EP2652163B1 - 7xxx alloy thick products and their process of manufacture - Google Patents

7xxx alloy thick products and their process of manufacture Download PDF

Info

Publication number
EP2652163B1
EP2652163B1 EP11808242.9A EP11808242A EP2652163B1 EP 2652163 B1 EP2652163 B1 EP 2652163B1 EP 11808242 A EP11808242 A EP 11808242A EP 2652163 B1 EP2652163 B1 EP 2652163B1
Authority
EP
European Patent Office
Prior art keywords
block
hours
temperature
solution
nsr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11808242.9A
Other languages
German (de)
French (fr)
Other versions
EP2652163A1 (en
Inventor
Cédric GASQUERES
Jean-Etienne Fournier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Valais AG
Constellium Issoire SAS
Original Assignee
Constellium Valais AG
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Valais AG, Constellium Issoire SAS filed Critical Constellium Valais AG
Priority to PL11808242T priority Critical patent/PL2652163T3/en
Publication of EP2652163A1 publication Critical patent/EP2652163A1/en
Application granted granted Critical
Publication of EP2652163B1 publication Critical patent/EP2652163B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • the present invention generally relates to aluminum alloy products and, more particularly, to such thick 7xxx alloy products, their methods of manufacture and use.
  • Thick aluminum blocks are also useful in the field of mechanical engineering.
  • notch resistance is an important property of use for these products and it can be characterized for example by the NSR, which is the ratio between the elastic limit and the mechanical strength in the presence of a notch (" Sharp-Notch Strength-to-Yield Strength Ratio ") measured according to ASTM-E602.
  • NSR the ratio between the elastic limit and the mechanical strength in the presence of a notch
  • Sharp-Notch Strength-to-Yield Strength Ratio the ratio between the elastic limit and the mechanical strength in the presence of a notch
  • a product is said to be quench sensitive if its static mechanical characteristics, such as its yield strength, decrease as the quenching rate decreases.
  • the quenching rate is the average cooling rate of the product during quenching.
  • the thick blocks should also preferably have low residual stresses. Indeed, the residual stresses cause deformations during the machining which affect the geometry of the mold.
  • the residual stresses can be measured for example by the method described in the patent application WO 2004/053180 .
  • low residual stresses we typically mean a W Tbar value of less than 4 kJ / m 3 , and in general of the order of 2 kJ / m 3
  • the thick blocks must be obtained with a process as fast and economical as possible.
  • the patent EP1587965 discloses an alloy useful for the manufacture of thick blocks, composition (in% by weight) 4.6-5.2% Zn; 2.6-3.0% Mg; 0.1-0.2% Cu; 0.05-0.2% Zr; not more than 0.05% Mn; not more than 0.05% Cr; not more than 0.15% Fe; not more than 0.15% Si; not more than 0.10% Ti and a method of manufacturing these blocks, in which the ingot obtained by continuous casting is used directly as a block.
  • VMRBA The patent application FR 2,341,661 (VMRBA) describes a composition alloy (in% by weight) 4.0-6.2% Zn, 0.8-3.0% Mg, 0-1.5% Cu, 0.05 - 0.30% Zr, 0 - 0.20% Fe, 0-0.15% Si, 0-0.25% Mn, 0-0.10% Ti intended to be forged or kneaded by hot deformation and to be used for construction vehicles, machinery, equipment tanks and tools.
  • the patent application JP81144031 discloses an alloy composition (in% by weight) 4.0-6.5% Zn, 0.4-1.8% Mg, 0.1-0.5% Cu, 0.1-0.5% Zr, and additionally 0.05-0.20% Mn and / or 0.05-0.20% Cr, for the production of tubes.
  • the problem solved by the present invention is to obtain thick aluminum blocks having an improved property compromise between the static mechanical characteristics and the notch resistance, having a low level of residual stresses, by a rapid process. and economic.
  • Yet another object of the invention is the use of a thick block according to the invention for the manufacture of mold for injection of plastics.
  • Figure 1 Compromise obtained between the elastic limit R P.0,2 and the parameter called NSR ("Sharp-Notch Strength-to-Yield Strength Ratio"), which is the ratio of the notched specimen mechanical strength and the elastic limit R P0,2 .
  • NSR Sharpp-Notch Strength-to-Yield Strength Ratio
  • the static mechanical characteristics in other words the ultimate ultimate tensile strength R m , the tensile yield strength R p0,2 and the elongation at break A, are determined by a tensile test. according to standard EN 10002-1 or NF EN ISO 6892-1, the location to which the parts are taken and their meaning being defined by the EN 485-1 standard.
  • the notched specimen mechanical strength is obtained in accordance with ASTM E602-03.
  • the so-called NSR ratio between notched specimen strength and yield strength R P0.2 (“Sharp-Notch Strength-to-Yield Strength Ratio" is calculated. report gives an indication of the notch resistance of the sample.
  • the problem is solved by an alloy comprising (in% by weight); Zn : 5.4 - 5.8 % , mg : 0.8 - 1.8 % Cu : ⁇ 0.2 % , Zr : 0.05 - 0.08 % , Ti ⁇ 0.15 % , mn ⁇ 0.1 % , Cr ⁇ 0.1 % , Yes ⁇ 0.15 % , Fe ⁇ 0.20 % , impurities with an individual content ⁇ 0.05% each and ⁇ 0.15% in total, remains aluminum.
  • the combination of the zinc content of 5.4 - 5.8% by weight, the magnesium content of 0.8 to 1.8% and the copper content of less than 0.2% by weight makes it possible to achieve an improved compromise between mechanical strength and notch resistance.
  • the preferred magnesium content is 1.0 to 1.4% by weight or even 1.1 to 1.3% by weight.
  • the preferred copper content is less than 0.05% by weight or even less than 0.04% by weight.
  • the zirconium content is 0.05 to 0.08% by weight, so as to further reduce the quenching sensitivity of the thick aluminum blocks.
  • the titanium content is less than 0.15% by weight.
  • an amount of titanium of between 0.01 and 0.05% by weight and preferably between 0.02 and 0.04% by weight is added in order to refine the grain size during casting.
  • the Cr content and the Mn content are less than 0.1%.
  • the Cr content is less than 0.05% by weight or even less than 0.03% by weight, and / or the Mn content is less than 0.05% by weight or even less than 0, 03% by weight, which allows in particular to further reduce the sensitivity to quenching thick aluminum blocks.
  • Si and Fe are unavoidable impurities whose content is to be minimized so as in particular to improve the mechanical strength on the notched specimen.
  • the Fe content is less than 0.20% by weight and preferably less than 0.15% by weight.
  • the Si content is less than 0.15% by weight and preferably less than 0.10% by weight.
  • the casting of the thick block is preferably carried out by semi-continuous casting with direct cooling ("Direct Chill Casting").
  • the thick block has a thickness greater than 350 mm, and preferably greater than 450 mm or even greater than 550 mm.
  • the block is essentially parallelepipedal in shape, it generally has a larger dimension (length), a second larger dimension (width) and a smaller dimension (thickness).
  • the block may optionally then be homogenized, typically by a heat treatment at a temperature between 450 and 550 ° C for a period of 10 minutes to 30 hours and / or undergo a flash treatment at a temperature between 300 and 400 ° C for a period of 10 minutes to 30 hours followed by cooling to a temperature below 100 ° C.
  • the block is then put into solution, that is to say heat-treated so that the block temperature reaches 500 to 560 ° C for a period of between 10 minutes and 5 hours, or even 20 hours.
  • This heat treatment can be carried out at a constant temperature or in several stages.
  • the block After dissolution, the block is cooled to a temperature below 100 ° C, preferably to room temperature.
  • the cooling rate is at least 800 ° C / h.
  • Such a cooling rate can be obtained by spraying or immersion in water. Since a cooling rate that is too high can generate excessive residual stresses in the blocks, water is preferably used at a temperature of at least 50.degree. C. and preferably at least 70.degree. C. for cooling.
  • the block thus hardened is stripped, preferably by cold compression with a permanent deformation rate of between 1% and 5% and preferably between 2 and 4%. The stress relieving allows to reduce the residual stresses in the metal and to avoid the deformations during the machining.
  • the income is made so that the block reaches a temperature of 120 and 170 ° C and preferably between 130 and 160 ° C for a period of 4 to 48 hours and preferably between 8 and 24 hours.
  • an income is achieved to reach the T6 or T652 state, corresponding to the peak of the static mechanical properties (Rm and Rp0,2).
  • said block does not undergo between the casting and the significant deformation step income by wrought.
  • wrought is typically meant rolling operations or hot forging.
  • significant deformation is meant that none of the dimensions of the cast block - which is a thick block of substantially parallelepiped shape (length L, width TL, thickness TC) - undergoes significant modification, that is to say typically at least about 10%, by heat treatment between casting and income.
  • the thick blocks obtained by the process according to the invention have a compromise of advantageous properties, in particular between the elastic limit and the notch resistance, which are two antagonistic properties (the more important one is, the more other is weak). More specifically, the Applicant has found that for a thick block of an alloy having the composition according to the invention and having been obtained by following the claimed process steps until the income (casting, homogenization and stress relief optional, dissolution and quenching without significant wrought between the casting and the final step of income), regardless of the income treatment (mono- or multi-level) subsequently carried out to reach a given elastic limit Rp0.2, the NSR (“Sharp-Notch Strength-to-Yield Strength Ratio") parameter used to characterize the notch resistance of the block thus obtained, reaches a value that does not depend on the income treatment performed to obtain the targeted Rp02. For such thick blocks, a relationship between the RpO 2 and the NSR measured for example at 1 ⁇ 4 of the thickness can therefore be established, and this relationship appears to be substantially linear.
  • the NSR
  • the Applicant has been able to establish that the notch resistance, as evaluated at 1 ⁇ 4 thickness in the TL direction by the NSR (measured according to ASTM E602-03, paragraph 9.2) is greater than: - 0,017 * R p 0.2 + 6.7.
  • the NSR is at least 0.8, preferably 1.0, and the yield strength is at least 320 MPa and preferably 330 MPa.
  • Table 1 Chemical composition (% by weight) ⁇ / u> Reference Yes Fe Cu mn mg Zn Zr Cr Ti AT 0.05 0.08 0.02 0.01 1.2 5.7 0.08 ⁇ 0.01 0.04 B 0.05 0.08 0.03 ⁇ 0.01 1.2 5.6 0.08 ⁇ 0.01 0.04 VS 0.05 0.13 0.2 0.01 2.8 4.9 0.09 ⁇ 0.01 0.03 D 0.08 0.04 0.6 ⁇ 0.01 2.2 6.3 0.10 ⁇ 0.01 0.03
  • Alloys A, B, C and D were cast as blocks of thickness 625 mm.
  • the blocks of alloys A and C were transformed as follows: the blocks were first homogenized at 10h 480 ° C. The blocks were then dissolved for 4 hours at 540 ° C. and air-cooled at approximately 40 ° C./h (from 540 ° C. to 410 ° C. in 2 hours and then from 410 ° C. to 90 ° C. in 9 hours). ). The blocks were then first treated at 105 ° C for about 12 hours and then at 160 ° C for about 16 hours.
  • the alloy blocks B and D were transformed as follows: the blocks first underwent a 2 hour expansion at 350 ° C. After being dissolved for 4 hours at 540 ° C. (Block B) or 10 hours at 475 ° C. (Block D), the blocks were cooled with water at 80 ° C. by immersion. The blocks then underwent compression straightening of 3%. The alloy blocks B were then tempered at 130 ° C for 24 h (block B1) or 150 ° C for 16 h (block B2). The alloy block D was first treated at 90 ° C for 8 to 12 hours and then at 160 ° C for 14 to 16 hours.
  • the Figure 1 presents the compromise obtained between the elastic limit R P0,2 and the report called “Sharp-Notch Strength-to-Yield Strength Ratio", known under the abbreviation "NSR" and commonly used to characterize the sensitivity to the effect notch of a material.
  • NSR Storage-Notch Strength-to-Yield Strength Ratio
  • this parameter is the ratio between the mechanical strength measured on notched specimen and the elastic limit measured on non-notched specimen.
  • ASTM E602-03 particularly in section 9.2.
  • the alloy A allows, with respect to the alloy C, a simultaneous improvement in the yield strength and in the NSR ratio, and thus in the notch strength.
  • the NSR report obtained is greater than -0.017 R p0.2 + 6.4.
  • the process for converting the alloy according to the invention makes it possible to further improve the NSR ratio.
  • the alloy block B according to the invention has an NSR ratio greater than -0.017 * R p0.2 + 6.7.

Description

Domaine de l'inventionField of the invention

La présente invention concerne en général des produits en alliage d'aluminium et, plus particulièrement, de tels produits épais en alliage 7xxx, leurs procédés de fabrication et d'utilisation.The present invention generally relates to aluminum alloy products and, more particularly, to such thick 7xxx alloy products, their methods of manufacture and use.

Etat de la techniqueState of the art

Dans le domaine des matières plastiques obtenues par injection, il existe une demande croissante pour des produits de grande dimension. De façon à réaliser les moules permettant de fabriquer ces produits de grande dimension, il est nécessaire d'utiliser des blocs épais, c'est-à-dire dont l'épaisseur est supérieure à 350 mm, et de préférence supérieure à 450 mm ou même supérieure à 550 mm. Par bloc, on entend un produit massif, de forme essentiellement parallélépipédique.In the field of plastics obtained by injection, there is a growing demand for large products. In order to produce the molds making it possible to manufacture these large products, it is necessary to use thick blocks, that is to say ones whose thickness is greater than 350 mm, and preferably greater than 450 mm or even greater than 550 mm. By block, we mean a massive product, essentially parallelepiped shape.

Les blocs épais en aluminium sont également utiles dans le domaine de l'ingénierie mécanique.Thick aluminum blocks are also useful in the field of mechanical engineering.

Les caractéristiques recherchées pour les blocs épais en aluminium destinés à la fabrication de moules sont des caractéristiques mécaniques statiques, telles que la limite d'élasticité ou la résistance à rupture, élevées ainsi qu'une bonne résistance à l'entaille, ces propriétés étant en général antinomiques. Ainsi la résistance à l'entaille est une propriété d'usage importante pour ces produits et elle peut être caractérisée par exemple par le NSR, qui est le rapport entre la limite d'élasticité et la résistance mécanique en présence d'une entaille (« Sharp-Notch Strength-to-Yield Strength Ratio ») mesuré selon la norme ASTM-E602. Pour les produits épais, ces propriétés doivent en particulier être obtenues à quart et/ou à mi-épaisseur et les produits doivent donc avoir une faible sensibilité à la trempe. On dit qu'un produit est sensible à la trempe si ses caractéristiques mécaniques statiques, telles que sa limite élastique, décroissent lorsque la vitesse de trempe décroît. La vitesse de trempe est la vitesse de refroidissement moyenne du produit au cours de la trempe.The characteristics required for the thick aluminum blocks for the manufacture of molds are static mechanical characteristics, such as the yield strength or the breaking strength, high as well as a good notch resistance, these properties being in good condition. general antinomies. Thus notch resistance is an important property of use for these products and it can be characterized for example by the NSR, which is the ratio between the elastic limit and the mechanical strength in the presence of a notch (" Sharp-Notch Strength-to-Yield Strength Ratio ") measured according to ASTM-E602. For thick products, these properties must in particular be obtained at quarter and / or at mid-thickness and the products must therefore have a low sensitivity to quenching. A product is said to be quench sensitive if its static mechanical characteristics, such as its yield strength, decrease as the quenching rate decreases. The quenching rate is the average cooling rate of the product during quenching.

Les blocs épais doivent aussi de préférence avoir de faibles contraintes résiduelles. En effet, les contraintes résiduelles provoquent des déformations lors de l'usinage qui affectent la géométrie du moule. Les contraintes résiduelles peuvent être mesurées par exemple par la méthode décrite dans la demande de brevet WO 2004/053180 . Par faibles contraintes résiduelles on entend typiquement une valeur WTbar inférieure à 4 kJ/m3, et en général de l'ordre de 2 kJ/m3 The thick blocks should also preferably have low residual stresses. Indeed, the residual stresses cause deformations during the machining which affect the geometry of the mold. The residual stresses can be measured for example by the method described in the patent application WO 2004/053180 . By low residual stresses we typically mean a W Tbar value of less than 4 kJ / m 3 , and in general of the order of 2 kJ / m 3

Enfin, les blocs épais doivent être obtenus avec un procédé aussi rapide et économique que possible.Finally, the thick blocks must be obtained with a process as fast and economical as possible.

Le brevet EP1587965 (Alcan) décrit un alliage utile pour la fabrication de blocs épais, de composition (en % en poids) 4.6-5.2 % Zn; 2.6-3.0 % Mg; 0.1-0.2 % Cu; 0.05-0.2 % Zr; pas plus de 0.05 % Mn; pas plus de 0.05 % Cr; pas plus de 0.15 % Fe; pas plus de 0.15 % Si; pas plus de 0.10 % Ti et un procédé de fabrication de ces blocs, dans lequel on utilise directement comme bloc le lingot obtenu par coulée continue.The patent EP1587965 (Alcan) discloses an alloy useful for the manufacture of thick blocks, composition (in% by weight) 4.6-5.2% Zn; 2.6-3.0% Mg; 0.1-0.2% Cu; 0.05-0.2% Zr; not more than 0.05% Mn; not more than 0.05% Cr; not more than 0.15% Fe; not more than 0.15% Si; not more than 0.10% Ti and a method of manufacturing these blocks, in which the ingot obtained by continuous casting is used directly as a block.

La demande internationale WO 2008/005852 (Alcan) décrit un alliage utile pour les produits très épais comprenant (en % en poids) 6 à 8% de zinc, 1 à 2% de magnésium, des éléments formant des dispersoïdes tels que Zr, Mn, Cr, Ti et/ou Sc.International demand WO 2008/005852 (Alcan) discloses an alloy useful for very thick products comprising (in% by weight) 6 to 8% of zinc, 1 to 2% of magnesium, dispersoid-forming elements such as Zr, Mn, Cr, Ti and / or sc.

Des alliages de composition voisine sont également connus pour d'autres applications. Sont par exemple enregistrés auprès de l'Aluminium Association:

  • l'alliage 7003 qui a la composition suivante:
    5,0 % - 6,5 % Zn; 0,50-1,0 % Mg; 0.05-0,25 % Zr; 0-0,20 % Cu; 0-0,35 % Fe; 0-0,30 % Si; 0-0,30% Mn; 0-0,20% Cr; 0-0,20 % Ti; balance Al avec impuretés inévitables <0,05 %, total <0,15%
  • l'alliage 7021 qui a la composition suivante:
    5,0 % - 6,0 % Zn; 1,2-1,8 % Mg; 0.08-0,18 % Zr; 0-0,25 % Cu; 0-0,40 % Fe; 0-0,25 % Si; 0-0,10% Mn; 0-0,05% Cr; 0-0,10 % Ti; balance Al avec impuretés inévitables <0,05 %, total <0,15%
Alloys of similar composition are also known for other applications. For example, they are registered with the Aluminum Association:
  • the alloy 7003 which has the following composition:
    5.0% - 6.5% Zn; 0.50-1.0% Mg; 0.05-0.25% Zr; 0-0.20% Cu; 0-0.35% Fe; 0-0.30% Si; 0-0.30% Mn; 0-0.20% Cr; 0-0.20% Ti; Al balance with unavoidable impurities <0.05%, total <0.15%
  • alloy 7021 which has the following composition:
    5.0% - 6.0% Zn; 1.2-1.8% Mg; 0.08-0.18% Zr; 0-0.25% Cu; 0-0.40% Fe; 0-0.25% Si; 0-0.10% Mn; 0-0.05% Cr; 0-0.10% Ti; Al balance with unavoidable impurities <0.05%, total <0.15%

Le brevet US 3,852,122 (Ardal) décrit un alliage de composition (en % en poids) 4.5 - 5.8% Zn, 1,0 - 1,8% Mg, 0,10 - 0,30% Zr, 0-0,30% Fe, 0-0,15% Si, 0-0,25% Mn destiné à réaliser des produits longs utilisables pour la fabrication de pare-chocs, des pièces de structure et également des pièces utilisées pour la fabrication, le stockage et le transport des gaz à l'état condensé.The patent US 3,852,122 (Ardal) describes an alloy of composition (in% by weight) 4.5 - 5.8% Zn, 1.0 - 1.8% Mg, 0.10 - 0.30% Zr, 0-0.30% Fe, 0- 0.15% Si, 0-0.25% Mn intended to produce long products usable for the manufacture of bumpers, structural parts and also parts used for the manufacture, storage and transport of gases in the condensed state.

La demande de brevet FR 2 341 661 (VMRBA) décrit un alliage de composition (en % en poids) 4,0-6,2% Zn, 0,8-3,0% Mg, 0-1,5% Cu, 0,05 - 0,30% Zr, 0 - 0,20% Fe, 0-0,15% Si, 0-0,25% Mn, 0-0,10% Ti destiné à être forgé ou pétri par déformation à chaud et à être utilisé pour la construction de véhicules, de machines, de réservoirs d'appareils et d'outillages.The patent application FR 2,341,661 (VMRBA) describes a composition alloy (in% by weight) 4.0-6.2% Zn, 0.8-3.0% Mg, 0-1.5% Cu, 0.05 - 0.30% Zr, 0 - 0.20% Fe, 0-0.15% Si, 0-0.25% Mn, 0-0.10% Ti intended to be forged or kneaded by hot deformation and to be used for construction vehicles, machinery, equipment tanks and tools.

La demande de brevet JP81144031 (Furukawa) décrit un alliage de composition (en % en poids) 4.0-6.5% Zn, 0.4-1.8% Mg, 0.1-0.5% Cu, 0.1-0.5% Zr, et de façon additionnelle 0.05-0.20% Mn et/ou 0.05-0.20% Cr, pour la production de tubes.The patent application JP81144031 (Furukawa) discloses an alloy composition (in% by weight) 4.0-6.5% Zn, 0.4-1.8% Mg, 0.1-0.5% Cu, 0.1-0.5% Zr, and additionally 0.05-0.20% Mn and / or 0.05-0.20% Cr, for the production of tubes.

Le problème que cherche à résoudre la présente invention est d'obtenir des blocs d'aluminium épais présentant un compromis de propriétés amélioré entre les caractéristiques mécaniques statiques et la résistance à l'entaille, ayant un faible niveau de contraintes résiduelles, par un procédé rapide et économique.The problem solved by the present invention is to obtain thick aluminum blocks having an improved property compromise between the static mechanical characteristics and the notch resistance, having a low level of residual stresses, by a rapid process. and economic.

Objet de l'inventionObject of the invention

L'objet de l'invention est un procédé de fabrication d'un bloc d'aluminium dont l'épaisseur est supérieure à 350 mm comprenant les étapes de : (a) coulée d'un bloc épais en alliage d'aluminium comprenant (en % en poids): Zn: 5,4-5,8%, Mg: 0,8 - 1,8 %, Cu : < 0,2 %, Zr: 0,05 - 0,08 %, Ti: < 0,15 %, Mn: < 0,1 %, Cr: < 0,1 %, Si: < 0,15 %, Fe: < 0,20 %, impuretés ayant une teneur individuelle < 0,05 % chacune et < 0,15% au total, reste aluminium;

  • (b) optionnellement, homogénéisation à une température comprise entre 450 et 550 °C pendant une durée de 10 minutes à 30 heures et/ou détente à une température comprise entre 300 et 400 °C pendant une durée de 10 minutes à 30 heures suivi d'un refroidissement jusqu'à une température inférieure à 100 °C;
  • (c) mise en solution dudit bloc coulé à une température de 500 à 560°C pendant 10 mn à 20 heures,
  • (d) refroidissement dudit bloc mis en solution jusqu'à une température inférieure à 100 °C réalisé avec une vitesse de refroidissement au moins égale à 800 °C/h puis détensionnement du bloc ainsi mis en solution et refroidi par une compression contrôlée avec une déformation permanente comprise entre 1% et 5%;
  • (e) revenu dudit bloc mis en solution et refroidi, par chauffage à 120 à 170°C pendant 4 à 48 heures,
dans lequel aucune des dimensions dudit bloc coulé ne subit de déformation d'au moins 10% par corroyage entre les étapes de coulée et de revenu.The object of the invention is a method of manufacturing an aluminum block having a thickness greater than 350 mm comprising the steps of: (a) casting a thick aluminum alloy block comprising (in % by weight): Zn: 5.4-5.8%, Mg: 0.8-1.8%, Cu: <0.2%, Zr: 0.05-0.08%, Ti: <0 , 15%, Mn: <0.1%, Cr: <0.1%, Si: <0.15%, Fe: <0.20%, impurities with an individual content <0.05% each and <0 15% in total remains aluminum;
  • (b) optionally, homogenizing at a temperature between 450 and 550 ° C for a period of 10 minutes to 30 hours and / or expansion at a temperature between 300 and 400 ° C for a period of 10 minutes to 30 hours followed by cooling to a temperature below 100 ° C;
  • (c) dissolving said cast block at a temperature of 500 to 560 ° C for 10 minutes to 20 hours,
  • (d) cooling said block in solution to a temperature below 100 ° C achieved with a cooling rate of at least 800 ° C / h and then stress relieving the block so dissolved and cooled by a controlled compression with a permanent deformation of between 1% and 5%;
  • (e) returning said block dissolved and cooled, by heating at 120 to 170 ° C for 4 to 48 hours,
wherein none of the dimensions of said cast block undergo deformation of at least 10% by wrought between casting and tempering steps.

Un autre objet de l'invention est un bloc épais d'aluminium susceptible d'être obtenu par le procédé selon l'invention caractérisé en ce que, à ¼ épaisseur dans la direction TL, la limite d'élasticité RP0,2 et le rapport appelé NSR entre la résistance mécanique sur éprouvette entaillée et la limite d'élasticité RP0,2 mesuré selon la norme ASTM E602-03, paragraphe 9.2 sont tels que: NSR > 0,017 * R p 0,2 + 6,7

Figure imgb0001
et

  • Rp0,2 > 320 MPa, de préférence 330 MPa
    et/ou
  • NSR > 0,8, de préférence 1,0.
Another object of the invention is a thick block of aluminum obtainable by the process according to the invention, characterized in that, at ¼ thickness in the direction TL, the elastic limit R P0,2 and the NSR report between the notched specimen mechanical strength and the elastic limit R P0.2 measured according to ASTM E602-03, paragraph 9.2 are such that: NSR > - 0,017 * R p 0.2 + 6.7
Figure imgb0001
and
  • R p0.2 > 320 MPa, preferably 330 MPa
    and or
  • NSR> 0.8, preferably 1.0.

Encore un autre objet de l'invention est l'utilisation d'un bloc épais selon l'invention pour la fabrication de moule pour injection des plastiques.Yet another object of the invention is the use of a thick block according to the invention for the manufacture of mold for injection of plastics.

Description des figuresDescription of figures

Figure 1 : Compromis obtenu entre la limite d'élasticité RP.0,2 et le paramètre appelé NSR (« Sharp-Notch Strength-to-Yield Strength Ratio »), qui est le rapport entre la résistance mécanique sur éprouvette entaillée et la limite d'élasticité RP0,2. Figure 1 : Compromise obtained between the elastic limit R P.0,2 and the parameter called NSR ("Sharp-Notch Strength-to-Yield Strength Ratio"), which is the ratio of the notched specimen mechanical strength and the elastic limit R P0,2 .

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The definitions of the metallurgical states are given in the European standard EN 515.

Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture ultime Rm, la limite d'élasticité en traction Rp0,2 et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1 ou NF EN ISO 6892-1, l'emplacement auquel les pièces sont prises et leur sens étant définis par la norme EN 485-1. La résistance mécanique sur éprouvette entaillée est obtenue conformément à la norme ASTM E602-03. Conformément à la norme E602-03, paragraphe 9.2, on calcule le rapport appelé NSR entre la résistance mécanique sur éprouvette entaillée et la limite d'élasticité RP0,2 (« Sharp-Notch Strength-to-Yield Strength Ratio »), ce rapport donne une indication de la résistance à l'entaille de l'échantillon.Unless otherwise stated, the static mechanical characteristics, in other words the ultimate ultimate tensile strength R m , the tensile yield strength R p0,2 and the elongation at break A, are determined by a tensile test. according to standard EN 10002-1 or NF EN ISO 6892-1, the location to which the parts are taken and their meaning being defined by the EN 485-1 standard. The notched specimen mechanical strength is obtained in accordance with ASTM E602-03. In accordance with E602-03, paragraph 9.2, the so-called NSR ratio between notched specimen strength and yield strength R P0.2 ("Sharp-Notch Strength-to-Yield Strength Ratio") is calculated. report gives an indication of the notch resistance of the sample.

Le problème posé est résolu grâce à un alliage comprenant (en % en poids) ; Zn : 5,4 5,8 % ,

Figure imgb0002
Mg : 0,8 1,8 %
Figure imgb0003
Cu : < 0,2 % ,
Figure imgb0004
Zr : 0,05 0,08 % ,
Figure imgb0005
Ti < 0,15 % ,
Figure imgb0006
Mn < 0,1 % ,
Figure imgb0007
Cr < 0,1 % ,
Figure imgb0008
Si < 0,15 % ,
Figure imgb0009
Fe < 0,20 % ,
Figure imgb0010
impuretés ayant une teneur individuelle < 0,05 % chacune et < 0,15% au total, reste aluminium.The problem is solved by an alloy comprising (in% by weight); Zn : 5.4 - 5.8 % ,
Figure imgb0002
mg : 0.8 - 1.8 %
Figure imgb0003
Cu : < 0.2 % ,
Figure imgb0004
Zr : 0.05 - 0.08 % ,
Figure imgb0005
Ti < 0.15 % ,
Figure imgb0006
mn < 0.1 % ,
Figure imgb0007
Cr < 0.1 % ,
Figure imgb0008
Yes < 0.15 % ,
Figure imgb0009
Fe < 0.20 % ,
Figure imgb0010
impurities with an individual content <0.05% each and <0.15% in total, remains aluminum.

La combinaison de la teneur en zinc de 5,4 - 5,8% en poids, de la teneur en magnésium de 0,8 à 1,8 % et de la teneur en cuivre inférieure à 0,2% en poids permet d'atteindre un compromis amélioré entre la résistance mécanique et la résistance à l'entaille. La teneur préféré en magnésium est de 1,0 à 1,4 % en poids ou même de 1,1 à 1,3 % en poids. La teneur préférée en cuivre est inférieure à 0,05 % en poids ou même inférieure à 0,04 % en poids.The combination of the zinc content of 5.4 - 5.8% by weight, the magnesium content of 0.8 to 1.8% and the copper content of less than 0.2% by weight makes it possible to achieve an improved compromise between mechanical strength and notch resistance. The preferred magnesium content is 1.0 to 1.4% by weight or even 1.1 to 1.3% by weight. The preferred copper content is less than 0.05% by weight or even less than 0.04% by weight.

La teneur en zirconium est de 0,05 à 0,08% en poids, de façon notamment à diminuer encore la sensibilité à la trempe des blocs épais en aluminium.The zirconium content is 0.05 to 0.08% by weight, so as to further reduce the quenching sensitivity of the thick aluminum blocks.

La teneur en titane est inférieure à 0,15 % en poids. De façon avantageuse, une quantité de titane comprise entre 0,01 et 0,05% en poids et préférentiellement comprise entre 0,02 et 0,04% en poids est ajoutée de façon à affiner la taille de grain lors de la coulée.The titanium content is less than 0.15% by weight. Advantageously, an amount of titanium of between 0.01 and 0.05% by weight and preferably between 0.02 and 0.04% by weight is added in order to refine the grain size during casting.

La teneur en Cr et la teneur en Mn sont inférieures à 0,1%. De manière préférée, la teneur en Cr est inférieure à 0,05% en poids ou même inférieure à 0,03% en poids, et/ou la teneur en Mn est inférieure à 0,05% en poids ou même inférieure à 0,03% en poids, ce qui permet en particulier de diminuer encore la sensibilité à la trempe des blocs épais en aluminium.The Cr content and the Mn content are less than 0.1%. Preferably, the Cr content is less than 0.05% by weight or even less than 0.03% by weight, and / or the Mn content is less than 0.05% by weight or even less than 0, 03% by weight, which allows in particular to further reduce the sensitivity to quenching thick aluminum blocks.

Si et Fe sont des impuretés inévitables dont on cherche à minimiser la teneur de façon en particulier à améliorer la résistance mécanique sur éprouvette entaillée. La teneur en Fe est inférieure à 0,20 % en poids et de manière préférée inférieure à 0,15 % en poids. La teneur en Si est inférieure à 0,15 % en poids et de manière préférée inférieure à 0,10 % en poids.Si and Fe are unavoidable impurities whose content is to be minimized so as in particular to improve the mechanical strength on the notched specimen. The Fe content is less than 0.20% by weight and preferably less than 0.15% by weight. The Si content is less than 0.15% by weight and preferably less than 0.10% by weight.

Un procédé approprié pour fabriquer des blocs épais en alliage selon l'invention comprend les étapes de

  1. (a) coulée d'un bloc épais en alliage d'aluminium comprenant (en % en poids) :Zn: 5,4-5,8%,Mg: 0,8 - 1,8 %,Cu : < 0,2 %,Zr : 0,05 - 0,08 %,Ti: < 0,15 %,Mn: < 0,1 %,Cr: < 0,1 %,Si: < 0,15 %,Fe: < 0,20 %, impuretés ayant une teneur individuelle < 0,05 % chacune et < 0,15% au total, reste aluminium ;
  2. (b) optionnellement, homogénéisation à une température comprise entre 450 et 550 °C pendant une durée de 10 minutes à 30 heures et/ou détente à une température comprise entre 300 et 400 °C pendant une durée de 10 minutes à 30 heures suivi d'un refroidissement jusqu'à une température inférieure à 100 °C;
  3. (c) mise en solution dudit bloc coulé à une température de 500 à 560°C pendant 10 mn à 20 heures,
  4. (d) refroidissement dudit bloc mis en solution jusqu'à une température inférieure à 100 °C, réalisé avec une vitesse de refroidissement au moins égale à 800 °C/h puis détensionnement du bloc ainsi mis en solution et refroidi par une compression contrôlée avec une déformation permanente comprise entre 1% et 5%;
  5. (e) revenu dudit bloc mis en solution et refroidi, par chauffage à 120 à 170°C pendant 4 à 48 heures, dans lequel aucune des dimensions dudit bloc coulé ne subit de déformation d'au moins 10% par corroyage entre les étapes de coulée et de revenu.
A suitable method for making thick alloy blocks according to the invention comprises the steps of
  1. (a) casting of a thick block of aluminum alloy comprising (in% by weight): Zn: 5.4-5.8%, Mg: 0.8 - 1.8%, Cu: <0.2 %, Zr: 0.05 - 0.08%, Ti: <0.15%, Mn: <0.1%, Cr: <0.1%, Si: <0.15%, Fe: <0, 20%, impurities with an individual content <0.05% each and <0.15% in total, remains aluminum;
  2. (b) optionally, homogenizing at a temperature between 450 and 550 ° C for a period of 10 minutes to 30 hours and / or expansion at a temperature between 300 and 400 ° C for a period of 10 minutes to 30 hours followed by cooling to a temperature below 100 ° C;
  3. (c) dissolving said cast block at a temperature of 500 to 560 ° C for 10 minutes to 20 hours,
  4. (d) cooling said block dissolved in a temperature of less than 100 ° C., carried out with a cooling rate of at least 800 ° C./h, and then relieving the block thus put into solution and cooled by a controlled compression with permanent deformation of between 1% and 5%;
  5. (e) returning said block dissolved and cooled, by heating at 120 to 170 ° C for 4 to 48 hours, wherein none of the dimensions of said cast block undergoes deformation of at least 10% by wrought between the steps of casting and income.

La coulée du bloc épais est de préférence réalisée par coulée semi-continue avec refroidissement direct (« Direct Chill casting »). Le bloc épais a une épaisseur supérieure à 350 mm, et de préférence supérieure à 450 mm ou même supérieure à 550 mm. Le bloc est de forme essentiellement parallélépipédique, il a en général une plus grande dimension (longueur), une seconde plus grande dimension (largeur) et une plus petite dimension (épaisseur).The casting of the thick block is preferably carried out by semi-continuous casting with direct cooling ("Direct Chill Casting"). The thick block has a thickness greater than 350 mm, and preferably greater than 450 mm or even greater than 550 mm. The block is essentially parallelepipedal in shape, it generally has a larger dimension (length), a second larger dimension (width) and a smaller dimension (thickness).

Le bloc peut optionnellement être ensuite homogénéisé, typiquement par un traitement thermique à une température comprise entre 450 et 550 °C pendant une durée de 10 minutes à 30 heures et/ou subir un traitement de détente à une température comprise entre 300 et 400 °C pendant une durée de 10 minutes à 30 heures suivi d'un refroidissement jusqu'à une température inférieure à 100 °C.The block may optionally then be homogenized, typically by a heat treatment at a temperature between 450 and 550 ° C for a period of 10 minutes to 30 hours and / or undergo a flash treatment at a temperature between 300 and 400 ° C for a period of 10 minutes to 30 hours followed by cooling to a temperature below 100 ° C.

Le bloc est ensuite mis en solution c'est-à-dire traité thermiquement de façon à ce que la température du bloc atteigne 500 à 560°C pendant une durée comprise entre 10 mn et 5 heures, voire 20 heures. Ce traitement thermique peut être réalisé à température constante ou en plusieurs paliers.The block is then put into solution, that is to say heat-treated so that the block temperature reaches 500 to 560 ° C for a period of between 10 minutes and 5 hours, or even 20 hours. This heat treatment can be carried out at a constant temperature or in several stages.

Après mise en solution, le bloc est refroidi jusqu'à une température inférieure à 100 °C, de préférence jusqu'à température ambiante. La vitesse de refroidissement est au moins égale à 800 °C/h. Une telle vitesse de refroidissement peut être obtenue par aspersion ou immersion à l'eau. Une vitesse de refroidissement trop élevée pouvant générer des contraintes résiduelles trop importantes dans les blocs, on utilise de préférence de l'eau à une température d'au moins 50 °C et de préférence d'au moins 70 °C pour le refroidissement. Dans ce second mode de réalisation on détensionne le bloc ainsi trempé, de préférence par compression à froid avec un taux de déformation permanente compris entre 1 % et 5 % et de préférence compris entre 2 et 4%. Le détensionnement permet de diminuer les contraintes résiduelles dans le métal et d'éviter les déformations lors de l'usinage.After dissolution, the block is cooled to a temperature below 100 ° C, preferably to room temperature. The cooling rate is at least 800 ° C / h. Such a cooling rate can be obtained by spraying or immersion in water. Since a cooling rate that is too high can generate excessive residual stresses in the blocks, water is preferably used at a temperature of at least 50.degree. C. and preferably at least 70.degree. C. for cooling. In this second embodiment, the block thus hardened is stripped, preferably by cold compression with a permanent deformation rate of between 1% and 5% and preferably between 2 and 4%. The stress relieving allows to reduce the residual stresses in the metal and to avoid the deformations during the machining.

Enfin, on réalise le revenu du bloc ainsi mis en solution et refroidi. Le revenu est réalisé de manière à ce que le bloc atteigne une température de 120 et 170 °C et de manière préférée entre 130 et 160 °C pendant une durée de 4 à 48 heures et de manière préférée entre 8 et 24 heures. Avantageusement, on réalise un revenu pour atteindre l'état T6 ou T652, correspondant au pic des propriétés mécaniques statiques (Rm et Rp0,2).Finally, one realizes the income of the block thus put in solution and cooled. The income is made so that the block reaches a temperature of 120 and 170 ° C and preferably between 130 and 160 ° C for a period of 4 to 48 hours and preferably between 8 and 24 hours. Advantageously, an income is achieved to reach the T6 or T652 state, corresponding to the peak of the static mechanical properties (Rm and Rp0,2).

Entre chaque opération, il est possible d'effectuer des opérations simples de sciage du bloc et/ou d'usinage des surfaces.Between each operation, it is possible to perform simple operations of sawing the block and / or machining surfaces.

Par contre, ledit bloc ne subit pas entre la coulée et le revenu d'étape de déformation significative par corroyage. Par "corroyage", on entend typiquement des opérations de laminage ou forgeage à chaud. Par "déformation significative", on entend qu'aucune des dimensions du bloc coulé - lequel est un bloc épais de forme essentiellement parallélépipédique (longueur L, largeur TL, épaisseur TC) - ne subit de modification significative, c'est-à-dire typiquement d'au moins environ 10%, par corroyage entre la coulée et le revenu. En d'autres termes, aucune des dimensions du bloc coulé ne subit par corroyage une variation relative typiquement supérieure à 10% en valeur absolue, ce qui signifie que ledit corroyage n'entraîne aucune déformation permanente dans chaque direction L, TL, TC supérieure à une valeur voisine de Ln(1,1)= 0,095 et correspond à une déformation plastique généralisée ε = 2 3 ε L 2 + ε T L 2 + ε T C 2

Figure imgb0011
typiquement inférieure à 0,135.On the other hand, said block does not undergo between the casting and the significant deformation step income by wrought. By "wrought" is typically meant rolling operations or hot forging. By "significant deformation" is meant that none of the dimensions of the cast block - which is a thick block of substantially parallelepiped shape (length L, width TL, thickness TC) - undergoes significant modification, that is to say typically at least about 10%, by heat treatment between casting and income. In other words, none of the dimensions of the cast block is subjected to a relative variation typically greater than 10% in absolute value by wrought, which means that said wrought-molding does not lead to permanent deformation in each direction L, TL, TC greater than a value close to Ln (1,1) = 0,095 and corresponds to a generalized plastic deformation ε ~ = 2 3 ε The 2 + ε T The 2 + ε T VS 2
Figure imgb0011
typically less than 0.135.

Les blocs épais obtenus par le procédé selon l'invention présentent un compromis de propriétés avantageux, en particulier entre la limite élastique et la résistance à l'effet d'entaille qui sont deux propriétés antagonistes (plus l'une est importante, plus l'autre est faible). Plus précisément, la demanderesse a constaté que, pour un bloc épais en un alliage ayant la composition selon l'invention et ayant été obtenu en suivant les étapes revendiquées du procédé jusqu'au revenu (coulée, homogénéisation et détensionnement optionnels, mise en solution et trempe sans qu'il y ait corroyage significatif entre la coulée et l'étape finale de revenu), quel que soit le traitement de revenu (mono- ou multi-paliers) réalisé ensuite pour atteindre une limite élastique Rp0,2 donnée, le NSR (« Sharp-Notch Strength-to-Yield Strength Ratio »), paramètre utilisé pour caractériser la résistance à l'effet d'entaille du bloc ainsi obtenu, atteint une valeur qui ne dépend pas du traitement de revenu effectué pour obtenir le Rp02 visé. On peut par conséquent établir pour de tels blocs épais une relation entre le Rp02 et le NSR mesurés par exemple au ¼ de l'épaisseur, et cette relation apparaît sensiblement linéaire.The thick blocks obtained by the process according to the invention have a compromise of advantageous properties, in particular between the elastic limit and the notch resistance, which are two antagonistic properties (the more important one is, the more other is weak). More specifically, the Applicant has found that for a thick block of an alloy having the composition according to the invention and having been obtained by following the claimed process steps until the income (casting, homogenization and stress relief optional, dissolution and quenching without significant wrought between the casting and the final step of income), regardless of the income treatment (mono- or multi-level) subsequently carried out to reach a given elastic limit Rp0.2, the NSR ("Sharp-Notch Strength-to-Yield Strength Ratio") parameter used to characterize the notch resistance of the block thus obtained, reaches a value that does not depend on the income treatment performed to obtain the targeted Rp02. For such thick blocks, a relationship between the RpO 2 and the NSR measured for example at ¼ of the thickness can therefore be established, and this relationship appears to be substantially linear.

Ainsi, la demanderesse a pu établir que, la résistance à l'entaille, telle qu'évaluée à ¼ épaisseur dans la direction TL par le NSR (mesuré en suivant la norme ASTM E602-03, paragraphe 9.2) est supérieure à: 0,017 * R p 0,2 + 6,7.

Figure imgb0012
Thus, the Applicant has been able to establish that the notch resistance, as evaluated at ¼ thickness in the TL direction by the NSR (measured according to ASTM E602-03, paragraph 9.2) is greater than: - 0,017 * R p 0.2 + 6.7.
Figure imgb0012

Typiquement, le NSR est d'au moins 0,8 , de préférence 1,0 et la limite d'élasticité est d'au moins 320 MPa et de préférence 330 MPa.Typically, the NSR is at least 0.8, preferably 1.0, and the yield strength is at least 320 MPa and preferably 330 MPa.

L'obtention simultanée d'une résistance mécanique élevée et d'une résistance à l'entaille élevée est un résultat surprenant.Obtaining both high mechanical strength and high notch resistance is a surprising result.

Les blocs épais selon l'invention sont utilisés de façon avantageuse pour la fabrication de moules pour injection des plastiquesThe thick blocks according to the invention are advantageously used for the manufacture of molds for injection of plastics

EXEMPLEEXAMPLE

L'exemple de l'invention est référencé B. Les exemples A, C et D sont présentés à titre de comparaison. Les compositions chimiques des différents alliages testés dans cet exemple sont fournies dans le tableau 1. Tableau 1: Composition chimique (% en poids) Référence Si Fe Cu Mn Mg Zn Zr Cr Ti A 0,05 0,08 0,02 0,01 1,2 5,7 0,08 < 0,01 0,04 B 0,05 0,08 0,03 < 0,01 1,2 5,6 0,08 < 0,01 0,04 C 0,05 0,13 0,2 0,01 2,8 4,9 0,09 < 0,01 0,03 D 0,08 0,04 0,6 <0,01 2,2 6,3 0,10 < 0,01 0,03 The example of the invention is referenced B. Examples A, C and D are presented for comparison. The chemical compositions of the various alloys tested in this example are provided in Table 1. <u> Table 1: Chemical composition (% by weight) </ u> Reference Yes Fe Cu mn mg Zn Zr Cr Ti AT 0.05 0.08 0.02 0.01 1.2 5.7 0.08 <0.01 0.04 B 0.05 0.08 0.03 <0.01 1.2 5.6 0.08 <0.01 0.04 VS 0.05 0.13 0.2 0.01 2.8 4.9 0.09 <0.01 0.03 D 0.08 0.04 0.6 <0.01 2.2 6.3 0.10 <0.01 0.03

Les alliages A, B, C et D ont été coulés sous forme de blocs d'épaisseur 625 mm.Alloys A, B, C and D were cast as blocks of thickness 625 mm.

Les blocs en alliages A et C ont été transformés de la façon suivante : les blocs ont d'abord été homogénéisés 10h 480°C. Les blocs ont ensuite été mis en solution 4h à 540 °C et refroidis à l'air à environ 40 °C/h (de 540 °C à 410 °C en 2 heures puis de 410 °C à 90 °C en 9 heures). Les blocs ont ensuite subi un traitement de revenu d'abord à 105 °C pendant environ 12 heures puis à 160 °C pendant environ 16 h.The blocks of alloys A and C were transformed as follows: the blocks were first homogenized at 10h 480 ° C. The blocks were then dissolved for 4 hours at 540 ° C. and air-cooled at approximately 40 ° C./h (from 540 ° C. to 410 ° C. in 2 hours and then from 410 ° C. to 90 ° C. in 9 hours). ). The blocks were then first treated at 105 ° C for about 12 hours and then at 160 ° C for about 16 hours.

Les blocs en alliages B et D ont été transformés de la façon suivante : les blocs ont d'abord subi une détente de 2 heures à 350 °C. Après mise en solution pendant 4 h à 540°C (bloc B) ou 10 h à 475°C (bloc D), les blocs ont été refroidis avec de l'eau à 80 °C par immersion. Les blocs ont ensuite subi un détensionnement par compression de 3%. Les blocs en alliage B ont ensuite subi un revenu de 130 °C pendant 24 h (bloc B1) ou de 150°C pendant 16 h (bloc B2). Le bloc en alliage D a quant à lui subi un traitement de revenu d'abord à 90°C pendant 8 à 12 h puis à 160°C pendant 14 à 16 h.The alloy blocks B and D were transformed as follows: the blocks first underwent a 2 hour expansion at 350 ° C. After being dissolved for 4 hours at 540 ° C. (Block B) or 10 hours at 475 ° C. (Block D), the blocks were cooled with water at 80 ° C. by immersion. The blocks then underwent compression straightening of 3%. The alloy blocks B were then tempered at 130 ° C for 24 h (block B1) or 150 ° C for 16 h (block B2). The alloy block D was first treated at 90 ° C for 8 to 12 hours and then at 160 ° C for 14 to 16 hours.

Les caractéristiques mécaniques obtenues, mesurées à ¼ épaisseur dans la direction TL sont présentées dans le tableau 2 Tableau 2: Caractéristiques mécaniques obtenues à ¼ épaisseur dans la direction TL Référence Revenu Rm (MPa) Rp0.2 (MPa) A50 (%) NSR A 105 °C 10-15h + 160 °C 16-17h 355 332 1,8 0,88 B1 T°1 (130°C /24h) 407 359 3 0,7 B2 T°2 (150 °C /16h) 376 324 8 1,3 C 105 °C 10-15h + 160 °C 16-17h 335 320 0,4 0,50 D 90 °C 8-12h + 160 °C 14-16h 401 335 2 0,87 The mechanical characteristics obtained, measured at ¼ thickness in the TL direction are presented in Table 2 <u> Table 2: Mechanical characteristics obtained at ¼ thickness in the TL direction </ u> Reference Returned Rm (MPa) Rp0.2 (MPa) A50 (%) NSR AT 105 ° C 10-15h + 160 ° C 16-17h 355 332 1.8 0.88 B1 T ° 1 (130 ° C / 24h) 407 359 3 0.7 B2 T ° 2 (150 ° C / 16h) 376 324 8 1.3 VS 105 ° C 10-15h + 160 ° C 16-17h 335 320 0.4 0.50 D 90 ° C 8-12h + 160 ° C 14-16h 401 335 2 0.87

La Figure 1 présente le compromis obtenu entre la limite d'élasticité RP0,2 et le rapport appelé "Sharp-Notch Strength-to-Yield Strength Ratio", connu sous l'abréviation "NSR" et utilisé communément pour caractériser la sensibilité à l'effet d'entaille d'un matériau. Comme sa dénomination anglaise complète l'indique, ce paramètre est le rapport entre la résistance mécanique mesurée sur éprouvette entaillée et la limite élastique mesurée sur éprouvette non entaillée. La justification de l'emploi de ce paramètre et le protocole expérimental permettant de le mesurer sont décrits dans la norme ASTM E602-03, en particulier au paragraphe 9.2.The Figure 1 presents the compromise obtained between the elastic limit R P0,2 and the report called "Sharp-Notch Strength-to-Yield Strength Ratio", known under the abbreviation "NSR" and commonly used to characterize the sensitivity to the effect notch of a material. As its full English name indicates, this parameter is the ratio between the mechanical strength measured on notched specimen and the elastic limit measured on non-notched specimen. The rationale for the use of this parameter and the experimental protocol for measuring it are described in ASTM E602-03, particularly in section 9.2.

Dans des conditions de transformations identiques, l'alliage A, permet par rapport à l'alliage C une amélioration simultanée de la limite d'élasticité et du rapport NSR, donc de la résistance à l'entaille. Le rapport NSR obtenu est supérieur à
-0,017 Rp0,2 + 6,4.
Under identical transformation conditions, the alloy A allows, with respect to the alloy C, a simultaneous improvement in the yield strength and in the NSR ratio, and thus in the notch strength. The NSR report obtained is greater than
-0.017 R p0.2 + 6.4.

Le procédé de transformation de l'alliage selon l'invention permet d'améliorer encore le rapport NSR. Ainsi le bloc en alliage B selon l'invention atteint un rapport NSR supérieur à -0,017 * Rp0,2 + 6,7.The process for converting the alloy according to the invention makes it possible to further improve the NSR ratio. Thus, the alloy block B according to the invention has an NSR ratio greater than -0.017 * R p0.2 + 6.7.

Ce rapport n'est pas atteint par l'alliage D dans des conditions de transformation semblables.This ratio is not reached by alloy D under similar processing conditions.

Claims (6)

  1. Method for manufacturing an aluminium block wherein the thickness is greater than 350 mm comprising steps for:
    (a) casting a thick aluminium alloy block comprising (as a % by weight): Zn: 5.4 - 5.8%, Mg: 0.8 - 1.8%, Cu: < 0.2%, Zr: 0.05 - 0.08%, Ti : < 0.15%, Mn : < 0.1%, Cr : < 0.1%, Si: < 0.15%, Fe : < 0.20%,
    impurities having an individual content < 0.05% each and < 0.15% in total, remainder aluminium;
    (b) optionally, homogenising at a temperature between 450 and 550°C for a period of 10 minutes to 30 hours and/or stress relief at a temperature between 300 and 400°C for a period of 10 minutes to 30 hours followed by cooling to a temperature less than 100°C;
    (c) solution heat treatment of said cast block at a temperature of 500 to 560°C for 10 min to 20 hours,
    (d) cooling of said solution-heat treated block to a temperature less than 100°C, carried out with a cooling rate at least equal to 800°C/hour followed by stress relief of the solution-heat treated and cooled block by controlled compression with a permanent set between 1% and 5%
    (e) aging of said solution-heat treated and cooled block, by heating at 120 to 170°C for 4 to 48 hours,
    wherein none of the dimensions of said cast block is subject to strain of at least 10% by working between the casting and aging steps.
  2. Method according to claim 1 wherein the solution-heat treated and cooled block undergoes stress relief with a permanent set between 2 and 4%.
  3. Method according to claim 2 wherein the cooling of step (d) is carried out by spraying with or immersing in water at a temperature of at least 50°C and preferably of at least 70°C.
  4. Aluminium block wherein the thickness is greater than 350 mm suitable for being obtained using the method according to any one of claims 1 to 3,
    said block comprising (as a % by weight): Zn: 5.4 - 5.8%, Mg: 0.8 - 1.8%, Cu: < 0.2%, Zr: 0.05 - 0.08%, Ti: < 0.15%, Mn: < 0.1%, Cr: < 0.1%, Si: < 0.15%, Fe: < 0.20%, impurities having an individual content < 0.05% each and < 0.15% in total, remainder aluminium; and
    characterised in that, at ¼ thickness in the direction TL, the yield strength RP0.2 expressed in MPa and the ratio referred to as NSR between the mechanical strength on a notched test piece and the yield strength RP0.2 measured as per the standard ASTM E602-03, paragraph 9.2 are such that:
    - NSR > -0.017 * Rp0.2 + 6.7 and
    - Rp0.2 > 320 M Pa, preferably 330 MPa.
  5. Aluminium block according to claim 4 characterised in that NSR > 0.8, preferably 1.0.
  6. Use of a thick block according to any one of claims 4 to 5 for the manufacture of moulds for the injection of plastics.
EP11808242.9A 2010-12-14 2011-12-06 7xxx alloy thick products and their process of manufacture Active EP2652163B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11808242T PL2652163T3 (en) 2010-12-14 2011-12-06 7xxx alloy thick products and their process of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1004865A FR2968675B1 (en) 2010-12-14 2010-12-14 7XXX THICK-ALLOY PRODUCTS AND METHOD OF MANUFACTURE
PCT/FR2011/000637 WO2012080592A1 (en) 2010-12-14 2011-12-06 Thick products made of 7xxx alloy and manufacturing process

Publications (2)

Publication Number Publication Date
EP2652163A1 EP2652163A1 (en) 2013-10-23
EP2652163B1 true EP2652163B1 (en) 2018-09-19

Family

ID=45478341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11808242.9A Active EP2652163B1 (en) 2010-12-14 2011-12-06 7xxx alloy thick products and their process of manufacture

Country Status (10)

Country Link
US (2) US11306379B2 (en)
EP (1) EP2652163B1 (en)
JP (1) JP6118728B2 (en)
KR (1) KR101900973B1 (en)
CA (1) CA2820768A1 (en)
CL (1) CL2013001716A1 (en)
FR (1) FR2968675B1 (en)
MX (1) MX354911B (en)
PL (1) PL2652163T3 (en)
WO (1) WO2012080592A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835942B2 (en) 2016-08-26 2020-11-17 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI606122B (en) * 2013-09-30 2017-11-21 蘋果公司 Aluminum alloys with high strength and cosmetic appeal
US20150368772A1 (en) * 2014-06-19 2015-12-24 Apple Inc. Aluminum Alloys with Anodization Mirror Quality
US10208371B2 (en) 2016-07-13 2019-02-19 Apple Inc. Aluminum alloys with high strength and cosmetic appeal
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal
BR112021026189A2 (en) * 2019-06-24 2022-02-15 Arconic Tech Llc Improved thick 7xxx series forged aluminum alloys and methods for making the same
FR3118632B1 (en) * 2021-01-05 2023-09-29 Airbus Operations Sas Process for optimizing the corrosion properties of an assembly of at least two parts made of an aluminum-based alloy assembled by friction welding.
CN112981289B (en) * 2021-04-21 2021-08-03 中国航发北京航空材料研究院 Stress relief annealing and homogenizing annealing method for 7000 series aluminum alloy ingot
CN113528866B (en) * 2021-06-16 2022-05-20 天津忠旺铝业有限公司 Preparation method of high-strength corrosion-resistant 7xxx aluminum alloy plate for aviation
CN115011850A (en) * 2022-05-10 2022-09-06 慈溪市宜美佳铝业有限公司 Aluminum profile not easy to deform and quenching process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003506A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Aa7000-series aluminium alloy products and a method of manufacturing thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322533A (en) * 1964-09-30 1967-05-30 William F Jobbins Inc Aluminum base casting alloys
NO131035C (en) 1972-03-10 1975-03-25 Ardal Og Sunndal Verk
ATA113876A (en) * 1976-02-18 1978-04-15 Vmw Ranshofen Berndorf Ag WELDABLE, EXTREMELY HOT FORMING, BORON-FREE CAST AND WET ALUMINUM ALLOYS WITH HIGH RESISTANCE AGAINST STRESS Cracks AND COATING CORROSION WITH AT THE SAME TIME GOOD MECHANICAL PROPERTIES
JPH08144031A (en) 1994-11-28 1996-06-04 Furukawa Electric Co Ltd:The Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
US20010028861A1 (en) * 1997-12-17 2001-10-11 Que-Tsang Fang High strength Al-Zn-Mg alloy for making shaped castings including vehicle wheels and structural components
JP2001207232A (en) * 2000-01-24 2001-07-31 Furukawa Electric Co Ltd:The Energy absorptive member made of aluminum alloy
US20050183802A1 (en) 2002-12-06 2005-08-25 Pechiney Rhenalu Edge-on stress-relief of aluminum plates
EP1441041A1 (en) 2003-01-16 2004-07-28 Alcan Technology &amp; Management Ltd. Aluminium alloy with high strength and low quenching sensitivity
US20050238529A1 (en) 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings
RU2473710C2 (en) * 2006-06-30 2013-01-27 КОНСТЕЛЛИУМ РОЛЛД ПРОДАКТС - РЕЙВЕНСВУД ЭлЭлСи High-strength heat-treatable aluminium alloy
JP4231530B2 (en) * 2007-03-30 2009-03-04 株式会社神戸製鋼所 Aluminum alloy plate manufacturing method and aluminum alloy plate
WO2010049445A1 (en) * 2008-10-30 2010-05-06 Aleris Aluminum Duffel Bvba Structural automotive component of an aluminium alloy sheet product
JP5023233B1 (en) * 2011-06-23 2012-09-12 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003506A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Aa7000-series aluminium alloy products and a method of manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835942B2 (en) 2016-08-26 2020-11-17 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components

Also Published As

Publication number Publication date
PL2652163T3 (en) 2019-05-31
MX354911B (en) 2018-03-26
FR2968675A1 (en) 2012-06-15
CL2013001716A1 (en) 2013-12-06
US11306379B2 (en) 2022-04-19
WO2012080592A1 (en) 2012-06-21
KR20140012628A (en) 2014-02-03
US20220389558A1 (en) 2022-12-08
CA2820768A1 (en) 2012-06-21
MX2013006848A (en) 2013-11-01
US20130284322A1 (en) 2013-10-31
JP2014505786A (en) 2014-03-06
FR2968675B1 (en) 2013-03-29
EP2652163A1 (en) 2013-10-23
JP6118728B2 (en) 2017-04-19
KR101900973B1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
EP2652163B1 (en) 7xxx alloy thick products and their process of manufacture
EP1838891B1 (en) High strength sheet made from al-zn-cu-mg alloy with low internal stresses
EP2655680B1 (en) Aluminium-copper-lithium alloy with improved compressive strength and toughness
EP2526216B1 (en) Method for manufacturing 6xxx alloy materials for vacuum chambers
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
FR2907466A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
EP3201370B1 (en) Wrought product of an alloy of aluminium, magnesium, lithium
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP3592875B1 (en) Aluminium alloy vacuum chamber elements which are stable at high temperature
WO2021064320A1 (en) Aluminum alloy precision plates
WO2019122639A1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture
EP3411508B1 (en) Thick al - cu - li - alloy sheets having improved fatigue properties
TWI434939B (en) Aluminium alloy and process of preparation thereof
FR3018823A1 (en) 6XXX ALLOY FILE PRODUCT FOR DECOLLETING AND LOW ROUGHNESS AFTER ANODIZATION
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
EP2421996B1 (en) Free-machining aa 6xxx aluminum alloy
US20230357889A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material
US20200270729A1 (en) Method for producing aluminum alloy extruded material
EP3610048B1 (en) Low-density aluminium-copper-lithium alloy products
WO2023233713A1 (en) Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance
WO2021111069A1 (en) Aluminum-copper-lithium alloy thin sheets with improved toughness, and process for manufacturing an aluminum-copper-lithium alloy thin sheet
KR101685818B1 (en) Magnesium alloy material and manufacturing method thereof
WO2023233090A1 (en) Metal sheets, made of aluminium alloy, for vacuum chamber elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM VALAIS SA (AG, LTD)

Owner name: CONSTELLIUM ISSOIRE

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011052234

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011052234

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1043358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181206

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181206

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180919

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230109

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221228

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231220

Year of fee payment: 13

Ref country code: FR

Payment date: 20231227

Year of fee payment: 13

Ref country code: CZ

Payment date: 20231123

Year of fee payment: 13

Ref country code: AT

Payment date: 20231121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231120

Year of fee payment: 13