EP1094873B1 - Procede permettant d'isoler des polymeres de solutions - Google Patents

Procede permettant d'isoler des polymeres de solutions Download PDF

Info

Publication number
EP1094873B1
EP1094873B1 EP99929176A EP99929176A EP1094873B1 EP 1094873 B1 EP1094873 B1 EP 1094873B1 EP 99929176 A EP99929176 A EP 99929176A EP 99929176 A EP99929176 A EP 99929176A EP 1094873 B1 EP1094873 B1 EP 1094873B1
Authority
EP
European Patent Office
Prior art keywords
separator
polymer
helix
process according
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99929176A
Other languages
German (de)
English (en)
Other versions
EP1094873A1 (fr
Inventor
Clemens Casper
Jörgen Weinschenck
Klemens KOHLGRÜBER
Jürgen HEUSER
Christian Kords
Thomas Elsner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1094873A1 publication Critical patent/EP1094873A1/fr
Application granted granted Critical
Publication of EP1094873B1 publication Critical patent/EP1094873B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • C08G64/406Purifying; Drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/08Multieffect or multistage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/10Organic

Definitions

  • the invention is based on a method for evaporating a polymer solution, in which the polymer solution through a heated spiral tube and an adjoining Steam separator flows.
  • the pure polymer has a softening point that is often far above the boiling point of the solvent. Since the boiling point of the solution as a result of very different molecular weights between polymer and solvent towards high polymer concentrations close to the boiling point of the solvent the solution viscosity increases sharply during the process and can reach values well over 1000 Pas, which translates into poor heat transfer impact, requires great mixing forces and to fall short of the glass point. Only in the final phase of the process, when the polymer content affects the vapor pressure of the solution significantly, the solution temperature rises strongly and exceeds the softening point of the polymer, which is reflected in a decrease in viscosity. Towards the end of the process convective evaporation process into a diffusion process. In this phase a longer dwell time, a large exchange area, a good mixing of the viscous product and a high partial pressure drop.
  • the multi-phase spiral tube which in the Patents DE 1 667 051 and DE 1 921 045 are described in more detail, is based on the core on a flash evaporation and a downstream evaporation in the indirectly heated Helical tube.
  • a steam separator is installed downstream of the spiral tube.
  • the dwell time of the product in the flow tube is so short that no product damage entry.
  • the starting solution can be in one pass are generally concentrated to 70 to 90 wt .-%.
  • the molar proportion of Solvent is also near the pipe end at the high polymer concentrations still so great that convection and not diffusion is the evaporation process dominated.
  • the downstream one Relieved worm machine leading to lowering the residual solvent content leads in the final product.
  • the main disadvantage of this process is the high investment costs for the screw machine, the wear of the rotating parts and the many Seals, especially those of the Brüdendome, their susceptibility to failure due to the rotating parts and handling with the heavy machine parts.
  • the invention has for its object in the concentration of polymers the remaining proportion of solvent or monomers at least to that required by law approved, lower than 1% by weight limit and at the same time the previously used complex process engineering through simpler To replace methods that can be implemented with inexpensive equipment.
  • This task is used in a method for evaporating a polymer solution which the polymer solution, which in the starting composition at least 30% by weight of solvents and monomers, preferably 50 to 70% by weight, With a steam outlet speed of 200 to 300 m / s through a heated spiral tube and one attached to it subsequent heated steam separator is performed, according to the invention solved that the heating medium temperatures in the spiral tube and in the separator to a value above of the softening point of the polymer and that that formed in the spiral tube Two-phase mixture of polymer melt and solvent and monomer vapors in the heated steam separator to a pressure in the range of 10 mbar to 800 mbar is completely relaxed.
  • the heating medium temperature in the helical tube and in the separator is advantageous a value that is 10% to 30% above the polymer glass point.
  • the process is also advantageously carried out in such a way that the polymer solution has a pressure between 4 bar to 20 bar when entering the spiral tube.
  • a further development of the invention to achieve even lower residual solvent contents is that the polymer solution in a downstream of the separator String evaporator up to a residual solvent content of 5 ⁇ g / g bis 100 ⁇ g / g is evaporated further.
  • the polymer content of the starting solution is very low, ( ⁇ 30% by weight), so can two or more multi-phase spiral tube stages can be connected in series. is the throughput is very high, (> 5 t / h polymer), so two or more multi-phase spiral tube stages can be connected in parallel, each stage with a own pump system must be equipped.
  • this is made from the polymer melt existing sump product in the separator expediently by a wide mouth Gear pump or a screw conveyor withdrawn and then in converted to a solid granular state by a cooling device.
  • thermoplastics such as polycarbonates, Polyester carbonates, polyalkylene terephthalates, EPDM polymers, polystyrene and on copolymers and graft copolymers prepared from styrene, acrylonitrile and butadiene, such as. ABS but also for other polymers, such as inorganic silicones.
  • the great advantage of the method according to the invention is that the The investment and operating costs of the otherwise expensive machines are eliminated. Associated with it are not only lower operating and investment costs but also one Reduction of thermal and mechanical product stress, resulting in a leads to higher product quality. If the degree of specification is above 0.1% by weight, then the multiphase spiral pipe together with the separator is sufficient for the solution of the Task out. However, if the required degree of specification is below 0.1% by weight, then the strand evaporator is connected downstream.
  • the invention is based on the following findings: In a number of experimental investigations it was surprisingly found that polymer solutions can be concentrated in the multiphase spiral tube down to residual contents of solvents and monomers below 1% by weight, without blockages and product damage occurring. This is achieved by high heating medium temperatures, which are above the softening point of the polymers, which prevents caking on the wall, which can be the cause of blockages in the pipe and product damage, by high flow velocities in the spiral pipe, which reach up to the speed of sound and thus for one high pressure level and great wall shear forces and by subsequent flash evaporation into the separator under vacuum.
  • the heating medium temperature in the separator above the glass point ensures that the viscous product is reliably discharged from the system if a heated discharge pump or screw conveyor is used as the discharge element, whereby the heating medium temperatures there must also be above the glass point. Under these conditions, the residual solvent content of the polymer in the multi-phase spiral tube can be reliably and reproducibly reduced to below 1% by weight.
  • PC solution polycarbonate solution
  • the PC solution 1 to be concentrated is from the Pump 2 pumped through a heat exchanger 3, expanded in valve 4 and flows then through a spiral tube 5 and a subsequent steam separator 6, which consists of a commercially available cyclone separator.
  • Both the spiral tube 5 and the steam separator 6 are provided with a heating jacket through which a Heating medium or heat transfer medium, e.g. Diphyl THT, flows.
  • a Heating medium or heat transfer medium e.g. Diphyl THT
  • the Vapors separated in the steam separator 6 are condensed in the condenser 7 and withdrawn by means of the pump 8 as distillate 9.
  • the liquid phase remains in the Vapor separator 6, the concentrated polycarbonate melt 10, which also has a heated discharge pump 11 in a buffer tank or optionally in further procedural stages is promoted.
  • the discharge pump can come from a wide mouth Gear pump or a screw conveyor exist.
  • the spiral tube 5 had an inner diameter of 15 mm, a length of 6 m, an average spiral diameter of 284 mm and a spiral pitch of -5.7.
  • the inner surface of the spiral tube was 0.29 m 2 .
  • Experiments with throughputs of 35 to 85 kg / h PC solution were carried out with this system.
  • the temperature of the PC solution after the heat exchanger was 180 ° C at a pressure of 19 bar.
  • the PC solution at the inlet of the helical tube 5 is expanded to 3 to 8 bar.
  • the temperature at this point was 150 ° C to 180 ° C.
  • the two-phase mixture formed in the helical tube 5 and consisting of PC melt and solvent vapor was expanded to an absolute pressure of 10 mbar to 800 mbar. During this flash evaporation, large quantities of steam are suddenly released again.
  • the PC melt had a concentration of 98.1 to 99.85% by weight at a temperature of 240 ° C to 260 ° C.
  • the heating medium temperature (ie the temperature of the heat transfer medium in the heating circuit of the spiral tube 5 and the steam separator 6) was 300 ° C.
  • PC solution Composition of the solution 14 wt% PC 43% by weight chlorobenzene 43% by weight dichloromethane throughput 43 kg / h temperatures: Heating the heat exchanger 3 200 ° C (heat transfer medium steam) Heating spiral tube 5 300 ° C (heat transfer medium Diphyl THT) Heating of separator 6 and discharge pump 11 290 ° C (heat transfer medium Diphyl THT)
  • PC solution Composition of the solution 30 wt% PC 60% by weight chlorobenzene 10% by weight dichloromethane throughput 38 kg / h temperatures: Heating the heat exchanger 3 200 ° C (heat transfer steam Heating spiral tube 5 300 ° C (heat transfer medium Diphyl THT) Heating of separator 6 and discharge pump 11 290 ° C (heat transfer medium Diphyl THT)
  • PC solution Composition of the solution 14 wt% PC 86% by weight chlorobenzene throughput 40 kg / h temperatures: Heating the heat exchanger 3 200 ° C (heat transfer steam Heating spiral tube 5 300 ° C (heat transfer medium Diphyl THT) Heating of separator 6 and discharge pump 11 290 ° C (heat transfer medium Diphyl THT)
  • the separator 6 or the discharge pump 11 as a further evaporator stage a string evaporator can be connected downstream. With such a In combination, residual solvent contents of less than 0.1% by weight can be achieved become.
  • FIG. 3 shows a flow diagram of a multi-stage spiral tube evaporator system with steam separators in combination with a strand evaporator as the last stage.
  • the two series-connected multi-phase spiral tube stages 12 and 13 are constructed completely analogously to the system according to FIG. 1 and consist of the pumps 2 1 and 2 2 , the heat exchangers 3 1 and 3 2 , the valves 4 1 and 4 2 , the multi-phase spiral tubes 5 1 and 5 2 and the steam separators 6 1 and 6 2 .
  • the outlet of the second steam separator 6 2 is connected via a discharge pump 14 to a strand evaporator 15 belonging to the prior art.
  • the strand evaporator is a diffusion device that can generate a large exchange surface for the product.
  • a container 16 under vacuum in which a nozzle plate 17 is attached at the upper end and a discharge member 18 is attached at the lower end.
  • Product melt threads are produced in the nozzle plate 17, which fall downward in the container 16 and are then discharged by the discharge member 18 as product melt.
  • the residual solvent evaporates from the product by diffusion. In this way, the residual solvent content can be reduced again by one to two powers of ten.
  • the PC solution has a temperature of 200 ° C.
  • a pressure of 2 bar prevails in the separator 6 1 .
  • the polycarbonate concentration c p is 30% by weight.
  • the temperature in the spiral tube 5 2 300 ° C and the pressure in the separator 6 2 is less than 0.1 bar.
  • the c p value is over 99% by weight.
  • the first spiral tube stage 12 there is normally a concentration to 25 to 30% by weight, in the second spiral tube stage 13 to more than 99% by weight and in the strand evaporator stage to more than 99.99% by weight.
  • concentration to 25 to 30% by weight
  • in the second spiral tube stage 13 to more than 99% by weight
  • in the strand evaporator stage to more than 99.99% by weight.
  • Evaporation or concentration is usually still included Process step for cooling and solidification of the polymer melt.
  • Process step for cooling and solidification of the polymer melt is usually still included.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (7)

  1. Procédé d'évaporation d'une solution visqueuse de polymère avec au moins 30 % en poids de solvant et monomères, de préférence 50 à 70 % en poids, pour lequel la solution de polymère à évaporer est conduite sous forme d'écoulement laminaire avec une vitesse de sortie de vapeur de 200 à 300 m/s à travers un serpentin chauffé (5) et s'écoule ensuite dans un séparateur chauffé (6), caractérisé en ce que les températures du fluide caloporteur dans le serpentin (5) et dans le séparateur (6) sont maintenues à une valeur supérieure au point de ramollissement du polymère et que le mélange à deux phases de masse fondue de polymère et vapeurs de solvant et de monomère formé dans le serpentin (5) est détendu dans le séparateur de vapeur (6) chauffé à une pression absolue de l'ordre de 10 mbar à 800 mbar.
  2. Procédé suivant la revendication 1, caractérisé en ce que la température du fluide caloporteur dans le serpentin (5) et le séparateur (6) est maintenue à une valeur qui est de 10 % à 30 % supérieure à la température de transition vitreuse du polymère.
  3. Procédé suivant les revendications 1 à 2, caractérisé en ce que la solution de polymère est maintenue à une pression comprise entre 4 et 20 bars à l'entrée dans le serpentin (5).
  4. Procédé suivant les revendications 1 à 3, caractérisé en ce que la concentration de la solution de polymère se poursuit dans un évaporateur tubulaire (15) branché en aval du séparateur (6, 62) jusqu'à une teneur résiduelle en solvant de 5 µg/g à 500 µg/g.
  5. Procédé suivant les revendications 1 à 4, caractérisé en ce que, pour une teneur en polymère de moins de 30 % en poids dans la solution de départ, plusieurs étages à serpentin multiphase sont branchés en série.
  6. Procédé suivant les revendications 1 à 5, caractérisé en ce que, pour des débits de plus de 5 t/h, plusieurs étages à serpentin multiphase sont branchés en parallèle, chaque étage étant équipé de son propre système de pompage.
  7. Procédé suivant les revendications 1 à 6, caractérisé en ce que le produit de pied dans le séparateur (6) est extrait par une pompe de sortie (7) et est ensuite transformé en granulés solides dans un dispositif de refroidissement.
EP99929176A 1998-06-23 1999-06-11 Procede permettant d'isoler des polymeres de solutions Expired - Lifetime EP1094873B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19827852 1998-06-23
DE19827852A DE19827852A1 (de) 1998-06-23 1998-06-23 Verfahren zur Isolierung von Polymeren aus Lösungen
PCT/EP1999/004023 WO1999067002A1 (fr) 1998-06-23 1999-06-11 Procede permettant d'isoler des polymeres de solutions

Publications (2)

Publication Number Publication Date
EP1094873A1 EP1094873A1 (fr) 2001-05-02
EP1094873B1 true EP1094873B1 (fr) 2004-05-06

Family

ID=7871697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99929176A Expired - Lifetime EP1094873B1 (fr) 1998-06-23 1999-06-11 Procede permettant d'isoler des polymeres de solutions

Country Status (12)

Country Link
US (1) US6506281B1 (fr)
EP (1) EP1094873B1 (fr)
JP (1) JP2002518551A (fr)
KR (1) KR20010034912A (fr)
CN (1) CN1100581C (fr)
AU (1) AU4607699A (fr)
BR (1) BR9911418A (fr)
CA (1) CA2335577A1 (fr)
DE (2) DE19827852A1 (fr)
ES (1) ES2221393T3 (fr)
HK (1) HK1039081A1 (fr)
WO (1) WO1999067002A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620906B1 (en) 2000-02-07 2003-09-16 Bayer Aktiengesellschaft Method for the production of highly pure polycarbonate and ultrapure polycarbonate
WO2007090768A1 (fr) * 2006-02-09 2007-08-16 Basf Se Procede d'obtention de composes vinyle par evaporation
MX2010001396A (es) 2007-08-31 2010-03-01 Basf Se Metodo para la produccion de isocianatos.
US8496787B2 (en) * 2009-07-26 2013-07-30 Michael John Lord Method and apparatus for effluent free sea water desalination
IT1404150B1 (it) * 2010-12-28 2013-11-15 Polimeri Europa Spa Procedimento per la depressurizzazione di fluidi e dispositivo adatto allo scopo
KR102234828B1 (ko) 2013-06-12 2021-04-01 바스프 에스이 지방족 또는 부분 방향족 폴리아미드의 연속 제조 방법
EP2881154B1 (fr) 2013-12-04 2018-02-21 Fluitec Invest AG Dispositif et procédé de vaporisation par détente
WO2016030467A2 (fr) * 2014-08-27 2016-03-03 List Holding Ag Procédé pour améliorer l'isolation de solutions polymères
EP3728399B1 (fr) 2017-12-18 2021-08-18 Covestro Intellectual Property GmbH & Co. KG Procédé de préparation d'un polycarbonate à l'aide d'un solvant organique à base d'hydrocarbures chlorés

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279893A (en) * 1963-07-05 1966-10-18 Monsanto Co Apparatus for processing liquids
GB1201145A (en) * 1966-11-30 1970-08-05 Ici Ltd Process and apparatus for gas/liquid separation
DE1667051B2 (de) 1967-09-04 1976-09-23 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zum eindampfen von insbesondere viskosen fluessigkeiten und zum ausdampfen der bei reaktionen entstehenden produkte
US3834441A (en) * 1969-04-25 1974-09-10 Bayer Ag Process for concentrating polymer solutions by evaporation
DE2724360B2 (de) * 1977-05-28 1981-03-12 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von thermoplastischen Formmassen auf Basis von Vinylpolymerisaten
DE3030662A1 (de) * 1980-08-13 1982-03-18 Bayer Ag, 5090 Leverkusen Verfahren zur trocknung von pumpfaehigen suspensionen
IT1226303B (it) * 1988-07-26 1990-12-27 Montedipe Spa Processo ed apparato per la devolatilizzazione di soluzioni di polimeri.
JP2633339B2 (ja) * 1989-01-12 1997-07-23 出光石油化学株式会社 ポリカーボネートの製造方法
JP3164860B2 (ja) * 1991-11-26 2001-05-14 三菱レイヨン株式会社 アクリル系樹脂の製造方法
EP0783011A3 (fr) * 1996-01-05 1998-07-08 Bayer Ag Procédé pour isoler des polycarbonates partiellement cristallin
DE19600630A1 (de) * 1996-01-10 1997-07-17 Bayer Ag Verfahren und Vorrichtung zum kontinuierlichen Eindampfen von zähflüssigen, zum Haften neigenden Lösungen und Suspensionen bis zur Trockenmasse
US6069228A (en) * 1998-08-17 2000-05-30 E. I. Du Pont De Nemours And Company Process for preparing polyamides

Also Published As

Publication number Publication date
CN1100581C (zh) 2003-02-05
CN1307497A (zh) 2001-08-08
AU4607699A (en) 2000-01-10
CA2335577A1 (fr) 1999-12-29
ES2221393T3 (es) 2004-12-16
HK1039081A1 (zh) 2002-04-12
DE19827852A1 (de) 1999-12-30
DE59909411D1 (de) 2004-06-09
US6506281B1 (en) 2003-01-14
EP1094873A1 (fr) 2001-05-02
BR9911418A (pt) 2001-03-20
KR20010034912A (ko) 2001-04-25
JP2002518551A (ja) 2002-06-25
WO1999067002A1 (fr) 1999-12-29

Similar Documents

Publication Publication Date Title
EP2180987B1 (fr) Procédé de production de granulés de polyester faiblement hydrolysés à partir de polyester fondu hautement visqueux, et procédé de production de granulés de polyester, et granulés de polyester faiblement hydrolysés
EP0752268B1 (fr) Procédé et dispositif pour la production de polymères en continu
DE102006012866B4 (de) Verfahren zur Abtrennung leichtflüchtiger Komponenten aus einem Stoffgemisch sowie Vorrichtung zur Durchführung dieses Verfahrens
EP1113848B1 (fr) Procede pour l'evaporation de solutions polymeres de polymeres thermoplastiques
WO2001077188A1 (fr) Procede et dispositif pour enlever des composants volatils contenus dans des materiaux polymeres
DD232715A5 (de) Verfahren zur kontinuierlichen entmonomerisierung und nachpolymerisierung von polyamid 6 und vorrichtung zur durchfuehrung des verfahrens
EP1094873B1 (fr) Procede permettant d'isoler des polymeres de solutions
WO2005014667A1 (fr) Procede et dispositif pour eliminer des substances volatiles contenues dans des milieux a viscosite elevee
CH438218A (de) Verfahren zum Abtrennen niedermolekularer Anteile aus hochpolymeren Verbindungen
EP1173264B1 (fr) Procede et dispositif pour concentrer par evaporation des solutions de polymeres thermoplastiques
DE2400661A1 (de) Verbessertes fallstrom-verdampfungsverfahren
EP0045912B1 (fr) Procédé pour le séchage d'une suspension à même d'être pompée
DE10237281A1 (de) Vorrichtung zur kontinuierlichen Extraktion von Extraktstoffen aus Pflanzen
EP1299434B1 (fr) Copolymeres exempts de caoutchouc, a faible teneur en monomeres residuels, procede et dispositif de production correspondants
DE1495657A1 (de) Verfahren zur Abtrennung von Monomeren und Oligomeren aus linearen Polyamiden
EP1477223B1 (fr) Reacteur de grand volume avec plusieurs chambres
EP3777987A1 (fr) Dispositif de traitement thermique de matériau, en particulier de séparation thermique des composants de matériau contenus dans le matériau
DE1921045A1 (de) Verfahren und Vorrichtung zum Eindampfen von Polymerloesungen
EP0451602B1 (fr) Procédé continu pour concentrer des solutions polymères jusqu'à une spécification demandée des solvants résiduels
DE3213735C2 (de) Verfahren und Vorrichtung zum kontinuierlichen Herstellen von hochschlagfestem Polystyrol
EP2881154B1 (fr) Dispositif et procédé de vaporisation par détente
DE3334338C2 (de) Verfahren und Vorrichtung zur Massenpolymerisation von styrolischen und Alkenylnitrilmonomeren
DE19844176C1 (de) Verfahren und Vorrichtung zur Vakuum-Entmonomerisierung von Polyamid 6-Schmelzen
DE2116939A1 (en) Solids extractions during polyethylene soln evaporation - - using opposing screws in flash chamber base
DE4415220C2 (de) Verfahren und Vorrichtung zur Herstellung von Polyestern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES IT NL

17Q First examination report despatched

Effective date: 20021112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040604

Year of fee payment: 6

REF Corresponds to:

Ref document number: 59909411

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2221393

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050524

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050629

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

BERE Be: lapsed

Owner name: *BAYER MATERIALSCIENCE A.G.

Effective date: 20060630