EP1101389B1 - Verfahren zur herstellung einer integrierten schaltungsanordnung umfassend einen hohlraum in einer materialschicht, sowie eine durch das verfahren erzeugte integrierte schaltungsanordnung - Google Patents

Verfahren zur herstellung einer integrierten schaltungsanordnung umfassend einen hohlraum in einer materialschicht, sowie eine durch das verfahren erzeugte integrierte schaltungsanordnung Download PDF

Info

Publication number
EP1101389B1
EP1101389B1 EP99945888A EP99945888A EP1101389B1 EP 1101389 B1 EP1101389 B1 EP 1101389B1 EP 99945888 A EP99945888 A EP 99945888A EP 99945888 A EP99945888 A EP 99945888A EP 1101389 B1 EP1101389 B1 EP 1101389B1
Authority
EP
European Patent Office
Prior art keywords
recess
layer
produced
material layer
sacrificial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99945888A
Other languages
English (en)
French (fr)
Other versions
EP1101389A2 (de
Inventor
Robert Aigner
Klaus-Günter Oppermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1101389A2 publication Critical patent/EP1101389A2/de
Application granted granted Critical
Publication of EP1101389B1 publication Critical patent/EP1101389B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers

Definitions

  • the invention relates to a method for producing an integrated circuit arrangement comprising a cavity in a material layer, as well as an integrated circuit arrangement produced by the method.
  • such a circuit arrangement comprises a CMOS microphone, in which a depression forms a cavity, the so-called backside volume, above which a membrane is arranged which is set in vibration by sound waves.
  • CMOS microphone in which a depression forms a cavity
  • backside volume above which a membrane is arranged which is set in vibration by sound waves.
  • the vibrations are converted into electrical signals.
  • a first microphone is described in which a recess serving as backside volume is generated in a first silicon substrate.
  • a perforated cover layer and above a membrane are produced in a second silicon substrate.
  • the first silicon substrate is bonded to the second silicon substrate.
  • a capacitance is formed by the lid layer and the first silicon substrate. Since the recess and the cover layer are produced in separate substrates, the process cost is very high. The bonding of the substrates requires high temperatures, which can affect process safety.
  • the cover layer and the recess are produced in a single substrate.
  • the recess is filled with a sacrificial layer.
  • a perforated cover layer and above a membrane is produced. Through an opening at the edge of the membrane, the sacrificial layer is then removed by etching.
  • the thickness of a conformally deposited layer must be at least the depth of the depression in order to fill the depression through the layer.
  • the corresponding recesses usually have the dimensions described.
  • the second microphone Since the second microphone is filled with the recess during the manufacturing process by deposition of the sacrificial layer, it is flat in contrast to the recess of the first microphone.
  • the backside volume of the second microphone is correspondingly smaller than that of the first microphone.
  • micromechanical components such as rotation rate sensors or acceleration sensors having arranged in cavities movable structures for which the greatest possible freedom of movement is sought.
  • micromechanical components such as rotation rate sensors or acceleration sensors having arranged in cavities movable structures for which the greatest possible freedom of movement is sought.
  • DE 195 09 868 A1 a production process for such micromechanical components is described.
  • This publication discloses an integrated circuit arrangement according to the preamble of claim 4.
  • a lower sacrificial layer and above a structural layer are produced and patterned, whereby a structure surrounded by a depression is produced.
  • the recess is filled by deposition of an upper sacrificial layer over which a cover layer is applied.
  • etch holes in the cap layer the sacrificial layers are removed and the recess forms part of a cavity in which the structure can move.
  • the acceleration sensor or the rotation rate sensor vibrations or rotations are detected with the aid of the structure, which can be set into lateral oscillations.
  • the cover layer serves to protect the circuit arrangement.
  • the sensitivity of the acceleration sensor or yaw rate sensor is greater the thicker the structure, i. the deeper the depression is.
  • the invention is based on the problem of specifying a production method in which a filled, at least a few microns deep recess can be produced in a material layer having a horizontal cross section in which at least one circular surface with a diameter of a few microns fits. Furthermore, an integrated circuit arrangement produced by the production method should be specified.
  • At least one first structure and at least one second structure are produced in a region of the material layer provided for the depression, which adjoin one another laterally and form a filling of the depression, and in which each of its parts has respective opposing flank parts whose spacing is smaller than about half of a depth of the recess.
  • the recess is not initially produced as in the prior art and then filled in one step, which is why the deposition of a thick layer with all its disadvantages is avoided.
  • the method according to the invention makes it possible to produce filled deep depressions with large horizontal cross sections.
  • Such a method is advantageous for any technical field in which pits are filled by default with substantially conformal layers.
  • One such area is, for example, semiconductor process technology.
  • the described dimensions of the first structure and the second structure enable the formation of these structures by method steps that are independent of the depth of the recess.
  • the first structure At least one narrow depression is initially produced in a region of the material layer provided for the depression by removing a portion of the material layer.
  • the narrow recess has a smaller horizontal cross section than the recess to be formed and forms part of the recess to be created.
  • edge-forming layer-like parts of the first structure are produced, which are laterally thickened until the parts collide and thereby form the first structure. An interface between the abutting parts is thus located inside the first structure.
  • the first structure will either be in the narrow recess or generated outside the narrow pit.
  • the second structure is created by first producing flanking layered portions of the second structure that are laterally thickened until the pieces collide to form the second structure. By creating the first structure and the second structure reaching to the bottom of the well, the filled well is formed.
  • the first structure and the second structure are created in respective narrow recesses which are filled by depositing a substantially conformal filling layer.
  • the filling layer is initially formed on the flanks of the narrow depression, where it forms the flank-forming layer-like parts of the structures. In the further course of the deposition, these parts thicken laterally towards the center of the narrow depression until opposite of the parts collide and the narrow depression is filled. Due to the small spacing of the flank parts from one another, the minimum thickness of the filling layer is determined by this distance and not by the depth of the narrow depression. It is only half of this distance.
  • the filling layer may therefore have a substantially smaller thickness than a thickness of a layer which would be required to fill the entire recess in one step.
  • the first structure is meandering and winds through the depression.
  • the second structure is also meandering, for example.
  • For the second structures correspondingly many narrow recesses are generated.
  • the first structure may be created in the narrow cavity by filling the narrow cavity by substantially conformally depositing a first fill layer. Subsequently, a further narrow depression is produced by removing the parts of the material layer arranged between flanks of the first structure.
  • the second structure is created by filling the further narrow depression by substantially compliant deposition of a second fill layer.
  • the narrow depression can be produced by etching the material layer selectively to the first filling layer.
  • the above-mentioned parts of the first filling layer can be removed by masked etching.
  • the first filling layer is chemically mechanically polished until the material layer is exposed. In this case, a mask covers outside of the recessed portion of the material layer in the formation of the narrow recess.
  • the filling of the depression serves as a sacrificial layer and is removed in a later process step.
  • a lid structure is created which lies completely outside the well and into which an opening is made.
  • the first structure and the second structure are removed by etching, whereby the recess forms a cavity.
  • the first structure and the second structure consist of the same material.
  • the removal can then take place in an etching step. If the etching step is isotropic, then it is advantageous if the first structure and the second structure are selectively etchable to the material layer.
  • a movable structure can be generated.
  • a lower sacrificial layer is applied and patterned on a semiconductor substrate.
  • the material layer is applied.
  • the creation of the filled recess creates the structure from the material layer which is laterally surrounded by the depression.
  • the first structure and the second structure form part of an upper sacrificial layer adjacent to the lower sacrificial layer.
  • the narrow depression is produced so that it extends to the lower sacrificial layer and cuts through the material layer.
  • the lid structure with the opening is applied. Using the opening of the lid structure, the sacrificial upper layer and the sacrificial lower layer are removed, whereby the recess forms a first part of the cavity, which has at least further parts arranged below and above the structure.
  • supports or suspensions may be provided which connect the structure to the substrate or to the lid structure.
  • a support is in the lower sacrificial layer creates an opening that reaches down to the substrate.
  • the opening is filled.
  • the filled opening forms the support connecting the layer of material to the substrate.
  • an opening is created in the upper sacrificial layer, which extends to the structure.
  • the opening is filled.
  • the filled opening forms the suspension that connects the structure to the lid structure.
  • a bottom of the recess may have mutually adjacent regions over which one of the structures has been produced in each case during the method and which lie at different depths. Due to the dimensions of the structures, each of the parts of these regions each have opposite edges whose spacing from one another is less than a few ⁇ m. Because a depth difference between the regions is due to the fault tolerances, it is much smaller than the depths of the regions, i. as the depths of the depression. If no lower sacrificial layer is provided, the shape of the bottom is retained even if the structures were removed in the manufacturing process.
  • first of the regions of the bottom of the depression can be strip-shaped, extend essentially parallel to one another and traverse the depression. Second of the regions of the bottom of the depression are arranged between the first regions.
  • the bottom has in each first area a cuboid flat projection which is substantially longer than it is wide.
  • An upper surface of the filler layer for the second structure when not planarized, has a slight indentation along a centerline of the associated narrow groove. If the lid structure is deposited on the filling layer, then a lower surface of the lid structure facing the depression has a corresponding projection which fills the indentation. The projection tapers downwards and is much smaller than the depth of the recess.
  • narrow recesses are in the form of strip-shaped trenches running parallel to one another, grooves form in an upper surface of this filling layer during the deposition of the filling layer for the second structures along center lines of the trenches.
  • the lid structure deposited over it fills the grooves and thus has protrusions in the form of burrs.
  • the recess has a depth which is greater than about 5 microns. It is within the scope of the invention if the recess has horizontal dimensions which are more than about 10 microns.
  • the circuit arrangement comprises a rotation rate sensor or an acceleration sensor, in which the movable structure can be displaced into lateral oscillations.
  • the circuit arrangement comprises a microphone in which the recess serves as a backside volume, and in which the lid structure is a perforated electrode.
  • a perforated electrode e.g. a membrane disposed above the lid structure.
  • the circuit arrangement is a thermal sensor.
  • a temperature measuring point is arranged above the recess, so that a heat flow between the temperature measuring point and the substrate is as small as possible.
  • the circuit arrangement is a high-frequency coil.
  • the high frequency coil is disposed over the recess filled with insulating material so that a capacitance between the high frequency coil and the semiconductor substrate is as small as possible.
  • the circuit arrangement is a pump or a valve for gases or liquids.
  • the depression acts as a flow channel.
  • the first structure and the second structure may include oxide.
  • a first substrate 1 made of silicon is provided as the starting material.
  • a lower sacrificial layer U is deposited to a thickness of about 1 micron on the first substrate 1 in a TEOS process SiO 2 and patterned (see FIG. 1 ). In this case, a recess is produced in a part of the lower sacrificial layer U, which reaches down to the first substrate 1.
  • About the lower sacrificial layer U is to produce a material layer S polysilicon deposited in a thickness of about 5 .mu.m (see FIG. 1 ).
  • the recess is filled, in which a support T is formed.
  • SiO 2 is deposited in a thickness of about 200 nm and patterned by a photolithographic process.
  • first trenches G1 are at a distance of approx. 1 ⁇ m from each other (see FIG. 1 ).
  • the first trenches G1 extend to the first (lower) sacrificial layer U and are approximately 5 ⁇ m deep.
  • first filling layer F1 made of SiO 2 is deposited. Parts of the first filling layer F1, which fill the first trenches G1 form first structures S1 (see FIG. 2 ). The thickness of the first structures S1 corresponds approximately to the depth of the first trenches G1.
  • an approximately 1 ⁇ m thick second filling layer F 2 of SiO 2 is deposited. Parts of the second filling layer F2 filling the second trenches G2 form second structures S2.
  • the first filling layer F1 and the second filling layer F2 together form an upper sacrificial layer.
  • the first trenches G1 and the second trenches G2 together form the recess V.
  • a bottom of the recess V has adjoining first regions B1 and second regions B2 in which each of their parts has respective opposite edges, the distance of which is smaller than a few microns is.
  • one of the first structures S1 is arranged above the first regions B1. Above the second regions B2, the second structures S2 are respectively arranged.
  • a bottom of the first trenches G1 coincides with the first regions B1.
  • a bottom of the second trenches G2 coincides with the second regions B2.
  • a semiconductor structure is formed from the material layer S, which is laterally surrounded by the depression V.
  • the semiconductor structure is about 50 ⁇ m wide and about 50 ⁇ m long.
  • An upper surface of the second filling layer F2 has along center lines of second trenches G2 extending grooves (see FIG. 3 ).
  • the recess V has a horizontal cross section in which a circular surface with a diameter of about 7 ⁇ m fits.
  • polysilicon is deposited in a thickness of approximately 1 ⁇ m.
  • the lid structure D has in the region of the depression V projections a in the form of burrs extending in the grooves (see FIG. 4 ).
  • the downwardly tapering projections a are substantially smaller than the depth of the recess V and are disposed over the second portions B2 of the bottom of the recess V.
  • the progressions of the protrusions a substantially coincide with the progressions of center lines of the second regions B2.
  • An opening O is produced in the cover structure D, through which the upper sacrificial layer and the lower sacrificial layer U are removed in an etching step.
  • etchant for example, a buffered hydrofluoric acid is suitable.
  • the depression V forms a part of a cavity, which is bounded by the lid structure D upwards.
  • the semiconductor structure can be vibrated by vibrations. The lateral freedom of movement is about 7 ⁇ m.
  • the circuit arrangement is suitable, for example, as a rotation rate sensor or as an acceleration sensor.
  • further components are arranged in the first substrate 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)
  • Measuring Fluid Pressure (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Weting (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer integrierten Schaltungsanordung umfassend einen Hohlraum in einer Materialschicht, sowie eine durch das Verfahren erzeugte integrierte Schaltungsanordnung.
  • Es gibt eine Vielzahl integrierter Schaltungsanordnungen, für die es von Vorteil ist, eine Vertiefung mit Abmessungen von mindestens einigen µm aufzuweisen.
  • Beispielsweise umfaßt eine solche Schaltungsanordnung ein CMOS-Mikrofon, bei dem eine Vertiefung einen Hohlraum, das sogenannte Rückseitenvolumen, bildet, über dem eine Membran angeordnet ist, die durch Schallwellen in Schwingungen versetzt wird. Mit Hilfe eines Kondensators werden die Schwingungen in elektrische Signale umgewandelt. Je mehr Volumen die Vertiefung aufweist, umso leichter kann die Membran schwingen, und umso geringere Schallpegel können nachgewiesen werden. Für Mikrofone ist es demnach erstrebenswert, eine möglichst tiefe Vertiefung mit großem horizontalem Querschnitt vorzusehen.
  • In P.R. Scheeper et al, "A Review of Silicon Microphones", Sensors and Actuators A 44 1994, Seiten 1 bis 11, ist ein erstes Mikrofon beschrieben, bei dem eine Vertiefung, die als Rückseitenvolumen dient, in einem ersten Siliziumsubstrat erzeugt wird. In einem zweiten Siliziumsubstrat werden eine perforierte Deckelschicht und darüber eine Membran erzeugt. Das erste Siliziumsubstrat wird mit dem zweiten Siliziumsubstrat verbunden. Eine Kapazität wird durch die Deckelschicht und das erste Siliziumsubstrat gebildet. Da die Vertiefung und die Deckelschicht in gesonderten Substraten erzeugt werden, ist der Prozeßaufwand sehr hoch. Das Verbinden der Substrate erfordert hohe Temperaturen, welche die Prozeßsicherheit beeinträchtigen können.
  • Diese Nachteile werden bei einem zweiten im oben genannten Fachartikel beschriebenen Mikrofon vermieden. Die Deckelschicht und die Vertiefung werden in einem einzigen Substrat erzeugt. Dazu wird die Vertiefung mit einer Opferschicht gefüllt. Über der Opferschicht wird eine perforierte Deckelschicht und darüber eine Membran erzeugt. Durch eine Öffnung am Rande der Membran wird die Opferschicht anschließend durch Ätzen entfernt.
  • Paßt in einen horizontalen Querschnitt einer Vertiefung eine kreisförmige Fläche hinein, deren Durchmesser mindestens der Tiefe der Vertiefung entspricht, so muß die Dicke einer konform abgeschiedenen Schicht mindestens die Tiefe der Vertiefung betragen, damit die Vertiefung durch die Schicht gefüllt wird. Bei Mikrofonen haben die zugehörigen Vertiefungen in der Regel die beschriebenen Abmessungen.
  • Allgemein führt jedoch eine Abscheidung einer Schicht, die dicker als einige µm ist, zum Abblättern der Schicht oder zu Rißbildung in der Schicht. Außerdem kann die betreffende Schaltungsanordnung aufgrund von Schichtspannungen verbogen werden. Nicht zuletzt erfordert die Abscheidung einer dicken Schicht einen hohen Zeit- und Kostenaufwand. Vertiefungen, die zu irgend einem Zeitpunkt gefüllt werden, weisen deshalb im Stand der Technik Abmessungen unter einigen µm auf.
  • Da beim zweiten Mikrofon die Vertiefung während des Herstellungsverfahrens durch Abscheidung der Opferschicht gefüllt wird, ist sie im Gegensatz zur Vertiefung des ersten Mikrofons flach. Das Rückseitenvolumen des zweiten Mikrofons ist entsprechend kleiner als beim ersten Mikrofon.
  • Weitere integrierte Schaltungsanordnungen, für die es von Vorteil ist, eine Vertiefung mit Abmessungen von mindestens einigen µm aufzuweisen, umfassen beispielsweise mikromechanische Bauelemente, wie Drehratensensoren oder Beschleunigungssensoren, die in Hohlräumen angeordnete bewegliche Strukturen aufweisen, für die eine möglichst große Bewegungsfreiheit erstrebt wird. In der deutschen Patentanmeldung DE 195 09 868 A1 wird ein Herstellungsverfahren für solche mikromechanische Bauelemente beschrieben. Diese Druckschrift offenbart eine integrierte Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 4. Auf einem Substrat werden eine untere Opferschicht und darüber eine Strukturschicht erzeugt und strukturiert, wodurch eine von einer Vertiefung umgebene Struktur erzeugt wird. Die Vertiefung wird durch Abscheidung einer oberen Opferschicht gefüllt, über der eine Deckelschicht aufgebracht wird. Unter Verwendung von Ätzlöchern in der Deckelschicht werden die Opferschichten entfernt, und die Vertiefung bildet einen Teil eines Hohlraums, in dem sich die Struktur bewegen kann.
  • Beim Beschleunigungssensor oder beim Drehratensensor werden Erschütterungen oder Rotationen mit Hilfe der Struktur, die in laterale Schwingungen versetzbar ist, detektiert. Die Dekkelschicht dient dem Schutz der Schaltungsanordnung. Die Empfindlichkeit des Beschleunigungssensors oder des Drehratensensors ist umso größer je dicker die Struktur, d.h. je tiefer die Vertiefung ist.
  • Die Herstellung von Vertiefungen zur Bildung von Grabenkondensatoren bzw. Grabenisolationen ist in US 5 665 622 bzw. US 5 358 891 beschrieben. Aus US 4 753 901 , gemäß welcher der Oberbegriff des Anspruchs 1 abgegrenzt wurde, ist bekannt, eine Vertiefung für eine Grabenisolation zweistufig herzustellen, wobei zunächst erste Gräben in einem Material hergestellt und mit einem isolierenden Material gefüllt werden. Anschließend wird das zwischen den ersten Gräben verbliebene Material zur Bildung von zweiten Gräben entfernt und ebenfalls mit einem isolierenden Material gefüllt. Die ersten und zweiten Gräben bilden zusammen die Vertiefung. Der Erfindung liegt das Problem zugrunde, ein Herstellungsverfahren anzugeben, bei dem in einer Materialschicht eine gefüllte, mindestens einige µm tiefe Vertiefung erzeugt werden kann, die einen horizontalen Querschnitt aufweist, in dem mindestens eine kreisförmige Fläche mit einem Durchmesser von einigen µm paßt. Ferner soll eine durch das Herstellungsverfahren erzeugte integrierte Schaltungsanordnung angegeben werden.
  • Das Problem wird gelöst durch ein Verfahren gemäß Anspruch 1 und durch eine Schaltungsanordnung gemäß Anspruch 4. Ausgestaltungen der Erfindung gehen aus den übrigen Ansprüchen hervor.
  • In einem erfindungsgemäßen Verfahren werden in einem für die Vertiefung vorgesehenen Bereich der Materialschicht mindestens eine erste Struktur und mindestens eine zweite Struktur erzeugt, die seitlich aneinandergrenzen und die eine Füllung der Vertiefung bilden, und bei denen jedes ihrer Teile jeweils sich gegenüberliegende Flankenteile aufweisen, deren Abstand voneinander kleiner als etwa die Hälfte einer Tiefe der Vertiefung ist. Die Vertiefung wird nicht wie im Stand der Technik zunächst erzeugt und dann in einem Schritt gefüllt, weshalb die Abscheidung einer dicken Schicht mit all ihren Nachteilen vermieden wird. Das erfindungsgemäße Verfahren ermöglicht die Erzeugung von gefüllten tiefen Vertiefungen mit großen horizontalen Querschnitten.
  • Ein solches Verfahren ist für jedes technische Gebiet vorteilhaft, bei dem Vertiefungen standardmäßig mit im wesentlichen konformen Schichten gefüllt werden. Ein solches Gebiet ist beispielsweise die Halbleiterprozeßtechnik.
  • Die beschriebenen Abmessungen der ersten Struktur und der zweiten Struktur ermöglichen die Erzeugung dieser Strukturen durch Verfahrensschritte, die unabhängig von der Tiefe der Vertiefung sind.
  • Zur Erzeugung der ersten Struktur wird in einem für die Vertiefung vorgesehenen Bereich der Materialschicht zunächst mindestens eine enge Vertiefung erzeugt, indem ein Anteil der Materialschicht entfernt wird. Die enge Vertiefung weist einen kleineren horizontalen Querschnitt als die zu erzeugende Vertiefung auf und bildet einen Teil der zu erzeugenden Vertiefung. Danach werden flankenbildende schichtartige Teile der ersten Struktur erzeugt, die seitlich verdickt werden, bis die Teile aufeinanderstoßen und dadurch die erste Struktur bilden. Eine Grenzfläche zwischen den aufeinandergestoßenen Teilen befindet sich folglich im Inneren der ersten Struktur. Die erste Struktur wird entweder in der engen Vertiefung oder außerhalb der engen Vertiefung erzeugt. Die zweite Struktur wird erzeugt, indem zunächst flankenbildende schichtartige Teile der zweiten Struktur erzeugt werden, die seitlich verdickt werden, bis die Teile aufeinanderstoßen und dadurch die zweiten Struktur bilden. Durch die Erzeugung der ersten Struktur und der zweiten Struktur, die bis zum Boden der Vertiefung reichen, wird die gefüllte Vertiefung gebildet.
  • Die ersten Struktur und die zweite Struktur werden in entsprechenden engen Vertiefungen erzeugt, die durch Abscheiden einer im wesentlich konformen Füllschicht gefüllt werden. Die Füllschicht entsteht unter anderem zunächst auf den Flanken der engen Vertiefung und bildet dort die flankenbildenden schichtartigen Teile der Strukturen. Im weiteren Verlauf der Abscheidung verdicken sich diese Teile seitlich in Richtung Mitte der engen Vertiefung, bis gegenüberliegende der Teile aufeinanderstoßen und die enge Vertiefung gefüllt ist. Aufgrund des kleinen Abstands der Flankenteile voneinander wird die Mindestdicke der Füllschicht von diesem Abstand und nicht von der Tiefe der engen Vertiefung bestimmt. Sie beträgt lediglich die Hälfte dieses Abstands. Die Füllschicht kann deshalb eine wesentlich kleinere Dicke aufweisen als eine Dicke einer Schicht, die zum Auffüllen der gesamten Vertiefung in einem Schritt erforderlich wäre.
  • Die erste Struktur ist beispielsweise mäandrisch und windet sich durch die Vertiefung. In diesem Fall ist die zweite Struktur z.B. ebenfalls mäandrisch. Alternativ gibt es eine Vielzahl streifenförmiger zweiter Strukturen, die in den Windungen der ersten Struktur angeordnet sind. Für die zweiten Strukturen werden entsprechend viele enge Vertiefungen erzeugt. Es können auch eine Vielzahl erster Strukturen vorgesehen sein, die z.B. zylindrisch oder streifenförmig sind. Die beschriebenen Formen sind Beispiele aus einer unbegrenzten Anzahl von Formen, die die obengenannte Bedingung für die Flankenteile erfüllen und ebenfalls im Rahmen der Erfindung liegen.
  • Es liegt im Rahmen der Erfindung, wenn weitere Strukturen erzeugt werden, die zusammen mit den ersten Strukturen und den zweiten Strukturen die Vertiefung füllen.
  • Die erste Struktur kann in der engen Vertiefung erzeugt werden, indem die enge Vertiefung durch im wesentlichen konformes Abscheiden einer ersten Füllschicht gefüllt wird. Anschließend wird eine weitere enge Vertiefung erzeugt, indem die zwischen Flanken der ersten Struktur angeordnete Teile der Materialschicht entfernt werden. Die zweite Struktur wird erzeugt, indem die weitere enge Vertiefung durch im wesentlichen konformes Abscheiden einer zweiten Füllschicht gefüllt wird.
  • Damit diese zwischen den Flanken der ersten Struktur angeordneten Teile der Materialschicht entfernt werden können, ist es zweckmäßig, über den Teilen der Materialschicht liegende Teile der ersten Füllschicht zu entfernen. Die enge Vertiefung kann durch zur ersten Füllschicht selektives Ätzen der Materialschicht erzeugt werden. Die obengenannten Teile der ersten Füllschicht können durch maskiertes Ätzen entfernt werden. Alternativ wird die erste Füllschicht chemischmechanisch poliert, bis die Materialschicht freigelegt wird. In diesem Fall bedeckt eine Maske außerhalb vom für die Vertiefung vorgesehenen Bereich liegende Teile der Materialschicht bei der Erzeugung der engen Vertiefung.
  • Die Füllung der Vertiefung dient als Opferschicht und wird in einem späteren Prozeßschritt entfernt.
  • Über der gefüllten Vertiefung wird eine Deckelstruktur erzeugt, die vollständig außerhalb der Vertiefung liegt und in die eine Öffnung erzeugt wird. Unter Verwendung der öffnung wird die erste Struktur und die zweite Struktur durch Ätzen entfernt, wodurch die Vertiefung einen Hohlraum bildet. Im Stand der Technik war es bisher nur möglich solche Hohlraum bildende Vertiefungen mit großen Abmessungen durch zweiseitige Bearbeitung eines Substrats zu erzeugen, was einen erheblich größeren Prozeßaufwand erfordert.
  • Zur Verringerung des Prozeßaufwands ist es vorteilhaft, wenn die erste Struktur und die zweite Struktur aus demselben Material bestehen. Das Entfernen kann dann in einem Ätzschritt erfolgen. Ist der Ätzschritt isotrop, so ist es vorteilhaft, wenn die erste Struktur und die zweite Struktur selektiv zur Materialschicht ätzbar sind.
  • Aus der Materialschicht kann eine bewegliche Struktur erzeugt werden. Dazu wird auf einem Halbleitersubstrat eine untere Opferschicht aufgebracht und strukturiert. Auf der unteren Opferschicht wird die Materialschicht aufgebracht. Durch die Erzeugung der gefüllten Vertiefung entsteht aus der Materialschicht die Struktur, die von der Vertiefung seitlich umgeben wird. Die erste Struktur und die zweite Struktur bilden einen Teil einer oberen Opferschicht, die an die untere Opferschicht angrenzt. Dazu wird die enge Vertiefung so erzeugt, daß sie bis auf die untere Opferschicht reicht und die Materialschicht durchtrennt. Auf der oberen Opferschicht, die die Struktur bedeckt, wird die Deckelstruktur mit der Öffnung aufgebracht. Unter Verwendung der Öffnung der Deckelstruktur werden die obere Opferschicht und die untere Opferschicht entfernt, wodurch die Vertiefung einen ersten Teil des Hohlraums bildet, der mindestens weitere unterhalb und oberhalb der Struktur angeordnete Teile aufweist.
  • Damit die Struktur nicht völlig frei im Hohlraum beweglich ist, können Stützen oder Aufhängungen vorgesehen sein, die die Struktur mit dem Substrat oder mit der Deckelstruktur verbinden. Zur Erzeugung einer Stütze wird in der unteren Opferschicht eine Öffnung erzeugt, die bis auf das Substrat reicht. Beim Abscheiden der Materialschicht wird die Öffnung gefüllt. Die gefüllte Öffnung bildet die Stütze, die die Materialschicht mit dem Substrat verbindet. Zur Erzeugung einer Aufhängung wird in der oberen Opferschicht eine Öffnung erzeugt, die bis auf die Struktur reicht. Beim Abscheiden der Deckelstruktur wird die Öffnung gefüllt. Die gefüllte Öffnung bildet die Aufhängung, die die Struktur mit der Deckelstruktur verbindet.
  • Aufgrund von Fehlertoleranzen bei den Prozeßschritten werden die Strukturen, die die Füllung der Vertiefung bilden, in der Regel nicht gleich dick sein. Deshalb kann bei einer mit dem erfindungsgemäßen Verfahren erzeugten Schaltungsanordnung ein Boden der Vertiefung aneinander angrenzende Bereiche aufweisen, über denen jeweils während des Verfahrens eine der Strukturen erzeugt wurden und die in unterschiedlichen Tiefen liegen. Aufgrund der Abmessungen der Strukturen weisen jedes der Teile dieser Bereiche jeweils sich gegenüberliegende Ränder auf, deren Abstand voneinander kleiner als einige µm ist. Da ein Tiefenunterschied zwischen den Bereichen auf die Fehlertoleranzen zurückzuführen ist, ist er wesentlich kleiner als die Tiefen der Bereiche, d.h. als die Tiefen der Vertiefung. Ist keine untere Opferschicht vorgesehen, so bleibt die Form des Bodens auch dann erhalten, wenn die Strukturen beim Herstellungsverfahren entfernt wurden.
  • Sind die ersten Strukturen und die zweiten Strukturen streifenförmig, können erste der Bereiche des Bodens der Vertiefung streifenförmig sein, im wesentlichen parallel zueinander verlaufen und die Vertiefung durchqueren. Zweite der Bereiche des Bodens der Vertiefung sind zwischen den ersten Bereichen angeordnet. Der Boden weist in jedem ersten Bereich einen quaderförmigen flachen Vorsprung auf, der wesentlich länger als breit ist.
  • Eine obere Fläche der Füllschicht für die zweite Struktur weist, wenn sie nicht planarisiert wird, eine leichte Einbuchtung entlang einer Mittellinie der zugehörigen engen Vertiefung auf. Wird die Deckelstruktur auf die Füllschicht abgeschieden, so weist eine untere, der Vertiefung zugewandten Fläche der Deckelstruktur einen entsprechenden Vorsprung auf, die die Einbuchtung füllt. Der Vorsprung verjüngt sich nach unten und ist wesentlich kleiner als die Tiefe der Vertiefung.
  • Haben die engen Vertiefungen die Form von streifenförmigen parallel zueinander verlaufenden Gräben, entstehen bei der Abscheidung der Füllschicht für die zweiten Strukturen entlang Mittellinien der Gräben Rillen in einer oberen Fläche dieser Füllschicht. Die Deckelstruktur, die darüber abgeschieden wird, füllt die Rillen auf und weist dort folglich Vorsprünge in Form von Graten auf.
  • Es liegt im Rahmen der Erfindung, wenn die Vertiefung eine Tiefe aufweist, die größer als ca. 5 µm ist. Es liegt im Rahmen der Erfindung, wenn die Vertiefung horizontale Abmessungen aufweist, die mehr als ca. 10 µm betragen.
  • Es liegt im Rahmen der Erfindung, wenn die Schaltungsanordnung einen Drehratensensor oder einen Beschleunigungssensor umfaßt, bei dem die bewegliche Struktur in laterale Oszillationen versetzbar ist.
  • Es liegt im Rahmen der Erfindung, wenn die Schaltungsanordnung ein Mikrofon umfaßt, bei dem die Vertiefung als Rückseitenvolumen dient, und bei dem die Deckelstruktur eine gelochte Elektrode ist. Als weitere Elektrode dient z.B. eine über der Deckelstruktur angeordnete Membran.
  • Es liegt im Rahmen der Erfindung, wenn die Schaltungsanordnung ein thermischer Sensor ist. Ein Temperaturmeßpunkt ist über der Vertiefung angeordnet, damit ein Wärmefluß zwischen dem Temperaturmeßpunkt und dem Substrat möglichst klein ist.
  • Es liegt im Rahmen der Erfindung, wenn die Schaltungsanordnung eine Hochfrequenzspule ist. Die Hochfrequenzspule ist über der Vertiefung, die mit isolierendem Material gefüllt ist, angeordnet, damit eine Kapazität zwischen der Hochfrequenzspule und dem Halbleitersubstrat möglichst klein ist.
  • Es liegt im Rahmen der Erfindung, wenn die Schaltungsanordnung eine Pumpe oder ein Ventil für Gase oder Flüssigkeiten ist. Die Vertiefung wirkt als Strömungskanal.
  • Die erste Struktur und die zweite Struktur können Oxid enthalten.
  • Im folgenden werden Ausführungsbeispiele der Erfindung, die in den Figuren dargestellt sind, näher erläutert.
  • Figur 1
    zeigt einen Querschnitt durch ein erstes Substrat, nachdem eine untere Opferschicht, eine Schicht, eine Stütze, eine erste Maske und erste Gräben erzeugt wurden.
    Figur 2
    zeigt den Querschnitt aus Figur 1, nachdem als Teile einer oberen Opferschicht erste Strukturen und eine zweite Maske erzeugt wurden und Teile der ersten Maske entfernt wurden.
    Figur 3
    zeigt den Querschnitt aus Figur 2, nachdem Teile der Schicht entfernt wurden und als Teile der oberen Opferschicht zweite Strukturen erzeugt wurden.
    Figur 4
    zeigt den Querschnitt aus Figur 3, nachdem eine Dekkelschicht und eine hohlraumbildende Vertiefung durch Entfernen der oberen Opferschicht und der unteren Opferschicht erzeugt wurden.
  • In einem ersten Ausführungsbeispiel ist als Ausgangsmaterial ein erstes Substrat 1 aus Silizium vorgesehen.
  • Zur Erzeugung einer unteren Opferschicht U wird in einem TEOS-Verfahren SiO2 in einer Dicke von ca. 1µm auf das erste Substrat, 1 abgeschieden und strukturiert (siehe Figur 1). Dabei wird in einem Teil der unteren Opferschicht U eine Aussparung erzeugt, die bis auf das erste Substrat 1 reicht.
  • Über der unteren Opferschicht U wird zur Erzeugung einer Materialschicht S Polysilizium in einer Dicke von ca. 5µm abgeschieden (siehe Figur 1). Dabei wird die Aussparung gefüllt, in der eine Stütze T entsteht. Zur Erzeugung einer ersten Maske 2 wird SiO2 in einer Dicke von ca. 200nm abgeschieden und durch ein fotolithografisches Verfahren strukturiert.
  • Mit Hilfe der ersten Maske 2 werden in einem Bereich der Materialschicht S, in dem eine Vertiefung V erzeugt werden soll, parallel zueinander verlaufende ca. 1µm breite erste Gräben G1 erzeugt. Die ersten Gräben G1 weisen einen Abstand von ca. 1µm voneinander auf (siehe Figur 1). Die ersten Gräben G1 reichen auf die erste (untere) Opferschicht U und sind ca. 5µm tief.
  • Anschließend wird in einem TEOS-Verfahren eine ca. 600 nm dicke erste Füllschicht F1 aus SiO2 abgeschieden. Teile der ersten Füllschicht F1, die die ersten Gräben G1 füllen, bilden erste Strukturen S1 (siehe Figur 2). Die Dicke der ersten Strukturen S1 entspricht etwa der Tiefe der ersten Gräben G1.
  • Mit Hilfe einer zweiten Maske 3 aus Fotolack, die außerhalb der zu erzeugenden Vertiefung liegende Teile der ersten Füllschicht F1 sowie die ersten Strukturen S1 bedeckt, werden im Bereich der zu erzeugenden Vertiefung V angeordnete Teile der ersten Füllschicht F1 und der ersten Maske 2 mit z. B. Flußsäure entfernt (siehe Figur 2). Anschließend wird die zweite Maske 3 entfernt.
  • Durch eine hochselektive Naßätzung mit z.B. Cholin werden zwischen den ersten Strukturen S1 zweite Gräben G2 erzeugt, indem freiliegende Teile der Materialschicht S selektiv zur ersten Füllschicht F1 entfernt werden.
  • In einem TEOS-Verfahren wird eine ca. 1µm dicke zweite Füllschicht F2 aus SiO2 abgeschieden. Teile der zweiten Füllschicht F2, die die zweiten Gräben G2 füllen, bilden zweite Strukturen S2. Die erste Füllschicht F1 und die zweite Füllschicht F2 bilden zusammen eine obere Opferschicht. Die ersten Gräben G1 und die zweiten Gräben G2 bilden zusammen die Vertiefung V. Ein Boden der Vertiefung V weist aneinander angrenzende erste Bereiche B1 und zweite Bereiche B2 auf, bei denen jedes ihrer Teile jeweils sich gegenüberliegende Ränder aufweisen, deren Abstand voneinander kleiner als einige µm ist. Über den ersten Bereichen B1 sind jeweils eine der ersten Strukturen S1 angeordnet. Über den zweiten Bereichen B2, sind jeweils die zweiten Strukturen S2 angeordnet. Ein Boden der ersten Gräben G1 stimmt mit den ersten Bereichen B1 überein. Ein Boden der zweiten Gräben G2 stimmt mit den zweiten Bereichen B2 überein. Durch die Vertiefung V wird aus der Materialschicht S eine Halbleiterstruktur gebildet, die von der Vertiefung V seitlich umgeben wird. Die Halbleiterstruktur ist ca. 50µm breit und ca. 50µm lang. Durch die Stütze T ist sie mit dem ersten Substrat 1 verbunden. Eine obere Fläche der zweiten Füllschicht F2 weist entlang Mittellinien der zweiten Gräben G2 verlaufende Rillen auf (siehe Figur 3). Die Vertiefung V weist einen horizontalen Querschnitt auf, in dem eine kreisförmige Fläche mit einem Durchmesser von ca. 7µm paßt.
  • Zur Erzeugung einer Deckelstruktur D wird Polysilizium in einer Dicke von ca. 1µm abgeschieden. Die Deckelstruktur D weist im Bereich der Vertiefung V Vorsprünge a in Form von Graten auf, die in den Rillen verlaufen (siehe Figur 4).
  • Die sich nach unten verjüngenden Vorsprünge a sind wesentlich kleiner als die Tiefe der Vertiefung V und sind über den zweiten Bereichen B2 des Bodens der Vertiefung V angeordnet. Die Verläufe der Vorsprünge a stimmen mit den Verläufen von Mittellinien der zweiten Bereiche B2 im wesentlichen überein.
  • In die Deckelstruktur D wird eine Öffnung O erzeugt, durch die in einem Ätzschritt die obere Opferschicht und die untere Opferschicht U entfernt werden. Als Ätzmittel ist beispielsweise eine gepufferte Flußsäure geeignet. Die Vertiefung V bildet einen Teil eines Hohlraums, der durch die Deckelstruktur D nach oben hin begrenzt wird. Die Halbleiterstruktur läßt sich durch Erschütterungen in Schwingungen versetzen. Die laterale Bewegungsfreiheit beträgt etwa 7µm.
  • Die Schaltungsanordnung ist beispielsweise als Drehratensensor oder als Beschleunigungssensor geeignet. Dazu sind weitere Bauelemente im ersten Substrat 1 angeordnet.
  • Es sind viele Variationen des Ausführungsbeispiels denkbar, die ebenfalls im Rahmen der Erfindung liegen. So können Abmessungen der Strukturen, Schichten und Halbleiterstrukturen an die jeweiligen Erfordernisse angepaßt werden. Vertiefungen, die durch das beschriebene Verfahren hergestellt werden, können auch für andere Schaltungsanordnungen verwendet werden. Solche Schaltungsanordnungen sind beispielsweise Mikrofone, thermische Sensoren, Pumpen und Ventile für Gase oder Flüssigkeiten und integrierte Hochfrequenzspulen.

Claims (5)

  1. Verfahren zur Herstellung einer integrierten Schaltungsanordnung umfassend einen Hohlraum in einer Materialschicht (S),
    - bei dem ausgehend von der Materialschicht (S) in einem für eine Vertiefung (V) vorgesehenen Bereich ein Anteil der Materialschicht (S) entfernt wird, bis der Boden der Vertiefung (V) in diesem Bereich freigelegt wird, wodurch mindestens eine enge Vertiefung (G1) erzeugt wird, die einen kleineren horizontalen Querschnitt als die zu erzeugende Vertiefung (V) aufweist und Teil der zu erzeugenden Vertiefung (V) bildet,
    - bei dem die mindestens eine enge Vertiefung (G1) durch eine für einen Teil der Füllung der Vertiefung (V) vorgesehene erste Struktur (S1) ersetzt wird, indem eine erste Füllschicht (F1) im wesentlichen konform abgeschieden wird, wobei die in der engen Vertiefung (G1) gebildete erste Struktur (S1) gegenüberliegende Flankenteile aufweist, deren Abstand voneinander kleiner als die Hälfte der Tiefe der Vertiefung (V) ist und wobei die Dicke der Füllschicht (F1) weniger als die Hälfte der Tiefe der Vertiefung (V) beträgt,
    - bei dem der restliche Anteil der Materialschicht (S) im dem für die Vertiefung (V) vorgesehenen Bereich entfernt wird, wodurch zumindest eine weitere enge Vertiefung (G2) erzeugt wird,
    - bei dem die zumindest eine weitere enge Vertiefung (G2) durch eine für einen weiteren Teil der Füllung der Vertiefung (V) vorgesehene und an die erste Struktur (S1) seitlich angreuzende zweite Struktur (S2) ersetzt wird, indem eine zweite Füllschicht (F2) im wesentlichen konform abgeschieden wird, wobei die in der weiteren engen Vertiefung (G2) gebildete zweite Struktur (S2) gegenüberliegende Flankenteile aufweist, deren Abstand voneinander kleiner als die Hälfte der Tiefe der Vertiefung (V) ist und wobei die Dicke der Füllschicht (F2) weniger als die Hälfte der Tiefe der Vertiefung (V) beträgt,
    - dadurch gekennzeichnet, daß die erste Struktur (S1) und die zweite Struktur (S2) als Teile einer oberen Opferschicht erzeugt werden,
    - auf der oberen Opferschicht eine Deckelstruktur (D) aufgebracht wird,
    - in der Deckelstruktur (D) mindestens eine Öffnung (O) erzeugt wird, unter deren Verwendung die obere Opferschicht mit einem Ätzmittel entfernt wird, wodurch die Vertiefung (V) dem Hohlraum bildet.
  2. Verfahren nach Anspruch 1,
    - bei dem mehrere erste Strukturen (S1) und zweite Strukturen (S2) erzeugt werden.
  3. Verfahren nach Anspruch 1 oder 2,
    - bei dem auf einem Halbleitersubstrat (1) eine untere Opferschicht (U) aufgebracht und strukturiert wird,
    - bei dem auf der unteren Opferschicht (U) die Materialschicht (S) aufgebracht wird,
    - bei dem die engen Vertiefungen (G1, G2) so erzeugt werden, daß sie bis auf die untere Opferschicht (U) reichen und die Materialschicht (S) durchtrennen,
    - bei dem unter Verwendung der Öffnung (O) der Deckelstruktur (D) die obere Opferschicht und die untere Opferschicht (U) durch das Ätzmittel entfernt werden, wodurch die Vertiefung (V) einen Teil des Hohlraums bildet, der mindestens einen unterhalb der Materialschicht (S) angeordneten weiteren Teil aufweist.
  4. Integrierte Schaltungsanordnung,
    - bei der in einer Materialschicht (S) eine mindestens einige µm tiefe Vertiefung (V) angeordnet ist, die einen horizontalen Querschnitt aufweist, in dem mindestens eine kreisförmige Fläche mit einem Durchmesser von einigen µm paßt,
    - bei der über und außerhalb der Vertiefung (V), die zumindest einen Teil eines Hohlraums bildet, eine Deckelstruktur (D) angeordnet ist, dadurch gekennzeichnet, daß
    - ein Boden der Vertiefung (V) aneinander angrenzende Bereiche (B1, B2) aufweist, die jeweils sich gegenüberliegende Ränder aufweisen, deren Abstand voneinander kleiner als einige µm ist,
    - eine untere, der Vertiefung (V) zugewandten Fläche der Deckelstruktur (D) mindestens einen sich nach unten verjüngenden Vorsprung (a) aufweist, der wesentlich kleiner als die Tiefe der Vertiefung (V) ist und über einem der Bereiche (B2) des Bodens der Vertiefung (V) angeordnet ist, und dessen Verlauf mit dem Verlauf einer Mittellinie jenes Bereichs (B2) im wesentlichen übereinstimmt.
  5. Schaltungsanordnung nach Anspruch 4,
    - die eines von folgenden Bauelementen umfaßt:
    1. Drehratensensor oder Beschleunigungssensor, bei dem eine Halbleiterstruktur, die in laterale Oszillationen versetzbar ist, von der Vertiefung, die Teil eines Hohlraums bildet, seitlich umgeben ist,
    2. Mikrofon, bei dem die Vertiefung als Rückseitenvolumen dient, und die Deckelstruktur eine gelochte Elektrode ist.
EP99945888A 1998-07-08 1999-07-02 Verfahren zur herstellung einer integrierten schaltungsanordnung umfassend einen hohlraum in einer materialschicht, sowie eine durch das verfahren erzeugte integrierte schaltungsanordnung Expired - Lifetime EP1101389B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19830535 1998-07-08
DE19830535 1998-07-08
PCT/DE1999/002041 WO2000003560A2 (de) 1998-07-08 1999-07-02 Verfahren zur herstellung einer gefüllten vertiefung in einer materialschicht, sowie eine durch das verfahren erzeugte integrierte schaltungsanordnung

Publications (2)

Publication Number Publication Date
EP1101389A2 EP1101389A2 (de) 2001-05-23
EP1101389B1 true EP1101389B1 (de) 2008-09-24

Family

ID=7873359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99945888A Expired - Lifetime EP1101389B1 (de) 1998-07-08 1999-07-02 Verfahren zur herstellung einer integrierten schaltungsanordnung umfassend einen hohlraum in einer materialschicht, sowie eine durch das verfahren erzeugte integrierte schaltungsanordnung

Country Status (6)

Country Link
US (1) US6724058B2 (de)
EP (1) EP1101389B1 (de)
JP (1) JP2002520862A (de)
AT (1) ATE409398T1 (de)
DE (1) DE59914876D1 (de)
WO (1) WO2000003560A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002213857A1 (en) * 2000-08-24 2002-03-04 Fachhochschule Furtwangen Electrostatic electroacoustical transducer
US20040040504A1 (en) * 2002-08-01 2004-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
DE10247487A1 (de) * 2002-10-11 2004-05-06 Infineon Technologies Ag Membran und Verfahren zu deren Herstellung
MXPA05008024A (es) * 2003-01-31 2006-01-27 Dow Corning Ireland Ltd Unidad de electrodos para generacion de plasma.
KR20080005854A (ko) 2006-07-10 2008-01-15 야마하 가부시키가이샤 압력 센서 및 그의 제조 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509868A1 (de) * 1995-03-17 1996-09-19 Siemens Ag Mikromechanisches Halbleiterbauelement

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211582A (en) 1979-06-28 1980-07-08 International Business Machines Corporation Process for making large area isolation trenches utilizing a two-step selective etching technique
US4753901A (en) * 1985-11-15 1988-06-28 Ncr Corporation Two mask technique for planarized trench oxide isolation of integrated devices
DE3727142C2 (de) * 1987-08-14 1994-02-24 Kernforschungsz Karlsruhe Verfahren zur Herstellung von Mikrosensoren mit integrierter Signalverarbeitung
US4836885A (en) * 1988-05-03 1989-06-06 International Business Machines Corporation Planarization process for wide trench isolation
FR2700065B1 (fr) 1992-12-28 1995-02-10 Commissariat Energie Atomique Procédé de fabrication d'accéléromètres utilisant la technologie silicium sur isolant.
US5324683A (en) * 1993-06-02 1994-06-28 Motorola, Inc. Method of forming a semiconductor structure having an air region
US5358891A (en) * 1993-06-29 1994-10-25 Intel Corporation Trench isolation with planar topography and method of fabrication
US5395790A (en) 1994-05-11 1995-03-07 United Microelectronics Corp. Stress-free isolation layer
US5374583A (en) 1994-05-24 1994-12-20 United Microelectronic Corporation Technology for local oxidation of silicon
US5665622A (en) * 1995-03-15 1997-09-09 International Business Machines Corporation Folded trench and rie/deposition process for high-value capacitors
US5610431A (en) * 1995-05-12 1997-03-11 The Charles Stark Draper Laboratory, Inc. Covers for micromechanical sensors and other semiconductor devices
JPH098039A (ja) 1995-06-26 1997-01-10 Oki Electric Ind Co Ltd 埋め込み配線の形成方法及び埋め込み配線
DE19636914A1 (de) * 1996-09-11 1998-03-12 Siemens Ag Verfahren zum Auffüllen eines Grabens mit Hilfe eines anisotropen Ätzprozesses
DE19648424C1 (de) * 1996-11-22 1998-06-25 Siemens Ag Mikromechanischer Sensor
EP0862207A1 (de) * 1997-02-27 1998-09-02 Siemens Aktiengesellschaft Verfahren zur Herstellung eines DRAM-Grabenkondensators
JP3274647B2 (ja) * 1998-05-15 2002-04-15 日本電気株式会社 光半導体素子の実装構造

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509868A1 (de) * 1995-03-17 1996-09-19 Siemens Ag Mikromechanisches Halbleiterbauelement

Also Published As

Publication number Publication date
US20010005032A1 (en) 2001-06-28
US6724058B2 (en) 2004-04-20
ATE409398T1 (de) 2008-10-15
JP2002520862A (ja) 2002-07-09
WO2000003560A2 (de) 2000-01-20
WO2000003560A3 (de) 2000-02-24
EP1101389A2 (de) 2001-05-23
DE59914876D1 (de) 2008-11-06

Similar Documents

Publication Publication Date Title
EP1444864B1 (de) Mikromechanische sensoren und verfahren zur herstellung derselben
DE10065013B4 (de) Verfahren zum Herstellen eines mikromechanischen Bauelements
EP2170763B1 (de) Verfahren zur herstellung von leiterbahnbrücken und bauteil mit leitfähiger schicht
DE69930099T2 (de) Herstellung von vergrabenen Hohlräumen in einer einkristallinen Halbleiterscheibe und Halbleiterscheibe
DE102007060878B4 (de) Mikromechanisches System
EP1274648B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
WO2006105898A1 (de) Mikromechanisches bauelement, verfahren zur herstellung und verwendung
WO2008052762A2 (de) Halbleiteranordnung und verfahren zur herstellung einer halbleiteranordnung
DE102011080978A1 (de) Verfahren zur Herstellung einer mikromechanischen Struktur und mikromechanische Struktur
EP1105344B1 (de) Mikromechanischer sensor und verfahren zu seiner herstellung
DE102020108433B4 (de) Vorrichtung mit einer Membran und Herstellungsverfahren
WO2009127455A2 (de) Verfahren zur herstellung einer mikromechanischen membranstruktur mit feststehendem gegenelement
EP1101389B1 (de) Verfahren zur herstellung einer integrierten schaltungsanordnung umfassend einen hohlraum in einer materialschicht, sowie eine durch das verfahren erzeugte integrierte schaltungsanordnung
WO2007131836A1 (de) Verfahren zur herstellung eines mikromechanischen bauelements und mikromechanisches bauelement
EP1425241B1 (de) Verfahren zur herstellung einer membran
EP1360143B1 (de) Verfahren zum erzeugen von oberflächenmikromechanikstrukturen und sensor
EP1296886B1 (de) Herstellungsverfahren für ein mikromechanisches bauelement
WO2022078771A1 (de) Herstellungsverfahren für ein mikromechanisches bauteil für eine sensor- oder mikrofonvorrichtung
DE102005055478A1 (de) Mikromechanische Struktur zum Empfang und/oder zur Erzeugung von akustischen Signalen, Verfahren zur Herstellung einer mikromechanischen Struktur und Verwendung einer mikromechanischen Struktur
DE10196643B4 (de) Herstellungsverfahren für einen Dünnschicht-Strukturkörper
WO2009059850A2 (de) Mikromechanisches bauelement, kurzprozess zur herstellung von mems-bauelementen
EP1198833B1 (de) Verfahren zur herstellung eines halbleiterspeicherbauelements
DE102010039180B4 (de) Verfahren zum Herstellen von Halbleiterchips und entsprechender Halbleiterchip
DE102009026639A1 (de) Elektromechanische Mikrostruktur
DE102022210972A1 (de) Verfahren zur Herstellung einer mikromechanischen Schichtstruktur mit hohem Aspektverhältnis und mikromechanische Schichtstruktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020108

17Q First examination report despatched

Effective date: 20020108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING AN INTEGRATED CIRCUIT COMPRISING A CAVITY IN A MATERIAL LAYER AND INTEGRATED CIRCUIT PRODUCED USING SAID METHOD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59914876

Country of ref document: DE

Date of ref document: 20081106

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

26N No opposition filed

Effective date: 20090625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

BERE Be: lapsed

Owner name: INFINEON TECHNOLOGIES A.G.

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160920

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59914876

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201