EP1113873A1 - Keramischer katalysator zur selektiven zersetzung von n2o und verfahren zu dessen herstellung - Google Patents

Keramischer katalysator zur selektiven zersetzung von n2o und verfahren zu dessen herstellung

Info

Publication number
EP1113873A1
EP1113873A1 EP99946074A EP99946074A EP1113873A1 EP 1113873 A1 EP1113873 A1 EP 1113873A1 EP 99946074 A EP99946074 A EP 99946074A EP 99946074 A EP99946074 A EP 99946074A EP 1113873 A1 EP1113873 A1 EP 1113873A1
Authority
EP
European Patent Office
Prior art keywords
mass
catalyst according
catalyst
active phase
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99946074A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Burckhardt
Frank Seifert
Manfred Voigt
Georg Winterstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Porzellanwerk Kloster Veilsdorf GmbH
Original Assignee
Porzellanwerk Kloster Veilsdorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Porzellanwerk Kloster Veilsdorf GmbH filed Critical Porzellanwerk Kloster Veilsdorf GmbH
Publication of EP1113873A1 publication Critical patent/EP1113873A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • C01B21/265Preparation by catalytic or non-catalytic oxidation of ammonia characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the invention relates to a ceramic catalyst for the selective decomposition of N2O (nitrous oxide) in a mixture of nitrous gases to N 2 and O 2 and a process for its production.
  • N2O nitrous oxide
  • N 2 O (laughing gas) is released in a wide variety of processes, such as in fluidized bed combustion plants and in processes for the chemical synthesis of nylon, adipic and nitric acid. Due to its inertia, it reaches the stratosphere undecomposed, where it contributes to the long-term damage to the earth's protective ozone layer. Therefore, at the World Environment Conference in Kyoto in 1997, requirements for the global emission reduction of this gas were laid down for the first time. This requires the use of suitable catalysts to treat the exhaust gas flows.
  • ceramic materials for example modified zeolites and mixed oxides with a perovskite structure, can be used as potential catalyst materials. Because of their price advantage over precious metals and their better temperature resistance, perovskite compounds are considered cheap.
  • Catal. Lett. (1995), 34 (3, 4) pp. 373-382 is described by N.
  • the previously known catalysts for the decomposition of N 2 O undergo an irreversible deactivation at temperatures above 700 ° C., which is caused by sintering processes (noble metal catalysts), by insufficient thermal stability of the framework structure (zeolites) or by irreversible reactions between the transition metal oxides of the active components with carrier materials, how such is caused with a high content of Al 2 O 3 .
  • a special feature of the use in the production of nitric acid lies in the required selectivity in relation to other oxides of nitrogen, one of which is the target product of the synthesis. Such selectivity is not required or even undesirable in other exhaust treatment processes.
  • the invention is therefore based on the object of providing a catalyst for the selective decomposition of N 2 O in a mixture of nitrous gases, which should be usable in the temperature range from 700 ° C. to at least 1000 ° C. without impairing its catalyst activity.
  • alkaline earth compounds for example clays or aluminosilicates
  • alkaline earth compounds in particular magnesium oxide
  • the catalyst prevents the catalyst from being deactivated by a chemical reaction between the active phase and the carrier material at temperatures above 700 ° C., as is the case in the prior art, for example Spinel formation takes place between the oxides of aluminum and cobalt.
  • various alkaline earth oxides themselves have a certain catalytic activity during nitrous oxide decomposition.
  • the alkaline earth oxide is produced, for example, by calcining a salt, preferably the carbonate, the calcining temperature depending on the resistance of the carbonate of the element in question, on the desired grain size of the alkaline earth oxide and on the subsequent operating temperature of the catalyst.
  • the oxides and mixed oxides of the catalytically active component are preferably produced wet-chemically by mixed precipitation, drying and thermal decomposition of the drying products.
  • Alternative processes are the production by means of a solid-state reaction at high temperatures, pyrolytic processes and all other known processes for powder production.
  • the active components can be added in the form of precursor compounds (salts), oxides or mixed oxides before or after the calcination of the carrier material.
  • precursor compounds salts
  • oxides oxides
  • mixed oxides oxides
  • the mixtures mentioned are plasticized and homogenized with the addition of suitable plasticizing aids and water, as is known in ceramic production.
  • Strength-increasing binders such as, for example, silica sols, inorganic polymers, for example in the form of magnesium, aluminum or boron phosphates or binders, can be added, the proportion of which should be kept as low as possible, provided it is not an alkaline earth compound.
  • These strength-increasing binders can be mixed in homogeneously before or after the calcination of the alkaline earth metal salt. Completion takes place according to the known ceramic processes, such as granulation or extrusion. Subsequent debinding and sintering can produce catalyst elements in the form of granules, bulk material or honeycomb bodies.
  • Fig. 2 the selectivity of the catalyst of Fig. 1 over NO x also as a function of temperature.
  • Fig. 4 the selectivity of the catalyst of Fig. 3 over NO x also as a function of temperature.
  • Fig. 6 the selectivity of the catalyst of Fig. 5 over NO x also as a function of temperature.
  • a catalyst according to the invention in granular form was made from 2000 vol. ⁇ Ppm N 2 O; using a test gas emulated from the process gas of nitric acid production; 9.0 vol% NO, 6.0 vol% O 2 ; 0.14 vol% H 2 O; Rest N 2 tested.
  • the active phase consists of a heavy metal catalyst with the main components Mn, Fe, Cr and Co.
  • the active phase is a lanthanum-strontium-manganese-cobalt-perovskite.
  • the alkaline earth compounds for the carrier material are mixed with 15% by mass of an SiO 2 sol with an SiO 2 content of 13%. After the firing customary in ceramic technology, the SiO 2 content of the ceramic carrier material with good strength values is 1.95% by mass.
  • the alkaline earth compounds for the carrier material are mixed with 14% by mass of a magnesium phosphate, which contains, inter alia, 6% MgO and 37% P 2 O 5 .
  • a magnesium phosphate which contains, inter alia, 6% MgO and 37% P 2 O 5 .
  • the MgO content of a ceramic carrier material essentially consists of CaO 0.84% by mass or, if the carrier material consists essentially of MgO, its proportion is increased by the same percentage.
  • the alkaline earth compounds for the carrier material become one with 12 mass%
  • Magnesium phosphates which contains 8% Al 2 O 3 and 35% P 2 O 5 , among others. After firing, the Al 2 O 3 content of the ceramic carrier material is 0.96
  • the alkaline earth compounds for the carrier material are mixed with 8% by mass of a boron phosphate, which contains, inter alia, 36% B 2 O 3 and 57% P 2 O 5 . After firing, the B 2 O 3 content of the ceramic carrier material is 2.9% by mass.
  • the alkaline earth compounds for the carrier material are 5.5% by mass
  • Alumina precursor consisting of 85% Al 2 O 3 and 15% H 2 O, added. After firing, the Al 2 O 3 content of the ceramic carrier material is 4.7 mass%.
  • the alkaline earth compounds for the carrier material are mixed with 5% by mass of a polymeric magnesium silicate, which contains, inter alia, 23.7% by mass of MgO and 57% by mass of SiO 2 .
  • a polymeric magnesium silicate which contains, inter alia, 23.7% by mass of MgO and 57% by mass of SiO 2 .
  • the MgO content of a ceramic carrier material consisting essentially of CaO is 1.2% by mass of MgO and 2.85% by mass of SiO 2, or if the carrier material consists essentially of MgO, the proportion thereof is around the mentioned Percentage increased.

Abstract

Der Erfindung liegt die Aufgabe zugrunde, einen Katalysator zur selektiven Zersetzung von N2O in einem Gemisch nitroser Gase zu schaffen, der im Temperaturbereich von 700 DEG C bis mindestens 1000 DEG C ohne Beeinträchtigung seiner Katalysatoraktivität einsetzbar sein soll. Diese Aufgabe wird dadurch gelöst, dass der Katalysator aus einem porösen keramischen Trägermaterial und einer katalytisch aktiven Phase besteht, wobei das Trägermaterial zu mindestens 95 Masse-% aus einer oder mehreren Erdalkaliverbindung(en) besteht. Der erfindungsgemässe Katalysator ist vorzugsweise bei der Herstellung von Salpetersäure anwendbar.

Description

Keramischer Katalysator zur selektiven Zersetzung von N?O und Verfahren zu dessen Herstellung
Die Erfindung betrifft einen keramischen Katalysator zur selektiven Zersetzung von N2O (Lachgas) in einem Gemisch nitroser Gase zu N2 und O2 sowie ein Verfahren zu dessen Herstellung.
N2O (Lachgas) wird bei den verschiedensten Prozessen freigesetzt, wie beispielsweise in Wirbelschichtfeuerungsanlagen sowie bei Prozessen der chemischen Synthese von Nylon, Adipin- und Salpetersäure. Auf Grund seiner Reaktionsträgheit gelangt es unzersetzt bis in die Stratosphäre, wo es langfristig zur Schädigung der schützenden Ozonschicht der Erde beiträgt. Daher wurden auf der Weltumweltkonferenz in Kyoto im Jahre 1997 erstmals Auflagen zur globalen Emissionsverminderung dieses Gases festgeschrieben. Dies erfordert den Einsatz geeigneter Katalysatoren zur Behandlung der Abgasströme.
Als potentielle Katalysatorwerkstoffe kommen neben verschiedenen Edelmetallen keramische Werkstoffe, bspw. modifizierte Zeolithe und Mischoxide mit Perows- kitstruktur in Frage. Wegen ihres Preisvorteils gegenüber den Edelmetallen und ihrer besseren Temperaturbeständigkeit werden Perowskitverbindungen als günstig angesehen. In Catal. Lett. (1995), 34 (3, 4) pp. 373-382 wird von N. Gu- nasekaran u. a. die katalytische Zersetzung von Lachgas über Mischoxide mit Perowskit- bzw. perowskitähnlicher Struktur beschrieben, wobei als Katalysatorwerkstoffe Laoι8Srrj>2Mθ3_δ (M = Cr, Fe, Mn, Co, Y) und La-j ,8Sro,2Cuθ4_δ als günstig angesehen werden.
Als Zielrichtung wurde bisher aus energetischen Gründen vor allem an Katalysatoren gearbeitet, die im Bereich von 250 °C bis 450 °C eine möglichst vollständige Umsetzung des N2O ermöglichen. Dabei hat sich ein Gemisch eines Anionende- fektperowskits der Zusammensetzung Laι_xCuxCoθ3_δ, mit x = 0 ... 0,5 und eines Spinells der Zusammensetzung C03O4 im Massenverhältnis bis 1 :1 als besonders vorteilhaft erwiesen (DE 197 00 490 A1). Die bisher genannten Katalysatoren versagen jedoch bei höheren Temperaturen (800 °C ... 1200 °C), wie sie insbesondere zur Minderung des Gehaltes an N2O in den Prozeßgasen bei der Salpetersäureherstellung (900 °C) benötigt werden. Infolge der oben erwähnten Festlegungen von Kyoto liegt gerade für den letztgenannten Prozeß ein steigender Bedarf an Katalysatoren für die eingangs erwähnte Reaktion vor.
Die bisher bekannten Katalysatoren zur Zersetzung von N2O erleiden bei Temperaturen oberhalb 700 °C eine irreversible Desaktivierung, welche durch Sintervorgänge (Edelmetallkatalysatoren), durch mangelnde thermische Stabilität der Gerüststruktur (Zeolithe) oder durch irreversible Reaktionen zwischen den Übergangsmetalloxiden der aktiven Komponenten mit Trägermaterialien, wie solchen mit hohem Gehalt an AI2O3 verursacht wird.
Eine Besonderheit des Einsatzes bei der Herstellung von Salpetersäure liegt ferner in der erforderlichen Selektivität in bezug auf andere Oxide des Stickstoffes, von denen eins ja das Zielprodukt der Synthese ist. Eine solche Selektivität ist bei anderen Abgasbehandlungsvorgängen nicht erforderlich oder sogar nicht erwünscht.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Katalysator zur selektiven Zersetzung von N2O in einem Gemisch nitroser Gase zu schaffen, der im Temperaturbereich von 700 °C bis mindestens 1000 °C ohne Beeinträchtigung seiner Katalysatoraktivität einsetzbar sein soll.
Diese Aufgabe wird durch die in den Patentansprüchen beschriebene Erfindung gelöst.
Die Ablösung herkömmlicher AI2O -haltiger Trägermateriaiien (beispielsweise Tonerden oder Alumosilikate) durch Erdalkaliverbindungen, insbesondere Magnesiumoxid, verhindert eine Desaktivierung des Katalysators durch eine chemische Reaktion zwischen aktiver Phase und Trägermaterial bei Temperaturen über 700 °C, wie sie beim Stand der Technik beispielsweise durch Spinellbildung zwischen den Oxiden des Aluminium und des Kobalts stattfindet. Darüber hinaus weisen verschiedene Erdalkalioxide in Abhängigkeit von ihrer Porenstruktur selbst eine gewisse katalytische Aktivität bei der Lachgaszersetzung auf. Die Herstellung des Erdalkalioxides erfolgt beispielsweise durch Kalzinieren eines Salzes, vorzugsweise des Carbonates, wobei die Kalzinierungstemperatur von der Beständigkeit des Carbonates des betreffenden Elementes, von der angestrebten Körnung des Erdalkalioxides und von der späteren Einsatztemperatur des Katalysators abhängt.
Die Oxide und Mischoxide der kataiytisch aktiven Komponente werden bevorzugt naßchemisch durch Mischfällung, Trocknung und thermische Zersetzung der Trocknungsprodukte hergestellt. Alternative Verfahren sind die Herstellung mittels Festkörperreaktion bei hohen Temperaturen, pyrolytische Verfahren sowie alle anderen bekannten Verfahren der Pulverherstellung.
Die aktiven Komponenten können vor oder nach der Kalzinierung des Trägermaterials in Form von Precursorverbindungen (Salzen), Oxiden oder Mischoxiden zugegeben werden. Neben der mechanischen Mischung beider Komponenten bieten sich verschiedene Verfahren der Imprägnierung der Trägeroberfläche mit der aktiven Komponente sowie das Auffällen auf das kalzinierte Trägermaterial mit anschließender Fixierung durch Trocknung und thermische Behandlung an.
Zur Herstellung geformter Katalysatorelemente werden die erwähnten Mischungen unter Zugabe geeigneter Plastifizierungshilfsmittel und Wasser, wie in der keramischen Fertigung bekannt, plastifiziert und homogenisiert. Es können festigkeitsteigernde Bindemittel, wie beispielsweise Kieselsole, anorganische Polymere beispielsweise in Form von Magnesium-, Aluminium- bzw. Borphosphaten oder Bindetone zugegeben werden, wobei deren Anteil so gering wie möglich gehalten werden soll, sofern es keine Erdalkaliverbindung ist. Diese festigkeitssteigernden Bindemittel können vor oder nach der Calzinierung des Erdalkalisalzes homogen zugemischt werden. Die Fertigstellung erfolgt nach den bekannten keramischen Verfahren, wie Granulieren oder Extrudieren. Durch nachfolgende Entbinderung und Sinterung können Katalysatorelemente in Gestalt von Granulaten, Schüttgut oder Wabenkörpern gefertigt werden.
Die Wirksamkeit des erfindungsgemäßen Katalysators wird nachfolgend an drei Ausführungsbeispielen mit unterschiedlichen Anteilen kataiytisch aktiver Phase nachgewiesen. Weiterhin sind 6 Ausführungsbeispiele für die erfindungsgemäßen, die Festigkeit verbessernden Zusätze beigefügt. Die beigefügten Zeichnungen stellen dar: Fig. 1 : die Lachgas-Umsetzungskurve eines erfindungsgemäßen Katalysators mit 0,1 Masse-% kataiytisch aktiver Phase (Aktivkomponente) als Funktion der Temperatur (Beispiel 1).
Fig. 2: die Selektivität des Katalysators von Fig. 1 gegenüber NOx ebenfalls als Funktion der Temperatur.
Fig. 3: die Lachgas-Umsetzungskurve eines erfindungsgemäßen Katalysators mit 1 ,5 Masse-% kataiytisch aktiver Phase (Aktivkomponente) als Funktion der Temperatur (Beispiel 2).
Fig. 4: die Selektivität des Katalysators von Fig. 3 gegenüber NOx ebenfalls als Funktion der Temperatur.
Fig. 5: die Lachgas-Umsetzungskurve eines erfindungsgemäßen Katalysators mit 5,0 Masse-% kataiytisch aktiver Phase (Aktivkomponente) als Funktion der Temperatur (Beispiel 3)
Fig. 6: die Selektivität des Katalysators von Fig. 5 gegenüber NOx ebenfalls als Funktion der Temperatur.
Ein erfindungsgemäßer Katalysator in Granulatform wurde mittels eines dem Prozeßgas der Salpetersäureherstellung nachgebildeten Testgases aus 2000 Vol.~ ppm N2O; 9,0 Vol.-% NO, 6,0 Vol.% O2; 0,14 Vol.-% H2O; Rest N2 erprobt.
Im Falle von Beispiel 1 und 2 besteht die aktive Phase aus einem Schwermetall- Katalysator mit den Hauptkomponenten Mn, Fe, Cr und Co. Im Falle von Beispiel 3 ist die aktive Phase ein Lanthan-Strontium-Mangan-Cobalt-Perowskit.
Bei einer Raumgeschwindigkeit von 10.000 h"1 erfolgte bei einer Temperatur von 800 °C jeweils eine 100 %ige katalytische Umsetzung des N2O (Fig. 1 , 3, 5). Das im Gasstrom enthaltene NOx wird kaum gemindert. Überraschenderweise zeigt sich, daß vollständige Umsetzung des Lachgases praktisch unabhängig von der Konzentration der Aktivkomponente schon bei dem geringen Gehalt des ersten Ausführungsbeispiels von 0,1 Masse-% bei den erwähnte 800 °C erreicht wird. Ein höherer Gehalt an Aktivphase, wie beim zweiten und dritten Ausführungsbeispiel bewirkt lediglich ein früheres Einsetzen der Reaktion, ohne daß diese bei niedrigeren Temperaturen abgeschlossen würde. Da die erfindungswesentlichen Erdalkaiiverbindungen allein keine ausreichend feste Keramik zu bilden vermögen, kommt es bei der Herstellung des erfindungsgemäßen keramischen Katalysators darauf an, solche Bindemittelphasen einzusetzen, die im gebrannten Zustand eine ausreichende Festigkeit ergeben, ohne die Bedingung des Hauptanspruches „mindestens 95 Masse-% Erdalkaiiverbindungen" zu verletzen. Es wurde gefunden, daß dies durch Anwendung der Maßnahmen der Ansprüche 13 bis 15 in vorteilhafter Weise möglich ist:
Beispiel 4 (Anspruch 13)
Die Erdalkaiiverbindungen für das Trägermaterial werden mit 15 Masse-% eines SiO2-Sols mit einem SiO2-Gehalt von 13 % versetzt. Nach dem in der keramischen Technologie üblichen Brennen beträgt der SiO2-Anteil des keramischen Trägermaterials mit guten Festigkeitswerten 1,95 Masse-%.
Beispiel 5 (Anspruch 14)
Die Erdalkaiiverbindungen für das Trägermaterial werden mit 14 Masse-% eines Magnesiumphosphates, das u.a. 6 % MgO und 37 % P2O5 enthält, versetzt. Nach dem Brennen beträgt der MgO-Anteil eines keramischen Trägermaterials im wesentlichen aus CaO 0,84 Masse-% bzw., wenn das Trägermaterial im wesentlichen aus MgO besteht, wird dessen Anteil um den gleichen Prozentsatz erhöht.
Beispiel 6 (Anspruch 14)
Die Erdalkaiiverbindungen für das Trägermaterial werden mit 12 Masse-% eines
Magnesiumphosphates, das u.a. 8 % AI2O3 und 35 % P2O5 enthält, versetzt. Nach dem Brennen beträgt der AI2O3-Anteil des keramischen Trägermaterials 0,96
Masse-%.
Beispiel 7 (Anspruch 14)
Die Erdalkaiiverbindungen für das Trägermaterial werden mit 8 Masse-% eines Borphosphates, das u.a. 36 % B2O3 und 57 % P2O5 enthält, versetzt. Nach dem Brennen beträgt der B2O3-Anteil des keramischen Trägermaterials 2,9 Masse-%.
Beispiel 8 (Anspruch 15)
Die Erdalkaiiverbindungen für das Trägermaterial werden mit 5,5 Masse-% einer
Aluminiumoxid-Vorstufe, bestehend aus 85 % AI2O3 und 15 % H2O, versetzt. Nach dem Brennen beträgt der AI2O3-Anteil des keramischen Trägermaterials 4,7 Mas- se-%. Beispiel 9 (Anspruch 15)
Die Erdalkaiiverbindungen für das Trägermaterial werden mit 5 Masse-% eines polymeren Magnesiumsilikates, das u.a. 23,7 Masse-% MgO und 57 Masse-% SiO2 enthält, versetzt. Nach dem Brennen beträgt der MgO-Anteil eines im wesentlichen aus CaO bestehenden keramischen Trägermaterials 1 ,2 Masse-% MgO sowie 2,85 Masse-% SiO2 bzw., wenn das Trägermaterial im wesentlichen aus MgO besteht, wird dessen Anteil um den genannten Prozentsatz erhöht.

Claims

Patentansprüche
1. Keramischer Katalysator zur selektiven Zersetzung von N2O (Lachgas) zu N2 und O2, in einem wasserdampfhaltigen Gemisch nitroser Gase, dadurch gekennzeichnet, daß der Katalysator aus einem porösen keramischen Trägermaterial und einer kataiytisch aktiven Phase besteht, wobei das Trägermaterial zu mindestens 95 Masse-% aus einer oder mehreren Erdalkaliverbindung(en) besteht.
2. Katalysator nach Anspruch 1 , dadurch gekennzeichnet, daß die oder eine der Erdalkaliverbindung(en) Magnesiumoxid ist.
3. Katalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die oder eine der Erdalkaliverbindung(en) Kaiziumoxid ist.
4. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß das Trägermaterial unter Einhaltung der Bedingung von 95 Masse-% Erdalkalien die Festigkeit verbessernde Zusätze in Form von Oxid-Solen und/oder anorganischen Polymeren enthält.
5. Katalysator nach einem der bisherigen Ansprüchre, dadurch gekennzeichnet, daß die aktive Phase aus einem oder mehreren Oxiden und/oder einem oder mehreren Mischoxiden der Elemente Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Ag, Ti, Y, Zr, La, Ca, Sr und Ba, bevorzugt La, Cr, Mn, Fe, Co, Ni, und Cu, besonders bevorzugt Co besteht.
6. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß der Masseanteil der aktiven Phase 0,1 Masse-% bis 50 Masse-%, vorzugsweise 5 Masse-% bis 20 Masse % beträgt.
7. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß der Masseanteil der aktiven Phase 0,1 Masse-% bis 5 Masse-% beträgt.
8. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß er als Pulvergemisch vorliegt.
9. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß der Katalysatorträger an seiner Oberfläche mit einer Schicht der aktiven Phase versehen ist.
10. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß die aktive Phase in einem porösen Katalysatorträger dispergiert ist.
11. Verfahren zur Herstellung eines Katalysators nach Anspruch 9, dadurch gekennzeichnet, daß die aktive Phase einer keramischen Masse vor ihrer Formgebung beigegeben und eingeknetet worden ist.
12. Verfahren zur Herstellung eines Katalysators nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß die Oxide bzw. Mischoxide der aktiven Phase naßchemisch durch Mischfällung der Carbonate, Citrate, Hydroxide und/oder Oxalate und anschließende Trocknung und thermische Zersetzung der Fällungsprodukte hergestellt werden.
13. Verfahren zur Herstellung eines Katalysators nach den Ansprüchen 4 bis 11, dadurch gekennzeichnet, daß als Oxid-Sol ein SiO2-Sol zugesetzt wird, welches mit 5 Masse-% bis 25 Masse-%, vorzugsweise 10 Masse-% bis 15 Masse-% SiO2 enthält.
14. Verfahren zur Herstellung eines Katalysators nach den Ansprüchen 4 bis 13, dadurch gekennzeichnet, daß als anorganische Polymere Magnesium-, Aluminium- und/oder Borphosphate im Umfang von 3 Masse-% bis 20 Masse-%, vorzugsweise 8 Masse-% bis 15 Masse-% bezogen auf die Gesamtmasse des Trägermaterials, jedoch unter Einhaltung der Bedingung von 95 Masse-% Erdalkaiiverbindungen), zugesetzt werden.
15. Verfahren zur Herstellung eines Katalysators nach den Ansprüchen 4 bis 13, dadurch gekennzeichnet, daß als anorganische Polymere Aluminiumhydroxide und/oder polymere Magnesiumsilikate im Umfang von 3 Masse-% bis 20 Masse- %, vorzugsweise 8 Masse-% bis 15 Masse-% bezogen auf die Gesamtmasse des Trägermaterials, jedoch unter Einhaltung der Bedingung von 95 Masse-% Erdalkaiiverbindungen), zugesetzt werden. GEÄNDERTE ANSPRÜCHE
[beim Internationalen Büro am 13. Januar 2000 (13.01.00) eingegangen; ursprünglicher Anspruch 13 gestrichen; ursprüngliche Ansprüche 14 und 15 umnumeriert als Ansprüche 13 und 14; alle weiteren Ansprüche unverändert (1 Seite)]
9. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß der Katalysatorträger an seiner Oberfläche mit einer Schicht der aktiven Phase versehen ist.
10. Katalysator nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß die aktive Phase in einem porösen Katalysatorträger dispergiert ist.
11. Verfahren zur Herstellung eines Katalysators nach Anspruch 9, dadurch gekennzeichnet, daß die aktive Phase einer keramischen Masse vor ihrer Formgebung beigegeben und eingeknetet worden ist.
12. Verfahren zur Herstellung eines Katalysators nach einem der bisherigen Ansprüche, dadurch gekennzeichnet, daß die Oxide bzw. Mischoxide der aktiven Phase naßchemisch durch Mischfällung der Carbonate, Citrate, Hydroxide und/oder Oxalate und anschließende Trocknung und thermische Zersetzung der Fällungsprodukte hergestellt werden.
13. Verfahren zur Herstellung eines Katalysators nach den Ansprüchen 4 bis 12, dadurch gekennzeichnet, daß als anorganische Polymere Magnesium-, Aluminium- und/oder Borphosphate im Umfang von 3 Masse-% bis 20 Masse-%, vorzugsweise 8 Masse-% bis 15 Masse-% bezogen auf die Gesamtmasse des Trägermaterials, jedoch unter Einhaltung der Bedingung von 95 Masse-% Erdalkaiiverbindungen), zugesetzt werden.
14. Verfahren zur Herstellung eines Katalysators nach den Ansprüchen 4 bis 12, dadurch gekennzeichnet, daß als anorganische Polymere Aluminiumhydroxide und/oder polymere Magnesiumsilikate im Umfang von 3 Masse-% bis 20 Masse- %, vorzugsweise 8 Masse-% bis 15 Masse-% bezogen auf die Gesamtmasse des Trägermaterials, jedoch unter Einhaltung der Bedingung von 95 Masse-% Erdalkaiiverbindungen), zugesetzt werden.
GEÄNDERTES BLÄH (ARTIKEL 19)
EP99946074A 1998-09-09 1999-08-31 Keramischer katalysator zur selektiven zersetzung von n2o und verfahren zu dessen herstellung Withdrawn EP1113873A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19841740 1998-09-09
DE1998141740 DE19841740A1 (de) 1998-09-09 1998-09-09 Keramischer Katalysator zur selektiven Zersetzung von N2O und Verfahren zu dessen Herstellung
PCT/EP1999/006392 WO2000013789A1 (de) 1998-09-09 1999-08-31 Keramischer katalysator zur selektiven zersetzung von n2o und verfahren zu dessen herstellung

Publications (1)

Publication Number Publication Date
EP1113873A1 true EP1113873A1 (de) 2001-07-11

Family

ID=7880714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99946074A Withdrawn EP1113873A1 (de) 1998-09-09 1999-08-31 Keramischer katalysator zur selektiven zersetzung von n2o und verfahren zu dessen herstellung

Country Status (6)

Country Link
EP (1) EP1113873A1 (de)
AU (1) AU5857199A (de)
BR (1) BR9912871A (de)
DE (1) DE19841740A1 (de)
RU (1) RU2221642C2 (de)
WO (1) WO2000013789A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006103A1 (de) 2000-02-11 2001-08-16 Krupp Uhde Gmbh Katalysator zum Abbau von N¶2¶O, dessen Verwendung bei der Salpetersäureproduktion sowie Verfahren zu seiner Herstellung
DE10011738A1 (de) * 2000-03-13 2002-03-28 Porzellanwerk Kloster Veilsdor Keramischer Katalysatorformkörper und Verfahren zur Herstellung solcher Katalysatorformkörper
RU2358901C2 (ru) 2003-04-29 2009-06-20 Джонсон Мэтти Плс Разработка улучшенной загрузки катализатора
GB0315643D0 (en) * 2003-04-29 2003-08-13 Johnson Matthey Plc Improved catalyst charge design
DE102007038711A1 (de) * 2007-08-14 2009-02-19 Uhde Gmbh Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung
FR2922543B1 (fr) * 2007-10-18 2011-10-14 Commissariat Energie Atomique Procede de preparation d'un geopolymere a porosite controlee, le geopolymere ainsi obtenu et ses differentes applications
ATE484331T1 (de) 2008-07-16 2010-10-15 Umicore Ag & Co Kg Katalysator zur umsetzung von distickstoffmonoxid und seine verwendung bei der industriellen salpetersäureherstellung
GB0819094D0 (en) 2008-10-20 2008-11-26 Johnson Matthey Plc Catalyst containment unit
PL388518A1 (pl) 2009-07-10 2011-01-17 Instytut Nawozów Sztucznych Katalizator do wysokotemperaturowego rozkładu podtlenku azotu
DE102010005105A1 (de) 2010-01-19 2011-07-21 Umicore AG & Co. KG, 63457 Katalysator
PL237044B1 (pl) 2015-03-13 2021-03-08 Inst Nowych Syntez Chemicznych Nośnikowy katalizator do redukcji emisji tlenku azotu(I) z instalacji kwasu azotowego oraz sposób jego wytwarzania
CN106390710A (zh) * 2016-06-14 2017-02-15 东莞市联洲知识产权运营管理有限公司 一种高效中低温焦炉烟道废气脱硫脱硝工艺
CN115501741B (zh) * 2022-08-30 2023-11-03 四川轻化工大学 一种基于改性载体的高活性氧化铁脱硫剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1451091A (en) * 1973-10-04 1976-09-29 Teijin Ltd Preparation of 2,4,6-trimethylphenol
JPS5390184A (en) * 1977-01-21 1978-08-08 Mitsubishi Heavy Ind Ltd Production of exhaust gas treatment catalyst
JPS5853571B2 (ja) * 1977-03-26 1983-11-30 宇部興産株式会社 排煙脱硝用触媒担体の製造方法
DE4000692A1 (de) * 1990-01-12 1991-07-18 Henkel Kgaa Verwendung von kolloidalem kieselsaeuresol als hilfsstoff fuer katalysatoren
JPH0639282A (ja) * 1992-07-27 1994-02-15 Hitachi Ltd 窒素酸化物の分解触媒、それを用いた分解方法及び排ガス浄化装置
JPH07171346A (ja) * 1993-12-22 1995-07-11 Yuichi Murakami 亜酸化窒素の除去方法
US5705136A (en) * 1995-11-13 1998-01-06 University Of Florida Research Foundation, Inc. Catalyzed decomposition of nitrogen oxides on metal oxide supports

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0013789A1 *

Also Published As

Publication number Publication date
WO2000013789A8 (de) 2000-07-27
RU2221642C2 (ru) 2004-01-20
DE19841740A1 (de) 2000-03-16
WO2000013789A1 (de) 2000-03-16
AU5857199A (en) 2000-03-27
BR9912871A (pt) 2001-10-16

Similar Documents

Publication Publication Date Title
DE102006020158B4 (de) Extrudierter Vollkatalysator sowie Verfahren zu seiner Herstellung
DE3841990C2 (de)
EP2335810B1 (de) Selektive katalytische Reduktion von Stickoxiden im Abgas von Dieselmotoren
EP2678270B1 (de) Verfahren zur beseitigung von n2o und nox aus dem prozess zur salpetersäureherstellung und dafür geeignete anlage
EP2654928B1 (de) Verfahren zur umsetzung stickstoffhaltiger verbindungen
DE1261262B (de) Verfahren zur katalytischen Umwandlung einer Kohlenwasserstoffbeschickung
DE102014205760A1 (de) Verfahren zum Herstellen eines Katalysator sowie Katalysator
EP1721665A1 (de) Katalysator zur Abgasbehandlung und Verfahren zu seiner Herstellung
DE3740289A1 (de) Katalysator zur selektiven reduktion von stickoxiden mit ammoniak
DE102011121188A1 (de) Vorrichtung und Verfahren zur Beseitigung von NOx und N20
EP1113873A1 (de) Keramischer katalysator zur selektiven zersetzung von n2o und verfahren zu dessen herstellung
EP0226983B2 (de) Eisenhaltiger Katalysator zur Verringerung des Stickoxidgehalts von Verbrennungsabgasen
WO2011098512A1 (de) Kupferhaltiger zeolith vom kfi-typ und verwendung in der scr-katalyse
DE102018107379A1 (de) NOx-Adsorberkatalysator
DE202017007660U1 (de) NOx-Adsorberkatalysator
EP1124623A1 (de) Hochtemperaturstabile katalysatoren zur zersetzung von n 2?o
DE102018107371A1 (de) NOx -ADSORBERKATALYSATOR
DE2339513A1 (de) Katalytische zusammensetzung und verfahren zu ihrer herstellung und verwendung
DD265564A5 (de) Katalysatormaterial zur minderung der stickoxide in rauchgasen
DD300511A5 (de) Katalysator zur reduktion von stickstoffoxiden, herstellungs- und verwendungsverfahren
DE202017007666U1 (de) NOx - Adsorberkatalysator
EP1372827B1 (de) Verfahren zur verringerung des n2o-gehalts in gasen
DE2446006C3 (de) Verfahren zur Herstellung eines Reduktionskatalysators zur Abscheidung von Stickoxiden aus Abgasen
DE2559009C3 (de) Fester Tragerkatalysator zur katalytischen Reduktion von Stickstoffoxiden
WO2006094720A1 (de) Verfahren zum herstellen eines katalytisch wirkenden minerals auf basis eines gerüstsilikates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020606

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070228