur. Les résultats sont rassemblés dans les tableaux 3, 4 et 5. On observe que la durée de maturation D n'a pas d'influence significative sur les caractéristiques mécaniques statiques. Tableau 3:
    Caractéristiques mécaniques statiques (sens L) à l'état final en fonction de la durée de maturation D pour des tôles fortes en alliages 7010 et 7050
    Tôle Alliage / état Durée de maturation D [h] Localisation Rm(L) [MPa] Rp0.2(L) [MPa] A(L) [%]
    A1 7010 T7651 1.17 ¼ épaisseur 524 479 14.0
    ½ épaisseur 519 468 12.7
    ¾ épaisseur 533 471 11.0
    A2 7010 T7651 9 ¼ épaisseur 529 480 14.4
    ½ épaisseur 523 477 11.5
    ¾ épaisseur 539 480 9.6
    A3 7010 T7651 48.92 ¼ épaisseur 521 472 12.6
    ½ épaisseur 516 466 9.2
    ¾ épaisseur 528 472 8.2
    B1 7050 T7451 1.25 ¼ épaisseur 536 482 13.0
    ½ épaisseur 519 465 10.4
    ¾ épaisseur 531 470 9.6
    B2 7050 T7451 8.83 ¼ épaisseur 534 479 14.2
    ½ épaisseur 519 461 10.8
    ¾ épaisseur 533 469 8.7
    B3 7050 T7451 49.08 ¼ épaisseur 534 478 14.2
    ½ épaisseur 519 459 10.5
    ¾ épaisseur 531 463 9.4
    Tableau 4 :
    Caractéristiques mécaniques statiques (sens TL) à l'état final en fonction de la durée de maturation D pour des tôles fortes en alliages 7010 et 7050
    Tôle Alliage / état Durée de maturation D [h] Localisation Rm(TL) [MPa] Rp0.2(TL) [MPa] A(TL) [%]
    A1 7010 1.17 ¼ épaisseur 529 470 10.4
    T7651 ½ épaisseur 527 464 9.4
    ¾ épaisseur 513 446 9.2
    A2 7010 9 ¼ épaisseur 536 475 11.0
    T7651 ½ épaisseur 534 478 8.4
    ¾ épaisseur 521 463 8.1
    A3 7010 48.92 ¼ épaisseur 527 461 10.1
    T7651 ½ épaisseur 526 463 7.8
    ¾ épaisseur 511 452 8.0
    B1 7050 1.25 ¼ épaisseur 541 461 10.6
    T7451 ½ épaisseur 526 456 6.6
    ¾ épaisseur 516 443 6.7
    B2 7050 8.83 ¼ épaisseur 541 464 9.6
    T7451 ½ épaisseur 528 464 6.9
    ¾ épaisseur 519 447 7.2
    B3 7050 49.08 ¼ épaisseur 538 467 10.8
    T7451 ½ épaisseur 527 451 7.8
    ¾ épaisseur 513 440 6.4
    Tableau 5:
    Caractéristiques mécaniques statiques (sens TC) à l'état final en fonction de la durée de maturation D pour des tôles fortes en alliages 7010 et 7050
    Tôle Alliage / état Durée de maturation D [h] Localisation Rm(TC) [MPa] Rp0.2(TC) [MPa] A(TC) [%]
    A1 7010 T7651 1.17 ¼ épaisseur 517 449 6.5
    ½ épaisseur 508 432 7.7
    ¾ épaisseur 518 455 6.3
    A2 7010 T7651 9 ¼ épaisseur 521 455 5.7
    ¼ épaisseur 520 438 5.3
    ¾ épaisseur 515 442 7.6
    A3 7010 T7651 48.92 ¼ épaisseur 514 451 5.7
    ½ épaisseur 514 449 5.0
    ¾ épaisseur 509 440 7.4
    B1 7050 T7451 1.25 ¼ épaisseur 507 445 3.4
    ½ épaisseur 519 470 4.6
    ¾ épaisseur 507 428 5.6
    B2 7050 T7451 8.83 ¼ épaisseur 513 446 4.2
    ½ épaisseur 513 438 3.9
    ¾ épaisseur 511 413 5.9
    B3 7050 T7451 49.08 ¼ épaisseur 514 423 4.6
    ½ épaisseur 505 420 4.8
    ¾ épaisseur 513 442 3.7
  • On a également mesuré la ténacité KIC dans les direction L-T et T-L à ¼ épaisseur. Les résultats, rassemblés dans le tableau 6, montrent que la maturation n'a pas d'influence significatif sur la ténacité. Tableau 6
    Ténacité (à l'état final) à l'état final en fonction de la durée de maturation D pour des tôles fortes en alliages 7010 et 7050
    Tôle Alliage / état Durée de maturation D [h] Localisation KIC(L-T) (MPa√m) KIC(T-L) (MPa√m)
    A1 7010 T7651 1.17 ¼ épaisseur 33.6 28.0
    A2 7010 T7651 9 ¼ épaisseur 32.7 26.0
    A3 7010 T7651 48.92 ¼ épaisseur 32.9 27.7
    B1 7050 T7451 1.25 ¼ épaisseur 32.2 26.1
    B3 7050 T7451 49.08 ¼ épaisseur 32.3 27.7
  • Exemple 2
  • On a transformé trois plaques de laminage en alliage AA7475 par homogénéisation, laminage à chaud jusqu'à une épaisseur de 46 mm, trempe et traction contrôlée. L'état métallurgique des trois produits C1, C2 et C3 ainsi obtenus était l'état W51. Pour ces trois produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés, et la seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.
  • Le tableau 7 montre l'énergie élastique stockée des différentes tôles obtenues, déterminée à l'état final (i.e. après traction contrôlée). Lorsque l'on réduit le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction, on observe une réduction du niveau global de contraintes WL, WLT and W. Tableau 7
    Energie élastique stockée en fonction de la durée de maturation D pour des tôles fortes en alliage 7475 W51 plates
    Tôle Alliage / état Durée de maturation D[h] W [kJ/m3] WL [kJ/m3] WLT [kJ/m3]
    C1 7475 W51 1.75 2.24 1.6 0.64
    C2 7475 W51 22.5 4.51 3.61 0.9
    C3 7475 W51 48 5.18 3.97 1.21
  • Exemple 3
  • On a transformé deux plaques de laminage en alliage AA7449 par homogénéisation, laminage à chaud jusqu'à une épaisseur comprise entre 16,5 et 21,5 mm, trempe et traction contrôlée, suivi d'un revenu. L'état métallurgique des deux produits D1 et D2 ainsi obtenus était l'état T651. Pour ces deux produits, tous les paramètres de fabrication étaient nominalement identiques et bien contrôlés, et la seule différence était le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction.
  • Le tableau 8 montre l'énergie élastique stockée des différentes tôles obtenues, déterminée à l'état final (i.e. après traction contrôlée). Lorsque l'on réduit le temps d'attente D entre la fin de la trempe et le début du détensionnement par traction, on observe une réduction du niveau global de contraintes WL, WLT and W. La faible différence entre les épaisseurs des deux produits ne conduit pas en tant que telle à une différence significative entre leurs niveaux de contraintes. Tableau 8
    Energie élastique stockée (à l'état final) en fonction de la durée de maturation D pour des tôles fortes en alliage 7449 T651
    Tôle Alliage / état Epaisseur [mm] Durée de maturation D [h] W [kJ/m3] WL [kJ/m3] WLT [kJ/m3]
    D1 7449 T651 16.5 10.5 6.3 5.56 0.74
    D2 7449 T651 21.5 3 4.17 3.66 0.51
  • Ce résultat confirme que même pour un alliage de type Al-Zn-Mg à haute teneur en zinc comme le 7449, on peut diminuer l'énergie élastique totale de manière très significative en diminuant la durée de maturation D.
  • Exemple 4 :
  • Par des procédés industriels qui ne se distinguaient que par le temps d'attente, on a préparé des lots de tôles de contrôle selon l'invention. On a mesuré l'énergie stockée. Ensuite, on a développé un modèle mathématique qui permet de calculer cette énergie stockée en fonction des paramètres critiques du procédé de fabrication. Les valeurs de l'énergie stockée mesurées pour les tôles selon l'invention ont été utilisées pour valider ce modèle mathématique. Ensuite, on a appliqué ce même modèle mathématique à des lots de tôles en alliages de type Al-Zn-Mg obtenues par des procédés selon l'état de la technique. La figure 8 montre les valeurs de l'énergie stockée des tôles selon l'invention (avec D ≤ 1 heure) (points ouverts) (« Optimized ») et selon l'état de la technique (avec D ≥ 8 heures) (carrés noirs).
  • On constate que pour une épaisseur comprise entre environ 60 mm et environ 100 mm, l'énergie stockée est maximale. Le procédé selon l'invention conduit, pour une épaisseur donnée, d'une part à une réduction du niveau global de contraintes résiduelles (c'est-à-dire de l'énergie stockée Wtotat) d'environ 50%, et d'autre part à une réduction significative de la dispersion statistique de cette valeur. L'effet de l'invention sur le niveau global de contraintes résiduelles est particulièrement remarquable pour des épaisseurs comprises entre 40 et 150 mm et il encore plus net pour des épaisseurs comprises entre 50 et 100 ou même 80 mm.

Claims (14)

  1. Procédé de fabrication de tôles épaisses, ayant une épaisseur supérieure à 40 mm, en alliage de type Al-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, ledit procédé comprenant le laminage à chaud, la mise en solution, la trempe, la traction contrôlée avec un allongement permanent supérieur à 0,5%, ainsi que le vieillissement,
    caractérisé en ce que le délai D entre la fin de la trempe et le début de la traction contrôlée est inférieur à 1 heure.
  2. Procédé selon la revendication 1, dans lequel le délai D est inférieur à 30 minutes.
  3. Procédé selon les revendications 1 ou 2, dans lequel ledit alliage est sélectionné dans le groupe constitué par les alliages AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175.
  4. Procédé selon une quelconque des revendications 1 à 3, dans lequel ladite tôle a une épaisseur comprise entre 40 et 80 mm.
  5. Procédé selon une quelconque des revendications 1 à 3, dans lequel ladite tôle a une épaisseur comprise entre 40 et 150 mm.
  6. Tôle épaisse, d'épaisseur au moins 60 mm, en alliage de type Al-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, laminée à chaud, mise en solution, trempée, tractionnée avec un allongement permanent supérieur à 0,5%, vieillie,
    caractérisée en ce que son énergie élastique totale est inférieure ou égale à W kJ / m 3 = 0 , 54 + 0 , 013 R p 0 , 2 L MPa - 400 .
    Figure imgb0013
    et en ce que son énergie élastique totale est inférieure à 1,5 kJ/m3.
  7. Tôle selon la revendication 6, caractérisée en ce que son épaisseur est supérieure à 100 mm et son énergie élastique totale est inférieure à 1,0 kJ/m3.
  8. Lot de contrôle ou lot de traitement thermique de tôles épaisses dont l'épaisseur nominale est comprise entre 40 et 100 mm en alliage de type AI-Zn-Cu-Mg comprenant entre 4 et 12% de zinc, moins de 4% de magnésium et moins de 4% de cuivre, éléments mineurs ≤ 0,5% chacun, le reste aluminium, à l'état mis en solution, trempé, tractionné et vieilli, caractérisé en ce que l'énergie élastique totale W (exprimée en kJ/m3) des tôles montre un écart-type inférieur ou égal à 0,20 + 0,0030 (Rp0,2(L)[MPa] - 400) autour d'une valeur moyenne.
  9. Lot de contrôle ou lot de traitement thermique de tôles épaisses selon la revendication 8, caractérisé en ce que ladite valeur moyenne de l'énergie élastique totale est inférieure à W [kJ/m3] = 0,54 + 0,013 (Rp0,2(L)[MPa]- 400).
  10. Lot de contrôle ou lot de traitement thermique de tôles épaisses selon la revendication 9, caractérisé en ce que ladite valeur moyenne de l'énergie élastique totale est inférieure à 3 kJ/m3.
  11. Lot de contrôle ou lot de traitement thermique selon la revendication 9 caractérisé en ce que ladite valeur moyenne de l'énergie élastique totale est inférieure à 2 kJ/m3, et préférentiellement inférieure à 1 kJ/m3.
  12. Lot de contrôle ou lot de traitement thermique selon une quelconque des revendications 9 à 11, caractérisé en ce que les tôles sont en alliage sélectionné dans le groupe composé de AA7010, 7050, 7056, 7449, 7075, 7475, 7150, 7175.
  13. Lot de contrôle ou lot de traitement thermique selon une quelconque des revendications 9 à 12, caractérisé en ce qu'il est constitué d'au moins 3 tôles et préférentiellement d'au moins 5 tôles.
  14. Utilisation de tôles selon une quelconque des revendications 6 à 7 ou d'un lot de contrôle ou d'un lot de traitement thermique de tôles selon une quelconque des revendications 8 à 14 pour la fabrication de pièces usinées.
EP05825980.5A 2004-12-13 2005-12-09 TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES Revoked EP1838891B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413204A FR2879217B1 (fr) 2004-12-13 2004-12-13 Toles fortes en alliage ai-zn-cu-mg a faibles contraintes internes
PCT/FR2005/003090 WO2006064113A1 (fr) 2004-12-13 2005-12-09 TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES

Publications (2)

Publication Number Publication Date
EP1838891A1 EP1838891A1 (fr) 2007-10-03
EP1838891B1 true EP1838891B1 (fr) 2015-12-09

Family

ID=35094196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05825980.5A Revoked EP1838891B1 (fr) 2004-12-13 2005-12-09 TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES

Country Status (5)

Country Link
US (1) US20060151075A1 (fr)
EP (1) EP1838891B1 (fr)
CN (1) CN101076613A (fr)
FR (1) FR2879217B1 (fr)
WO (1) WO2006064113A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835942B2 (en) 2016-08-26 2020-11-17 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879217B1 (fr) 2004-12-13 2007-01-19 Pechiney Rhenalu Sa Toles fortes en alliage ai-zn-cu-mg a faibles contraintes internes
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
US8673209B2 (en) * 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
EP2379765B2 (fr) * 2009-01-16 2016-10-12 Aleris Rolled Products Germany GmbH Procédé de fabrication de produit plat en alliage d'aluminium doté de faibles niveaux de contraintes résiduelles
US9314826B2 (en) 2009-01-16 2016-04-19 Aleris Rolled Products Germany Gmbh Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
CN103725943B (zh) * 2014-01-16 2015-11-18 张霞 一种镁合金薄板及其制备方法
CN103725941B (zh) * 2014-01-16 2016-01-20 南通波斯佳织造科技有限公司 一种经表面处理的镁锌铜合金薄板及其制备方法
GB2527486A (en) 2014-03-14 2015-12-30 Imp Innovations Ltd A method of forming complex parts from sheet metal alloy
JP6406971B2 (ja) 2014-10-17 2018-10-17 三菱重工業株式会社 アルミニウム合金部材の製造方法
US9719150B2 (en) * 2015-01-05 2017-08-01 The Boeing Company Methods of forming a workpiece made of a naturally aging alloy
CN104846302B (zh) * 2015-06-02 2017-01-18 湖南大学 一种保持铝合金强度降低淬火残余应力的时效热处理方法
RU2614321C1 (ru) * 2016-05-04 2017-03-24 Открытое акционерное общество "Композит" (ОАО "Композит") Свариваемый сплав на основе алюминия для противометеоритной защиты
CN106756672B (zh) * 2016-12-07 2018-02-23 北京科技大学 一种提高汽车用Al‑Mg‑Si‑Cu系合金强度的处理方法
EP3559293A4 (fr) * 2016-12-21 2020-05-13 Arconic Technologies LLC Produits d'alliage d'aluminium à teneur élevée en zinc
CN109234653B (zh) * 2018-10-23 2020-07-07 湖南大学 一种消减大型复杂铝合金模锻件残余应力的方法
CN111270114A (zh) * 2020-03-30 2020-06-12 天津忠旺铝业有限公司 一种高强度7150铝合金中厚板的制备工艺
FR3136242B1 (fr) 2022-06-01 2024-05-03 Constellium Valais Tôles pour éléments de chambres à vide en alliage d’aluminium

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR413204A (fr) 1909-12-20 1910-08-03 Pohlig Aktien Ges J Dispositif pour faire monter des wagons de chemins de fer ou analogues sur des rampes
US4511409A (en) 1982-07-02 1985-04-16 Cegedur Societe De Transformation De L'aluminium Pechiney Process for improving both fatigue strength and toughness of high-strength Al alloys
US5277719A (en) 1991-04-18 1994-01-11 Aluminum Company Of America Aluminum alloy thick plate product and method
EP0848073A1 (fr) 1996-12-16 1998-06-17 Hoogovens Aluminium Walzprodukte GmbH Détensionnement d'une pièce en alliage d'aluminium durcissable
US5865911A (en) 1995-05-26 1999-02-02 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
US6027582A (en) 1996-01-25 2000-02-22 Pechiney Rhenalu Thick alZnMgCu alloy products with improved properties
EP1158068A1 (fr) 2000-05-24 2001-11-28 Pechiney Rhenalu Produits épais en alliage d'aluminium durcissable par traitement thermique presentant une ténacité améliorée et procédé de fabriction des ces produits
US6406567B1 (en) 1996-12-16 2002-06-18 Corus Aluminium Walzprodukte Gmbh Stress relieving of an age hardenable aluminium alloy product
US20020121319A1 (en) 2000-12-21 2002-09-05 Chakrabarti Dhruba J. Aluminum alloy products having improved property combinations and method for artificially aging same
US20020162609A1 (en) 2001-02-07 2002-11-07 Timothy Warner Manufacturing process for a high strength work hardened product made of AlZnMgCu alloy
WO2004053180A2 (fr) 2002-12-06 2004-06-24 Pechiney Rhenalu Anticontrainte sur les bords de plaques d'aluminium
WO2006064113A1 (fr) 2004-12-13 2006-06-22 Alcan Rhenalu TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES
US11299683B2 (en) 2017-09-25 2022-04-12 Shu-Min Chen Liquid fuel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715409B1 (fr) * 1994-01-25 1996-05-24 Pechiney Rhenalu Tôles fortes en alliages d'aluminium résistant à la fatigue et procédé d'obtention.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR413204A (fr) 1909-12-20 1910-08-03 Pohlig Aktien Ges J Dispositif pour faire monter des wagons de chemins de fer ou analogues sur des rampes
US4511409A (en) 1982-07-02 1985-04-16 Cegedur Societe De Transformation De L'aluminium Pechiney Process for improving both fatigue strength and toughness of high-strength Al alloys
US5277719A (en) 1991-04-18 1994-01-11 Aluminum Company Of America Aluminum alloy thick plate product and method
US5865911A (en) 1995-05-26 1999-02-02 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
US6027582A (en) 1996-01-25 2000-02-22 Pechiney Rhenalu Thick alZnMgCu alloy products with improved properties
US6406567B1 (en) 1996-12-16 2002-06-18 Corus Aluminium Walzprodukte Gmbh Stress relieving of an age hardenable aluminium alloy product
EP0848073A1 (fr) 1996-12-16 1998-06-17 Hoogovens Aluminium Walzprodukte GmbH Détensionnement d'une pièce en alliage d'aluminium durcissable
EP1158068A1 (fr) 2000-05-24 2001-11-28 Pechiney Rhenalu Produits épais en alliage d'aluminium durcissable par traitement thermique presentant une ténacité améliorée et procédé de fabriction des ces produits
US20020121319A1 (en) 2000-12-21 2002-09-05 Chakrabarti Dhruba J. Aluminum alloy products having improved property combinations and method for artificially aging same
US20020162609A1 (en) 2001-02-07 2002-11-07 Timothy Warner Manufacturing process for a high strength work hardened product made of AlZnMgCu alloy
WO2004053180A2 (fr) 2002-12-06 2004-06-24 Pechiney Rhenalu Anticontrainte sur les bords de plaques d'aluminium
WO2006064113A1 (fr) 2004-12-13 2006-06-22 Alcan Rhenalu TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES
US11299683B2 (en) 2017-09-25 2022-04-12 Shu-Min Chen Liquid fuel

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
"Aerospace Material Specification 4202 for Aluminum Alloy Plate 5.7Zn - 2.2Mg - 1.6Cu - 0.22Cr (7475-T7351", SAE AEROSPACE
"Aluminium et alliages d'aluminium - Produits corroyés - Désignation des états métallurgiques", NORME EUROPEENNE EN 515
"Aluminum and Aluminum Alloys", ASM SPECIALTY HANDBOOK, pages p. 305 and p.317
"Heat Treating", ASM HANDBOOK, vol. 4, 1991
"International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys", UNIFIED NORTH AMERICAN AND INTERNATIONAL REGISTRATION RECORDS, THE ALUMINUM ASSOCIATION, vol. 900, 1998, 19th Street, N.W., Washington , D.C. 20008, pages 27
"Metallic Materials and Elements For Aerospace Vehicle Structures", DEPARTMENT OF DEFENSE HANDBOOK, vol. MIL-HDBK, 31 January 2003 (2003-01-31)
"Metals Handbook", HEAT TREATING, vol. 4, no. Ninth Edition, 1981
A. HYODO ET AL.: "Empenamento em peças usinada a partir de placas laminadas de ligas de aluminio da série 7xxx.", CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIA DOS MATERIALS, vol. 14, 2000, São Pedro-SP, Anais, pages 42801 - 42812
ALEXANDRE HYODO, INFLUENCE OF RESIDUAL STRESS ON THE WARPING OF AIRCRAFT PARTS MACHINED FROM SERIES 7XXX ALUMINIUM ALLOYS ROLLED PLATES, 2002, São Carlos
ALEXANDRE HYODO: "Influencia da tensão residual no empenament de peças aer- onauticas usinadas a partir de placas laminadas de ligas de aluminio da série 7xxx.", THESIS BEFORE THE UNIVERSIDADE FEDERAL DE SÃO CARLOS, 2002, XP055306992
ALUMINUM STANDARDS AND DATA 2003, 2003
DECLARATION BY DR PHILIPPE LEQUEU, 21 April 2009 (2009-04-21)
DECLARATION OF INVENTOR PHILIPPE LEQUEU, WHICH WAS FILED DURING THE EXAMINATION PROCEEDINGS AS X1, 28 November 2013 (2013-11-28)
F. HEYMES ET AL.: "Development of New Al Alloys for Distortion Free Machined Aluminium Aircraft Components", PROCEEDINGS OF THE 1ST INTERNATIONAL NON-FERROUS PROCESSING AND TECHNOLOGY CONFERENCE, 10 March 1997 (1997-03-10), St. Louis, Missouri, XP055307116
F. HEYMES ET AL.: "Development of new Al alloys for distortion free machined aluminium aircraft components.'';", PROCEEDINGS OF THE 1ST INTERNATIONAL NON- FERROUS PROCESSING AND TECHNOLOGY CONFERENCE, March 1997 (1997-03-01), pages 249 - 255
F. HEYMES ET AL.: "Development of New Al Alloys for Distortion Free Machined Aluminum Aircraft Components", PROCEEDINGS OF THE 1ST INTERNATIONAL NON- FERROUS PROCESSING AND TECHNOLOGY CONFERENCE, 10 March 1997 (1997-03-10), St . Louis, Missouri, pages 249 - 255
J. R. DAVIS: "Aluminum and Aluminum Alloys", ASM SPECIALTY HANDBOOK, 1993
J. T. STALEY ET AL.: "Heat Treating Characteristics of High Strength Al-Zn-Mg- Cu Alloys With and Without Silver Additions", METALLURGICAL TRANSACTIONS, 3 January 1972 (1972-01-03), pages 191 - 199, XP008036306, DOI: doi:10.1016/0001-6160(72)90180-0
J.R . DAVIS, ASM SPECIALTY HANDBOOK, ALUMINUM AND ALUMINUM ALLOYS, 1993
J.T. STALEY ET AL.: "Heat treating Characteristics of High Strength Al-Zn-Mg-Cu Alloys With and Without Silver Additions.", METALLURGICAL TRANSACTIONS, vol. 3, January 1972 (1972-01-01), pages 191 - 199, XP055306959
JIN HUANG, THE EFFECT OF PRE-DEFORMATION ON THE AGEING BEHAVIOUR OF 7030.60 AND 7108.82 ALLOYS, March 1999 (1999-03-01)
JOHN E., ALUMINUM - PHYSICAL PROPERTIES AND PHYSICAL METALLURGY, 1984, Ohio
M. B. PRIME ET AL.: "Residual stress, stress relief, and inhomogeneity in aluminum plate", SCRIPTA MATERIALIA, vol. 46, 2002, pages 77 - 82, XP004326269
M. J. KIEMELE ET AL., BASIC STATISTICS - TOOLS FOR CONTINUOUS IMPROVEMENT, 2000, Colorado, USA, XP055307118
MILITARY SPECIFICATION HEAT TREATMENT OF ALUMINUM ALLOYS, MIL-H-6088G, 1 April 1991 (1991-04-01)
P. LEQUEU ET AL.: "Engineering for the future: weight saving and cost reduction initiatives", AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, vol. 73, no. 2, 2001, pages 147 - 159, XP055306971, DOI: doi:10.1108/00022660110386663
P. LEQUEU ET AL.: "Engineering for the future: weight saving and cost reduction initiatives.", AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, vol. 72, no. 2, 2001, pages 147 - 159, XP055306971
P. LEQUEU ET AL.: "Engineering for the future: weight saving and cost reduction initiatives'';", AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, vol. 73, no. 2, 2001, pages 147 - 159, XP055306971
PRODUCTION PART APPROVAL PROCESS PPAP, 2000
Q. WANG ET AL.: "Evaluation of residual stress relief of aluminum alloy 7050 by using crack compliance method.", TRANS. NONFERROUS MET. SOC. CHINA, vol. 13, no. 5, October 2003 (2003-10-01), pages 1190 - 1193, XP055306962
Q.WANG ET AL.: "Control and relief of residual stress in high-strength aluminum parts for aerospace industry.", JOURNAL OF AERONAUTICAL MATERIALS, vol. 11, no. 3, September 2002 (2002-09-01), pages 59 - 62, XP055306969
R. V. LENTH: "Some practical guidelines for effective sample size determination", THE AMERICAN STATISTICIAN, vol. 55, no. 3, 2001, pages 187 - 193, XP055307002
R.E. DAVIES ET AL.: "Design Mechanical Properties, Fracture Toughness, Fatigue Properties, Exfoliation and Stress-Corrosion Resistance of 7050 Sheet, Plate", HAND FORGINGS AND EXTRUSIONS, July 1975 (1975-07-01)
R.V. LENTH: "Some practical guidelines for effective sample size determination.", THE AMERICAN STATISTICIAN, vol. 55, no. 3, August 2001 (2001-08-01), pages 187 - 193, XP055307002
TRANSLATION INTO ENGLISH OF D8A

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835942B2 (en) 2016-08-26 2020-11-17 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components

Also Published As

Publication number Publication date
FR2879217B1 (fr) 2007-01-19
FR2879217A1 (fr) 2006-06-16
US20060151075A1 (en) 2006-07-13
EP1838891A1 (fr) 2007-10-03
WO2006064113A1 (fr) 2006-06-22
CN101076613A (zh) 2007-11-21

Similar Documents

Publication Publication Date Title
EP1838891B1 (fr) TOLES FORTES EN ALLIAGE Al-Zn-Cu-Mg A FAIBLES CONTRAINTES INTERNES
EP1809779B1 (fr) Produits en alliage d &#39; aluminium a haute tenacite et procede d &#39; elaboration
EP3124633B1 (fr) Pièce de suspension et son procédé de production
FR2907796A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
EP2288738B1 (fr) Produit d&#39;alliage al-zn-mg avec une sensibilité à la trempe réduite
FR2907466A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
EP2710163B1 (fr) Alliage aluminium magnésium lithium à ténacité améliorée
CA2649571C (fr) Procede de fabrication d&#39;un element de structure pour construction aeronautique comprenant un ecrouissage differentiel
EP2652163B1 (fr) Produits epais en alliage 7xxx et procede de fabrication
JP7282106B2 (ja) 耐疲労破壊性を向上させた7xxxシリーズアルミ合金プレート製品の製造方法
EP0876514B1 (fr) PRODUITS EPAIS EN ALLIAGE A1ZnMgCu A PROPRIETES AMELIOREES
EP2981632B1 (fr) Tôles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
JP2013525608A (ja) 階層状の微細構造を有する損傷耐性アルミ材
KR102494375B1 (ko) 알루미늄 합금 압연 제품의 제조 방법
EP1904659A1 (fr) Produit d&#39;alliage d&#39;aluminium corroye de serie aa7000 et procede de production de celui-ci
EP1644546B1 (fr) Utilisation de tubes en alliages al-zn-mg-cu ayant un compromis ameliore entre des caracteristiques mecaniques statiques et la tolerance aux dommages
EP3635146B1 (fr) Alliage d&#39;aluminium comprenant du lithium a proprietes en fatigue ameliorees
EP1544315A1 (fr) Produit corroyé et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg
JP2001059124A (ja) 外観品質の優れたAl−Mg−Si系アルミニウム合金冷間鍛造品及びその製造方法
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
EP2113576A1 (fr) Procédé de fabrication d&#39;un matériau de construction à partir d&#39;un alliage à base d&#39;aluminium contenant du magnésium
WO2024018147A1 (fr) Procédé de fabrication d&#39;une tôle en alliage d&#39;aluminium 7xxx et tôle en alliage d&#39;aluminium 7xxx
WO2017064407A1 (fr) Toles minces en alliage aluminium-magnesium-zirconium pour applications aerospatiales

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

17Q First examination report despatched

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005048075

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22F0001053000

Ipc: C22F0001050000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 21/10 20060101AFI20150423BHEP

Ipc: C22F 1/05 20060101ALI20150423BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/05 20060101AFI20150511BHEP

Ipc: C22C 21/10 20060101ALI20150511BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150701

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 764610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005048075

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 764610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160310

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602005048075

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160411

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602005048075

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: ALERIS ROLLED PRODUCTS GERMANY GMBH

Effective date: 20160902

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: WITTMANN, ERNST ULRICH

Effective date: 20160830

Opponent name: ALCOA INC.

Effective date: 20160909

R26 Opposition filed (corrected)

Opponent name: ALERIS ROLLED PRODUCTS GERMANY GMBH

Effective date: 20160902

Opponent name: WITTMANN, ERNST ULRICH

Effective date: 20160830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151209

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161227

Year of fee payment: 12

Ref country code: GB

Payment date: 20161228

Year of fee payment: 12

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161227

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161229

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151209

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 602005048075

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 602005048075

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20180113

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20180113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20151209

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20151209