EP1114053A1 - Pyrrolopyrimidines as protein kinase inhibitors - Google Patents

Pyrrolopyrimidines as protein kinase inhibitors

Info

Publication number
EP1114053A1
EP1114053A1 EP99969415A EP99969415A EP1114053A1 EP 1114053 A1 EP1114053 A1 EP 1114053A1 EP 99969415 A EP99969415 A EP 99969415A EP 99969415 A EP99969415 A EP 99969415A EP 1114053 A1 EP1114053 A1 EP 1114053A1
Authority
EP
European Patent Office
Prior art keywords
substituted
unsubstituted
pyrimidin
amino
pyrrolo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99969415A
Other languages
German (de)
English (en)
French (fr)
Inventor
Gavin C. Hirst
David Calderwood
Rainer Munschauer
Kurt Ritter
Lee D. Arnold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott GmbH and Co KG
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1114053A1 publication Critical patent/EP1114053A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65842Cyclic amide derivatives of acids of phosphorus, in which one nitrogen atom belongs to the ring

Definitions

  • protein kinases There are at least 400 enzymes identified as protein kinases. These enzymes catalyze the phosphorylation of target protein substrates.
  • the phosphorylation is usually a transfer reaction of a phosphate group from ATP to the protein substrate.
  • the specific structure in the target substrate to which the phosphate is transferred is a tyrosine, serine or threonine residue. Since these amino acid residues are the target structures for the phosphoryl transfer, these protein kinase enzymes are commonly referred to as tyrosine kinases or serine/threonine kinases.
  • the phosphorylation reactions, and counteracting phosphatase reactions, at the tyrosine, serine and threonine residues are involved in countless cellular processes that underlie responses to diverse intracellular signals (typically mediated through cellular receptors), regulation of cellular functions, and activation or deactivation of cellular processes.
  • a cascade of protein kinases often participate in intracellular signal transduction and are necessary for the realization of these cellular processes. Because of their ubiquity in these processes, the protein kinases can be found as an integral part of the plasma membrane or as cytoplasmic enzymes or localized in the nucleus, often as components of enzyme complexes. In many instances, these protein kinases are an essential element of enzyme and structural protein complexes that determine where and when a cellular process occurs within a cell.
  • Protein Tyrosine Kinases Protein tyrosine kinases.
  • PTKs Protein tyrosine kinases
  • This post-translational modification of these substrate proteins often enzymes themselves, acts as a molecular switch regulating cell proliferation, activation or differentiation (for review, see Schlessinger and Ulrich, 1992, Neuron 9:383-391).
  • Aberrant or excessive PTK activity has been observed in many disease states including benign and malignant proliferative disorders as well as diseases resulting from inappropriate activation of the immune system (e.g., autoimmune disorders), allograft rejection, and graft vs. host disease.
  • endothelial-cell specific receptor PTKs such as KDR and Tie-2 mediate the angiogenic process, and are thus involved in supporting the progression of cancers and other diseases involving inappropriate vascularization (e.g., diabetic retinopathy, choroidal neovascularization due to age-related macular degeneration, psoriasis, arthritis, retinopathy of prematurity, infantile hemangiomas).
  • inappropriate vascularization e.g., diabetic retinopathy, choroidal neovascularization due to age-related macular degeneration, psoriasis, arthritis, retinopathy of prematurity, infantile hemangiomas.
  • Tyrosine kinases can be of the receptor-type (having extracellular, transmembrane and intracellular domains) or the non-receptor type (being wholly intracellular).
  • RTKs Receptor Tyrosine Kinases
  • the RTKs comprise a large family of transmembrane receptors with diverse biological activities. At present, at least nineteen (19) distinct RTK subfamilies have been identified.
  • the receptor tyrosine kinase (RTK) family includes receptors that are crucial for the growth and differentiation of a variety of cell types (Yarden and Ullrich, Ann. Rev. Biochem. 57:433-478, 1988; Ullrich and Schlessinger, Cell 61:243-254, 1990).
  • RTKs The intrinsic function of RTKs is activated upon ligand binding, which results in phosphorylation of the receptor and multiple cellular substrates, and subsequently in a variety of cellular responses (Ullrich & Schlessinger, 1990, Cell 61:203-212).
  • receptor tyrosine kinase mediated signal transduction is initiated by extracellular interaction with a specific growth factor (ligand), typically followed by receptor dimerization, stimulation of the intrinsic protein tyrosine kinase activity and receptor trans- phosphorylation. Binding sites are thereby created for intracellular signal transduction molecules and lead to the formation of complexes with a spectrum of cytoplasmic signaling molecules that facilitate the appropriate cellular response. (e.g., cell division, differentiation, metabolic effects, changes in the extracellular microenvironment) see Schlessinger and Ullrich, 1992, Neuron 9:1-20.
  • Proteins with SH2 (src homology -2) or phosphotyrosine binding (PTB) domains bind activated tyrosine kinase receptors and their substrates with high affinity to propagate signals into cell. Both of the domains recognize phosphotyrosine.
  • RTKs receptor tyrosine kinases
  • FLK-1 fetal liver kinase 1
  • KDR kinase insert domain-containing receptor
  • FLK-1 /KDR vascular endothelial cell growth factor receptor 2
  • NEGFR-2 vascular endothelial cell growth factor receptor 2
  • D ⁇ As encoding mouse, rat and human FLK-1 have been isolated, and the nucleotide and encoded amino acid sequences reported (Matthews et al., Proc. Natl. Acad. Sci. USA, 88:9026-30, 1991; Terman et al, 1991, supra; Terman et al, Biochem. Biophys. Res. Comm.
  • VEGF and FLK-1 /KDR VEGFR-2 are a ligand- receptor pair that play an important role in the proliferation of vascular endothelial cells, and formation and sprouting of blood vessels, termed vasculogenesis and angiogenesis, respectively.
  • Flt-1 Flt-1 vascular endothelial cell growth factor receptor 1
  • VEGF vascular endothelial cell growth factor
  • VEGF vascular endothelial cell growth factor
  • VEGF vascular endothelial cell growth factor
  • Flt-1 expression is associated with early vascular development in mouse embryos, and with neovascularization during wound healing (Mustonen and Alitalo, supra). Expression of Flt-1 in monocytes, osteoclasts, and osteoblasts, as well as in adult tissues such as kidney glomeruli suggests an additional function for this receptor that is not related to cell growth (Mustonen and Alitalo, supra).
  • VEGF plays a role in the stimulation of both normal and pathological angiogenesis (Jakeman et al., Endocrinology 133: 848-859, 1993; Kolch et al., Breast Cancer Research and Treatment 36: 139-155, 1995; Ferrara et al., Endocrine Reviews 18(1); 4-25, 1997; Ferrara et al., Regulation of Angiogenesis (ed. L. D. Goldberg and E.M. Rosen), 209-232, 1997).
  • VEGF has been implicated in the control and enhancement of vascular permeability (Connolly, et al., J. Biol. Chem.
  • VEGF vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • Placenta growth factor has an amino acid sequence that exhibits significant homology to the VEGF sequence (Park et al., J. Biol. Chem. 269:25646- 54, 1994; Maglione et al. Oncogene 8:925-31, 1993).
  • PIGF Placenta growth factor
  • different species of PIGF arise from alternative splicing of mRNA, and the protein exists in dimeric form (Park et al., supra).
  • P1GF-1 and P1GF-2 bind to Flt-1 with high affinity, and P1GF-2 also avidly binds to neuropilin-1 (Migdal et al, J. Biol. Chem.
  • PIGF has been reported to potentiate both the vascular permeability and mitogenic effect of VEGF on endothelial cells when VEGF is present at low concentrations (purportedly due to heterodimer formation) (Park et al., supra).
  • VEGF-B is produced as two isoforms (167 and 185 residues) that also appear to bind Flt-l/VEGFR-1.
  • VEGF-C was originally cloned as a ligand for VEGFR-3/Flt-4 which is primarily expressed by lymphatic endothelial cells.
  • VEGF-C can also bind KDR EGFR-2 and stimulate proliferation and migration of endothelial cells in vitro and angiogenesis in in vivo models ( Lymboussaki et al, Am. J Pathol. (1998), 153(2): 395-403; itzenbichler et al, Am. J. Pathol. (1998), 153(2), 381-394).
  • the transgenic overexpression of VEGF-C causes proliferation and enlargement of only lymphatic vessels, while blood vessels are unaffected.
  • the expression of VEGF-C is not induced by hypoxia (Ristimaki et al, J. Biol. Chem. (1998), 273(14),8413-8418).
  • VEGF-D is structurally very similar to VEGF- C.
  • VEGF-D is reported to bind and activate at least two VEGFRs, VEGFR-3/Flt-4 and KDR/VEGFR-2. It was originally cloned as a c-fos inducible mitogen for fibroblasts and is most prominently expressed in the mesenchymal cells of the lung and skin (Achen et al, Proc. Natl. Acad. Sci. U. S. A. (1998), 95(2), 548-553 and references therein).
  • VEGF-C and VEGF-D have been claimed to induce increases in vascular permeability in vivo in a Miles assay when injected into cutaneous tissue (PCT/US97/14696; WO98/07832, Witzenbichler et al., supra).
  • PCT/US97/14696; WO98/07832, Witzenbichler et al., supra The physiological role and significance of these ligands in modulating vascular hyperpermeability and endothelial responses in tissues where they are expressed remains uncertain.
  • VEGF-E vascular endothelial growth factor-E
  • NZ-7 VEGF vascular endothelial growth factor
  • VEGF-E sequences possess 25% homology to mammalian VEGF and are encoded by the parapoxvirus Orf virus (OV). This parapoxvirus that affects sheep and goats and occasionally, humans, to generate lesions with angiogenesis.
  • VEGF-E is a dimer of about 20 kDa with no basic domain nor affinity for heparin, but has the characteristic cysteine knot motif present in all mammalian VEGFs, and was surprisingly found to possess potency and bioactivities similar to the heparin-binding VEGF165 isoform of VEGF-A, i.e. both factors stimulate the release of tissue factor (TF), the proliferation, chemotaxis and sprouting of cultured vascular endothelial cells in vitro and angiogenesis in vivo.
  • tissue factor TF
  • VEGF-E Like VEGF 165, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation and a biphasic rise in free intracellular Ca2+ concentrations, while in contrast to VEGF 165, VEGF-E did not bind to VEGF receptor-1 (Flt-1).
  • KDR VEGF receptor-2
  • Flt-1 VEGF receptor-1
  • VEGF homologs may involve formation of VEGF ligand heterodimers, and/or heterodimerization of receptors, or binding to a yet undiscovered VEGFR (Witzenbichler et al., supra).
  • Tie-2 is a member of a recently discovered family of endothelial cell specific receptor tyrosine kinases which is involved in critical angiogenic processes, such as vessel branching, sprouting, remodeling, maturation and stability.
  • Tie-2 is the first mammalian receptor tyrosine kinase for which both agonist ligand(s) (e.g., Angiopoietinl ("Angl”), which stimulates receptor autophosphorylation and signal transduction), and antagonist ligand(s) (e.g., Angiopoietin2 (“Ang2”)), have been identified.
  • agonist ligand(s) e.g., Angiopoietinl (“Angl")
  • Ang2 Angiopoietin2
  • Ang2 Angiopoietin2
  • Knock-out and transgenic manipulation of the expression of Tie-2 and its ligands indicates tight spatial and temporal control of Tie-2 signaling is essential for the proper development of new vasculature.
  • the current model suggests that stimulation of Tie-2 kinase by the Angl ligand is directly involved in the branching, ⁇ r sprouting and outgrowth of new vessels, and recruitment and interaction of periendothelial support cells important in maintaining vessel integrity and inducing quiescence.
  • the absence of Angl stimulation of Tie-2 or the inhibition of Tie-2 autophosphorylation by Ang2 which is produced at high levels at sites of vascular regression, may cause a loss in vascular structure and matrix contacts resulting in endothelial cell death, especially in the absence of growth/survival stimuli.
  • the soluble extracellular domain of Tie-2 (“ExTek”) can act to disrupt the establishment of tumor vasculature in a breast tumor xenograft and lung metastasis models and in tumor-cell mediated ocular neovasculatization.
  • ExTek soluble extracellular domain of Tie-2
  • adenoviral infection By adenoviral infection, the in vivo production of mg/ml levels ExTek in rodents may be achieved for 7-10 days with no adverse side effects. These results suggest that disruption of Tie-2 signaling pathways in normal healthy animals may be well tolerated.
  • These Tie-2 inhibitory responses to ExTek may be a consequence sequestration of ligand(s) and/or generation of a nonproductive heterodimer with full-length Tie-2.
  • Tie-2 plays a role in the progression of rheumatoid arthritis.
  • Point mutations producing constitutively activated forms of Tie-2 have been identified in association with human venous malformation disorders. Tie-2 inhibitors are, thereful, useful in treating such disorders, and in other situations of inappropriate neovascularization.
  • the Non-Receptor Tyrosine Kinases represent a collection of cellular enzymes which lack extracellular and transmembrane sequences. At present, over twenty-four individual non-receptor tyrosine kinases, comprising eleven (11) subfamilies (Src, Frk, Btk, Csk, Abl, Zap70, Fes/Fps, Fak, Jak, Ack and LIMK) have been identified.
  • the Src subfamily of non-receptor tyrosine kinases is comprised of the largest number of PTKs and include Src, Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk.
  • the Src subfamily of enzymes has been linked to oncogenesis and immune responses.
  • tyrosine kinases whether an RTK or non-receptor tyrosine kinase, have been found to be involved in cellular signaling pathways involved in numerous pathogenic conditions, including cancer, psoriasis, and other hyperproliferative disorders or hyper-immune responses.
  • RNA ligands (Jellinek, et al., Biochemistry 33:10450- 56; Takano, et al., 1993, Mol. Bio. Cell 4:358A; Kinsella, et al. 1992, Exp. Cell Res. 199:56-62; Wright, et al., 1992, J Cellular Phys. 152:448-57) and tyrosine kinase inhibitors (WO 94/03427; WO 92/21660; WO 91/15495; WO 94/14808; U.S. Patent No. 5,330,992; Mariani, et al, 1994, Proc. Am. Assoc. Cancer Res. 35:2268).
  • PCT WO 94/03427 selenoindoles and selenides
  • PCT WO 92/21660 tricyclic polyhydroxylic compounds
  • PCT WO ⁇ S benzylphosphonic acid compounds
  • Plk-1 is a serine/threonine kinase which is an important regulator of cell cycle progression. It plays critical roles in the assembly and the dynamic function of the mitotic spindle apparatus. Plk-1 and related kinases have also been shown to be closely involved in the activation and inactivation of other cell cycle regulators, such as cyclin-dependent kinases. High levels of Plk-1 expression are associated with cell proliferation activities. It is often found in malignant tumors of various origins. Inhibitors of Plk-1 are expected to block cancer cell proliferation by disrupting processes involving mitotic spindles and inappropriately activated cyclin-dependent kinases.
  • Cdc2/Cvclin B Kinase Inhibitors (Cdc2) is also known as cdkl)
  • Cdc2/cyclin B is another serine/threomne kinase enzyme which belongs to the cyclin-dependent kinase (cdks) family. These enzymes are involved in the critical transition between various phases of cell cycle progression. It is believed that uncontrolled cell proliferation, which is the hallmark of cancer is dependent upon elevated cdk activities in these cells. The inhibition of elevated cdk activities in cancer cells by cdc2/cyclin B kinase inhibitors could suppress proliferation and may restore the normal control of cell cycle progression.
  • cdks cyclin-dependent kinase
  • CDK activation is complex, but requires the association of the CDK with a member of the cyclin family of regulatory subunits (Draetta, Trends / in Cell Biology, 3:287-289 (1993)); Murray and Kirschner, Nature, 339:275-280
  • E/CDK2 are thought to mediate the onset of S-phase (Matsushima et al., Molecular
  • CDK regulation is a frequent event in hyperproliferative diseases and cancer. / d-
  • Inhibitors of kinases involved in mediating or maintaining disease states represent novel therapies for these disorders.
  • Examples of such kinases include, but are not limited to: (1) inhibition of c-Src (Brickell, Critical Reviews in Oncogenesis, 3:401-406 (1992); Courtneidge, Seminars in Cancer Biology, 5:236-246 (1994), raf (Powis, Pharmacology & Therapeutics, 62:57-95 (1994)) and the cyclin-dependent kinases (CDKs) 1, 2 and 4 in cancer (Pines, Current Opinion in Cell Biology, 4:144- 148 (1992); Lees, Current Opinion in Cell Biology, 7:773-780 (1995); Hunter and Pines, Cell, 79:573-582 (1994)), (2) inhibition of CDK2 or PDGF-R kinase in restenosis (Buchdunger et al, Proceedings of the National Academy of Science USA, 92:2258-2262 (1995)), (3) inhibition of CDK5 and GSK
  • inhibitors of certain kinases may have utility in the treatment of diseases when the kinase is not misregulated, but it nonetheless essential for maintenance of the disease state.
  • inhibition of the kinase activity would act either as a cure or palliative for these diseases.
  • many viruses such as human papilloma virus, disrupt the cell cycle and drive cells into the S-phase of the cell cycle (Vousden, FASEB Journal, 7:8720879 (1993)).
  • Preventing cells from entering DNA synthesis after viral infection by inhibition of essential S-phase initiating activities such as CDK2 may disrupt the virus life cycle by preventing virus replication.
  • NF-kB regulates genes involved in inflammatory responses (such as hematopoetic growth factors, chemokines and leukocyte adhesion molecules) (Baeuerle and Henkel, Annual Review of Immunology, 12:141-179 (1994)) and may be involved in the suppression of apoptotic signals within the cell (Beg and Baltimore, Science, 274:782-784 (1996); Wang et al, Science, 274:784-787 (1996); Van Antwerp et al, Science, 274:787-789 (1996)).
  • inhibition of CDK2 may suppress apoptosis induced by cytotoxic drugs via a mechanism which involves NF-kB.
  • CDK2 activity may also have utility in other cases where regulation of NF-kB plays a role in etiology of disease.
  • a further example may be take from fungal infections: Aspergillosis is a common infection in immune-compromised patients (Armstrong, Clinical Infectious Diseases, 16:1-7 (1993)). Inhibition of the Aspergillus kinases Cdc2/CDC28 or Nim A (Osmani et al, EMBO Journal, 10:2669-2679 (1991); Osmani et al, Cell, 67:283-291 (1991)) may cause arrest or death in the fungi, improving the therapeutic outcome for patients with these infections.
  • the identification of effective small compounds which specifically inhibit signal transduction and cellular proliferation by modulating the activity of receptor and non-receptor tyrosine and serine/threonine kinases to regulate and modulate abnormal or inappropriate cell proliferation, differentiation, or metabolism is ⁇ therefore desirable.
  • the identification of methods and compounds that specifically inhibit the function of a tyrosine kinase which is essential for antiogenic processes or the formation of vascular hyperpermeability leading to edema, ascites, effusions, exudates, and macromolecular extravasation and matrix deposition as well as associated disorders would be beneficial.
  • the present invention provides compounds of Formula I,
  • Ring A is a six membered aromatic ring or a five or six membered heteroaromatic ring. Ring A is optionally substituted with one or more of the following substituents: a substituted or unsubstituted aliphatic group, a halogen, a substituted or unsubstituted aromatic group, substituted or unsubstituted heteroaromatic group, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, cyano, nitro, -NR 4 R 5 , -C(O) 2 H, -OH, a substituted or unsubstituted alkoxycarbonyl, -C(O) 2 -haloalkyl, a substituted or unsubstituted alkylthio ether, a substituted or unsubstituted
  • R and R' are each, independently, -H, an acyl group, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, or a substituted or unsubstituted cycloalkyl group.
  • L is -R b N(R)S(O) 2 -, -R b N(R)P(O)-, or -R b N(R)P(O)O-.
  • R réelle is an alkylene group which when taken together with the sulphonamide, phosphinamide, or phosphonamide group to which it is bound forms a five or six membered ring fused to ring A.
  • L is represented by one of the following structural formulas:
  • R 85 taken together with the phosphinamide, or phophonamide is a 5-, 6-, or 7- membered, aromatic, heteroaromatic or heterocycloalkyl ring system.
  • R is a substituted aliphatic group, a substituted cycloalkyl, a substituted bicycloalkyl, a substituted cycloalkenyl, an optionally substituted aromatic group, an optionally substituted heteroaromatic group, an optionally substituted heteroaralkyl, an optionally substituted heterocycloalkyl, an optionally substituted heterobicycloalkyl, an optionally substituted alkylamindo, and optionally substituted arylamido, an optionally substituted -S(O) 2 -alkyl or optionally substituted -S(O) 2 -cycloalkyl, a -C(O)-alkyl or an optionally substituted -C(O)- alkyl.
  • R ! can be substituted with one or more substituents.
  • R is substituted with a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic, a / V substituted or unsubstituted aralkyl, a substituted or unsubstituted heteroaralkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aromatic ether, a substituted or unsubstituted aliphatic ether, a substituted or unsubstituted alkoxycarbonyl, a substituted or unsubstituted alkylcarbonyl, a substituted or unsubstituted arylcarbonyl, a substituted or unsubstituted heteroarylcarbonyl, substituted or unsubstit
  • B is a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aromatic, a substituted or unsubstituted heteroaromatic, an alkylene, an aminoalkyl, an alkylenecarbnonyl, or an aminoalkylcarbonyl.
  • E is a substituted or unsubstituted azacycloalkyl, a substituted or unsubstituted azacycloalkylcarbonyl, a substituted or unsubstituted azacycloalkylsulfonyl, a substituted or unsubstituted azacycloalkylalkyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted heteroarylcarbonyl, a substituted or unsubstituted heteroarylsulfonyl, a substituted or unsubstituted heteroaralkyl, a substituted or unsubstituted alkyl sulfonamido, a substituted or unsubstituted aryl sulfonamido, a substituted or unsubstituted bicycloalkyl, a substituted or unsubstituted ureido, a substituted or unsubstituted
  • R is an aliphatic group or cycloalkyl group
  • R [ is not exclusively substituted with one or more substitutent selected from the group consisting of hydroxyl and lower alkyl ethers.
  • a heterocycloalkyl is not 2-phenyl-l,3-dioxan-5-yl, and an aliphatic group is not substituted exclusively with one or more aliphatic groups.
  • R 2 is -H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted cycloalkyl, a halogen, -OH, cyano, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted heteroaralkyl, -NR 4 R;, or -C(O)NR 4 R 5 .
  • R 3 is a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, or a substituted or unsubstituted heterocycloalkyl.
  • R 4 , R ⁇ and the nitrogen atom together form a 3, 4, 5, 6 or 7- membered, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterobicycloalkyl or a substituted or unsubstituted heteroaromatic.
  • R 4 and Rj are each, independently, -H, azabicycloalkyl, heterocycloalkyl, a substituted or unsubstituted alkyl group or Y-Z.
  • Y is selected from the group consisting of -C(O)-, -(CH 2 ) p -,-S(O) 2 -, -C(O)O-, -SO 2 NH-, -CONH-, (CH 2 ) p O-, -(CH 2 ) p NH-, -(CH 2 ) p S-, -(CH 2 ) p S(O)-, and - (CH 2 ) p S(O) 2 -.
  • p is an integer from 0 to to about 6.
  • Z is a substituted or unsubstituted alkyl, substituted or unsubstituted amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl or substituted or unsubstituted heterocycloalkyl group.
  • j an integer from 0 to 6.
  • L is -CH 2 NR-, -C(O)NR- or-NRC(O)- and R 3 is azacycloalkyl or azaheteroaryl
  • j is 0.
  • L is -O- and R 3 is phenyl
  • j is O.
  • the compounds of this invention are useful as inhibitors of serine/threonine and tyrosine kinases.
  • compounds of this invention are useful as inhibitors of tyrosine kinases that are important in hyperproliferative diseases, especially in cancer and in the process of angiogenesis.
  • certain of these compounds are inhibitors of such receptor kinases as KDR, Flt-1, FGFR, PDGFR, c-Met, TIE-2 or IGF-l-R. Since certain of these compounds are anti- angiogenic, they are important substances for inhibiting the progression of disease states where angiogenesis is an important component.
  • Certain compounds of the invention are effective as inhbitors of such serine/threonine kinases as PKCs, erk, MAP kinases, MAP kinase kinases, MAP kinase kinases, cdks, Plk-1 or Raf- 1. These compounds are useful in the treatment of cancer, and hyperproliferative disorders.
  • certain compounds are effective inhibitors of non-receptor kinases such as those of the Src (for example, Ick, blk and lyn), Tec, Csk, Jak, Map, Nik and Syk families. These compunds are useful in the treatment of cancer, hyperproliferative disorders and immunologic diseases.
  • Certain compounds of this invention are selective TIE-2 kinase inhibitors which may be anti-angiogenic (especially in combination with one or more VEGFR inhibitors), or pro-angiogenic, when employed in the presence of, or in conjunction with, a VEGF-related stimulus.
  • TIE-2 kinase inhibitors which may be anti-angiogenic (especially in combination with one or more VEGFR inhibitors), or pro-angiogenic, when employed in the presence of, or in conjunction with, a VEGF-related stimulus.
  • Such inhibitors can be used in the promotion of therapeutic angiogenesis to treat, for example, ischemia, infarct or occlusion, or to promote wound healing.
  • the present invention provides a method of inhibiting the kinase activity of tyrosine kinases and serine/threonine kinases comprising the administration of a compound represented by formula I to said kinase in sufficient concentration to inhibit the enzyme activity of said kinase.
  • the present invention further includes the use of these compounds in pharmaceutical compositions with a pharmaceutically effective amount of the above- described compounds and a pharmaceutically acceptable carrier or excipient.
  • These pharmaceutical compositions can be administered to individuals to slow or halt the process of angiogenesis in angiogenesis-aided diseases, or to treat edema, effusions, exudates or ascites and other conditions associated with vascular hyperpermeability.
  • Certain pharmaceutical compositions can be administered to individuals to treat cancer and hyperproliferative disorders by inhibiting serine/threonine kinases such as cdk, Plk-1, erk, etc.
  • L is -N(R)S(O) 2 -, -S(O) 2 N(R)-, -N(R)C(O)-, -C(O)N(R)-, or -O-.
  • R 3 is a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted thienyl, a substituted or unsubstituted benzotriazole, a substituted or unsubstituted tetrahydropyranyl, a substituted or unsubstituted tetrahydrofuranyl, a substituted or unsubstituted dioxane, a substituted or unsubstituted dioxolane, a substituted or unsubstituted quinoline, a substituted or unsubstituted thiazole, substituted or unsubstituted isoxazole, substituted or unsubstituted cyclopentanyl, a substituted or unsubstituted bezofuran, substituted or unsubstitute
  • R 3 can be a substituted or unsubstituted aliphatic group or a substituted or unsubstituted alkenyl, provided that L is -SN(R)-, -S(O)N(R)-, -S(O) 2 N(R)-, -N(R)S-, -N(R)S(O)-, -N(R)S(O) 2 -, - N(R)SN(R')-, -N(R)S(O)N(R')-, or -N(R)S(O) 2 N(R')-;
  • R 3 is a substituted or unsubstituted phenyl.
  • R 3 can be substituted by one or more substituents.
  • R 3 are F, CI, Br, I, CH 3 , NO 2 , OCF 3 , OCH 3 , CN, CO 2 CH 3 , CF 3 , t-butyl, pyridyl, substituted or unsubstituted oxazolyl, substituted or unsubstituted benzyl, substituted or unsubstituted benzenesulfonyl, substituted or unsubstituted phenoxy, substituted or unsubstituted phenyl, substituted or unsubstituted amino, carboxyl, substituted or unsubstituted tetrazolyl, styryl, -S-(substituted or unsubstituted aryl), -S-(substituted or unsubstituted heteroaryl), substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, alkynyl, -C(
  • R r , R g and the nitrogen atom together form a 3-, 4-, 5-, 6- or 7-membered, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterobicycloalkyl or a substituted or unsubstituted heteroaromatic.
  • R f and R naph are each, independently, a substituted or at unsubstituted aliphatic group or a substituted or unsubstuituted aromatic group.
  • R- is hydrogen, or substituted or unsubstituted alkyl or substituted or unsubstituted aryl; -W-(CH 2 ) t -NR d R e , -W-(CH 2 ) t -O-alkyl, , -W-(CH 2 ) t -S-alkyl, or - W-(CH 2 ) t -OH.
  • t is an integer from 0 to about 6.
  • W is a bond or -O-, -S-, -S(O)-, -S(O) 2 -, or -NR k -.
  • R k is -H or alkyl.
  • R d , R. and the nitrogen atom to which they are attached together form a 3, 4, 5, 6 or 7-membered substituted or unsubstituted heterocycloalkyl or substituted or unsubstituted heterobicyclic group.
  • R,, and R_ are each, independently, -H, alkyl, alkanoyl or -K- D.
  • K is -S(O) 2 -, -C(O)-, -C(O)NH-, -C(O) 2 -, or a direct bond.
  • D is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted heteroaromatic group, a substituted or unsubstituted heteroaralkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted amino, a substituted or unsubstituted aminoalkyl, a substituted or unsubstituted aminocycloalkyl, COOR,, or substituted or unsubstituted alkyl.
  • R is a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aromatic group.
  • R 3 More preferred substituents for R 3 are F, CI, Br, I, cyano, nitro, OCF 3 , CH 3 , and CF 3 .
  • ring A is a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted pyridyl, or a substituted or unsubstituted indole. In one embodiment, ring A is a substituted or unsubstituted phenyl.
  • Ring A can be substituted by one or more substituents.
  • substituents for ring A are F, CI, Br, I, CH 3 , NO 2 , OCF 3 , OCH 3 , CN, CO 2 CH 3 , CF 3 , t- butyl, pyridyl, substituted or unsubstituted oxazolyl, substituted or unsubstituted benzyl, substituted or unsubstituted benzenesulfonyl, substituted or unsubstituted phenoxy, substituted or unsubstituted phenyl, substituted or unsubstituted amino, carboxyl, substituted or unsubstituted tetrazolyl, styryl, -S-(substituted or unsubstituted aryl), -S-(substituted or unsubstituted heteroaryl), substituted or unsubstituted heteroaryl, substituted or unsub
  • Ring A is more preferably substituted with F, CI, and nitro.
  • R 2 is preferably hydrogen.
  • Rj is of the formula
  • R j is of the formula
  • R 8 , R, and the nitrogen atom together form a 3-, 4-, 5-, 6- or 7-membered, substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted heteroaromatic or substituted or unsubstituted heterobicyclicalkyl group.
  • R 8 and Rg are each, independently, -H, azabicycloalkyl, heterocycloalkyl or Y 2 -Z 2 .
  • Y 2 is -C(O)-, -(CH 2 ) q -,-S(O) 2 -, -C(O)O-, -SO 2 NH-, - CONH-, (CH 2 ) q O-, -(CH 2 ) q NH-, -(CH 2 ) q S-, -(CH 2 ) q S(O)-, or -(CH 2 ) q S(O) 2 -.
  • q is an integer from 0 to 6.
  • Z 2 is a substituted or unsubstituted alkyl, a substituted or unsubstituted amino, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl or a substituted or unsubstituted heterocycloalkyl group.
  • R is of the formula
  • R 77 is -OR 78 , or -NR 79 R 80 .
  • R 78 is -H or a substituted or unsubstituted aliphatic group.
  • R 79 , R 80 and the nitrogen atom together form a 3, 4, 5, 6 or 7-membered, substituted or unsubstituted heterocycloalkyl group, substituted or unsubstituted heteroaryl group, or a substituted heterobicyclicalkyl group.
  • R 79 and R 80 are each, independently, -H, azabicycloalkyl, heterocycloalkyl or -Y 3 -Z 3 .
  • Y 3 is selected from the group consisting of -C(O)-, -(CH 2 ) q -,-S(O) 2 -, -C(O)O-, -SO 2 NH-, - CONH-, (CH 2 ) q O-, -(CH 2 ) q NH-, -(CH 2 ) q S-, -(CH 2 ) q S(O)- and-(CH 2 ) q S(O) 2 -.
  • Z 3 is - H, a substituted or unsubstituted alkyl, a substituted or unsubstituted amino, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl or a substituted or unsubstituted heterocycloalkyl.
  • R is of the formula
  • v is an integer from 1 to about 3.
  • R 10 is -H, azabicycloalkyl, heterocycloalkyl or Y 2 - Z 2 .
  • Y 2 and Z 2 are as defined previously.
  • R ⁇ is of the formula
  • R ⁇ represents one or more substituents independently selected from the group consisting of hydrogen, hydroxy, oxo, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, a substituted or unsubstituted alkoxycarbonyl, a substituted or unsubstituted alkoxyalkyl, a substituted or unsubstituted aminocarbonyl, a substituted or unsubstituted alkylcarbonyl, a substituted or unsubstituted arylcarbonyl, a substituted or unsubstituted heteroarylcarbonyl, a substituted or unsubstituted aminoalkyl and a substituted or -unsubstituted aralkyl groups, provided that the carbon atoms adjacent to the nitrogen atom are not substituted by a hydroxy group.
  • R ⁇ represents one or more substituents
  • R 10 is as previously defined.
  • R ! is of the formula
  • r is an integer from 1 to about 6.
  • R 8 and Re are as previously defined.
  • R is of the formula
  • R 8 , R 9 and t are as previously defined, w is an integer from 0 to about 4. u is 0 or 1. R, 2 is hydrogen or a substituted or unsubstituted alkyl group. In another embodiment, R j is of the formula
  • R 8 , R, and the nitrogen atom together form a heterocycloalkyl group of the formula
  • R 13 , R 14 , R 15 , R J6 , R 17 , R I8 , R 19 and R 20 are each, independently, lower alkyl or hydrogen.
  • at least one pair of substituents R 13 and R 14 ; R !5 and R, 6 ; R, 7 and R lg ; or R 19 and R 20 together are an oxygen atom.
  • at least one of R 13 and R 15 is cyano, CONHR 21 , COOR 21 , CH 2 OR 2 ⁇ or CH 2 NR 21 (R 22 ).
  • R 21 , R 22 and the nitrogen atom together form a 3-, 4-, 5-, 6- or 7-membered, substituted or unsubstituted heterocycloalkyl group, substituted or unsubstituted heteroaryl group, or a substituted heterobicyclicalkyl group.
  • R 21 and R 22 are each, independently, -H, azabicycloalkyl, heterocycloalkyl or Y 3 -Z 3 ; Y 3 and Z 3 are as previously defined.
  • X is -O-, -S-, -SO-, -SO 2 -, -CH 2 -, -CH(OR 23 )- or NR 23 .
  • R 23 is -H, substituted or unsubstituted alkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted aralkyl, -C(NH)NH 2 , -C(O)R 24 , or -C(O)OR 24 .
  • R 24 is hydrogen, substituted or unsubstituted alkyl, a substituted or unsubstituted aryl or a substituted or unsubstituted aralkyl.
  • R 8 , R, and the nitrogen atom together form a heterocycloalkyl of the formula
  • R 21 and R 22 are as previously defined.
  • R 25 and R 26 are each, independently, hydrogen or lower alkyl. Alternatively, R 25 and R 26 together are an oxygen atom, i is an integer from 1 to about 6.
  • R 8 , R, and the nitrogen atom together form a heterocycloalkyl group; of the formula
  • R 27 is CH 2 OH, C(O)NR 24 R 28 or COOR 24 .
  • R 24 and R 28 are as previously defined.
  • R 8 , Rg and the nitrogen atom together form a heteroaromatic group of the formula
  • R 29 is a substituted or unsubstituted alkyl, a substituted or unsubstituted aryl or a substituted or unsubstituted aralkyl group, carboxylic acid, cyano, C(O)OR 30 , CH 2 OR 30 , CH 2 NR 21 R 22 or C(O)NR 21 R 22 .
  • R 30 is a substituted or unsubstituted alkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted heterocycloalkyl or heterocycloaryl group.
  • R 21 and R 22 are as previously defined.
  • At least one of R 8 and R ⁇ is of the formula Y 3 -D, wherein D is of the formula
  • Y 3 is as previously defined, x is 0, 1 or 2.
  • T is -O-, -C(O)-, -S-, -SO-, -SO 2 -, -CH 2 -, -CH(OR 24 )- or -N(R 24 )-.
  • R 24 is as previously defined.
  • R 8 and Rg is of the formula Y 3 - N(R 31 )R 32 , Y 3 is as previously defined.
  • R 3] and R 32 are each, independently, substituted or unsubstituted carboxyalkyl, a substituted or unsubstituted alkoxycarbonylalkyl, a substituted or unsubstituted hydroxyalkyl, a substituted or unsubstituted alkylsulfonyl, a substituted or unsubstituted alkylcarbonyl or a substituted or unsubstituted cyanoalkyl.
  • R 31 and R 32 together with the nitrogen atom, form a five- or six-membered heterocycloalkyl group, a substituted or unsubstituted heteroaromatic or a substitutituted or unsubstituted heterobicycloalkyl.
  • Z 2 is of the formula N(R 35 )R 36 .
  • R 35 and R 36 are each, independently, hydrogen, alkyl, alkoxycarbonyl, alkoxyalkyl, hydroxyalkyl, aminocarbonyl, cyano, alkylcarbonyl or aralkyl.
  • R 37 is hydrogen, cyano or a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxycarbonyl, a substituted or unsubstituted alkoxyalkyl, a substituted or unsubstituted hydroxyalkyl, a substituted or unsubstituted aminocarbonyl, a substituted or unsubstituted alkylcarbonyl or a substituted or unsubstituted aralkyl group.
  • R 37 is Jo hydrogen, cyano or a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxycarbonyl, a substituted or unsubstituted alkoxyalkyl, a substituted or unsubstituted hydroxyalkyl, a substituted or unsubstituted aminocarbonyl, a substituted or unsubstituted alkylcarbonyl or a substituted or unsubstituted aralkyl group.
  • g and R 37 are as previously defined unsubstituted aralkyl group.
  • T, g and R 37 are as previously defined.
  • R 37 is as previously defined.
  • R 38 is hydrogen, substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxycarbonyl, a substituted or unsubstituted alkoxyalkyl, a substituted or unsubstituted aminocarbonyl, perhaloalkyl, a substituted or unsubstituted alkenyl, a substituted or unsubstituted alkylcarbonyl or a substituted or unsubstituted aralkyl.
  • R is of the formula
  • R 39 , R 40 , R 41 , R 42 , R 43 , R ⁇ , R 45 and R 46 are each, independently ,methyl or hydrogen. Alternatively, at least one pair of substituents R 39 and R 40 ; R 36 and R 37 ; R 38 and R 39 . Alternatively, R 40 and R 41 together are an oxygen atom.
  • R 47 is H, azabicycloalkyl, heterocycloalkyl or Y 2 -Z 2 . Y 2 and Z 2 are as previously defined. Alternatively, R 47 is of the formula
  • R 48 , R 49 , R 50 , R j ,, R 52 , R ⁇ , R 54 and R 55 are each, independently, methyl or hydrogen. Alternatively, at least one pair of substituents R 48 and R 49 ; R 50 and Rj,; R 52 and R 53 ; or R 54 and R 55 together are an oxygen atom.
  • R 56 is -H, azabicycloalkyl, heterocycloalkyl or Y 3 -Z 3 . Y 3 and Z 3 are defined as above.
  • Rj is of the formula
  • R e, f, h, u and y are independently 0 or 1.
  • R quarant, R ⁇ , R ⁇ , R ⁇ , R ⁇ , R 62 , R ⁇ , R M , R 65 and R 66 are each, independently, methyl or hydrogen.
  • at least one pair of substituents R ⁇ and R jg ; Rj 9 and R ⁇ ; R 6 and R ⁇ ; or R ⁇ and R ⁇ together are an oxygen atom.
  • R ⁇ is H, azabicycloalkyl, heterocycloalkyl or Y 2 -Z 2 .
  • Y 2 and Z 2 are defined as above.
  • R 67 is of the formula
  • R ⁇ s , R 69 , R 70 , R 71 , R 72 , R 73 , R 74 and R 75 are each, independently, lower alkyl or hydrogen. Alternatively, at least one pair of substituents R 6S and R e9 ; R 70 and R 7I ; R 72 and R 73 . R 74 and R 75 together are an oxygen atom.
  • R 76 is -H, azabicycloalkyl, heterocycloalkyl or Y 3 -Z 3 . Y 3 and Z 3 are defined as above.
  • aromatic groups include carbocyclic ring systems (e.g. benzyl and cinnamyl) and fused polycyclic aromatic ring systems (e.g. naphthyl and 1,2,3,4-tetrahydronaphthyl).
  • Arromatic groups are also referred to as aryl groups herein.
  • Heteroaromatic groups include heteroaryl ring systems (e.g., thienyl, pyridyl, pyrazole, isoxazolyl, thiadiazolyl, oxadiazolyl, indazolyl, furans, pyrroles, imidazoles, pyrazoles, triazoles, pyrimidines, pyrazines, thiazoles, isoxazoles, isothiazoles, tetrazoles, or oxadiazoles) and heteroaryl ring systems in which a carbocyclic aromatic ring, carbocyclic non-aromatic ring or heteroaryl ring is fused to one or more other heteroaryl rings (e.g., benzo(b)thienyl, benzimidazole, indole, tetrahydroindole, azaindole, indazole, quinoline, imidazopyridine, purine, pyr
  • An aralkyl group is an aromatic substituent that is linked to a compound by an aliphatic group having from one to about six carbon atoms.
  • An heteroaralkyl group is a heteroaromatic substituent that is linked to a compound by an aliphatic group having from one to about six carbon atoms.
  • a heterocycloalkyl group is a non-aromatic ring system that has 3 to 8 atoms and includes at least one heteroatom, such as nitrogen, oxygen, or sulfur.
  • An acyl group as used herein, is an -C(O)NR..Rz, -C(O)OR-., -C(O)R_, in which R ⁇ and R- are each, independently, -H, a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aromatic group.
  • aliphatic groups include straight chained, branched or cyclic C,-C 8 hydrocarbons which are completely saturated or which contain one or more units of unsaturation.
  • a "lower alkyl group” is a saturated aliphatic group having form 1-6 carbon atoms.
  • Compounds of formula I may exist as salts with pharmaceutically acceptable acids.
  • the present invention includes such salts.
  • Examples of such salts include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates [eg (+)-tartrates, (-)-tartrates or mixtures thereof including racemic mixtures], succinates, benzoates and salts with amino acids such as glutamic acid.
  • These salts may be prepared by methods known to those skilled in the art.
  • Certain compounds of formula I which have acidic substituents may exist as salts with pharmaceutically acceptable bases.
  • the present invention includes such salts.
  • Example of such salts include sodium salts, potassium salts, lysine salts and arginine salts. These salts may be prepared by methods known to those skilled in the art.
  • Certain compounds of formula I and their salts may exist in more than one crystal form and the present invention includes each crystal form and mixtures thereof.
  • Certain compounds of formula I and their salts may also exist in the form of solvates, for example hydrates, and the present invention includes each solvate and mixtures thereof.
  • Certain compounds of formula I may contain one or more chiral centres, and exist in different optically active forms. When compounds of formula I contain one chiral centre, the compounds exist in two enantiomeric forms and the present invention includes both enantiomers and mixtures of enantiomers, such as racemic mixtures.
  • the enantiomers may be resolved by methods known to those skilled in the art, for example by formation of diastereoisomeric salts which may be separated, for example, by crystallization; formation of diastereoisomeric derivatives or complexes which may be separated, for example, by crystallization, gas-liquid or liquid chromatography; selective reaction of one enantiomer with an enantiomer- specific reagent, for example enzymatic esterification; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support for example silica with a bound chiral ligand or in the presence of a chiral solvent.
  • enantiomers may be synthesized by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer into the other by asymmetric transformation.
  • a compound of formula I When a compound of formula I contains more than one chiral centre it may exist in diastereoisomeric forms.
  • the diastereoisomeric pairs may be separated by methods known to those skilled in the art, for example chromatography or crystallization and the individual enantiomers within each pair may be separated as described above.
  • the present invention includes each diastereoisomer of compounds of formula I and mixtures thereof.
  • Certain compounds of formula I may exist in different tautomeric forms or as different geometric isomers, and the present invention includes each tautomer and/or geometric isomer of compounds of formula I and mixtures thereof.
  • Certain compounds of formula I may exist in different stable conformational forms which may be separable. Torsional asymmetry due to restricted rotation about an asymmetric single bond, for example because of steric hindrance or ring strain, may permit separation of different conformers.
  • the present invention includes each conformational isomer of compounds of formula I and mixtures thereof.
  • Certain compounds of formula I may exist in zwitterionic form and the present invention includes each zwitterionic form of compounds of formula I and mixtures thereof.
  • a preferred group of compounds of the present invention are:
  • the compounds of this invention have antiangiogenic properties. These antiangiogenic properties are due at least in part to the inhibition of protein tyrosine kinases essential for angiogenic processes. For this reason, these compounds can be used as active agents against such disease states as arthritis, atherosclerosis, restenosis, psoriasis, hemangiomas, myocardial angiogenesis, coronary and cerebral collaterals, ischemic limb angiogenesis, ischemia/reperfusion injury, wound healing, peptic ulcer Helicobacter related diseases, virally-induced angiogenic disorders, fractures, Crow-Fukase syndrome (POEMS), preeclampsia, menometrorrhagia, cat scratch fever, rubeosis, neovascular glaucoma and retinopathies such as those associated with diabetic retinopathy, retinopathy of prematurity, or age-related macular degeneration.
  • POEMS Crow-Fukase syndrome
  • some of these compounds can be used as active agents against solid tumors, malignant ascites, von Hippel Lindau disease, hematopoietic cancers and hyperproliferative disorders such as thyroid hyperplasia (especially Grave's disease), and cysts (such as hypervascularity of ovarian stroma characteristic of polycystic ovarian syndrome (Stein-Leventhal syndrome) and polycystic kidney disease since such diseases require a proliferation of blood vessel cells for growth and/or metastasis.
  • thyroid hyperplasia especially Grave's disease
  • cysts such as hypervascularity of ovarian stroma characteristic of polycystic ovarian syndrome (Stein-Leventhal syndrome) and polycystic kidney disease since such diseases require a proliferation of blood vessel cells for growth and/or metastasis.
  • some of these compounds can be used as active agents against burns, chronic lung disease, stroke, polyps, anaphylaxis, chronic and allergic inflammation, delayed-type hypersensitivity, ovarian hyperstimulation syndrome, brain tumor- associated cerebral edema, high-altitude, trauma or hypoxia induced cerebral or pulmonary edema, ocular and macular edema, ascites, glomerulonephritis and other diseases where vascular hyperpermeability, effusions, exudates, protein extravasation, or edema is a manifestation of the disease.
  • the compounds will also be useful in treating disorders in which protein extravasation leads to the deposition of fibrin and extracellular matrix, promoting stromal proliferation (e.g.
  • VEGF production potentiates inflammatory processes such as monocyte recruitment and activation.
  • the compounds of this invention will also be useful in treating inflammatory disorders such as inflammatory bowel disease (D3D) and Crohn's disease.
  • VEGF's are unique in that they are the only angiogenic growth factors known to contribute to vascular hype ⁇ ermeability and the formation of edema. Indeed, vascular hyperpermeability and edema that is associated with the expression or administration of many other growth factors appears to be mediated via VEGF production. Inflammatory cytokines stimulate VEGF production. Hypoxia results in a marked upregulation of VEGF in numerous tissues, hence situations involving infarct, occlusion, ischemia, anemia, or circulatory impairment typically invoke VEGF/VPF mediated responses.
  • VEGF-mediated hype ⁇ ermeability can significantly contribute to disorders with these etiologic features.
  • the disorders listed above are mediated to a significant extent by protein tyrosine kinase activity involving the KDR/VEGFR-2 and/or the Flt-l/VEGFR-1 and/or TIE-2 tyrosine kinases.
  • protein tyrosine kinase activity involving the KDR/VEGFR-2 and/or the Flt-l/VEGFR-1 and/or TIE-2 tyrosine kinases.
  • Certain compounds of the invention are also effective inhibitors of FGFR, PDGFR, c-Met and IGF-l-R. These receptor kinases can directly or indirectly potentiate angiogenic and hype ⁇ roliferative responses in various disorders, hence their inhibition can impede disease progression.
  • the compounds of this invention have inhibitory activity against protein kinases. That is, these compounds modulate signal transduction by protein kinases.
  • Compounds of this invention inhibit protein kinases from serine/threonine and tyrosine kinase classes. In particular, these compounds selectively inhibit the activity of the KDR/FLK-l/VEGFR-2 tyrosine kinases.
  • Certain compounds of this invention also inhibit the activity of additional tyrosine kinases such as Flt- 1/VEGFR-l, Tie-2, FGFR, PDGFR, IGF-IR, c-Met, Src-subfamily kinases such as Lck, Src, fyn, yes, etc.
  • some compounds of this invention significantly inhibit serine/threonine kinases such as PKC, MAP kinases, erk, CDKs, Plk-1, or Raf-1 which play an essential role in cell proliferation and cell-cycle progression.
  • the potency and specificity of the generic compounds of this invention towards a particular protein kinase can often be altered and optimized by variations in the nature, number and arrangement of the substituents (i.e., R,, R 2 , R 3 , A and ring 1) and conformational restrictions.
  • the metabolites of certain compounds may also possess significant protein kinase inhibitory activity.
  • the compounds of this invention when a ⁇ iministered to individuals in need of such compounds, inhibit vascular hype ⁇ ermeability and the formation of edema in these individuals. These compounds act, it is believed, by inhibiting the activity of KDR tyrosine kinase which is involved in the process of vascular hype ⁇ ermeability and edema formation.
  • the KDR tyrosine kinase may also be referred to as FLK-1 tyrosine kinase, NYK tyrosine kinase or VEGFR-2 tyrosine kinase.
  • KDR tyrosine kinase is activated when vascular endothelial cell growth factor (VEGF) or another activating ligand (such as VEGF-C, VEGF-D, VEGF-E or HIV Tat protein) binds to a KDR tyrosine kinase receptor which lies on the surface of vascular endothelial cells.
  • VEGF vascular endothelial cell growth factor
  • another activating ligand such as VEGF-C, VEGF-D, VEGF-E or HIV Tat protein
  • KDR tyrosine kinase stimulation results in the proliferation and chemo taxis of vascular endothelial cells and formation of new vessels.
  • KDR tyrosine kinase activity By inhibiting KDR tyrosine kinase activity, either by blocking the production of the activating ligand, by blocking the activating ligand binding to the KDR tyrosine kinase receptor, by preventing receptor dimerization and transphosphorylation, by inhibiting the enzyme activity of the KDR tyrosine kinase (inhibiting the phosphorylation function of the enzyme) or by some other mechanism that interrupts its downstream signaling (D. Mukhopedhyay et al, Cancer Res. 55:1278-1284 (1998) and references therein), hype ⁇ ermeability, as well as associated extravasation, subsequent edema formation and matrix deposition, and angiogenic responses, may be inhibited and minimized.
  • One group of preferred compounds of this invention have the property of inhibiting KDR tyrosine kinase activity without significantly inhibiting Flt-1 tyrosine kinase activity (Flt-1 tyrosine kinase is also referred to as VEGFR-1 tyrosine kinase). Both KDR tyrosine kinase and Flt-1 tyrosine kinase are activated by VEGF binding to KDR tyrosine kinase receptors and to Flt-1 tyrosine kinase receptors, respectively.
  • Certain preferred compounds of this invention are unique because they inhibit the activity of one VEGF-receptor tyrosine kinase (KDR) that is activated by activating ligands but do not inhibit other receptor tyrosine kinases, such as Flt-1, that are also activated by certain activating ligands. In this manner, certain preferred compounds of this invention are, therefore, selective in their tyrosine kinase inhibitory activity.
  • KDR VEGF-receptor tyrosine kinase
  • the present invention provides a method of treating a protein kinase-mediated condition in a patient, comprising adiminstering to the patient a therapeutically or prophylactically effective amount of one or more compounds of Formula I.
  • a "protein kinase-mediated condition" is a medical condition, such as a disease or other undesirable physical condition, the genesis or progression of which depends, at least in part, on the activity of at least one protein kinase.
  • the protein kinase can be, for example, a protein tyrosine kinase or a protein serine/threonine kinase.
  • the patient to be treated can be any animal, and is preferably a mammal, such as a domesticated animal or a livestock animal. More preferably, the patient is a human.
  • a therapeutically effective amount is an amount of a compound of Formula I or a combination of two or more such compounds, which inhibits, totally or partially, the progression of the condition or alleviates, at least partially, one or more symptoms of the condition.
  • a therapeutically effective amount can also be an amount which is prophylactically effective. The amount which is therapeutically effective will depend upon the patient's size and gender, the condition to be treated, the severity of the condition and the result sought. For a given patient, a therapeutically effective amount can be determined by methods known to those of skill in the art. The method of the present invention is useful in the treatment of protein kinase-mediated conditions, such as any of the conditions described above.
  • the protein kinase-mediated condition is characterized by undesired angiogenesis, edema, or stromal deposition.
  • the condition can be one or more more ulcers, such as ulcers caused by bacterial or fungal infections, Mooren ulcers and ulcerative colitis.
  • the condition can also be due to a microbial infection, such as Lyme disease, sepsis, septic shock or infections by He ⁇ es simplex, He ⁇ es Zoster, human immunodeficincy virus, protozoa, toxoplasmosis or parapoxvirus; an angiogenic disorders, such as von Hippel Lindau disease, polycystic kidney disease, pemphigoid, Paget's disease and psoriasis; a reproductive condition, such as endometriosis, ovarian hyperstimulation syndrome, preeclampsia or menometrorrhagia; a fibrotic and edemic condition, such as sarcoidosis, fibrosis, cirrhosis, thyroiditis, hyperviscosity syndrome systemic, Osier- Weber-Rendu disease, chronic occlusive pulmonary disease, asthma, and edema following burns, trauma, radiation, stroke, hypoxia or ischemia; or an inflammatory/immun
  • Suitable protein kinase- mediated conditions also include sickle cell anaemia, osteoporosis, osteopetrosis, tumor-induced hypercalcemia and bone metastases.
  • Additional protein kinase- mediated conditions which can be treated by the method of the present invention include ocular conditions such as ocular and macular edema, ocular neovascular disease, scleritis, radial keratotomy, uveitis, vitritis, myopia, optic pits, chronic retinal detachment, post-laser complications, conjunctivitis, Stargardt's disease and Eales disease, in addition to retinopathy and macular degeneration.
  • ocular conditions such as ocular and macular edema, ocular neovascular disease, scleritis, radial keratotomy, uveitis, vitritis, myopia, optic pits, chronic retinal detachment, post-laser complications, conjun
  • the compounds of the present invention are also useful in the treatment of cardiovascular conditions such as atherosclerosis, restenosis, vascular occlusion and carotid obstructive disease.
  • the compounds of the present invention are also useful in the treatment of cancer related indications such as solid tumors, sarcomas (especially Ewing's sarcoma and osteosarcoma), retinoblastoma, rhabdomyosarcomas, neuroblastoma, hematopoietic malignancies, including leukaemia and lymphoma, tumor-induced pleural or pericardial effusions, and malignant ascites.
  • cancer related indications such as solid tumors, sarcomas (especially Ewing's sarcoma and osteosarcoma), retinoblastoma, rhabdomyosarcomas, neuroblastoma, hematopoietic malignancies, including leukaemia and lymphoma, tumor-induced pleural or pericardial effusions, and malignant ascites.
  • the compounds of the present invention are also useful in the treatment of Crow-Fukase (POEMS) syndrome and diabetic conditions such as glaucoma, diabetic retinopathy and microangiopathy.
  • POEMS Crow-Fukase
  • the Src, Tec, Jak, Map, Csk, NFKB and Syk families ofkinases play pivotal roles in the regulation of immune function.
  • the Src family currently includes Fyn, Lck, Fgr, Fes, Lyn, Src, Yrk, Fyk, Yes, Hck, and Blk.
  • the Syk family is currently understood to include only Zap and Syk.
  • the TEC family includes Tec, Btk, Rlk and Itk.
  • the Janus family ofkinases is involved in the transduction of growth factor and promflammatory cytokine signals through a number of receptors.
  • BTK and ITK members of the Tec family ofkinases
  • the Csk family is currently understood to include Csk and Chk.
  • the kinases RIP, IRAK-1, IRAK-2, NIK, p38 MAP kinases, Jnk, DCK-1 and KK-2 are involved in the signal transduction pathways for key pro-inflammatory cytokines, such as TNF and IL-1.
  • compounds of formula I may function as immunomodulatory agents useful for the maintenance of allografts, the treatment of autoimmune disorders and treatment of sepsis and septic shock.
  • T cells T cells
  • B-cells T cells
  • mast cells T cells
  • monocytes neutrophils
  • these compounds could be used to treat such autoimmune diseases and sepsis.
  • Prevention of transplant rejection either host versus graft for solid organs or graft versus host for bone marrow, are limited by the toxicity of currently available immunosuppressive agents and would benefit from an efficacious drug with improved therapeutic index.
  • Gene targeting experiments have demonstrated the essential role of Src in the biology of osteoclasts, the cells responsible for bone reso ⁇ tion.
  • Compounds of formula I may also be useful in the treatment of osteoporosis, osteopetrosis, Paget's disease, tumor- induced hypercalcemia and in the treatment of bone metastases.
  • Chromosome breakage at the Itk kinase break point on chromosome 5
  • translocation as in the case of the Abl gene with BCR (Philadelphia chromosome)
  • truncation in instances such as c-Kit or EGFR
  • mutation e.g., Met
  • oncogenesis is driven by an autocrine or paracrine ligand/growth factor receptor interactions.
  • src-family kinases are typically involved in downstream signal transduction thereby potentiating the oncogenesis and themselves may become oncogenic by over-expression or mutation. By inhibiting the protein kinase activity of these proteins the disease process may be disrupted.
  • Vascular restenosis may involve FGF and/or PDGF - promoted smooth muscle and endothelial cell proliferation.
  • the ligand stimulation of FGFR, PDGFR, IGF1-R and c-Met in vivo is proangiogenic, and potentiates angiogenesis dependent disorders. Inhibition of FGFr, PDGFr , c-Met, or IGF1-R kinase activities individually or in combination may be an efficacious strategy for inhibiting these phenomena.
  • compounds of formula I which inhibit the kinase activity of normal or aberrant c-kit, c-met, c-fins, src-family members, EGFr, erbB2, erbB4, BCR- Abl, PDGFr, FGFr, IGF1-R and other receptor or cytosolic tyrosine kinases may be of value in the treatment of benign and neoplastic proliferative diseases.
  • pathological conditions for example, solid primary tumors and metastases, Kaposi's sarcoma, rheumatoid arthritis, blindness due to inappropriate ocular neovascularization, psoriasis and atherosclerosis
  • disease progression is contingent upon persistent angiogenesis.
  • Polypeptide growth factors often produced by the disease tissue or associated inflammatory cells, and their corresponding endothelial cell specific receptor tyrosine kinases are essential for the stimulation of endothelial cell growth, migration, organization, differentiation and the establishment of the requisite new functional vasculature.
  • VEGF-stimulation of a VEGFR kinase is also believed to play an important role in the formation of tumor ascites, cerebral and pulmonary edema, pleural and pericardial effusions, delayed- type hypersensitivity reactions, tissue edema and organ dysfunction following trauma, burns, ischemia, diabetic complications, endometriosis, adult respiratory distress syndrome (ARDS), post-cardiopulmonary bypass-related hypotension and hype ⁇ ermeability, and ocular edema leading to glaucoma or blindness due to inappropriate neovascularization.
  • ARDS adult respiratory distress syndrome
  • VEGF-C and VEGF-D can also cause a vascular hype ⁇ ermeability response through the stimulation of a VEGFR kinase.
  • KDR/VEGFR-2 and or Tie-2 are expressed also in a select population of hematopoietic stem cells. Certain members of this population are pluripotent in nature and can be stimulated with growth factors to differentiate into endothelial cells and participate in vasculogenetic angiogenic processes. For this reason these have been called Endothelial Progenitor Cells (EPCs) (J Clin. Investig. 103 : 1231- 1236 (1999)).
  • EPCs Endothelial Progenitor Cells
  • Tie-2 may play a role in their recruitment, adhesion, regulation and differentiation (Blood , 4317-4326 (1997)). Certain agents according to formula I capable of blocking the kinase activity of endothelial cell specific kinases could therefore inhibit disease progression involving these situations.
  • vascular destabilization of the antagonist ligand of Tie-2 is believed to induce an unstable "plastic" state in the endothelium.
  • Ang2 Tie-2
  • a robust angiogenic response may result; however, in the absence of VEGF or a VEGF-related stimulus, frank vessel regression and endothelial apoptosis can occur (Genes and Devel. 13: 1055-1066 (1999)).
  • a Tie- 2 kinase inhibitor can be proangiogenic or antiangiogenic in the presence or absence of a VEGF-related stimulus, respectively.
  • Tie-2 inhibitors can be employed with appropriate proangiogenic stimuli, such as VEGF, to promote therapeutic angiogenesis in situations such as wound healing, infarct and ischemia.
  • the compounds of formula I or a salt thereof or pharmaceutical compositions containing a therapeutically effective amount thereof may be used in the treatment of protein kinase-mediated conditions, such as benign and neoplastic proliferative diseases and disorders of the immune system, as described above.
  • diseases include autoimmune diseases, such as rheumatoid arthritis, thyroiditis, type 1 diabetes, multiple sclerosis, sarcoidosis, inflammatory bowel disease, Crohn's disease, myasthenia gravis and systemic lupus erythematosus; psoriasis, organ transplant rejection (eg.
  • kidney rejection graft versus host disease
  • benign and neoplastic proliferative diseases human cancers such as lung, breast, stomach, bladder, colon, pancreas, ovarian, prostate and rectal cancer and hematopoietic malignancies (leukemia and lymphoma), and diseases involving inappropriate vascularization for example diabetic retinopathy, retinopathy of prematurity, choroidal neovascularization due to age-related macular degeneration, and infantile hemangiomas in human beings.
  • inhibitors may be useful in the treatment of disorders involving VEGF mediated edema, ascites, effusions, and exudates, including for example macular edema, cerebral edema, acute lung injury and adult respiratory distress syndrome (ARDS).
  • ARDS adult respiratory distress syndrome
  • the compounds of the present invention may also be useful in the prophylaxis of the above diseases.
  • the disorders listed above are mediated to a significant extent by protein tyrosine kinase activity involving the VEGF receptors (e.g. KDR, Flt-1 and/or Tie-2).
  • VEGF receptors e.g. KDR, Flt-1 and/or Tie-2.
  • the present invention provides compounds of formula I as defined initially above for use as medicaments, particularly as inhibitors of protein kinase activity for example tyrosine kinase activity, serine kinase activity and threonine kinase activity.
  • the present invention provides the use of compounds of formula I as defined initially above in the manufacture of a medicament for use in the inhibition of protein kinase activity.
  • Physiologically acceptable salts refers to those salts which retain the biological effectiveness and properties of the free bases and which are obtained by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid or organic acids such as sulfonic acid, carboxylic acid, organic phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p- toluenesulfonic acid, salicylic acid, lactic acid, tartaric acid and the like.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid or organic acids such as sulfonic acid, carboxylic acid, organic phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p- toluenesulfonic acid, salicylic acid, lactic acid, tartaric acid and the like.
  • Alkyl refers to a saturated aliphatic hydrocarbon, including straight-chain and branched-chain groups having 1 to 6 carbons or cyclic hydrocarbons having 3 to 6 carbons.
  • Alkoxy refers to an “O-alkyl” group, where “alkyl” is defined as described above.
  • phrases of this invention can be administered to a human patient by themselves or in pharmaceutical compositions where they are mixed with suitable carriers or exci ⁇ ient(s) at doses to treat or ameliorate vascular hype ⁇ ermeability, edema and associated disorders. Mixtures of these compounds can also be administered to the patient as a simple mixture or in suitable formulated pharmaceutical compositions.
  • a therapeutically effective dose further refers to that amount of the compound or compounds sufficient to result in the prevention or attenuation of inappropriate neovascularization, progression of hype ⁇ roliferative disorders, edema, VEGF-associated hype ⁇ ermeability and/or VEGF-related hypotension.
  • Suitable routes of administration may, for example, include oral, eyedrop, rectal, transmucosal, topical, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as mtrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.
  • compositions of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
  • compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.
  • the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
  • physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
  • penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.
  • Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
  • Pharmaceutical preparations for oral use can be obtained by combining the active compound with a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
  • Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP).
  • disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • Dragee cores are provided with suitable coatings.
  • suitable coatings For this pu ⁇ ose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
  • the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
  • filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
  • the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
  • compositions may take the form of tablets or lozenges formulated in conventional manner.
  • the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • the compounds can be formulated for parenteral administration by injection, e.g. bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dosage form, e.g.in ampoules or in multi-dose containers, with an added preservative.
  • the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
  • Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
  • the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the compounds may also be formulated as a depot preparation.
  • Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly or by intramuscular injection).
  • the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • An example of a pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase.
  • the cosolvent system may be the VPD co-solvent system.
  • VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol.
  • the VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution.
  • This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration.
  • the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics.
  • identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.
  • other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs.
  • Certain organic solvents such as dimethysulfoxide also may be employed, although usually at the cost of greater toxicity.
  • the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.
  • sustained-release materials have been established and are well known by those skilled in the art.
  • Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days.
  • additional strategies for protein stabilization may be employed.
  • compositions also may comprise suitable solid or gel phase carriers or excipients.
  • suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
  • salts may be provided as salts with pharmaceutically compatible counterions.
  • Pharmaceutically compatible salts may be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.
  • compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended pu ⁇ ose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amounts is well within the capability of those skilled in the art.
  • the therapeutically effective dose can be estimated initially from cellular assays.
  • a dose can be formulated in cellular and animal models to achieve a circulating concentration range that includes the IC 50 as determined in cellular assays (i.e., the concentration of the test compound which achieves a half-maximal inhibition of a given protein kinase activity).
  • the IC 50 as determined in cellular assays (i.e., the concentration of the test compound which achieves a half-maximal inhibition of a given protein kinase activity).
  • Such information can be used to more accurately determine useful doses in humans.
  • the most preferred compounds for systemic administration effectively inhibit protein kinase signaling in intact cells at levels that are safely achievable in plasma.
  • a therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms in a patient.
  • Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the maximum tolerated dose (MTD) and the ED 50 (effective dose for 50% maximal response).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between MTD and ED 50 .
  • Compounds which exhibit high therapeutic indices are preferred.
  • the data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
  • the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g. Fingl et
  • MEC minimal effective concentration
  • Dosage intervals can also be determined using the MEC value.
  • Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90% until the desired amelioration of symptoms is achieved.
  • the effective local concentration of the drug may not be related to plasma concentration.
  • composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.
  • compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient.
  • the pack may for example comprise metal or plastic foil, such as a blister pack.
  • the pack or dispenser device may be accompanied by instructions for administration.
  • compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
  • a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
  • active compound denotes any compound of the invention but particularly any compound which is the final product of one of the preceding Examples.
  • lactose 240 parts by weight of lactose can be de-aggregated and blended.
  • the mixture can be filled into hard gelatin capsules, each capsule containing a unit dose or part of a unit dose of active compound.
  • Tablets can be prepared from the following ingredients. Parts by weight Active compound 10 Lactose 190
  • the active compound, the lactose and some of the starch can be de- aggregated, blended and the resulting mixture can be granulated with a solution of the polyvinyl- pyrrolidone in ethanol.
  • the dry granulate can be blended with the magnesium stearate and the rest of the starch.
  • the mixture is then compressed in a tabletting machine to give tablets each containing a unit dose or a part of a unit dose of active compound.
  • Tablets can be prepared by the method described in (b) above.
  • the tablets can be enteric coated in a conventional manner using a solution of 20% cellulose acetate phthalate and 3% diethyl phthalate in ethanokdichloromethane (1:1).
  • 100 parts by weight of active compound can be inco ⁇ orated in 1300 parts by weight of triglyceride suppository base and the mixture formed into suppositories each containing a therapeutically effective amount of active ingredient.
  • the active compound may, if desired, be associated with other compatible pharmacologically active ingredients.
  • the compounds of this invention can be administered in combination with one or more additional pharmaceutical agents that inhibit or prevent the production of VEGF or angiopoietins, attenuate intracellular responses to VEGF or angiopoietins, block intracellular signal transduction, inhibit vascular hype ⁇ ermeability, reduce inflammation, or inhibit or prevent the formation of edema or neovascularization.
  • the compounds of the invention can be administered prior to, subsequent to or simultaneously with the additional pharmaceutical agent, whichever course of administration is appropriate.
  • the additional pharmaceutical agents include but are not limited to anti-edemic steroids, NSADDS, ras inhibitors, anti-TNF agents, anti-ILl agents, antihistamines, PAF-antagonists, COX-1 inhibitors, COX-2 inhibitors, NO synthase inhibitors, Akt/PTB inhibitors, IGF-IR inhibitors, PKC inhibitors and PI3 kinase inhibitors.
  • the compounds of the invention and the additional pharmaceutical agents act either additively or synergistically.
  • the administration of such a combination of substances that inhibit angiogenesis, vascular hype ⁇ ermeability and/or inhibit the formation of edema can provide greater relief from the deletrious effects of a hype ⁇ roliferative disorder, angiogenesis, vascular hype ⁇ ermeability or edema than the administration of either substance alone.
  • combinations with antiproliferative or cytotoxic chemotherapies or radiation are anticipated.
  • the present invention also comprises the use of a compound of formula I as a medicament.
  • a further aspect of the present invention provides the use of a compound of formula I or a salt thereof in the manufacture of a medicament for treating vascular hype ⁇ ermeability, angiogenesis-dependent disorders, proliferative diseases and/or disorders of the immune system in mammals, particularly human beings.
  • the present invention also provides a method of treating vascular hype ⁇ ermeability, inappropriate neovascularization, proliferative diseases and/or disorders of the immune system which comprises the administration of a therapeutically effective amount of a compound of formula I to a mammal, particularly a human being, in need thereof.
  • the in vitro potency of compounds in inhibiting these protein kinases may be determined by the procedures detailed below.
  • the potency of compounds can be determined by the amount of inhibition of the phosphorylation of an exogenous substrate (e.g., synthetic peptide (Z. Songyang et al, Nature. 373:536-539) by a test compound relative to control.
  • KDR Tyrosine Kinase Production Using Baculovirus System The coding sequence for the human KDR intra-cellular domain (aa789-l 354) was generated through PCR using cDNAs isolated from HUVEC cells. A poly-His ⁇ sequence was introduced at the N-terminus of this protein as well. This fragment was cloned into transfection vector pVL1393 at the Xba 1 and Not 1 site. Recombinant baculovirus (B V) was generated through co-transfection using the BaculoGold Transfection reagent (PharMingen). Recombinant BV was plaque purified and verified through Western analysis. For protein production, SF-9 cells were grown in SF-900-II medium at 2 x 106/ml, and were infected at 0.5 plaque forming units per cell (MOI). Cells were harvested at 48 hours post infection. Purification of KDR
  • SF-9 cells expressing (His) 6 KDR(aa789-1354) were lysed by adding 50 ml of Triton X-100 lysis buffer (20 mM Tris, pH 8.0, 137 mM NaCl, 10% glycerol, 1% Triton X-100, ImM PMSF, 10 g/ml aprotinin, 1 ⁇ g/ml leupeptin) to the cell pellet from IL of cell culture.
  • the lysate was centrifuged at 19,000 ⁇ m in a Sorval SS-34 rotor for 30 min at 4°C.
  • the cell lysate was applied to a 5 ml NiCl 2 chelating sepharose column, equilibrated with 50 mM HEPES, pH7.5, 0.3 M NaCl.
  • KDR was eluted using the same buffer containing 0.25 M imidazole.
  • Column fractions were analyzed using SDS-PAGE and an ELISA assay (below) which measures kinase activity.
  • the purified KDR was exchanged into 25mM HEPES, ⁇ H7.5, 25mM NaCl, 5 mM DTT buffer and stored at -80°C.
  • the coding sequence for the human Tie-2 intra-cellular domain (aa775-l 124) was generated through PCR using cDNAs isolated from human placenta as a template. A poly-His 6 sequence was introduced at the N-terminus and this construct was cloned into transfection vector pVL 1939 at the Xba 1 and Not 1 site.
  • Transfection reagent (PharMingen). Recombinant BV was plaque purified and verified through Western analysis. For protein production, SF-9 insect cells were grown in SF-900-II medium at 2 x 106/ml, and were infected at MOI of 0.5.
  • the baculoviral expression vector pVL1393 (Phar Mingen, Los Angeles, CA) was used. A nucleotide sequence encoding poly-His6 was placed 5' to the nucleotide region encoding the entire intracellular kinase domain of human Flt-1 (amino acids 786-1338). The nucleotide sequence encoding the kinase domain was generated through PCR using cDNA libraries isolated from HUVEC cells. The histidine residues enabled affinity purification of the protein as a manner analogous to that for KDR and ZAP70. SF-9 insect cells were infected at a 0.5 multiplicity and harvested 48 hours post infection.
  • EGFR Tyrosine Kinase Source EGFR was purchased from Sigma (Cat # E-3641 ; 500 units/50 ⁇ l) and the
  • EGF ligand was acquired from Oncogene Research Products/Calbiochem (Cat # PF011-100).
  • the nucleotide sequence encoding amino acids M(H)6 LVPRgS was placed 5' to the region encoding the entirety of ZAP70 (amino acids 1-619).
  • the nucleotide sequence encoding the ZAP70 coding region was generated through PCR using cDNA libraries isolated from Jurkat immortalized T-cells. The histidine residues enabled affinity purification of the protein (vide infra).
  • the LVPRgS bridge constitutes a recognition sequence for proteolytic cleavage by thrombin, enabling removal of the affinity tag from the enzyme.
  • SF-9 insect cells were infected at a multiplicity of infection of 0.5 and harvested 48 hours post infection.
  • SF-9 cells were lysed in a buffer consisting of 20 mM Tris, pH 8.0, 137 mM NaCl, 10% glycerol, 1% Triton X-100, 1 mM PMSF, 1 ⁇ g/ml leupeptin, 10 ⁇ g/ml aprotinin and 1 mM sodium orthovanadate.
  • the soluble lysate was applied to a chelating sepharose HiTrap column (Pharmacia) equilibrated in 50 mM HEPES, pH 7.5, 0.3 M NaCl. Fusion protein was eluted with 250 mM imidazole.
  • the enzyme was stored in buffer containing 50 mM HEPES, pH 7.5, 50 mM NaCl and 5 mM DTT.
  • Protein kinase source Lck, Fyn, Src, Blk, Csk, and Lyn, and truncated forms thereof may be commercially obtained (e.g. from Upstate Biotechnology Inc. (Saranac Lake, N.Y) and Santa Cruz Biotechnology Inc. (Santa Cruz, Ca.)) or purified from known natural or recombinant sources using conventional methods.
  • Enzyme linked Immunosorbent Assay For PTKs Enzyme linked immunosorbent assays (ELISA) were used to detect and measure the presence of tyrosine kinase activity. The ELISA were conducted according to known protocols which are described in, for example, Voller, et al, 1980, "Enzyme-Linked Immunosorbent Assay," In: Manual of Clinical Immunology, 2d ed., edited by Rose and Friedman, pp 359-371 Am. Soc. of Microbiology, Washington, D.C.
  • the disclosed protocol was adapted for determining activity with respect to a specific PTK.
  • preferred protocols for conducting the ELISA experiments is provided below. Adaptation of these protocols for determining a compound's activity for other members of the receptor PTK family, as well as non- receptor tyrosine kinases, are well within the abilities of those in the art.
  • a universal PTK substrate e.g., random copolymer of poly(Glu 4 Tyr), 20,000-50,000 MW
  • ATP typically 5 ⁇ M
  • PBS phosphate buffered saline
  • Reaction Buffer lOOmM Hepes, 20mM MgCl 2 , 4mM MnCl 2 , 5mM DTT, 0.02%BSA, 200 ⁇ M NaVO 4 , pH 7.10
  • ATP Store aliquots of 1 OOmM at -20°C. Dilute to 20 ⁇ M in water Washing Buffer: PBS with 0.1% Tween 20
  • Buffer 0.1% bovine serum albumin (BSA) in PBS TMB Substrate: mix TMB substrate and Peroxide solutions 9:1 just before use or use K-Blue Substrate from Neogen Stop Solution: IM Phosphoric Acid
  • the Reaction Buffer utilized was 100 mM MOPSO, pH 6.5, 4 mM MnCl 2 , 20 mM MgCl 2 , 5 mM DTT, 0.2% BSA, 200 mM NaVO 4 under the analogous assay conditions.
  • Compounds of formula I may have therapeutic utility in the treatment of diseases involving both identified, including those not mentioned herein, and as yet unidentified protein tyrosine kinases which are inhibited by compounds of formula I. All compounds exemplified herein significantly inhibit either FGFR, PDGFR, KDR, Tie-2, Lck, Fyn, Blk, Lyn or Src at concentrations of 50 micromolar or below. Some compounds of this invention also significantly inhibit other tyrosine or serine/threonine kinases such as cdc2 (cdkl) at concentrations of 50 micromolar or below.
  • the human recombinant enzyme and assay buffer may be obtained commercially (New England Biolabs, Beverly, MA. USA) or purified from known natural or recombinant sources using conventional methods.
  • Cdc2 Assay The protocol used was that provided with the purchased reagents with minor modifications.
  • the reaction was carried out in a buffer consisting of 5 OmM Tris pH 7.5, lOOmM NaCl, ImM EGTA, 2mM DTT, 0.01% Brij, 5% DMSO and lOmM MgCl 2 (commercial buffer) supplemented with fresh 300 ⁇ M ATP (31 ⁇ Ci/ml) and 30 ⁇ g/ml histone type Hiss final concentrations.
  • a reaction volume of 80 ⁇ L, containing units of enzyme, was run for 20 minutes at 25 degrees C in the presence or absence of inhibitor. The reaction was terminated by the addition of 120 ⁇ L of 10% acetic acid.
  • the substrate was separated from uninco ⁇ orated label by spotting the mixture on phosphocellulose paper, followed by 3 washes of 5 minutes each with 75mM phosphoric acid. Counts were measured by a betacounter in the presence of liquid scintillant.
  • Certain compounds of this invention significantly inhibit cdc2 at concentrations below 50 uM.
  • PKC kinase source The catalytic subunit of PKC may be obtained commercially (Calbiochem).
  • a radioactive kinase assay was employed following a published procedure (Yasuda, I., Kirshimoto, A., Tanaka, S., Tominaga, M., Sakurai, A., Nishizuka, Y. Biochemical and Biophysical Research Communication 5:166, 1220-1227 (1990)). Briefly, all reactions were performed in a kinase buffer consisting of 50 mM Tris- HCl pH7.5, lOmM MgCl 2 , 2mM DTT, ImM EGTA, 100 ⁇ M ATP, 8 ⁇ M peptide, 5% DMSO and 33 P ATP (8Ci mM).
  • the recombinant murine enzyme and assay buffer may be obtained commercially (New England Biolabs, Beverly MA. USA) or purified from known natural or recombinant sources using conventional methods.
  • reaction was carried out in a buffer consisting of 50 mM Tris pH 7.5, ImM EGTA, 2mM DTT, 0.01% Brij, 5% DMSO and 10 mM MgCl 2 (commercial buffer) supplemented with fresh 100 ⁇ M ATP (31 ⁇ Ci/ml) and 30 ⁇ M myelin basic protein under conditions recommended by the supplier. Reaction volumes and method of assaying inco ⁇ orated radioactivity were as described for the PKC assay (vide supra).
  • T-cells Upon activation by mitogen or antigen, T-cells are induced to secrete IL-2, a growth factor that supports their subsequent proliferative phase. Therefore, one may measure either production of IL-2 from or cell proliferation of, primary T-cells or appropriate T-cell lines as a surrogate for T-cell activation. Both of these assays are well described in the literature and their parameters well documented (in Current Protocols in Immunology, Vol 2, 7.10.1-7.11.2).
  • T-cells may be activated by co-culture with allogenic stimulator cells, a process termed the one-way mixed lymphophocyte reaction.
  • Responder and stimulator peripheral blood mononuclear cells are purified by Ficoll-Hypaque gradient (Pharmacia) per directions of the manufacturer.
  • Stimulator cells are mitotically inactivated by treatment with mitomycin C (Sigma) or gamma irradiation.
  • Responder and stimulator cells are co-cultured at a ratio of two to one in the presence or absence of the test compound.
  • 10 5 responders are mixed with 5 x 10 4 stimulators and plated (200 ⁇ l volume) in a U bottom microtiter plate (Costar Scientific).
  • the cells are cultured in RPMI 1640 supplemented with either heat inactivated fetal bovine serum (Hyclone Laboratories) or pooled human AB serum from male donors, 5 x 10 "5 M 2mercaptoethanol and 0.5% DMSO,
  • the cultures are pulsed with 0.5 ⁇ Ci of 3 H thymidine (Amersham) one day prior to harvest (typically day three).
  • the cultures are harvested (Betaplate harvester, Wallac) and isotope uptake assessed by liquid scintillation (Betaplate, Wallac).
  • the same culture system may be used for assessing T-cell activation by measurement of IL-2 production. Eighteen to twenty-four hours after culture initiation, the supernatants are removed and the IL-2 concentration is measured by ELISA (R and D Systems) following the directions of the manufacturer.
  • T-cells can be activated in vivo by ligation of the constant portion of the T-cell receptor with a monoclonal anti-CD3 antibody (Ab).
  • Ab monoclonal anti-CD3 antibody
  • BALB/c mice are given lO ⁇ g of anti-CD3 Ab intraperitoneally two hours prior to exsanguination. Animals to receive a test drug are pre-treated with a single dose of the compound one hour prior to anti-CD3 Ab administration.
  • Serum levels of the proinflammatory cytokines interferon- ⁇ (IFN- ⁇ ) and tumor necrosis factor- (TNF- ), indicators of T-cell activation, are measured by ELISA.
  • a similar model employs in vivo T-cell priming with a specific antigen such as keyhole limpet hemocyanin (KLH) followed by a secondary in vitro challenge of draining lymph node cells with the same antigen.
  • KLH keyhole limpet hemocyanin
  • measurement of cytokine production is used to assess the activation state of the cultured cells. Briefly, C57BL/6 mice are immunized subcutaneously with 100 ⁇ g KLH emulsified in complete Freund's adjuvant (CFA) on day zero.
  • CFA complete Freund's adjuvant
  • mice or rats are immunized with an emulsion of myelin basic protein (MBP), or neurogenic peptide derivatives thereof, and CFA.
  • MBP myelin basic protein
  • Acute disease can be induced with the addition of bacterial toxins such as bordetella pertussis. Relapsing/remitting disease is induced by adoptive transfer of T-cells from MBP/ peptide immunized animals.
  • CIA may be induced in DBA/1 mice by immunization with type II collagen (J. Immunol: 142(7):2237-2243). Mice will develop signs of arthritis as early as ten days following antigen challenge and may be scored for as long as ninety days after immunization. In both the EAE and CIA models, a compound may be administered either prophylactically or at the time of disease onset. Efficacious drugs should reduce severity and/or incidence.
  • Certain compounds of this invention which inhibit one or more angiogenic receptor PTK, and/or a protein kinase such as lck involved in mediating inflammatory responses can reduce the severity and incidence of arthritis in these models.
  • mice can also be tested in mouse allograft models, either skin (reviewed in Ann. Rev. Immunol., 10:333-58, 1992; Transplantation: 57(12): 1701-17D6, 1994) or heart (Am. J.Ana : 113:273, 1963).
  • full thickness skin grafts are transplanted from C57BL/6 mice to BALB/c mice.
  • the grafts can be examined daily, beginning at day six, for evidence of rejection.
  • neonatal heart transplant model neonatal hearts are ectopically transplanted from C57BL/6 mice into the ear pinnae of adult CBA/J mice. Hearts start to beat four to seven days post transplantation and rejection may be assessed visually using a dissecting microscope to look for cessation of beating.
  • HUVEC cells from pooled donors were purchased from Clonetics (San Diego, CA) and cultured according to the manufacturer directions. Only early passages (3-8) were used for this assay. Cells were cultured in 100 mm dishes (Falcon for tissue culture; Becton Dickinson; Madison, England) using complete EBM media (Clonetics).
  • Equal amounts of proteins were then precipitated by addition of cold (-20 C) Ethanol (2 volumes) for a minimum of 1 hour or a maximum of overnight. Pellets were reconstituted in Laemli sample buffer containing 5% -mercaptoethanol (BioRad; Hercules, CA) and boiled for 5min. The proteins were resolved by polyacrylamide gel electrophoresis (6%, 1.5mm Novex, San Deigo, CA) and transferred onto a nitrocellulose membrane using the Novex system.
  • This assay measures the capacity of compounds to inhibit the acute increase in uterine weight in mice which occurs in the first few hours following estrogen stimulation.
  • This early onset of uterine weight increase is known to be due to edema caused by increased permeability of uterine vasculature.
  • Cullinan-Bove and Koss (Endocrinology (1993), 755:829-837) demonstrated a close temporal relationship of estrogen- stimulated uterine edema with increased expression of VEGF mRNA in the uterus.
  • this system can serve as a model for in vivo inhibition of VEGF signalling and the associated hype ⁇ ermeability and edema.
  • Materials All hormones were purchased from Sigma (St. Louis, MO) or Cal Biochem (La Jolla, CA) as lyophilized powders and prepared according to supplier instructions.
  • DMSO dimethyl methacrylate
  • Cremaphor EL Vehicle components
  • mice (Balb/c, 8-12 weeks old) were purchased from Taconic (Germantown, NY) and housed in a pathogen-free animal facility in accordance with institutional Animal Care and Use Committee Guidelines.
  • mice were randomized and divided into groups of 5- 10. Test compounds were administered by i.p., i.v. or p.o. routes depending on solubility and vehicle at doses ranging from 1-100 mg/kg. Vehicle control group received vehicle only and two groups were left untreated.
  • Results demonstrate that certain compounds of the present invention inhibit the formation of edema when administered systemically by various routes.
  • Certain compounds of this invention which are inhibitors of angiogenic receptor tyrosine kinases can also be shown active in a Matrigel implant model of neovascularization.
  • the Matrigel neovascularization model involves the formation of new blood vessels within a clear "marble" of extracellular matrix implanted subcutaneously which is induced by the presence of proangiogenic factor producing tumor cells (for examples see: Passaniti, A., et al, Lab. Investig. (1992), 67(4), 519- 528; Anat. Rec. (1997), 249(1), 63-73; Int. J. Cancer (1995), 63(5), 694-701; Vase. Biol. (1995), 15(11), 1857-6).
  • the model preferably runs over 3-4days and endpoints include macroscopic visual/image scoring of neovascularization, microscopic microvessel density determinations, and hemoglobin quantitation (Drabkin method) following removal of the implant versus controls from animals untreated with inhibitors.
  • the model may alternatively employ bFGF or HGF as the stimulus.
  • Certain compounds of this invention which inhibit one or more oncogenic, protooncogenic, or proliferation-dependent protein kinases, or angiogenic receptor PTK also inhibit the growth of primary murine, rat or human xenograft tumors in mice, or inhibit metastasis in murine models.
  • Processes for the preparation of compounds of formula I will now be described. These processes form a further aspect of the present invention.
  • the processes are preferably carried out at atmospheric pressure.
  • Rstrich R 2 , R 3 , L and ring A are as previously defined with formamide at a temperature in the range of 50 to 250°C optionally in the presence of a catalyst for example 4-dimethylaminopyridine.
  • R ⁇ is bromo or iodo bromo or iodo with one of the following compounds: R 3 B(OH) 2 , R 3 Sn(CH 3 ) 3 or a compound represented by formula IV
  • R 3 is as defined above, in the presence of a catalyst for example palladium (0) compounds eg. Pd(PPh 3 ) 4 .
  • a catalyst for example palladium (0) compounds eg. Pd(PPh 3 ) 4 .
  • R 2 and R 3 are as previously defined with a compound of formula RjX' in which Rj represents an alkyl group or an aralkyl group and X' represents a leaving group, for example halo, mesyloxy or tosyloxy.
  • R2 and R3 are as previously defined with a compound of formula RiX' in which X' is as previously defined and R, is an optionally substituted cyclic ether.
  • Ri represents a cyclic ether, such as tetrahydrofuryl or tetrahydropyranyl, substituted by an (optionally substituted amino)methyl group
  • Ri represents a cyclic ether substituted by formyl
  • Compounds of formula I in which Ri represents optionally substituted furyl, thienyl or py ⁇ olyl may be prepared by reacting 4-chloro-5-iodo-7H-pyrrolo[2,3- d]pyrimidine with the appropriate heteroarylboronic acid in the presence of a copper salt catalyst, for example copper (II) acetate in the presence of a solvent for the reactants, e.g. a halogenated solvent for example, dichloromethane, in the presence of a drying agent, for example 4A molecular sieves, in the presence of an organic base, e.g. triethylamine or pyridine, at a temperature in the range of 0-50°C, preferably at ambient temperature.
  • a copper salt catalyst for example copper (II) acetate
  • a solvent for the reactants e.g. a halogenated solvent for example, dichloromethane
  • a drying agent for example 4A molecular sieves
  • These compounds may be formulated by methods known to those skilled in the art to give compounds in which Rj represents furyl, thienyl or pyrrolyl substituted by formyl.
  • the formyl group in these compounds may be productively animated by methods known to those skilled in the art to give compounds in which Rj represents furyl, thienyl or pyrrolyl substituted by aminomethyl groups.
  • intermediates in which Rj represents furyl, thienyl or pyrrolyl may be subjected to a Mannich reaction to give intermediates in which Ri represents furyl, thienyl or pyrrolyl substituted by an aminomethyl group.
  • Rstrich R 2 , R 3 , L and ring A are as previously defined and R y represents a leaving group, for example halo or phenoxy, with ammonia or an ammonium salt, for example ammonium acetate, at a temperature in the range of 15-250°C, preferably in a pressure vessel.
  • Rstrich R 3 L and ring A are as previously defined with a halogenating agent for example an iodinating agent, e.g. N-iodosuccinimide, or a brominating agent, e.g. N- bromosuccinimide, or a chlorinating agent, e.g. N-chlorosuccinimide.
  • a halogenating agent for example an iodinating agent, e.g. N-iodosuccinimide, or a brominating agent, e.g. N- bromosuccinimide, or a chlorinating agent, e.g. N-chlorosuccinimide.
  • R represents a protected amine
  • R ⁇ represents a leaving group, for example chloro
  • compounds of formula IX in which Y represents halo, for example chloro may be reacted with a compound of formula R 3 COR-. and the product reacted with ammonia to give a compound of formula I.
  • Analogous methods may be used to prepare compounds of formula I in which -L-R 3 is - NRSO 2 R 3 .
  • Analogous methods may be used to prepare compound of formula I in which -L-R 3 is -NRCO 2 -R 3 or -NRCONR'.
  • R and R' are as previously defined.
  • compounds of formula I may be converted into other compounds of formula I by known chemical reactions.
  • an alkoxy group may be cleaved to give hydroxy
  • nitro groups may be reduced to amines
  • amines may be acylated or sulfonylated
  • N-acyl compounds may be hydrolyzed to amines.
  • Compounds of formula I in which -L- is S may be oxidized to give compounds of formula I in which -L- represents SO and SO 2 , respectively, by methods known to those skilled in the art.
  • (ring A)-L-R 3 may be coupled first, prior to amination.
  • a substituent R, as defined previously may be present prior to carrying out either process.
  • R may be modified by the method depicted in Schemes 5 and 6.
  • Schemes 5 and 6 P represents a protecting group.
  • Example 2 Neopentyl N-(4-(4-amino-7-tetrahydro-2H-4-pyranyl-7H- py ⁇ olo[2,3-d]pyrimidin-5-yl)-2-methoxyphenyl)carbamate.
  • Neopentylchloroformate(13 uL, 0.110 mmol) was added dropwise to a stirring solution of 5-(4-amino-3-methoxyphenyl)-7-tetrahydro-2H-4-pyranyl-7H- pyrrolo[2,3-d]pyrimidin-4-amine (25 mg, 0.074 mmol) in pyridine (0.7 ml) and dichloromethane (0.7 ml) under nitrogen at 0°C. After 10 minutes, the ice water bath was removed and the resulting mixture was stirred for 4 hours.
  • Example 4 Tetrahydro-2H-4-pyranyl N-[4-(4-amino-7-tetrahydro-2H-4-pyranyl- 7H-py ⁇ olo[2,3-d]pyrimidin-5-yl)-2-methoxyphenyl]carbamate 4-nitrophenyl tetrahydro-2H-4-pyranyl carbonate Tetrahydro-2H-4-pyranol (1.0 ml, 10.5 mmol) was mixed with 4- methylmo ⁇ holine (2.0 ml) in dichloromethane (20 mL). 4- Nitrochloroformate (1.98 g, 9.82 mmol) was added slowly to the reaction mixture.
  • Phenyl N-[4-(4- amino-7-tefrahydro-2H-4-pyranyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2- methoxyphenyljcarbamate (28 mg, 0.061 mmol) was mixed with (4-bromo-l,3- thiazol-5-yl)methanol (50 mg, 0.434 mmol) in pyridine (0.5 mL). The reaction mixture was heated at 100°C overnight.
  • Phenyl N-[4-(4-amino-7-tetrahydro-2H-4-pyranyl-7H-pyrrolo[2,3- d]pyrimidin-5-yl)-2-methoxyphenyl]carbamate (30 mg, 0.065 mmol) was mixed with tetrahydro-3-furanol (0.05 mL) in pyridine (0.5 mL). The reaction mixture was heated at 100°C overnight.
  • Example 12 4-Pyridylmethyl N-[4-(4-amino-7-tetrahydro-2H-4-pyranyl-7H- pyrrolo[2,3-d]pyrimidin-5-yl)-2-methoxyphenyl]carbamate Hydrochloride Phenyl N-[4-(4-amino-7-tetrahydro-2H-4-pyranyl-7H-pyrrolo[2,3- d]pyrimidin-5-yl)-2-methoxyphenyl]carbamate (30 mg, 0.065 mmol) was mixed 4- pyridylmethanol (0.05 mL) in pyridine (0.5 mL). The reaction mixture was heated at 100°C overnight.
  • Phenyl N-[4-(4-amino-7-tetrahydro-2H-4-pyranyl-7H-pyrrolo[2,3- d]pyrimidin-5-yl)-2-methoxyphenyl]carbamate (30 mg, 0.065 mmol) was mixed with (5-methyl-3-isoxazolyl)methanol (0.05 mL) in pyridine (0.5 mL). The reaction mixture was heated at 100°C overnight.
  • Example 14 [(2S)-5-Oxotettahydro-lH-2-pyrrolyl]methyl N-[4-(4-amino-7- tefrahydro-2H-4-pyranyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2- methoxypheny 1] carbamate
  • Phenyl N-[4-(4-amino-7-tetrahydro-2H-4-pyranyl-7H-pyrrolo[2,3- d]pyrimidin-5-yl)-2-methoxyphenyl]carbamate (30 mg, 0.065 mmol) was mixed with (5S)-5-(hydroxymethyl)tetrahydro-lH-2-py ⁇ Olone (0.05 mL) in pyridine (0.5 mL).
  • Example 15 4-Aminobenzyl N-(4-(4-amino-7-tetrahydro-2H-4-pyranyl-7H- py ⁇ Olo[2,3-d]pyrimidin-5-yl)-2-methoxyphenyl)carbamate
  • Example 16 Nl-[4-(4-Amino-7-tetrahydro-2H-4-pyranyl-7H-pyrrolo[2,3- d]pyrimidin-5-yl)-2-methoxyphenyl]benzamide 5-(4-Amino-3-methoxyphenyl)-7-tetrahydro-2H-4-pyranyl-7H-pyrrolo[2,3- d]pyrimidin-4-amine (80mg, 0.236 mmol) was dissolved in dichloromethane (2.0 mL). Pyridine (2.0 mL) was added followed by benzoyl chloride (41 uL, 0.353 mmol).
  • Example 22 5-(4-phenoxyphenyl)-7-(3-tefrahydrofuryl)-7H-pyrrolo[2,3- d]pyrimidin-4-ylamine.
  • Example 23 5-(4-phenoxyphenyl)-7-(4-tetrahydropyranyl)-7H-pyrrolo[2,3- d]pyrimidin-4-ylamine.
  • 4-amino-5-(4-phenoxyphenyl)-7H- pyrrolo[2,3-d]pyrimidine was reacted with 4-tosyloxytetrahydropyran to give after flash column chromatography 5-(4-phenoxyphenyl)-7-(4-tetrahydropyranyl)-7H- pyrrolo[2,3-d]pyrintidm-4-ylamine, m.p. 193-193.5°C.
  • Example 24 4-amino-5-(4-phenoxyphenyl)-7-[4-(N-tert-butoxycarbonyl) tefrahydroisoxazolyl]-7H-py ⁇ olo[2,3-d]pyrinndin-4-ylamine.
  • Example 25 5-(4-phenoxyphenyl)-7-(4-tetrahydroisoxazolyl)-7H-pyrrolo[2,3-d]- pyrimidin-4-ylamine dihydrochloride.
  • Example 31 5-[4-(2-mo ⁇ holmomethylphenoxy)phenyl]-7-(3-tefrahyd ofuryl)-7H- py ⁇ olo[2,3-d]pyrintidm-4-ylamine
  • 2-[4-(4-arnmo-7-(3-tefrahy(frofuryl)-7H-pyrrolo[2,3- d)pyrimidin-5-yl)phenoxy]benzaldehyde (0.15 g), mo ⁇ holine (64 mg), sodium triacetoxyborohydride (117 mg) and 1,2 dichloroethane (5 ml) was stirred at ambient temperature for 18 hours.
  • the reaction mixture was filtered through a small pre-flushed silica pad and eluted with dichloromethane (200 ml) then ethyl acetate (250 ml) and finally ethyl acetate/methanol 9:1 (250 ml).
  • the dichlormethane and ethyl acetate fractions were combined and purified by flash column chromatography on silica using ethyl acetate/methanol as the mobile phase to give 5-[4-(4-fluorophenoxy)phenyl]-7-(3- tefrahydrofu ⁇ yl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine, m.p. 198-199°C.
  • Example 38 2-[4-(4-ammo-7-(3-tefrahydrofuryl)-7H-pyrrolo[2,3-d]pyrimidin-5- yl)phenoxy]-6-(2-(4-pyridyl)ethylamino)-benzonitrile
  • Example 40 4-ammo-6-bromo-5-(4-phenoxyphenyl)-7-(3-tetrahydrofuryl)-7H- pyrrolo[2,3-d]pyrimidine
  • Example 41 2-[4-(4-amino-7-(3-tettahydrofuryl)-7H-pyrrolo[2,3-d]pyrimidin-5- yl)phenoxy]-6-(3-methoxypropylamino) benzonitrile
  • 4-amino-5-(4-phenoxyphenyl)-7H- pyrrolo[2,3-d]pyrimidine (0.65 g)
  • 2-fluoro-6-(3-methoxypropylamino)benzonitrile (0.46 g)
  • potassium carbonate (0.61 g) and dimethylformamide (40 ml) was heated under nitrogen at 120°C for 8 hours to give, after workup, 2-[4-(4-amino-7-(3- tefrahydrofuryl)-7H-py ⁇ olo[2,3-d]pyrimidin-5-yl)phenoxy]-6-(3- methoxypropylamino) benzonitrile, m.
  • Examples 43-48 were prepared in a similar manner to the previous example by reactmg 4-[4-amino-7-(4-tetrahydropyranyl)-7H-pyrrolo[2,3-d]pyrimidin-5- yl]phenol with the appropriate nitrile except that the mixtures were shaken together for periods up to 48 hours. The reactions were monitored for the disappearance of starting material and heated for the appropriate time.
  • Example 49 2-[4-(4-Amino-7-(4-tetrahydropyranyl)-7H-pyrrolo[2,3-d]pyrimidin- 5-yl)phenoxy]-6-(3-imidazol- 1 -yl)propylaminobenzonitrile from 2-fluoro-6-(3- (imidazol- 1 -yl)propylamino)-benzonitrile.
  • Example 50 2-(4-(4-Ammo-7-(4-tettahy(fropyranyl)-7H-py ⁇ olo[2,3-d]pyrirmdin- 5-yl)phenoxy]- 6-(2-mo ⁇ holinoethoxy)benzonitrile, m.p. 110°C (glass), from 2- fluorobenzonitrile.
  • Example 51 2-[4-(4-Ammo-7-(4-tettahydropyranyl)-7H-pyrrolo[2,3-d]pyrimidin- 5-yl)phenoxy]-6-(2-(4-pyridyl)ethylamino)benzonitrile, m.p. 120-123°C (glass), from 2-fluoro-6-(2-(4-pyridyl)ethylamino)benzonitrile.
  • Example 52 2-[4-(4-Ammo-7-(4-tettahydropyranyl)-7H-pyrrolo[2,3-d]pyrimidin- 5-yl)phenoxy)-6-(3-methoxypropylamino)benzonitrile, m.p. 205-207°C, from 2- fluoro-6-(3-methoxy-propylamino)benzonitrile.
  • Example 53 2-[4-(4-Ammo-7-(4-tefrahydropyranyl)-7H-py ⁇ olo[2,3-d]pyrimidin- 5-yl)phenoxy]-5-fluorobenzonitrile, m.p. 216-217°C, from 2,5-difluorobenzonitrile.
  • Example 54 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl-N- (2-hydroxyethyl)acetamide
  • Example 63 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl-N- (2-hydroxybutyl)acetamide
  • Example 64 4-An ⁇ mo-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl-N- (2,3-dihydroxypropyl)acetamide
  • Example 70 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl-N- [2-(N,N-dimethy lamino)propyl] acetamide
  • Example 72 7- ⁇ 2-[4-(2-Mo ⁇ holino-2-oxoethyl)piperazin-l-yl]-2-oxo-ethyl ⁇ -5-(4- phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine
  • Example 73 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl-N- ( 1 -hydroxy-3-methylprop-2-yl)acetamide
  • Example 74 4-Amino-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl-N- ( 1 ,3-dmydroxy-2-methylprop-2-yl)acetamide
  • Example 86 7- ⁇ 2-[4-(2-Mo ⁇ holinoethyl)piperazin-l-yl]-2-oxo-ethyl ⁇ -5-(4- phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine
  • Example 93 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl-N- [3 -(N,N-dimethy lamino)-2 ,2-dimethy lpropy 1] acetamide / 3 ?
  • Example 94 7-[2-(4-Ethoxycarbonylpiperazin-l-yl)-2-oxoethyl]-5-(4- phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine
  • Example 96 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl-N- [3 -(2-pyrrolidinon- 1 -y l)propyl] acetamide
  • Example 101 4-Amino-5-(4-phenoxyphenyl)-7H-py ⁇ Olo[2,3-d]pyrimidin-7-yl-N- [N-bis(2-aminoethyl)aminoethyl]acetamide
  • Example 102 " 1 -[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-(2 -hydroxyethyl)propanamide
  • Example 103 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-( 1 -hydroxyprop-2-yl)propanamide
  • Example 104 1 -[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-(2-hydroxypropyl)propanamide
  • Example 105 1 -[4-Ammo-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-(2-methoxyethyl)propanamide
  • Example 106 l-[4-An ⁇ mo-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyri ⁇ idin-7-yl]- N-(3-hydroxypropyl)propanamide
  • Example 109 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(N,N-dimethylamino)ethyl]propanamide
  • Example 110 l-[4-Amino-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-( 1 -hydroxybut-2-yl)propanamide
  • Example 111 1 -[4-Ammo-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-(2-hydroxybutyl)propanamide
  • Example 112 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-(2,3-dihydroxypropyl)propanamide
  • Example 114 (R)-l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7- yl]-N-(2,3-dihydroxypropyl)propanamide
  • Example 115 l-[4-Antino-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-[3-(N,N-dimethylamino)propyl]propanamide
  • Example 116 l-[4-A ⁇ nmo-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-[2-(N,N-dimethylamino)propyl]propanamide
  • Example 118 l-[4-Ammo-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-(l-hydroxy-3-methylbut-2-yl)propanamide
  • Example 120 l-[4-Ammo-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-( 1 -hydroxy-2-methylprop-2-yl)propanamide
  • Example 121 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-(l ,3-dihydroxy-2-methylprop-2-yl)propanamide
  • Example 122 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(2-hydroxyethoxy)ethyl]propanamide
  • Example 124 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[ 1 -(hydroxymethyl)cyclopentyl]propanamide
  • Example 125 1 -[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-(2-hydroxycyclohexyl)propanamide
  • Example 126 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(N,N-diethylamino)ethyl]propanamide
  • Example 127 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(3-hydroxypropylan ⁇ ino)ethyl]propanamide
  • Example 128 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(2-hydroxyethylthio)ethyl]propanamide
  • Example 129 1 -[4-A ⁇ nino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(pyrid-2-yl)ethyl]propanamide
  • Example 130 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(pyrid-3-yl)ethyl]propanamide
  • Example 132 1 -[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2-(N-methylpyrrolidin-2-yl)ethyl]propanamide
  • Example 133 l-[4-Amino-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-[(N-ethylpy ⁇ Olidin-2-yl)methyl]propanamide
  • Example 134 l-[4-Amino-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-(2-piperidinoethyl)propanamide
  • Example 135 l-[4-A ⁇ mno-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N- [3 -(pyrrolidin- 1 -yl)propyl]propanamide
  • Example 137 l-[4-A ⁇ m ⁇ o-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N-(2-mo ⁇ holinoethyl)propanamide
  • Example 138 l-[4-Amino-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]- N- [3 -(N,N-diethy lamino)propyl]propanamide
  • Example 139 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[3-(N,N-dimethylamino)-2,2-dimethylpropyl]propanamide
  • Example 140 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[2,2-bis(hydroxymethyl)butyl]propanamide
  • Example 141 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N- [3 -(2-py ⁇ olidinon- 1 -yl)propyl]propanamide
  • Example 142 1 -[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-(3-piperidinopropyl)propanamide
  • Example 146 l-[4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]- N-[N-bis(2-aminoethyl)aminoethyl]propanamide
  • Example 147 2-[4-ammo-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]-- butyrolactone a) 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine (1.0 g) was added to a mixture of sodium hydride (0.158 g of a 60% dispersion in mineral oil) in dimethyl formamide (70 ml) with stirring under nitrogen at 0°C. The mixture was stirred at 0°C for 1 hour and then ⁇ -bromo- ⁇ -butyrolactone (0.60 g) in dimethylformamide (6 ml) was added dropwise with stirring at 0°C.
  • N,N-Dimethylethylenediamine (5.0 ml) was added to a mixture of the product from a) (1.2 g) and pyridin-2-one (50 mg) in toluene (100 ml). The mixture was heated to 100°C for 2 hours and then evaporated to dryness under reduced pressure. The residue was suspended in ethyl acetate and washed with water. The organic extracts were then extracted with 5M hydrochloric acid (3 x 50 ml) and the acidic extracts were washed with ethyl acetate then basified with 6M sodium hydroxide solution at 0°C and then back extracted with ethyl acetate and then dichloromethane.
  • Example 151 N-[2-hydroxyethyl-l , 1 -di(hydroxymethyl)]-2-[4-amino-5-(4- phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin-7-yl]acetamide, m.p. 222-223°C with decomposition, from 2-hydroxyemyl-l,l-di(hydroxymethyl)ethylamine.
  • Example 152 N-[2-(piperazin-l -yl)ethyl]-2-[4-amino-5-[4-phenoxyphenyl)-7H- pyrrolo[2,3-d]-pyrimidin-7-yl]acetamide, m.p.l38-140°C, from 2-(piperazin-l- yl)ethylamine.
  • Examples 162, 163 and 164 were prepared in a similar manner to Example 108 by reacting the same ester with the appropriate amine listed.
  • Example 167 4-[4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimin-7-yl]-N-(3- mo ⁇ holinopropyl)butyrarnide from 3-mo ⁇ holinopropylamine.
  • Starting Materials a) Tert-butylamine (15 ml) was added with stirring to a solution of 2-bromo-4'- phenoxyacetophenone (12.7 g, prepared by bromination of 4'- phenoxyacetophenone according to Tetrahedron Letters, 1993, 34, 3177) in propan-2-ol and the mixture heated at 80°C for 3 hours.
  • the solid was purified by preparative HPLC on a silica column using dichloromethane/propan-2-ol ethanol, 98:1:1 as the mobile phase to give 7-tert-butyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4- ylamine (4-ammo-5-(4-phenoxyphenyl)-7-(tert-butyl)py ⁇ olo[2,3-d]pyrimidine), m.p. 157-158°C.
  • Example 168 7-cyclopentanesulphonyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3- d]pyrimidin-4-ylamine
  • Example 170 7-(8-aminooctyl)-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3-d]pyrimidin- 4-ylamine dihydrochloride dihydrate
  • a mixture of 5-(4-phenoxyphenyl)-7-(8-phthalimidooctyl)-7H-pyrrolo[2,3- d]pyrimidin-4-ylamine (1.0 g), hydrazine hydrate (1.0 ml) and ethanol (40 ml) was boiled under reflux for 2 hours with the exclusion of carbon dioxide. The mixture was cooled for 18 hours and a solid which precipitated was collected by filtration and discarded.
  • Example 469 In a similar manner to Example 469, the product from the previous example was treated with hydrazine hydrate to give 7-(2-aminoethyl)-5-(4-phenoxyphenyl)- 7H-pyrrolo[2,3-d]pyrimidin-4-ylamine hydrochloride, m.p. 284-285°C.
  • Isobutyryl chloride (1.8 g) was added dropwise to a mixture of 5-(4- phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine (4.32 g), dry dimethylformamide (200 ml) and dry pyridine (2 ml) with stirring under nitrogen at 20°C. The mixture was stirred at ambient temperature for 1 hour and evaporated under vacuum. The residue was partitioned between water and ethyl acetate.
  • Example 176 and 177 cis-5-(4-phenoxyphenyl)-7-(4-mo ⁇ holinocyclohex-l-yl)- 7H-py ⁇ olo[2,3-d]pyrimidin-4-ylamine, and trans-5-(4-phenoxyphenyl)-7-(4- mo ⁇ holinocyclohex-l-yl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine
  • the acidic extracts were basified with 5M sodium hydroxide solution and extracted with dichloromethane to give a residue which was purified by chromatography on silica to give cis-5-(4-phenoxyphenyl)-7-(4-mo ⁇ holinocyclohex-l-yl)-7H-pyrrolo[2,3- d]pyrimidin-4-ylamine, and trans-5-(4-phenoxyphenyl)-7-(4-mo ⁇ holinocyclohex- 1 - yl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine.
  • Example 181 7-[3-(aminomethyl)pyrid-2-yl]-5-(4-phenoxyphenyl)-7H-py ⁇ olo[2,3- d]-pyrimidin-4-ylamine dimaleate
  • the product from the previous example (468 mg), ethanol saturated with ammonia (200 ml) and Raney® nickel (2 ml) was shaken under hydrogen at a pressure of 26 bar at 80°C for 6 hours and then left standing at ambient temperature for 68 hours.
  • the mixture was filtered and the residue was washed well with ethanol.
  • the filtrate was evaporated under reduced pressure and the residue was taken up in ethyl acetate and filtered.
  • Examples 183 and 184 cis-7-(N-methylhomopiperazin-l-ylcyclohexyl)-5-(4- phenoxyphenyl)-7H-pyrrolo[2,3-d]prymidin-4-ylamine and trans 7-(N-methylhomo- piperazin-l-ylcyclohexyl)-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]prymidin-4- ylamine
  • Examples 185 and 186 cis 7-(N-methylpiperazin-l-ylcyclohexyl)-5-(4- phenoxyphenyl)-7-pyrrolo[2,3-d]prymidin-4-ylamine and trans 7-(N- methylpiperazin-l-ylcyclohexyl)-5-(4-phenoxy-phenyl)-7-pyrrolo[2,3-d]prymidin-4-ylamine
  • N-methylpiperazine (100 mg) was reacted with the same amounts of cyclohexanone derivative and other reagents to give cis 7-(N-methylpiperazin-l-ylcyclohexyl)-5-(4-phenoxyphenyl)-7- pyrrolo[2,3-d]prymidin-4-ylamine and trans 7-(N-methylpiperazin-l-ylcyclohexyl)- 5-(4-phenoxy-phenyl)-7-py ⁇ Olo[2,3-d]prymidin-4-ylamine.
  • Example 188 cis-7-(3-mo ⁇ holinocyclopent-l-yl)-5-(4-phenoxyphenyl)-7H- pyrrolo[2,3-d]pyrimidin-4-ylamine and trans-7-(3-mo ⁇ holinocyclopent- 1 -yl)-5-(4- phenoxyphenyl)-7H-pyrrolo[2,3-d]-pyrimidin-4-ylamine
  • Example 192 3-(4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7- yl)cyclopentyl N-(2-mo ⁇ holinoethyl)carbamate hydrochloride
  • N-Methylmo ⁇ holine (0.007 ml, 0.062 mmol) was added dropwise to solution of 4-nitrophenyl chloroformate (12.5 mg, 0.062 mmol) in dichloromethane (1 ml) with stirring under nitrogen at 0°C. After 20 minutes, the ice-water bath was removed and the mixture was allowed to warm up to ambient temperature. 3-[4- amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl]cyclopentanol (20 mg, 0.052 mmol) was added to the mixture and the resulting solution was stirred for 24 hours.
  • the hydrobromide salt was converted into the free base by warming with dilute sodium hydroxide solution (100 ml of 5% w/v solution) and ethanol (60 ml) with stirring and removing the ethanol by distillation. The mixture was cooled and the solid was collected by filtration and washed well with water to give 5-(4- phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Pulmonology (AREA)
  • Endocrinology (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Neurosurgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pain & Pain Management (AREA)
  • AIDS & HIV (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Reproductive Health (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
EP99969415A 1998-09-18 1999-09-17 Pyrrolopyrimidines as protein kinase inhibitors Withdrawn EP1114053A1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US10083398P 1998-09-18 1998-09-18
US10083298P 1998-09-18 1998-09-18
US10094698P 1998-09-18 1998-09-18
US10083498P 1998-09-18 1998-09-18
US100832P 1998-09-18
US100833P 1998-09-18
US100946P 1998-09-18
US100834P 1998-12-03
PCT/US1999/021560 WO2000017203A1 (en) 1998-09-18 1999-09-17 Pyrrolopyrimidines as protein kinase inhibitors

Publications (1)

Publication Number Publication Date
EP1114053A1 true EP1114053A1 (en) 2001-07-11

Family

ID=27493158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99969415A Withdrawn EP1114053A1 (en) 1998-09-18 1999-09-17 Pyrrolopyrimidines as protein kinase inhibitors

Country Status (19)

Country Link
EP (1) EP1114053A1 (id)
JP (1) JP2002526500A (id)
KR (1) KR20010085824A (id)
CN (1) CN1335849A (id)
AU (1) AU753555C (id)
BG (1) BG105346A (id)
BR (1) BR9913887A (id)
CA (1) CA2344249A1 (id)
CZ (1) CZ2001960A3 (id)
HK (1) HK1039326A1 (id)
HU (1) HUP0200403A3 (id)
ID (1) ID29028A (id)
IL (1) IL141866A0 (id)
NO (1) NO20011356L (id)
NZ (1) NZ510588A (id)
PL (1) PL346700A1 (id)
SK (1) SK3842001A3 (id)
TR (1) TR200101186T2 (id)
WO (1) WO2000017203A1 (id)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PA8474101A1 (es) 1998-06-19 2000-09-29 Pfizer Prod Inc Compuestos de pirrolo [2,3-d] pirimidina
ES2274634T3 (es) 1998-08-29 2007-05-16 Astrazeneca Ab Compuestos de pirimidina.
DE69932828T2 (de) 1998-08-29 2007-10-18 Astrazeneca Ab Pyrimidine verbindungen
US6713474B2 (en) 1998-09-18 2004-03-30 Abbott Gmbh & Co. Kg Pyrrolopyrimidines as therapeutic agents
GB9828511D0 (en) 1998-12-24 1999-02-17 Zeneca Ltd Chemical compounds
GB9905075D0 (en) 1999-03-06 1999-04-28 Zeneca Ltd Chemical compounds
GB9907658D0 (en) 1999-04-06 1999-05-26 Zeneca Ltd Chemical compounds
GB9919778D0 (en) 1999-08-21 1999-10-27 Zeneca Ltd Chemical compounds
EE05351B1 (et) 1999-12-10 2010-10-15 Pfizer Products Inc. Prrolo[2,3-d]primidiinhendid
ES2293980T3 (es) * 2000-01-13 2008-04-01 Amgen Inc. Agentes antibacterianos.
GB0004890D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004886D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004888D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004887D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0007371D0 (en) 2000-03-28 2000-05-17 Astrazeneca Uk Ltd Chemical compounds
WO2001072751A1 (en) * 2000-03-29 2001-10-04 Knoll Gesellschaft Mit Beschraenkter Haftung Pyrrolopyrimidines as tyrosine kinase inhibitors
US7369946B2 (en) 2000-03-29 2008-05-06 Abbott Gmbh & Co. Kg Method of identifying inhibitors of Tie-2
ATE423120T1 (de) 2000-06-26 2009-03-15 Pfizer Prod Inc Pyrroloä2,3-düpyrimidin verbindungen als immunosuppressive wirkstoffe
GB0016877D0 (en) 2000-07-11 2000-08-30 Astrazeneca Ab Chemical compounds
GB0103926D0 (en) 2001-02-17 2001-04-04 Astrazeneca Ab Chemical compounds
US7081454B2 (en) 2001-03-28 2006-07-25 Bristol-Myers Squibb Co. Tyrosine kinase inhibitors
TWI238824B (en) 2001-05-14 2005-09-01 Novartis Ag 4-amino-5-phenyl-7-cyclobutyl-pyrrolo[2,3-d]pyrimidine derivatives
GB0113041D0 (en) 2001-05-30 2001-07-18 Astrazeneca Ab Chemical compounds
GB0121033D0 (en) * 2001-08-30 2001-10-24 Novartis Ag Organic compounds
GB0205690D0 (en) 2002-03-09 2002-04-24 Astrazeneca Ab Chemical compounds
US7442697B2 (en) 2002-03-09 2008-10-28 Astrazeneca Ab 4-imidazolyl substituted pyrimidine derivatives with CDK inhibitory activity
GB0205688D0 (en) 2002-03-09 2002-04-24 Astrazeneca Ab Chemical compounds
GB0205693D0 (en) 2002-03-09 2002-04-24 Astrazeneca Ab Chemical compounds
AU2003246972A1 (en) 2002-08-06 2004-02-23 Astrazeneca Ab Condensed pyridines and pyrimidines with tie2 (tek) activity
GB0226370D0 (en) * 2002-11-12 2002-12-18 Novartis Ag Organic compounds
MXPA05005576A (es) 2002-11-26 2005-07-27 Pfizer Prod Inc Procedimiento de tratamiento del rechazo a un trasplante.
UA80171C2 (en) 2002-12-19 2007-08-27 Pfizer Prod Inc Pyrrolopyrimidine derivatives
PL378749A1 (pl) 2003-03-12 2006-05-15 Pfizer Products Inc. Azabicykliczne pochodne pirydyloksymetylowe i benzoizoksazolowe
GB0311276D0 (en) 2003-05-16 2003-06-18 Astrazeneca Ab Chemical compounds
GB0311274D0 (en) 2003-05-16 2003-06-18 Astrazeneca Ab Chemical compounds
AR045037A1 (es) 2003-07-10 2005-10-12 Aventis Pharma Sa Tetrahidro-1h-pirazolo [3,4-c] piridinas sustituidas, composiciones que las contienen y su utilizacion.
US7312215B2 (en) 2003-07-29 2007-12-25 Bristol-Myers Squibb Company Benzimidazole C-2 heterocycles as kinase inhibitors
US7338957B2 (en) * 2003-08-28 2008-03-04 Irm Llc Compounds and compositions as protein kinase inhibitors
EP1687309A1 (en) * 2003-11-17 2006-08-09 Pfizer Products Inc. Pyrrolopyrimidine compounds useful in treatment of cancer
CA2553724A1 (en) * 2004-02-03 2005-08-18 Abbott Laboratories Aminobenzoxazoles as therapeutic agents
TW200528101A (en) 2004-02-03 2005-09-01 Astrazeneca Ab Chemical compounds
UA89493C2 (uk) 2004-04-02 2010-02-10 Оси Фармасьютикалз, Инк. 6,6-біциклічні кільцеві заміщені гетеробіциклічні інгібітори протеїнкіназ
EP1773836B1 (en) 2004-05-27 2012-09-05 Pfizer Products Inc. Pyrrolopyrimidine derivatives useful in cancer treatment
TW200613306A (en) 2004-07-20 2006-05-01 Osi Pharm Inc Imidazotriazines as protein kinase inhibitors
PE20060748A1 (es) * 2004-09-21 2006-10-01 Smithkline Beecham Corp Derivados de indolcarboxamida como inhibidores de quinasa ikk2
RU2007138264A (ru) * 2005-03-17 2009-09-10 Новартис АГ (CH) N-[3-(1-АМИНО-5,6,7,8-ТЕТРАГИДРО-2,4,4b-ТРИАЗАФЛУОРЕН-9-ИЛ)ФЕНИЛ]БЕНЗАМИДЫ В КАЧЕСТВЕ ИНГИБИТОРОВ ТИРОЗИН/ТРЕОНИНКИНАЗ, ПРЕЖДЕ ВСЕГО КИНАЗ В-RAF
CA2605738C (en) * 2005-04-25 2013-10-01 Merck Patent Gesellschaft Mit Beschraenkter Haftung Novel azaheterocyclic compounds as kinase inhibitors
CA2623125A1 (en) 2005-09-20 2007-03-29 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
EP1934213A1 (en) 2005-09-30 2008-06-25 Astra Zeneca AB Imidazo [1,2-a] pyridine having anti-cell-proliferation activity
US8431695B2 (en) 2005-11-02 2013-04-30 Bayer Intellectual Property Gmbh Pyrrolo[2,1-f][1,2,4]triazin-4-ylamines IGF-1R kinase inhibitors for the treatment of cancer and other hyperproliferative diseases
AR057960A1 (es) 2005-12-02 2007-12-26 Osi Pharm Inc Inhibidores de proteina quinasa biciclicos
AU2007215161A1 (en) * 2006-02-14 2007-08-23 Vertex Pharmaceuticals Incorporated Pyrrolo(3,2-C) pyridines useful as inhibitors of protein kinases
CN101490046A (zh) 2006-05-09 2009-07-22 辉瑞产品公司 环烷基氨基酸衍生物及其药物组合物
US8217177B2 (en) * 2006-07-14 2012-07-10 Amgen Inc. Fused heterocyclic derivatives and methods of use
CN101808994B (zh) 2007-07-17 2013-05-15 普莱希科公司 用于激酶调节的化合物和方法以及其适应症
ES2467109T3 (es) 2008-08-20 2014-06-11 Zoetis Llc Compuestos de pirrolo[2,3-d]pirimidina
AU2009305669A1 (en) * 2008-10-16 2010-04-22 The Regents Of The University Of California Fused ring heteroaryl kinase inhibitors
MX2011004824A (es) 2008-11-07 2012-01-12 Triact Therapeutics Inc Uso de derivados de butano catecólico en terapia contra el cáncer.
US20120016119A1 (en) * 2009-01-22 2012-01-19 Yasunori Tsuboi NOVEL PYRROLO(2,3-d)PYRIMIDINE COMPOUND
JP2012518657A (ja) 2009-02-25 2012-08-16 オーエスアイ・ファーマシューティカルズ,エルエルシー 併用抗癌治療
US20110171124A1 (en) 2009-02-26 2011-07-14 Osi Pharmaceuticals, Inc. In situ methods for monitoring the EMT status of tumor cells in vivo
JP2012519282A (ja) 2009-02-27 2012-08-23 オーエスアイ・ファーマシューティカルズ,エルエルシー 間葉様腫瘍細胞またはその生成を阻害する薬剤を同定するための方法
WO2010099363A1 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099138A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
JP5656976B2 (ja) * 2009-04-29 2015-01-21 ローカス ファーマシューティカルズ インコーポレイテッド ピロロトリアジン化合物
US7741330B1 (en) * 2009-10-12 2010-06-22 Pharmacyclics, Inc. Pyrazolo-pyrimidine inhibitors of Bruton's tyrosine kinase
AU2011223655A1 (en) 2010-03-03 2012-06-28 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
AU2011223643A1 (en) 2010-03-03 2012-06-28 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
US20130005733A1 (en) 2010-03-09 2013-01-03 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
US20120214830A1 (en) 2011-02-22 2012-08-23 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
WO2012120469A1 (en) * 2011-03-08 2012-09-13 Novartis Ag Fluorophenyl bicyclic heteroaryl compounds
JP2014519813A (ja) 2011-04-25 2014-08-21 オーエスアイ・ファーマシューティカルズ,エルエルシー 癌薬剤発見、診断、および治療におけるemt遺伝子シグネチャーの使用
MX2014000518A (es) 2011-07-13 2014-05-30 Pharmacyclics Inc Inhibidores de la tirosina quinasa de bruton.
HUE041987T2 (hu) 2011-07-19 2019-06-28 Merck Sharp & Dohme 4-Imidazopiridazin-1-il-benzamidok és 4-imidazotriazin-1-il-benzamidok mint BTK-gátlók
AU2012341028C1 (en) 2011-09-02 2017-10-19 Mount Sinai School Of Medicine Substituted pyrazolo[3,4-D]pyrimidines and uses thereof
US8377946B1 (en) 2011-12-30 2013-02-19 Pharmacyclics, Inc. Pyrazolo[3,4-d]pyrimidine and pyrrolo[2,3-d]pyrimidine compounds as kinase inhibitors
JP5985658B2 (ja) * 2012-01-31 2016-09-06 ナンジン アルゲン ファルマ カンパニー リミテッドNanjing Allgen Pharma Co. Ltd. ブルトンチロシンキナーゼ阻害薬としての環状分子
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
WO2014017659A1 (ja) 2012-07-27 2014-01-30 独立行政法人理化学研究所 急性骨髄性白血病の治療又は再発抑制剤
KR20150061651A (ko) 2012-09-26 2015-06-04 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 Ire1의 조절
JP6255038B2 (ja) 2013-02-26 2017-12-27 トリアクト セラピューティクス,インク. 癌治療
WO2015035410A1 (en) 2013-09-09 2015-03-12 Triact Therapeutic, Inc. Cancer therapy
MA38961A1 (fr) 2013-09-30 2018-05-31 Pharmacyclics Llc Composés 3-phenyl-1h-pyrazolo[3,4-d]pyrimidin-4-ylamine substitués inhibiteurs de la tyrosine kinase de bruton utilisés pour traiter par exemple les maladies auto-immunes, respiratoires et inflammatoires, cancer, mastocytose et osteoporose
EP3067356B1 (en) * 2013-11-08 2018-07-04 ONO Pharmaceutical Co., Ltd. Pyrrolo pyrimidine derivative
CA2833701A1 (en) * 2013-11-19 2015-05-19 Pharmascience Inc. Protein kinase inhibitors
CA2834528A1 (en) * 2013-11-26 2015-05-26 Pharmascience Inc. Protein kinase inhibitors
AP2016009297A0 (en) * 2014-02-03 2016-06-30 Cadila Healthcare Ltd Novel heterocyclic compounds
US20170231986A1 (en) 2014-08-11 2017-08-17 Acerta Pharma B.V. Therapeutic Combinations of a BTK Inhibitor, a PI3K Inhibitor, a JAK-2 Inhibitor, and/or a BCL-2 Inhibitor
US10112924B2 (en) 2015-12-02 2018-10-30 Astraea Therapeutics, Inc. Piperdinyl nociceptin receptor compounds
KR20180094940A (ko) * 2015-12-02 2018-08-24 아스트레아 테라퓨틱스 엘엘씨 피페리디닐 노시셉틴 수용체 화합물
WO2020054788A1 (ja) 2018-09-13 2020-03-19 キッセイ薬品工業株式会社 イミダゾピリジノン化合物
WO2021038540A1 (en) 2019-08-31 2021-03-04 Sun Pharma Advanced Research Company Limited Cycloalkylidene carboxylic acids and derivatives as btk inhibitors
JOP20220087A1 (ar) * 2019-10-11 2023-01-30 Incyte Corp أمينات ثنائية الحلقة كمثبطات لـ cdk2
CN112961159B (zh) * 2020-03-05 2022-07-01 四川大学华西医院 氨基嘧啶并吡唑/吡咯类衍生物及其制备方法和用途
CN112961158B (zh) * 2020-03-05 2022-07-01 四川大学华西医院 氨基嘧啶并吡唑/吡咯类衍生物及其制备方法和用途
US11981671B2 (en) 2021-06-21 2024-05-14 Incyte Corporation Bicyclic pyrazolyl amines as CDK2 inhibitors
US11976073B2 (en) 2021-12-10 2024-05-07 Incyte Corporation Bicyclic amines as CDK2 inhibitors
CN117402161A (zh) * 2022-07-06 2024-01-16 上海科恩泰生物医药科技有限公司 一种具有fgfr抑制作用的亚砜亚胺类化合物、包含其的药物组合物及其用途

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3036390A1 (de) * 1980-09-26 1982-05-13 Troponwerke GmbH & Co KG, 5000 Köln Neue pyrrolo-pyrimidine, verfahren zu ihrer herstellung und ihre verwendung bei der herstellung von biologischen wirkstoffen
CA2100863A1 (en) * 1991-01-23 1992-07-24 David A. Bullough Adenosine kinase inhibitors
IL108523A0 (en) * 1993-02-03 1994-05-30 Gensia Inc Pharmaceutical compositions containing adenosine kinase inhibitors for preventing or treating conditions involving inflammatory responses and pain
CA2200210A1 (en) * 1994-09-29 1996-04-04 Novartis Ag Pyrrolo[2,3-d]pyrimidines and their use
US6143749A (en) * 1995-06-07 2000-11-07 Abbott Laboratories Heterocyclic substituted cyclopentane compounds
US5665721A (en) * 1995-06-07 1997-09-09 Abbott Laboratories Heterocyclic substituted cyclopentane compounds
CH690773A5 (de) * 1996-02-01 2001-01-15 Novartis Ag Pyrrolo(2,3-d)pyrimide und ihre Verwendung.
WO1997032879A1 (de) * 1996-03-06 1997-09-12 Novartis Ag 7-ALKYL-PYRROLO[2,3-d]PYRIMIDINE
CA2249739A1 (en) * 1996-03-15 1997-09-25 Novartis Ag Novel n-7-heterocyclyl pyrrolo[2,3-d]pyridines and their use
AU748884B2 (en) * 1997-03-19 2002-06-13 Abbott Gmbh & Co. Kg Pyrrolo(2,3d)pyrimidines and their use as tyrosine kinase inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0017203A1 *

Also Published As

Publication number Publication date
AU753555B2 (en) 2002-10-24
CZ2001960A3 (cs) 2001-10-17
HK1039326A1 (zh) 2002-04-19
AU753555C (en) 2003-07-03
SK3842001A3 (en) 2002-04-04
AU6048499A (en) 2000-04-10
BR9913887A (pt) 2001-10-23
CA2344249A1 (en) 2000-03-30
NZ510588A (en) 2003-08-29
TR200101186T2 (tr) 2001-10-22
BG105346A (en) 2001-12-29
IL141866A0 (en) 2002-03-10
NO20011356D0 (no) 2001-03-16
NO20011356L (no) 2001-05-16
ID29028A (id) 2001-07-26
KR20010085824A (ko) 2001-09-07
HUP0200403A3 (en) 2004-07-28
JP2002526500A (ja) 2002-08-20
PL346700A1 (en) 2002-02-25
WO2000017203A1 (en) 2000-03-30
CN1335849A (zh) 2002-02-13
HUP0200403A2 (en) 2002-06-29

Similar Documents

Publication Publication Date Title
AU753555C (en) Pyrrolopyrimidines as protein kinase inhibitors
US6713474B2 (en) Pyrrolopyrimidines as therapeutic agents
EP1114052B1 (en) 4-aminopyrrolopyrimidines as kinase inhibitors
WO2001072751A1 (en) Pyrrolopyrimidines as tyrosine kinase inhibitors
US7829570B2 (en) Substituted 4-amino isoxazolo[5,4-d]pyrimidines as kinase inhibitors
CA2440714C (en) Pyrazolopyrimidines as therapeutic agents
EP1212327B1 (en) Pyrazolopyrimidines as therapeutic agents
US7863444B2 (en) 4-aminopyrrolopyrimidines as kinase inhibitors
US20030199525A1 (en) Kinase inhibitors
EP1268481A2 (en) Kinase inhibitors as therapeutic agents
US20020156081A1 (en) Pyrazolopyrimidines as therapeutic agents
MXPA01002785A (en) Pyrrolopyrimidines as protein kinase inhibitors
AU2002316030A1 (en) Pyrazolopyrimidines as therapeutic agents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20010316;LT PAYMENT 20010316;LV PAYMENT 20010316;MK PAYMENT 20010316;RO PAYMENT 20010316;SI PAYMENT 20010316

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABBOTT GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060401

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1039326

Country of ref document: HK